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The chamber basis of the Orlik–Solomon
algebra and Aomoto complex

Masahiko Yoshinaga

Abstract. We introduce a basis of the Orlik–Solomon algebra labeled by chambers, the so

called chamber basis. We consider structure constants of the Orlik–Solomon algebra with respect

to the chamber basis and prove that these structure constants recover D. Cohen’s minimal complex

from the Aomoto complex.

1. Introduction

Let A={H1, ..., Hn} be an affine hyperplane arrangement in the real vector
space R

l. Choose for each H∈A an affine linear form αH with H=α−1
H (0). Denote

by ch(A) the set of all chambers and by M(A)=C
l\⋃

H∈A H⊗C the complement
to the complexified hyperplanes.

The set ch(A) of chambers has been known to carry information about the
topology of M(A). For example |ch(A)|=∑l

j=0 bj(M(A)), [22], the homotopy type
of M(A) can be obtained from the face poset [15], and [9] uses bounded cham-
bers to construct a basis of the local system cohomology group. The relation be-
tween the Orlik–Solomon algebra and the ring Z[ch(A)] of Z-valued functions over
the set of chambers was studied in [19] (see also [4], [5] and [8]). References [21]
and [16] considered the relation between structures of chambers and minimal CW-
decomposition. We will pursue these topological interpretations of chambers in the
context of rank-one local system cohomology groups.

Let λH∈C be complex weights. A rank-one local system L on M(A) is defined
with monodromy exp(2πiλH) around the hyperplane H . Let ωH =dαH/2πiαH ,
A�=H �(M(A), C) and

ωλ =
∑

H∈A
λHωH .
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Under some genericity conditions on the weights λH , Esnault–Schechtman–Vieh-
weg [7] (and [17]) proved that the Aomoto complex (A�, 2πiωλ∧) is quasi-isomorphic
to the de Rham complex with coefficients in L. In particular, if the weights λH are
sufficiently small, e.g. |λH |<1/2(n+1) for all H∈A, then

Hp(M(A),L)∼= Hp(A�, 2πiωλ∧).

Thus the local system cohomology group H �(M(A),L) can be calculated from the
Aomoto complex if L is close to the trivial one (the tangent-cone theorem). However,
in general, these two cohomology groups have different dimensions [3] and [18]. The
Aomoto complex does not compute H �(M(A),L) directly. This suggests the problem
whether the Aomoto complex (A�, 2πiωλ∧) can recover the local system cohomology
group H �(M(A),L).

Another interpretation of the Aomoto complex is related to the minimality of
M(A), [1], [6], [12] and [14]. In [1], Cohen constructed a complex (K�(A), ∆�(λ))
which computes H �(M(A),L) and the terms of this complex have Betti numbers as
their dimensions, that is, satisfying the minimality: dimKp=bp(M(A)). When L
is trivial, the minimality implies that all the coboundary maps vanish, ∆p(0)=0.
However the coboundary ∆(λ) of the minimal complex is difficult to compute for
λ �=0. Cohen–Orlik [2] determined the first order approximation of ∆(λ). They
proved that the linearization of the minimal complex is chain equivalent to the
Aomoto complex,

(

K�(A),
d

dt

∣
∣
∣
∣
t=0

∆�(tλ)
)
∼= (A�, 2πiωλ∧).

The purpose of this paper is to study an “integration” of the Aomoto com-
plex for obtaining the minimal complex for a real arrangement A. To do this, we
introduce a basis of the Orlik–Solomon algebra A�, the so called “chamber basis”,
which is depending on a fixed generic flag with orientations. Then we have a matrix
expression of the linear map 2πiωλ∧ : A�!A�+1. We will prove that the minimal
complex can be recovered from these matrix entries. Roughly speaking, it is done
just by replacing each matrix entry with its value of the hyperbolic sine function.

The proof is based on the constructions in [21]. In the previous paper [21],
we explicitly constructed the attaching maps of cells arising from the Lefschetz
hyperplane section theorem for a real arrangement A. Moreover we also obtained
a description of the minimal complex in terms of chambers. However the formula of
the boundary map in [21] contains an integer deg(C′, C) which is difficult to compute
(see also Remark 4.2). The situation is changed in this paper. We will prove that the
integer deg(C′, C) appears as a “structure constant” of the Orlik–Solomon algebra
with respect to the chamber basis. Moreover we also give an algorithm relating the
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chamber basis and the classical generator of the Orlik–Solomon algebra, which is
a more combinatorics friendly object than the original definition of deg(C′, C).

The paper is organized as follows. In Section 2, we recall some basic facts on the
topology of M(A) and constructions from [21]. In particular, using a generic flag F ,
we divide the set of chambers into a disjoint union ch(A)=

⊔l
q=0 chq

F (A) such that

|chq
F (A)|=bq(M(A)) and construct an isomorphism νq : Z[chq

F(A)]
∼=−−!Hq(M(A), Z).

This leads us to introduce the notion of chamber basis {νq(C)|C∈chq(A)} of Aq.
In Section 3, we will construct the inverse map ξq=(νq)−1 : Hq(M, Z)!Z[chq

F(A)]
which enables us to express νq(C)∈Hq(M(A)) in terms of the differential forms ωH .
The wedge product ωλ∧νq(C) can be uniquely expressed as

∑

C′∈chq+1

ΓC,C′(λ)νq+1(C′)

for some coefficients ΓC,C′(λ)∈C. In Section 4, two main results are stated and
proved. First we assert that the coefficient ΓC,C′(λ) has a decomposition as a prod-
uct of a linear form of weights λH and an integer. Furthermore the linear factor
of the weights is explicitly described by using the notion of separating hyperplanes.
The other integral factor is essentially equivalent to deg(C′, C) mentioned above.
The second result is recovering the minimal complex from these coefficients using
the hyperbolic sine function. In the appendix, Section 5, a generalized version of
the linearization theorem for a minimal CW-complex is proved.

2. Preliminary

2.1. Basic constructions

Let V be an l-dimensional vector space. A finite set of affine hyperplanes
A={H1, ..., Hn} is called a hyperplane arrangement. For each hyperplane Hj we
fix a defining equation αj such that Hj =α−1

j (0). Let L(A) be the set of nonempty
intersections of elements of A. Define a partial order on L(A) by X≤Y ⇔Y ⊆X for
X, Y ∈L(A). Note that this is reverse inclusion.

Define a rank function on L(A) by r(X)=codimX . Write Lp(A)={X∈L(A)|
r(X)=p}. We call A essential if Ll(A) �=∅.

Let µ : L(A)!Z be the Möbius function of L(A) defined by

µ(X)=

⎧
⎨

⎩

1 for X=V,

−
∑

Y <X

µ(Y ) for X>V.
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The Poincaré polynomial of A is π(A, t)=
∑

X∈L(A) µ(X)(−t)r(X) and we also define
the numbers bj(A) by the formula

π(A, t)=
l∑

j=0

bj(A)tj .

We also define the β-invariant β(A) by

β(A)= |π(A,−1)|,
if A is an essential arrangement, the sign can be precisely enumerated as β(A)=
(−1)lπ(A,−1). See [11] for details.

2.2. Classical results

Let A be an arrangement in a real vector space VR. Then the following relations
between the set ch(A) of chambers and the complexified complement M(A) are
known.

Theorem 2.1. ([10] and [22]) (i) Let A be an essential real l-arrangement.
Then |ch(A)|=π(A, 1), and |bch(A)|=(−1)lπ(A,−1)=β(A), where bch(A) is the
set of all bounded chambers.

(ii) Let A be a complex arrangement. Then bj(A) is equal to the topological
Betti number bj(M(A)), that is,

Poin(M(A), t)= π(A, t).

In particular, the absolute value of the topological Euler characteristic |χ(M(A))| of
the complement is equal to β(A).

2.3. Generic flags and topology of M(A)

Let A be an l-arrangement. A q-dimensional affine subspace Fq⊂V is called
generic or transversal to A if dimFq∩X=q−r(X) for X∈L(A). A generic flag F
is defined to be a complete flag (of affine subspaces) in V ,

F : ∅ =F−1 ⊂F0 ⊂F1 ⊂ ...⊂F l = V,

where each Fq is a generic q-dimensional affine subspace.
For a generic subspace Fq we have an arrangement in Fq,

A∩Fq := {H∩Fq |H ∈A}.
The genericity provides an isomorphism of posets

L(A∩Fq)∼=L≤q(A) :=
⋃

j≤q

Lj(A).(1)
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In [10], Orlik and Solomon gave a presentation of the cohomology ring H∗(M(A), Z)
in terms of the poset L(A) for a complex arrangement A. The next proposition
follows from (1).

Proposition 2.2. Let A be a complex arrangement and Fq be a q-dimensional
generic subspace. Then the natural inclusion i : M(A)∩Fq ↪!M(A) induces iso-
morphisms

ik : Hk(M(A)∩Fq, Z)
∼=−−!Hk(M(A), Z)

for k=0, 1, ..., q.

In particular, the Poincaré polynomial of A∩Fq is given by

π(A∩Fq, t)= π(A, t)≤q,(2)

where (
∑

j≥0 ajt
j)≤q=

∑q
j=0 ajt

j is the truncated polynomial. From these formu-
las and Theorem 2.1, we have the following proposition. (For the proof see [21,
Proposition 2.3.2] for example.)

Proposition 2.3. Let A be a real l-arrangement and F a generic flag. Define

chq
F (A)= {C ∈ ch(A) |C∩Fq �= ∅ and C∩Fq−1 = ∅}

for each q=0, 1, ..., l. Then |chq
F(A)|=bq(M(A)).

In particular, the number of chambers which does not intersect with a generic
hyperplane F l−1 satisfies

|chl
F(A)|= bl(M(A)).

This formula has a topological meaning. Let us recall the construction in [21] briefly.
First to fix an orientation, we fix a basis (v1, ..., vl) of V such that

Fq =F0+
q∑

j=1

Rvj .

The orientation of Fq is determined by the ordered basis (v1, ..., vq). Also define
positive and negative half spaces, Fq

+ and Fq
−, by

Fq
+ =Fq−1+R>0vq,

Fq
− =Fq−1+R<0vq,

respectively.
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Definition 2.4. The map sgn: chq
F(A)!{±1} is defined by

sgn(C)=

{
1, if Fq∩C⊂Fq

+,

−1, if Fq∩C⊂Fq
−.

Let Fq⊂R
l. Denote by Fq

C
=Fq⊗C the complexification of Fq and put Mq :=

Fq
C
∩M(A). Note that Ml=M(A). We fix the orientation of Fq

C
by the ordered basis

(v1, ..., vq, iv1, ..., ivq).

Note that this orientation is different by (−1)q(q−1)/2 from the canonical orientation
of a complex vector space.

For each C∈chl
F (A), we can explicitly construct a continuous map

σC : (Dl, ∂Dl)−! (Ml, Ml−1),

such that, [21, Section 5.2],

(Transversality) σC(0)∈C and σC(Dl)�C = {σC(0)},(3)

(Non-intersecting) σC(Dl)∩C′ = ∅ for C′ ∈ chl
F (A)\{C}.

These properties guarantee the following homotopy equivalence [21, Theorem 4.3.1]:

Ml �Ml−1∪(∂σC)

( ⊔

C∈chl
F (A)

Dl

)

,(4)

where the right-hand side is obtained by attaching l-dimensional disks to Ml−1

along ∂σC : ∂Dl!Ml−1 for C∈chl
F(A). Since the natural inclusion Ml−1 ↪!Ml in-

duces Hl−1(Ml−1, Z)∼=Hl−1(Ml, Z) and Hl(Ml, Z)∼=Hl(Ml, Ml−1, Z), σC(Dl) can be
considered as an element of Hl(Ml, Z). Furthermore, {σC(Dl)}C∈chl

F
form a basis of

Hl(Ml, Z). We choose an orientation of σC so that the intersection number satisfies

[C]·[σC ] = 1.

Then chambers {[C]}C∈chl
F

form the dual basis of the locally finite homology group
H lf

l (Ml, Z), which is isomorphic to H l(Ml, Z). Thus we have the isomorphism

Z[chq
F (A)]

∼=−−−−! H lf
q (Mq, Z)

∼=−−−−! Hq(Mq, Z)
∼=−−−−! Hq(Ml, Z)

C νq(C).

Denote by νq the composite map

νq : Z[chq
F(A)]

∼=−−!Hq(Ml, Z).(5)
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Definition 2.5. The set {νq(C)|C∈chq
F(A)} is called the chamber basis of

Hq(M, Z) with respect to a flag F .

Remark 2.6. In [19], Varchenko and Gel′fand constructed a filtration 0⊂P 0⊂
...⊂P l=Z[ch(A)] and an isomorphism P q/P q−1∼=H lf

2l−q(M(A), Z). Our subspace
Z[chl

F (A)] gives a section of the quotient map P l!P l/P l−1. Using a generic sec-
tion Fq, we can construct an isomorphism Z[chq

F(A)]∼=P q/P q−1. The map νq

is equivalent to Varchenko–Gel′fand’s isomorphism under the identification
H lf

2l−q(M(A), Z)∼=Hq(M(A), Z) up to sign.

3. An algorithm relating chambers and differential forms

From the result of Brieskorn, Orlik and Solomon, the cohomology ring A∗=
H∗(M(A), Z) is generated by ωj =dαj/2πiαj, j=1, ..., n. In this section, we express
νq(C) in terms of generators ωH .

Let J={j1, ..., jl}⊂{1, ..., n} be an ordered subset of l indices, A(J):=
{Hj1 , ..., Hjl

} be a subarrangement consisting of l hyperplanes. Suppose Hj1 , ..., Hjl

are independent, that is, dαj1∧...∧dαjl
�=0. Obviously ch(A(J)) consists of 2l cham-

bers and there exists a unique chamber C0(J)∈ch(A(J)) with C0(J)∩F l−1=∅.
Choose a normal vector wjk

⊥Hjk
for each Hjk

such that C0(J) is contained in the
half space Hjk

+R>0 ·wjk
.

Definition 3.1. For an ordered l-tuple J=(j1, ..., jl)⊂{1, ..., n}, define ε(J) by

ε(J)=

⎧
⎪⎨

⎪⎩

0, if Hj1 , ..., Hjl
are dependent,

1, if (wj1 , ..., wjl
) is a positive basis,

−1, if (wj1 , ..., wjl
) is a negative basis.

For an ordered l-tuple J=(j1, ..., jl), set ωJ =ωj1∧...∧ωjl
. Let us define

ξl(ωJ )= ε(J)[C0(J)]∈Z[chl
F (A)].

Theorem 3.2. The map ξl induces the isomorphism

ξl : H l(M(A), Z)
∼=−−!Z[chl

F (A)],

and ξl=(νl)−1.

Proof. We prove that νl(ξl(ωJ))=ωJ . It is enough to show that
∫

σC

ωJ = ε(J)[C0(J)]·σC
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for C∈chl
F(A). Note that the inclusion ι : M(A)↪!M(A(J)) induces a surjective

map ι∗ : Hl(M(A), Z)!Hl(M(A(J)), Z). Since M(A(J)) is homeomorphic to (C∗)l,
the top homology Hl(M(A(J)), Z) is generated by the cycle

T := {(αj1 , ..., αjl
) | |αj1 |= |αj2 |= ... = |αjl

|= 1}.

Fix the orientation of T so that [C0(J)]·T =1. Then since [C0] is the dual basis
to T , from (3), we have,

ι∗(σC)=

{
T, if C⊆C0(J),

0, if C∩C0(J)=∅,

for C∈chl
F (A). Now we have

∫
σC

ωJ =
∫
ι∗(σC) ωJ and

∫
T ωJ =ε(J) completes the

proof. �

Similarly, we can define the isomorphism ξq : Hq(M(A), Z)
∼=−−!Z[chq

F(A)] by
using that Hq(M(A), Z)∼=Hq(M(A)∩Fq, Z) for 0≤q≤l−1. Theorem 3.2 enables us
to express the chamber basis νq(C) in terms of the generators ωH .

Example 3.3. Let A={H1, ..., H4} be the arrangement of 4-lines as in Figure 1
with flag F � defined by v1 and v2. Then ch0

F(A)={A}, ch1
F (A)={B1, B2, B3, B4},

and ch2
F (A)={C1, C2, C3, C4, C5}. From Theorem 3.2, ξ(1)=[A], ν(A)=1 and

ξ(ω1)=−[B1], ν(B1)=−ω1,

ξ(ω2)= [B2]+[B3]+[B4], ν(B2)= ω2−ω3,

ξ(ω3)= [B3]+[B4], ν(B3)= ω3−ω4,

ξ(ω4)= [B4], ν(B4)= ω4,

ξ(ω12)=−[C1]−[C3], ν(C1)=−ω12+ω14−ω24,

ξ(ω13)=−[C1]−[C2]−[C3]−[C4], ν(C2)= ω12−ω13+ω24−ω34,

ξ(ω14)=−[C3]−[C4]−[C5], ν(C3)=−ω14+ω24,

ξ(ω24)=−[C4]−[C5], ν(C4)=−ω24+ω34,

ξ(ω34)=−[C5], ν(C5)=−ω34,

ωλ∧ν(A)=−λ1ν(B1) +λ2ν(B2) +λ23ν(B3) +λ234ν(B4),
ωλ∧ν(B1)=−λ23ν(C1)−λ3ν(C2) −λ234ν(C3)−λ34ν(C4) −λ4ν(C5),

ωλ∧ν(B2)= +λ123ν(C2) +λ1234ν(C4),

ωλ∧ν(B3)=−λ1ν(C1) −λ12ν(C2) +λ1234ν(C5),

ωλ∧ν(B4)= −λ1ν(C3) −λ12ν(C4) −λ123ν(C5),
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Figure 1. Example.

4. Aomoto complex via chamber basis

4.1. Main result

Let (λ1, ..., λn)∈C
n and put ωλ=

∑n
j=1 λjωj. Since ωλ∧ωλ=0, we have a co-

chain complex (A�, 2πiωλ∧), which is called the Aomoto complex. We shall study
this complex using the chamber basis {νq(C)}C∈chq

F (A) of A∗. For a chamber C∈
chq

F(A), ωλ∧νq(C) is uniquely expressed as

ωλ∧νq(C)=
∑

C′∈chq+1
F (A)

ΓC,C′(λ)νq+1(C′),

for some complex numbers ΓC,C′(λ)∈C. We may consider the coefficients {ΓC,C′(λ)}
as structure constants of the cohomology ring with respect to the chamber basis.

Let Lλ be a rank-one local system on M(A) determined by monodromies qj =
e2πiλj ∈C

∗ around the hyperplane Hj . For two given chambers C, C′∈ch(A), denote
by S(C, C′) the set

S(C, C′)= {H ∈A |H separates C and C′},

of hyperplanes separating C and C′, and set λS(C,C′)=
∑

H∈S(C,C′) λH .
The main result is the following.

Theorem 4.1. (a) The coefficient ΓC,C′(λ) has the decomposition

ΓC,C′(λ)= NC,C′λS(C,C′),

where NC,C′∈Z.
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(b) Let us define a linear map ∇̃λ : C[chq
F (A)]!C[chq+1

F (A)] by

∇̃λ([C])=−
∑

C′∈chq+1
F (A)

2NC,C′ sinh(πiλS(C,C′))[C′].

Then (ch�

F (A), ∇̃λ) is a cochain complex and

Hp(ch�

F (A), ∇̃λ)∼= Hp(M(A),Lλ).

Thus (ch�

F (A), ∇̃λ) is the minimal complex which is obtained as an integration of
the Aomoto complex.

4.2. Proof

First we recall some more notation from [21]. We defined the degree map, [21,
Section 6.3],

deg : chp+1
F (A)×chp

F (A)−!Z.

Furthermore the notion of deg(C′, C) enables us to express the twisted cellular
coboundary map ∇Lλ

: C[chp
F(A)]!C[chp+1

F (A)] as follows [21, Theorem 6.4.1]:

∇Lλ
(C)=−

∑

C′∈chp+1
F (A)

sgn(C′) deg(C′, C)·2 sinh(πiλS(C′,C))[C′].

In particular, (C[ch�

F ],∇Lλ
) is a cochain complex, and the cohomology group is iso-

morphic to cohomology with coefficients in Lλ: Hp(C[ch�

F ],∇Lλ
)∼=Hp(M(A),Lλ).

We now apply the linearization theorem by Cohen–Orlik [2]. Consider the local
system Ltλ with t∈C. Since

d

dt

∣
∣
∣
∣
t=0

2 sinhπitλS(C′,C) = 2πiλS(C,C′),(6)

we have

d

dt

∣
∣
∣
∣
t=0

∇Ltλ
(C)=−2πi

∑

C′∈chp+1
F

sgn(C′) deg(C′, C)λS(C,C′)[C′].

From the construction in [21, Section 6.4], [C] can be identified with ν(C) here.
Thus we have ΓCC′(λ)=− sgn(C′) deg(C′, C)λS(C,C′). The map ∇̃λ of (b) is clearly
equivalent to ∇Lλ

.

Remark 4.2. In [21], a minimal CW-decomposition such that each k-cell is
labeled by a chamber C∈chk

F(A) is constructed. From the minimality, the incidence
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numbers vanish, [C′ :C]=0. On the other hand, a minimal CW-decomposition of
M(A) induces a Z

b1 -equivariant CW-decomposition of the homology covering M̃.
The degree above can be considered as the incidence number at the level of homology
covering.

5. Appendix: The linearization theorem for minimal CW-complexes

In this section, we give a proof of the linearization theorem by Cohen–Orlik [2]
in a generalized setting.

Let X be a connected minimal CW-complex, that is, a finite CW-complex with
exactly as many k-cells as the kth Betti number, for all k. Denote by Sk the set
of k-cells and by Xk the k-skeleton of X . Suppose |S1|=n, then H1(X, Z)∼=Z

n and
H1(X, Z)=Z

n. An example of a minimal CW-complex is the n-torus T n=(S1)×n.
The n-torus T n admits the canonical minimal cell decomposition as follows. Let
e1, ..., en be the standard basis of R

n. The torus T n can be identified with the
quotient space (

⊕n
j=1 Rej)/(

⊕n
j=1 Zej). For any subset Φ={p1, ..., pk}⊂[1, n]:=

{1, ..., n}, denote by KΦ the k-cube

KΦ = {t1ep1 +...+tkepk
| 0≤ tj ≤ 1, j = 1, ..., k}⊂R

n

and by eΦ=p(KΦ) the image of the cube by the quotient map p : R
n!R

n/Z
n.

This gives a cell decomposition of T n=
⋃

Φ eΦ. Note that dim eΦ=|Φ|. Obviously
the quotient map p gives the universal covering of T n. Let us denote by xj the
multiplicative generator of the deck transformation group corresponding to ej. The
deck transformation group is identified with the multiplicative group of Laurent
monomials {xα=xα1

1 xα2
2 ...xαn

n |α=(α1, ..., αn)∈Z
n}. The covering space T̃ n∼=R

n

has the following cell decomposition,

T̃ n =
⋃

Φ⊂[1,n]

⋃

α∈H1

xα ·KΦ.

Since T n is the K(Zn, 1)-space, the abelianization map π1(X)!H1(X, Z)∼=Z
n

determines, uniquely up to homotopy, a continuous map f : X!T n such that
f∗ : H1(X, Z)

∼=−−!H1(T n, Z). By the cellular approximation theorem, we may as-
sume that f is cellular, i.e., preserving skeletons f(Xk)⊂(T n)k. A k-cell σ∈Sk is
expressed as a characteristic map

σ : (Dk, ∂Dk)−! (Xk, Xk−1),

from the k-disk to the k-skeleton. For simplicity, we assume that the base point
pσ∈Dk is mapped to X0 by σ.

As is the case of T n, the H1(X, Z)-covering X̃ of X has the structure of
a Z

n-equivariant CW-complex. Indeed from the minimality, fixing a base point
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p0∈X̃ over X0, each cell σ : Dk!X can be lifted uniquely to σ̃ : Dk!X̃ such that
σ̃(pσ)=p0. Then X̃ is decomposed as

X̃ =
⋃

σ∈S

⋃

α∈H1

xα ·σ̃,

where S=
⋃

j Sj is the set of all cells. The boundary of the cellular chain complex
can be expressed as

∂(xα ·σ̃)=
∑

τ∈Sk−1

∑

β∈H1

[σ̃ : (xβ ·τ̃)]xα+β ·τ̃ ∈Hk(X̃k, X̃k−1; Z),(7)

where [σ̃ :(xβ ·τ̃)]∈Z is the incidence number.
Since f induces the isomorphism H1(X, Z)∼=H1(T n, Z), any complex rank-

one local system on X can be obtained as a pull-back by f . Recall that a local
system on T n is determined by a homomorphism ρ : H1(T n, Z)!C

∗. Let λ=
(λ1, ..., λn)∈C

n, and define a local system Lλ on T n by ρ(e{j})=qj=e2πiλj ∈C
∗.

We also set ρ(xα)=qα=
∏n

j=1 q
αj

j . Now we describe the boundary map of an Lλ-
coefficients cellular complex. Recall that, [20, Section VI.2], a chain with coefficients
in a local system Lλ is a pair of a cell σ and a section c(σ)∈(Lλ)σ(pσ) at the base
point. Let us fix a trivialization (Lλ)X0

∼=C at the base point. We identify the cell σ

with a chain [σ] with Lλ-coefficient which takes the value c=1∈C∼=(Lλ)X0 . Then,
for a k-cell σ∈Sk, the boundary with Lλ-coefficients is expressed as

∂Lλ
[σ] =

∑

τ∈Sk−1

∑

α∈H1

[σ̃ : (xα ·τ)]qα[τ ]∈Hk(Xk, Xk−1; C).(8)

Let us denote the dual basis of e{j} by dtj∈H1(T n, Z) and define

ωλ = 2πi

n∑

j=1

λj dtj ∈H1(T n, C).

Clearly the minimality implies that limt!0 ∂Ltλ
[σ]=0. By differentiating (8), we

have the following lemma.

Lemma 5.1. Let X be a minimal CW-complex. Let t∈C and σ∈Sk be a k-cell
of X. Then

d

dt

∣
∣
∣
∣
t=0

∂Ltλ
[σ] =

∑

τ∈Sk−1

∑

α∈H1

[σ̃ : (xα ·τ)]·〈ωλ, α〉·[τ ].(9)

The next result asserts that, after-push-forward by f∗, it is obtained by the cap
product on the torus.
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Theorem 5.2.

f∗

(
d

dt

∣
∣
∣
∣
t=0

∂Ltλ
[σ]

)

= ωλ∩f∗[σ].(10)

Proof. We prove this in two steps. The first step is commuting the operators f∗
and (d/dt)|t=0∂Ltλ

. This is essentially done by the fact that a cellular map induces
a chain map between cellular chain complexes. Therefore it is enough to show that

d

dt

∣
∣
∣
∣
t=0

∂Ltλ
[f �σ] = ωλ∩[f �σ].(11)

Let us denote the left-hand side of this formula by η. Note that the continuous map
f : X!T n can also be lifted to f̃ : X̃!T̃ n. From Lemma 5.1, we have

η =
∑

|Φ|=k−1

∑

α∈H1

[f̃ � σ̃ : (xα ·eΦ)]〈ωλ, α〉[eΦ].

Let Φ0⊂[1, n] with |Φ0|=k−1. Then (11) is equivalent to
∫

η

dtΦ0 =
∫

[f̃�σ̃]

ωλ∧dtΦ0(12)

for all Φ0. The left-hand side of (12) is equal to
∑

α

[f̃ � σ̃ : (xα ·eΦ0)]〈ωλ, α〉.

We compute the right-hand side of (12) using ωλ=d(2πi
∑n

j=1 λjtj), by Stokes’
theorem,

∫

[f̃�σ̃]

ωλ∧dtΦ0 =
n∑

j=1

∫

∂[f̃�σ̃]

2πiλjtj dtΦ0

= 2πi

n∑

j=1

∑

|Φ|=k−1

∑

α∈H1

∫

xαeΦ

[(f̃ � σ̃) : (xαeΦ)]λjtj dtΦ0

= 2πi

n∑

j=1

∑

α∈H1

∫

eΦ0

[(f̃ � σ̃) : (xαeΦ0)]λjαj dtΦ0

=
∑

α∈H1

[(f̃ � σ̃) : (xαeΦ0)]〈ωλ, α〉.

This completes the proof of (12). �
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Corollary 5.3. If X satisfies that f∗ : Hk(X, Z)!Hk(T n, Z) is injective, then

d

dt

∣
∣
∣
∣
t=0

∂Ltλ
[σ] = f∗(ωλ)∩σ(13)

for every k-cell σ∈Sk.

Remark 5.4. If X is the complement of a hyperplane arrangement, then f∗
is injective for every k. Thus we have the linearization theorem by [2]. Recently
Papadima and Suciu [13] proved that the the linearization theorem (13) holds for
any minimal CW-complex X .

Acknowledgements. The idea considering the chamber basis of the Orlik–
Solomon algebra was inspired by correspondences with Professor H. Terao and
Dr. T. Abe. The author thanks them. The author is supported by JSPS Post-
doctoral Fellowship Research Abroad. He wishes to express his gratitude to JSPS
for the support and to The Abdus Salam ICTP for wonderful working environment
and hospitality.

References

1. Cohen, D. C., Cohomology and intersection cohomology of complex hyperplane ar-
rangements, Adv. Math. 97 (1993), 231–266.

2. Cohen, D. C. and Orlik, P., Arrangements and local systems, Math. Res. Lett. 7
(2000), 299–316.

3. Cohen, D. C. and Suciu, A. I., Characteristic varieties of arrangements, Math. Proc.
Cambridge Philos. Soc. 127 (1999), 33–53.

4. De Concini, C. and Procesi, C., Nested sets and Jeffrey–Kirwan residues, in Geomet-
ric Methods in Algebra and Number Theory, Progr. Math. 235, pp. 139–149,
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