On Nordlander's conjecture in the three-dimensional case

George Z. Chelidze

Abstract. In the present paper we prove, that in the real normed space X, having at least three dimensions, the Nordlander's conjecture about the modulus of convexity of the space X is true, i.e. from the validity of Day's inequality for a fixed real number from the interval (0, 2), follows that X is an inner product space.

1. Introduction and notation

Let X be a real normed space and let $S = \{x \in X : ||x|| = 1\}$. The modulus of convexity of X is the function $\delta_X : [0, 2] \rightarrow [0, 1]$, defined by

$$\delta_X(a) = \inf \left\{ 1 - \frac{1}{2} \| x + y \| : x, y \in S \text{ and } \| x - y \| = a \right\}.$$

It follows from the Jordan–von Neumann parallelogram law, that if H is an inner product space then $\delta_H(a)=1-\frac{1}{2}\sqrt{4-a^2}$. Nordlander discovered [5], that for an arbitrary normed space X the following inequality is true

$$\delta_X(a) \leq \delta_H(a)$$
 for all $a \in (0, 2)$.

This inequality is called Nordlander's inequality and shows that inner product spaces are "the most uniformly convex" spaces in the class of normed spaces [7].

In Day [3, Theorem 4.1] it is proved that if

$$\delta_X(a) = \delta_H(a)$$
 for all $a \in (0, 2)$,

then X is an inner product space. Nordlander conjectured [5], that the same conclusion should hold if the above equality takes place for some fixed $a \in (0, 2)$. Alonso and Benitez [1], making use of real two-dimensional arguments, proved the validity of Nordlander's conjecture for $a \in (0, 2) \setminus D$, where $D = \{2 \cos(k\pi/2n): k=1, ..., n-1; n=2, 3, ...\}$, and they gave counterexamples for dim X=2 and $a \in D$. However, accord-

ing to [2, p. 154], the validity of Nordlander's conjecture for any $a \in (0, 2)$ is still open in the case dim $X \ge 3$ and in the present paper we give an affirmative answer to it.

An immediate consequence of the parallelogram law is that X is an inner product space if and only if all of its two-dimensional (three-dimensional) subspaces are inner product spaces. Therefore we can divide this paper into two parts. The first one focuses on the results that can be obtained with two-dimensional arguments and the second one (the essential part of the paper) with results that need threedimensional arguments.

2. Two-dimensional arguments

Let dim X=2, i.e. X is the space \mathbb{R}^2 endowed with a norm with unit sphere S.

Lemma. (Nordlander) For any $a \in (0,2)$, the area bounded by the curve $S_a = \{x+y:x, y \in S \text{ and } ||x-y||=a\}$ is $(4-a^2)$ times the area bounded by S.

Then if $\delta_X(a) \ge 1 - \frac{1}{2}\sqrt{4-a^2}$, for some $a \in (0,2)$, we get the following consequences.

Corollary 1. For $x, y \in S$, ||x-y|| = a is equivalent to $||x+y|| = \sqrt{4-a^2}$.

Corollary 2. For any $z \in S$ there exists a unique set $\{x, y\}$ of norm-one elements, such that $x+y=\sqrt{4-a^2}z$ and ||x-y||=a.

Proof. On the one hand, it is obvious that for any 0 < t < 1 there exist $x_t, y_t \in S$, such that $x_t + y_t = tz$, and it follows from the above Corollary 1 that if $t = \sqrt{4-a^2}$, then $||x_t - y_t|| = a$.

On the other hand, a simple drawing of $x_1, y_1, x_2, y_2 \in S$, such that $x_1 + y_1 = x_2 + y_2$ and $||x_1 - y_1|| = ||x_2 - y_2||$ shows that $\{x_1, y_1\} = \{x_2, y_2\}$. \Box

Corollary 3. If $u, v \in X$ are such that $||u+v|| = \sqrt{4-a^2}$ and ||u-v|| = a, then $(||u||-1)(||v||-1) \le 0$.

Proof. Indeed, by Corollary 2 for all $z \in S$, there exists one pair of vectors u and v from S, such that $u+v=\sqrt{4-a^2z}$ and ||u-v||=a. Now consider the line $l=\{tu+(1-t)v:t\in\mathbb{R}\}$. It is clear, that this line intersects the curve $\frac{1}{2}\sqrt{4-a^2z}+\frac{1}{2}aS$ only in the points u and v, and divides it into two parts: the first part consists of points having norm less than 1, while the second consists of points having norm greater than 1. If $\{u_1, v_1\}$ is different from $\{u, v\}$ and $u_1+v_1=\sqrt{4-a^2z}$, then u_1 and v_1 are located on different sides of the line l and, by the condition $||u_1-v_1||=a$, they belong to the curve $\frac{1}{2}\sqrt{4-a^2z}+\frac{1}{2}aS$. So, both of them cannot have norm greater (smaller) than one simultaneously. \Box

3. Three-dimensional arguments. Main result

Theorem. Let X be a real normed space with dim $X \ge 3$ and let a be a fixed number from the interval (0,2). Then X is an inner product space if and only if $\delta_X(a) \ge 1 - \frac{1}{2}\sqrt{4-a^2}$.

We know that if X is an inner product space then $\delta_X(a) = 1 - \frac{1}{2}\sqrt{4-a^2}$. To prove the converse we shall use three lemmas in which we suppose:

1. a is a fixed point of the interval (0,2) and $a' = \frac{1}{2}\sqrt{4-a^2}$.

2. $\delta_X(a) \ge 1 - a'$.

3. X is the space \mathbb{R}^3 endowed with a norm whose unit sphere and ball are S and B, respectively.

4. $\zeta \in S$ is such that there is a homogeneous plane P_{ζ} such that $\zeta + P_{\zeta}$ is tangent to S at ζ . Since B is a convex body this is true for almost every $\zeta \in S$. It is not restrictive to assume that $\zeta = (1, 0, 0)$ and $P_{\zeta} = \{(r, s, 0): r, s \in \mathbb{R}\}$.

5. $\Gamma = S \cap (a'\zeta + \frac{1}{2}aS)$. By Corollary 2, in every section of S by a homogeneous plane containing ζ there is only a pair of points of Γ . Hence, Γ is a simple, closed, continuous curve which is symmetric with respect to the point $a'\zeta$.

Lemma 1. There exists a parametrization $(u(\alpha), v(\alpha), w(\alpha))$ of the curve Γ , such that $u(\alpha), v(\alpha)$, and $w(\alpha)$ are absolutely continuous functions.

Proof. We prove firstly that the orthogonal projection Γ_1 of Γ over P_{ζ} , which coincides with the orthogonal projection of $\Gamma' = -\Gamma$ over P_{ζ} , is a convex curve, i.e. that for every $x_1, y_1 \in \Gamma_1$ and 0 < t < 1, $tx_1 + (1-t)y_1$ is not outside of Γ_1 .

Let $x, y \in \Gamma$ and $x', y' \in \Gamma'$ be such that $x_1 = \Pr x = \Pr x'$ and $y_1 = \Pr y = \Pr y'$. On the one hand it is obvious that

$$tx_1 + (1-t)y_1 = \Pr[tx + (1-t)y] = \Pr[tx' + (1-t)y']$$

and, on the other hand, there exist $z \in \Gamma$, $z' \in \Gamma'$, and $\rho > 0$ such that

$$\rho[tx_1 + (1-t)y_1] = \Pr z = \Pr z'.$$

Then, it suffices to see that $\rho \ge 1$. Indeed, if $\rho < 1$ the line

$$l = \rho[tx_1 + (1 - t)y_1] + \{r\zeta : r \in \mathbb{R}\}$$

intersects the parallel segments $[tx+(1-t)y, a'\zeta]$ and $[tx'+(1-t)y', -a'\zeta]$ at interior points \overline{z} and \overline{z}' of B and since $z, z' \in l \cap S$ we have the contradiction $2a' = ||z-z'|| > ||\overline{z}-\overline{z}'|| = 2a'$.

Consider now the stereographic projection \Pr_s from $\xi = (0, 0, 2a'/(2-a))$ on the plane P_{ζ} and prove that $\Gamma_2 = \Pr_s \Gamma$ is also a convex curve. (For any point $\eta \neq \xi$, $\Pr_s \eta = \{t\eta + (1-t)\xi : t \in \mathbb{R}\} \cap P_{\zeta}$.) By Corollary 1 we have $\Gamma_2 = \Pr_s \Gamma''$, where $\Gamma'' = (2/a)(\Gamma - a'\zeta)$. As above, we need to show that for every $x_2, y_2 \in \Gamma_2$ and 0 < t < 1, $tx_2 + (1-t)y_2$ is not outside of Γ_2 .

Let $x, y \in \Gamma$ and $x'', y'' \in \Gamma''$ be such that $x_2 = \Pr_s x = \Pr_s x''$ and $y_2 = \Pr_s y = \Pr_s y''$.

Also, it is obvious that

$$tx_2 + (1-t)y_2 = \Pr_s[tx + (1-t)y] = \Pr_s[tx'' + (1-t)y''],$$

and, there exist $z \in \Gamma$, $z'' \in \Gamma''$, and $\rho > 0$ such that

$$\rho[tx_2 + (1-t)y_2] = \Pr_s z = \Pr_s z''.$$

It suffices to show that $\rho \ge 1$. Indeed, if $\rho < 1$, the line

$$h = \{r\rho[tx_2 + (1-t)y_2] + (1-r)\xi : r \in \mathbb{R}\}$$

intersects the parallel segments $[tx+(1-t)y, a'\zeta]$ and [tx''+(1-t)y'', 0] at interior points \overline{z} and \overline{z}'' of B and since $z, z'' \in h \cap S$, we have $z-a'\zeta = \lambda_1 \overline{z}'' + \mu_1 \zeta$ and $z'' = \lambda_2 \overline{z}'' - \mu_2 \zeta$, where $\lambda_1, \lambda_2, \mu_1$ and μ_2 are positive numbers. Hence, these vectors cannot be collinear. So we get that Γ_2 is convex.

Let $(u_1(\alpha), v_1(\alpha))$ and $(u_2(\alpha), v_2(\alpha))$ be the parametric expressions of Γ_1 and Γ_2 , parametrized by the angle α between the radius vectors of the curves and any axis which passes through the point 0. Since Γ_1 and Γ_2 are convex curves, the functions u_1 , v_1 , u_2 and v_2 are absolutely continuous on the segment $[0, 2\pi]$. Denoting the parametric expression of Γ by $(u(\alpha), v(\alpha), w(\alpha))$, we get $u(\alpha) = u_1(\alpha)$, $v(\alpha) = v_1(\alpha)$ and $(2-a)w(\alpha)/2a' = (u_2(\alpha) - u_1(\alpha))/u_2(\alpha) = (v_2(\alpha) - v_1(\alpha))/v_2(\alpha)$. From this it follows, that $w(\alpha)$ is also absolutely continuous on $[0, 2\pi]$. The proof of Lemma 1 is complete. \Box

Lemma 2. If there exists a tangent vector $T_x = (u'(\alpha_x), v'(\alpha_x), w'(\alpha_x))$ to Γ at a point $x \in \Gamma$, then $T_x \in P_{\zeta}$, i.e. $w'(\alpha_x) = 0$.

Proof. If the vector T_x is not in P_{ζ} then it is not tangent, at $a'\zeta$, to the convex curve $\overline{\Gamma} = a'S \cap \text{span}\{\zeta, T_x\}$ and, therefore, there exists $h \in \overline{\Gamma}$ such that

$$h - a'\zeta = \lambda T_x + \mu \zeta$$
, with $\lambda \neq 0$ and $\mu > 0$.

We shall prove that, hence, $||x-a'\zeta+h|| > 1$ and $||x-a'\zeta-h|| > 1$, which contradicts Corollary 3.

On the one hand, since T_x is tangent to Γ at x,

$$\begin{split} &1 \leq \left\| x + \frac{a'\lambda}{a' + \mu} T_x \right\| \leq \left\| \frac{a'}{a' + \mu} (x - a'\zeta + h) \right\| + \left\| \frac{\mu}{a' + \mu} (x - a'\zeta) \right\| \\ &\leq \left\| \frac{a'}{a' + \mu} (x - a'\zeta + h) \right\| + \frac{a\mu}{2(a' + \mu)}, \end{split}$$

from which it follows that

$$||x-a'\zeta+h|| \ge 1 + \frac{(2-a)\mu}{a'} > 1.$$

On the other hand, since Γ is symmetric with respect to $a'\zeta$, the vector T_x is also tangent to it at the point $y=2a'\zeta-x$ and, as above, we obtain $||x-a'\zeta-h|| = ||y-a'\zeta+h|| > 1$.

Then, $w'(\alpha)=0$ for almost all values of α and, since $w(\alpha)$ is absolutely continuous, it is constant (by Lebesgue's theorem). So, Γ is a plane curve parallel to P_{ζ} . \Box

Lemma 3. If $x, y \in S$ are so that either $x+y=2a'\zeta$ or $x+y=a\zeta$, then $x-y \in P_{\zeta}$.

Proof. It suffices to consider that Γ is a plane curve parallel to P_{ζ} . \Box

Proof of the theorem. Suppose that $\zeta + P_{\zeta}$ and $\zeta' + P_{\zeta'}$ are tangent planes to S at ζ and ζ' , respectively, and that $\zeta \in S$ is Birkhoff–James orthogonal to $\zeta' \in S$, (i.e. $\|\zeta\| \le \|\zeta + t\zeta'\|$ for every $t \in \mathbb{R}$, which is equivalent to $\zeta' \in P_{\zeta}$).

By Lemma 3 we have that $\zeta \in P_{\zeta'}$, i.e. that $\zeta' \perp \zeta$. Then Birkhoff–James-orthogonality is symmetric and, since dim $X \ge 3$, X is an inner product space [4]. The proof of the theorem is complete. \Box

Corollary. Let $a \in (0,2)$. A real normed space of dimension ≥ 3 is an inner product space if and only if the set $C_a = \{ \|x+y\| : \|x\| = \|y\| = 1 \text{ and } \|x-y\| = a \}$ is a singleton.

Proof. This is an immediate consequence of Corollary 1 and the above theorem. \Box

Remark. A well-known result of Senechale [6] says that a real normed space X is an inner product space if and only if there exists a function $f: \mathbb{R} \to \mathbb{R}$ such that ||x+y|| = f(||x-y||) for any $x, y \in S$. An immediate consequence of the corollary is that for dim $X \ge 3$, it suffices to consider, in Senechale's result, only such points x and y on the unit sphere for which ||x-y|| = a.

Acknowledgements. The author wishes to express his deep gratitude to the referee for valuable remarks. The research was supported by the grants GNSF/ST06/3-009 and GNSF/835/07. George Z. Chelidze:

On Nordlander's conjecture in the three-dimensional case

References

- ALONSO, J. and BENÍTEZ, C., Some characteristic and noncharacteristic properties of inner product spaces, J. Approx. Theory 55 (1988), 318–325.
- 2. AMIR, D., *Characterizations of Inner Product Spaces*, Operator Theory: Advances and Applications **20**, Birkhäuser, Basel, 1986.
- DAY, M. M., Uniform convexity in factor and conjugate spaces, Ann. of Math. 45 (1944), 375–385.
- DAY, M. M., Some characterizations of inner-product spaces, Trans. Amer. Math. Soc. 62 (1947), 320–337.
- 5. NORDLANDER, G., The modulus of convexity in normed linear spaces, Ark. Mat. 4 (1960), 15–17.
- SENECHALLE, D. A., A characterization of inner product spaces, *Proc. Amer. Math. Soc.* 19 (1968), 1306–1312.
- 7. ŞERB, I., Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces, *Comment. Math. Univ. Carolin.* **40** (1999), 107–119.

George Z. Chelidze N. Muskhelishvili Institute of Computational Mathematics Akuri St.8 Tbilisi 0193 Georgia g_chelidze@hotmail.com

Received May 8, 2007 accepted February 20, 2008 published online September 3, 2008