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On the Cauchy problem for the ∂ operator

Judith Brinkschulte and C. Denson Hill

Abstract. We present new results concerning the solvability, or lack of thereof, in the Cauchy

problem for the ∂ operator with initial values assigned on a weakly pseudoconvex hypersurface,

and provide illustrative examples.

1. Introduction

We present here a discussion of an elementary question about the ∂ opera-
tor. In Cn, or more generally on some n-dimensional complex manifold X , consider
a smooth connected real hypersurface M , and a half open–half closed connected do-
main D, which has M as its partial boundary, and is on one side of M . Typically, for
some connected open set U , D={z∈U |r(z)≤0} and M ={r(z)=0}, where r : U!R

is a C∞ function with dr|M �=0. We have in mind the situation where M is not the
full topological boundary of D. Any such hypersurface M is non-characteristic for
the ∂ operator, since the Dolbeault complex is an elliptic complex. Also ellipticity
and hyperbolicity are not mutually exclusive concepts for complexes of differential
operators, as they are for scalar operators: For example the de Rham complex
is both elliptic and hyperbolic. It is reasonable therefore to consider the Cauchy
problem for the ∂ operator, with assigned “initial values” on M . This can be done
either at the primitive level of (p, q)-forms, or else at the level of cohomology classes.
A study of these basic problems was initiated in [AH1] and [AH2]. We recall below
the minimal preliminaries needed for this paper, and refer the reader to [AH1] for
more details.

Let I(p,q)(D) denote the differential ideal in C∞
(p,q)(D) generated by r and ∂r;

i.e., u∈I(p,q)(D) means that u=rα+∂r∧β, where α∈C∞
(p,q)(D) and β∈C∞

(p,q−1)(D).
It is intrinsic to the geometry of D and M ; it does not depend on the choice
of the defining function r. Smooth tangential (p, q)-forms on M are defined as
equivalence classes [u] in the quotient Q(p,q)=C∞

(p,q)(D)/I(p,q)(D), and the tangential
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Cauchy–Riemann operator ∂M : Q(p,q) �!Q(p,q+1) is defined by ∂M [u]=[∂u]. A form
u∈I(p,q)(D) should be thought of as having zero Cauchy data on M . We have the
cohomology groups

Hp,q(D)=
Ker{∂ : C∞

(p,q)(D)! C∞
(p,q+1)(D)}

Im{∂ : C∞
(p,q−1)(D)! C∞

(p,q)(D)} ,

Hp,q(D, I)=
Ker{∂ : I(p,q)(D)! I(p,q+1)(D)}
Im{∂ : I(p,q−1)(D)! I(p,q)(D)} ,

Hp,q(M)=
Ker{∂M : Q(p,q)(D)!Q(p,q+1)(D)}
Im{∂M : Q(p,q−1)(D)!Q(p,q)(D)} .

Note that our notation is such that all the differential forms involved above are
required to be C∞ up to the partial boundary M of D.

Here is the formulation of the Cauchy problem for the ∂ operator in terms of
differential forms: Given f∈C∞

(p,q+1)(D) and u0∈C∞
(p,q)(M), the problem is to find

u∈C∞
(p,q)(D) such that

{
∂u=f in D,

u|M =u0.
(1.1)

Some compatibility conditions are necessary: we must have ∂f =0 on D and
f−∂ũ0∈I(p,q+1)(D) for any C∞ extension ũ0 of u0. The set of solutions to (1.1)
is partitioned into equivalence classes by saying that two solutions u1 and u2 are
equivalent if and only if u1−u2 is cohomologous to zero in Hp,q(D, I). Then we
have the following consequences ([AH1, p. 351]).

(i) The existence of a solution u∈C∞
(p,q)(D) to (1.1) for all compatible data

f∈C∞
(p,q+1)(D) and u0∈C∞

(p,q)(M) is equivalent to Hp,q+1(D, I)=0.
(ii) The solution to (1.1) is unique, up to equivalence, if and only if

Hp,q(D, I)=0.
The homogeneous version of the Cauchy problem for the ∂ operator is for-

mulated in terms of cohomology classes as follows: Given a boundary cohomology
class ξ0∈Hp,q(M), the problem is to find a cohomology class ξ∈Hp,q(D) such that
ρ(ξ)=ξ0, where ρ is the map induced by restriction (dual to smooth extension).
Having existence or uniqueness for this version of the Cauchy problem is equivalent
to the surjectivity or the injectivity, respectively, of the homomorphism

Hp,q(D)
ρ−−!Hp,q(M).(1.2)



On the Cauchy problem for the ∂ operator 233

For this version of the problem it is convenient to also introduce the half open–
half closed connected domain D+={z∈U |r(z)≥0}. Then we have the following
consequences [AH1, p. 355].

(iii) Either Hp,q(D, I)=0 or Hp,q(U)=0 is a sufficient condition for the injec-
tivity (uniqueness) in (1.2).

(iv) Hp,q+1(D, I)=0 is a sufficient condition for the surjectivity (existence) in
(1.2), and it is also necessary if Hp,q+1(U)=0.

(v) If Hp,q(U)=0 and Hp,q+1(U)=0, then for q>0, there are isomorphisms

Hp,q(D+)�Hp,q+1(D, I),

Hp,q(M)�Hp,q(D)⊕Hp,q(D+).

The point of the above discussion is to emphasize that the vanishing, or not,
of one of the cohomology groups Hp,s(D, I) is an important issue in the Cauchy
problem for ∂. In particular if one of these cohomology groups is, say, infinite-
dimensional, then there is a big obstruction to either existence or uniqueness to
some Cauchy problem.

One might expect that there could be certain finite-dimensional obstructions
to the existence or uniqueness in the Cauchy problem for the ∂ operator. But
remarkably, in the situation where X is a Stein manifold, each of the various coho-
mology groups which enter into the above discussion are either zero or else infinite-
dimensional [BHN].

What happens in the local situation, near a boundary point x0∈M and for
a sufficiently small D, was explained in [AH2] in terms of the signature of the Levi
form of M at x0, at least under strict assumptions on the number of positive or
negative eigenvalues of the Levi form (see Theorems 1, 2, ..., 7 in [AH2]). Since that
time a number of authors have obtained results analogous to Theorem 1 in [AH2],
under non-strict assumptions on the Levi form. But after 35 years there seems to
have been little or no progress made in establishing results analogous to Theorem 2
in [AH2], under non-strict assumptions.

In this paper we do obtain results analogous to the above mentioned The-
orem 2, under non-strict assumptions, for the special case in which M is weakly
pseudoconvex. Our main results (Theorems 2.1 and 2.2) are in fact global in nature.
Although we borrow some techniques from [AH2], it is the considerable technical
progress made in [B] which enables our success.

A separate issue is the validity, or non-validity, of the Poincaré lemma for the
tangential Cauchy–Riemann operator ∂M on M . Recently, in a much more general
context than M being a hypersurface, some new insight about this question was
obtained in [HN]. However this other issue is closely related to the Cauchy problem
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for the ∂ operator; and this is especially so for the case where M is a weakly
pseudoconvex hypersurface.

2. The main results

Throughout this section, we will consider the following set-up:
Let X be an n-dimensional Stein manifold. Let Ω⊂X be an open set, and let

r, g∈C∞(Ω) be two real-valued functions on Ω. We define

M = {z∈Ω | g(z)< 0 and r(z)= 0},
N = {z∈Ω | g(z)= 0 and r(z)≤ 0},
D = {z∈Ω | g(z)< 0 and r(z)≤ 0}.

We assume that D is connected and relatively compact in Ω. We moreover require
that dr �=0 on M , dg �=0 on N and dr∧dg �=0 on M∩N . Our goal is to establish
vanishing theorems for the cohomology groups on D with zero Cauchy data on M .
For this, we need to make the following convexity assumptions on r and g:

i∂∂rT 1,0
x M ≥ 0 for all x∈M,(2.1)

i∂∂g = 0 in an open neighborhood V of N in Ω.(2.2)

In particular, the hypotheses on D imply that D is piecewise smooth with a weakly
pseudoconvex boundary. With this set-up, we are able to prove the following result.

Theorem 2.1. We obtain

Hp,s(D, I)= 0

for p=0, 1, ..., n and s=0, 1, ..., n−2.

Proof. Let us consider the sets B(η)={z∈D |− 1
2η<g(z)<0} for 0<η≤η0, where

η0 is sufficiently small. In particular, B(η) is weakly pseudoconvex.
The case s=0 is trivial, so let 1≤s≤n−2 and f∈I(p,s)(D) with ∂f =0 be given.

Without loss of generality (see Lemma 2.3, p. 340 of [AH1]), we may assume that
f vanishes to infinite order on M∩D.

Let χ∈C∞(D) be such that

χ =

{
1, when g<−η/3,

0, when g>−η/4.
.
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Then χf∈C∞
(p,s)(D) and ∂(χf)=∂χ∧f has support in

{z∈Ω | r(z)≤ 0 and −η/3≤ g(z)≤−η/4}⊂B(η).

Using [B, Theorem 4.2], there exists ϕ∈C∞
(p,s)(D) such that ∂ϕ=∂χ∧f̃ and suppϕ⊂

B(η). We set f1=χf−ϕ. Then clearly ∂f1=0 and f1=f on {z∈D |g(z)<−η/2}.
Moreover, supp f1⊂D. Hence we may again apply [B, Theorem 4.2] in order to
obtain a solution u∈I(p,s−1)(D) to the equation ∂u=f1.

We conclude that given f∈I(p,s)(D) with ∂f =0, 1≤s≤n−2, and given η>0,
we can find uη∈I(p,s−1)(Dη) such that ∂uη=f on Dη, where Dη={z∈D |g(z)<−η}.

Now consider a strictly decreasing sequence {ην}ν∈N with ην!0, as ν!∞.
Then, for each ν∈N, we can find uν∈I(p,s−1)(Dην ) such that ∂uν=f on Dην . There-
fore ∂(uν−uν−1)=0 on Dην−1 . If s=1, then u2=u1 on Dη1 , u3=u2 on Dη2 , ... .
Hence, by setting u=uν on Dην , we define an element u∈I(p,s−1)(D) with ∂u=f .

If s>1, then we construct a sequence {u′
ν}ν∈N, u′

ν∈I(p,s−1)(Dην ) satisfying
∂u′

ν=f on Dην and u′
ν=u′

ν−1 on Dην−3 . Indeed, suppose u′
1, ..., u

′
ν have been con-

structed. Then ∂(uν+1−u′
ν)=0 on Dην . Since the domain Dην satisfies the same

hypotheses as D, there exists σ∈I(p,s−2)(Dην−1) such that ∂σ=uν+1−u′
ν on Dην−1 .

Let τ be a smooth function on D with

τ =

{
1, on Dην−2 ,

0, outside Dην−1 .

Set u′
ν+1=uν+1−∂(τσ). Then u′

ν+1 has the required properties. Now setting u=u′
ν

on Dην−2 , we get a well-defined element u∈I(p,s−1)(D) for which ∂u=f . �

Now let us replace the assumptions (2.1) and (2.2) by the following more re-
strictive assumptions on r and g,

i∂∂r≥ 0 in an open neighborhood U of M in Ω,(2.3)

i∂∂g = 0 in an open neighborhood V of D in Ω,(2.4)

i∂∂r > 0 in an open neighborhood W of M∩N in Ω.(2.5)

We then obtain the following result.

Theorem 2.2. We obtain

Hp,s(D, I)= 0

for p=0, 1, ..., n and s=0, 1, ..., n−1.
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Before we start the proof of the theorem, let us consider the domains

A(ε)= {z∈Ω | r(z)< ε and g(z)< 0},
B(ε, η)=

{
z ∈Ω | r(z)< ε and − 1

2η < g(z)< 0
}

for 0<ε≤ε0 and 0<η≤η0, where ε0 and η0 are sufficiently small. In particular,
both A(ε) and B(ε, η) are weakly pseudoconvex domains.

Lemma 2.3. (A(ε), B(ε, η)) is a Runge pair in all degrees s≤n, i.e. the natural
map

Hp,s
c (B(ε, η))−−!Hp,s

c (A(ε))

is injective for all 0≤p, s≤n. Here Hp,s
c (B(ε, η)) and Hp,s

c (A(ε)) denote the ∂-
cohomology groups for smooth forms with compact support in B(ε, η) resp. A(ε).

Proof. By a criterion for Runge pairs proved in [AV, p. 122], for each compact
K⊂B(ε, η), it suffices to construct a smooth, strictly plurisubharmonic exhaustion
function Φ on A(ε) such that

K ⊂
{
z ∈A(ε)

∣∣∣ Φ(z)≤ sup
K

Φ
}
⊂B(ε, η).

Consider the three plurisubharmonic functions

ϕ1 = r−ε,

ϕ2 = g,

ϕ3 =−g− 1
2η.

Note that it is no loss of generality to assume that r is plurisubharmonic on an open
neighborhood of D in Ω. (Indeed, replacing r by max(−τ, r) for some small τ>0, one
obtains a continuous plurisubharmonic function in a neighborhood of D in Ω that is
still a defining function for M .) Then ϕ=max(ϕ1, ϕ2, ϕ3) is a continuous plurisub-
harmonic function on A(ε), and B(ε, η)={z∈A(ε)|ϕ(z)<0}. Let K⊂B(ε, η) be
compact. It is no loss of generality to assume that K={z∈A(ε)|ϕ(z)<−δ} for
some δ>0. But since ϕ is plurisubharmonic on A(ε), it then follows by definition
of the plurisubharmonic hulls that K=K̂B(ε,η)=K̂A(ε). So there exists a smooth
plurisubharmonic exhaustion function Φ on A(ε) with Φ<0 on K and Φ>0 outside
B(ε, η). �

Proof of Theorem 2.2. Let 1≤s≤n−1 and f∈I(p,s)(D) with ∂f =0 be given.
Without loss of generality (see Lemma 2.3, p. 340 of [AH1]), we may assume that
f vanishes to infinite order on M∩D. We extend f to f̃ , defined on A(ε), by
defining f̃ to be zero outside of D.
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Let χ∈C∞(A(ε)) be such that

χ =

{
1, when g<−η/3,

0, when g>−η/4.

Then χf̃∈C∞
0(p,s)(A(ε)) and ∂(χf̃)=∂χ∧f̃ has support in

{z ∈Ω | r(z)≤ 0 and −η/3≤ g(z)≤−η/4}�B(ε, η).

Using the lemma above, there exists ϕ∈C∞
0(p,s)(B(ε, η)) such that ∂ϕ=∂χ∧f̃ . We

set f1=χf̃−ϕ. Then clearly ∂f1=0 and f1=f on {z∈D |g(z)<−η/2}.
Now let ρ be a smooth function on Ω with 0≤ρ≤1 such that

ρ =

{
1, when g≥−η/2,

0, when g≤−η,

and let

D′(ε, η)= {z | r(z)≤ ερ(z) and g(z)< 0}.
Then supp f1⊂D′(ε, η). Moreover, using (2.3), the bumped domain D′(ε, η) is
piecewise smooth with a weakly pseudoconvex boundary if ε and η are sufficiently
small. Hence we may apply the results of [B, Theorem 4.2] to the domain D′(ε, η)
in order to obtain a solution u∈I(p,s−1)(D′(ε, η)) to the equation ∂u=f1.

As before, we conclude that given f∈I(p,s)(D) with ∂f =0, 1≤s≤n−1, and
given η>0, we can find uη∈I(p,s−1)(Dη) such that ∂uη=f on Dη, where Dη=
{z∈D |g(z)<−η}. The rest of the proof is the same as the proof of Theorem 2.1. �

As explained in the introduction, Theorems 2.1 and 2.2 have applications to the
solvability of the tangential Cauchy–Riemann equation on M without shrinking the
domain. For the case of M being a pseudo-convex CR hypersurface of finite type and
N being a flat hypersurface, it was proved in [S1] that Hp,q(M)=0 for 1≤q<n−2.
In [LT] and [FLT], one can find cohomological and geometrical characterizations of
the open subsets of a strictly pseudoconvex boundary in a Stein manifold on which
one can solve the tangential Cauchy–Riemann equation in all bidegrees without
shrinking the domain. We also refer the reader to [S2]. Our main results imply the
following consequence.

Corollary 2.4. Assume that Y ={z∈Ω|g(z)>0} is Stein and that (2.3) is
satisfied.

1. If (2.2) holds, then we have

Hp,q(M)= 0

for 0≤p≤n and 1≤q<n−2.
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2. If (2.4) and (2.5) hold, then we have

Hp,q(M)= 0

for 0≤p≤n and 1≤q<n−1.

Proof. The assumption that Y is Stein implies that

Hp,q(M)�Hp,q(D)⊕Hp,q+1(D, I)

(see (v) in the introduction, with U =Y ). If (2.3) is satisfied, we may moreover apply
Dufresnoy’s results [D] on the solvability of ∂ with regularity up to the boundary on
weakly pseudoconvex domains. Applying a standard Mittag-Leffler-type procedure,
one can conclude that for the half open–half closed domain D one has Hp,q(D)=0
for 1≤q≤n. We conclude by evoking Theorem 2.1 and 2.2. �

Example. Here is a simple but illustrative example. Consider the unit sphere

S2n−1 = {z | |z1|1+|z2|2+...+|zn|2 = 1},

which is the boundary of the closed unit ball B in Cn, n≥3. Let D̃ be the set
{z∈B |η<x1≤η+ε}, where 0<η<η+ε<1. It has the partial boundary

{z ∈S2n−1 | η < x1 ≤ η+ε}∪{z∈B |x1 = η+ε}.
We make a small C∞ “rounding off of the corners” of the non-smooth part of the
partial boundary of D̃, and let D denote the resulting half open–half closed domain,
and M its smooth partial boundary. This can be done in such a way that (2.3) is
satisfied. Then from Theorem 2.2 and Corollary 2.4 we obtain that, for p=0, 1, ..., n,

Hp,s(D, I)= 0, when s = 0, 1, ..., n−1,

Hp,q(M)= 0, when q = 1, 2, ..., n−2.
(2.6)

Note that here ε>0 is arbitrarily small. Hence M is Levi-flat except for an
annular ring having arbitrarily small measure, where M is strictly pseudoconvex.

Thus, in this example, the only homogeneous Cauchy problems (1.2) which
are of any interest are those with q=0 and q=n−1. They both have infinite-
dimensional spaces of Cauchy data. For q=0, there is the well-known isomorphism
Hp,0(D)�Hp,0(M). But for q=n−1, the well-posed Cauchy problem occurs on the
other side: Hp,n−1(D+)�Hp,n−1(M), where D+={z |η<x1}\D̊. Here we use again
(v) and the fact that Y ={z |η<x1} is Stein. Note that the cohomology groups
which are missing in (2.6), namely Hp,n(D, I), Hp,0(M) and Hp,n−1(M) are all
infinite-dimensional (see [AH2]).
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3. How not to slice eggs

Denote the coordinates in Cn by (z, w) with z=(z1, z2) and w=(w1, w2, ...,

wn−2), and consider

∂Ω = {(z, w) | |z1|2+|z2|2+|w1|m1 +...+|wn−2|mn−2 = 1},(3.1)

where m1, m2, ..., mn−2 are even integers, all ≥4. Then ∂Ω is the weakly pseudo-
convex boundary of a generalized closed convex egg Ω in Cn. For j=0, 1, ..., n−2
let Σn−1−j be the set of points on ∂Ω at which exactly j components of w are
zero. Then ∂Ω=

⋃n−1
k=1 Σk. At each point x0∈Σk the complex Hessian of r=

|z1|2+|z2|2+|w1|m1 +...+|wn−2|mn−2−1 has k+1 positive and n−k−1 zero eigen-
values. Hence the Levi form of ∂Ω at x0 has k positive and n−k−1 zero eigenvalues.
Note that Σk has real codimension 2(n−1)−2k in M , and this codimension is equal
to 2j when k=n−1−j. Thus the real codimension in M of the locus of degeneracy
of the Levi form is equal to two times the number of components of w which have
been set equal to zero.

Now fix a k (1≤k<n−1), take some point x0∈Σk, and slice Ω by a hyperplane
which is parallel to Tx0∂Ω, so as to cut out a sufficiently small half open–half closed
convex domain D, with a partial boundary M . Then the Levi form of M has at least
k+1 positive eigenvalues at each point, except along the locus ΣM =M∩Σk, where
there are only k positive eigenvalues. This ΣM is thin, having real codimension
2n−2−2k in M , but it is not compact in M . Hence we cannot apply part 2 of
Corollary 2.4, but we may apply part 1. The conclusion is that for 0≤p≤n we
have

Hp,q(M)= 0, when 1≤ q < n−2.(3.2)

Note that the result is independent of the choice of k. One could argue that this is
the usual way to slice an egg. It enables us, in bidegree (p, q), to solve the tangential
Cauchy–Riemann equations on M without shrinking.

Next we slice the egg in a different way: with the same choice of the point x0

as before, fix any Riemannian metric g on ∂Ω and denote by B(x0, r) the open ball
on ∂Ω, centered at x0, of radius r. For example, we may use the standard metric
on ∂Ω which is induced by the euclidean metric in the ambient Cn. It was shown
in [HN] (see Theorem 7.2, and p. 218) that if r>0 is taken to be sufficiently small,
then

dimHp,k(B(x0, r))=∞ for all 0≤ p≤n.(3.3)

The contrast between (3.2) and (3.3) came, at first, as a bit of a surprise to the
authors. However we are able to explain it by means of some subtle but elementary
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geometry: let us write the tangential Cauchy–Riemann equations on ∂Ω as

∂Mu = f,(3.4)

∂Mf = 0.(3.5)

Let f be a tangential (p, k)-form which is C∞ and satisfies (3.5) on B(x0, r). We
seek a tangential (p, k−1)-form u that is C∞ and solves (3.4) on B(x0, r

′), for
some r′, with 0<r′≤r (shrinking is now allowed). What was shown in [HN] is
that there exist constants r0>0 and C>0 such that, for 0<r′≤r≤r0, if r′>Cr3/2,
then there is an infinite-dimensional space of such f ’s to which there does not
correspond any such solution u. The infinite dimensionality expressed in (3.3) then
follows.

In order to most simply explain why (3.2) and (3.3) can both be true, let us
work with the most dangerous case in which all mj=4 in (3.1). When we slice
the egg Ω in the usual way, the M which is cut out looks like a curved “elliptical”
surface: there is a longest geodesic on ∂Ω from x0 to the boundary of M , and there
is a shortest geodesic on ∂Ω from x0 to the boundary of M . Let r be the length
of the longest geodesic, and r′ be the length of the shortest geodesic. Denote by
h>0 the perpendicular distance between the hyperplane Tx0∂Ω and the parallel
hyperplane used to cut out the slice D of the egg Ω. Thus r and r′ are functions
of h. As h!0 we need to obtain the asymptotic behavior of the ratio of two
arc-length integrals. For the shorter one it is sufficient to consider x2+y2=1 and
hence

r′(h)=
∫ 1

1−h

dx√
1−x2

.

For the longer one it suffices to consider x2+y4=1 and therefore

r(h)=
∫ 1

1−h

[4(1−x2)3/2+x2]1/2

2[1−x2]3/4
dx.

A computation shows that

r′(h)
r(h)3/2

= consth1/8+O(h9/8), as h!0.

This means that for h taken sufficiently small, we cannot maintain the crucial in-
equality r′/r3/2>C from [HN]. Thus (3.2), obtained by slicing the egg in the usual
way, does not contradict (3.3) being valid, which was obtained actually not by slic-
ing, but by taking small balls in some Riemannian metric on the boundary of the
egg.
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