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A residue criterion for strong holomorphicity
Mats Andersson

Abstract. We give a local criterion in terms of a residue current for strong holomorphicity

of a meromorphic function on an arbitrary pure-dimensional analytic variety. This generalizes a

result by A. Tsikh for the case of a reduced complete intersection.

1. Introduction

Let Z be an analytic variety in a neighborhood of the closed unit ball in C
n,

and let IZ be the sheaf of holomorphic functions that vanish on Z. Then OZ =O/IZ

is the sheaf of (strongly) holomorphic functions on Z. A meromorphic function on
Z is a section of the sheaf MZ , where MZ,x is the ring of quotients g/h, where
g, h∈ OZ,x and h is a nonzerodivisor. Thus locally a meromorphic function φ is
(represented by) g/h where g and h are holomorphic in the ambient space, h is
generically nonvanishing on Z, and g′/h′ is another representation of φ if and only
if gh′ =g′h on Z.

If Z is given by a complete intersection, i.e., Z={x; F1(x)=...=Fp(x)=0} and
codim Z=p, we have a well-defined ∂̄-closed (0, p)-current

μF = ∂̄
1
Fp

∧...∧∂̄
1
F1

,

the Coleff–Herrera product [8], with support on Z. The following criterion was
proved by Tsikh [17]; see also [12]:

Assume that the Jacobian dF1∧...∧dFp is nonvanishing on Zreg. A meromor-
phic function φ on Z is (strongly) holomorphic on Z if and only if the current φμF

is ∂̄-closed.

The assumption on the Jacobian implies (and is in fact equivalent to) that the
annihilator of μF is precisely IZ . The product φμF can be defined as the principal
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value

(1.1) lim
ε → 0

χ

(
|h|
ε

)
(g/h)μF ,

where g/h is a (local) representation of φ and χ is (a possibly smooth approximant
of) the characteristic function for the interval [1, ∞), see Section 3. For further
reference let us sketch a proof of Tsikh’s theorem: If φ is strongly holomorphic,
then it is represented by a function Φ that is holomorphic in the ambient space, and
since μF is ∂̄-closed it follows that φμF is. Conversely, assume that φ=g/h, where
g and h are holomorphic in the ambient space (and necessarily) h is generically
nonvanishing on Zreg. Then formally at least, the assumption implies that

g∂̄
1
h

∧∂̄
1
Fp

∧...∧∂̄
1
F1

=0,

and since also h, F1, ..., Fp form a complete intersection it follows from the dual-
ity theorem, [10] and [14], that g is in the ideal generated by h, F1, ..., Fp, i.e.,
g=αh+α1F1+...+αpFp. Thus φ is represented by α∈ O and so φ∈ OZ .

Remark 1.1. One should remark here that it is not possible to use the Lelong
current [Z]; in fact, the meromorphic functions φ such that φ[Z] are ∂̄-closed, form
the wider class ω0

Z introduced in [6] and studied further in [12].

In this paper we generalize Tsikh’s result in two ways. We consider an arbitrary
variety Z of pure codimension p, and we consider also the nonreduced case, i.e.,
instead of IZ we have an arbitrary pure-dimensional coherent ideal sheaf I with
zero variety Z. To formulate our results we first have to discuss an appropriate
generalization from [4] of the Coleff–Herrera product above.

In a neighborhood X of the closed unit ball there is a free resolution

(1.2) 0 −→ O(EN )
fN−→ ...

f3−→ O(E2)
f2−→ O(E1)

f1−→ O(E0)

of the sheaf O/I. Here O(Ek) is the free sheaf associated to the trivial vector bundle
Ek over X , and E0 �C so that O(E0)� O. In [4] we defined, given Hermitian metrics
on Ek, a residue current R=Rp+Rp+1+... with support on Z, where Rk is a (0, k)-
current that takes values in Ek �Hom(E0, Ek), such that a holomorphic function φ

is in I if and only if φR=0. For simplicity we think that we have some fixed global
frames for Ek and choose the trivial metrics that they induce. In this way we can
talk about the residue current associated with (1.2).

If I is Cohen–Macaulay, i.e., each stalk Ix is a Cohen–Macaulay ideal in Ox

we can choose (1.2) such that N=p, and then R=Rp is ∂̄-closed. In general,
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fk+1Rk+1 −∂̄Rk=0 for each k which can be written simply as ∇R=0 if ∇=f −∂̄

and f=
⊕

k fk.
The assumption that I has pure dimension p means that in each local ring

Ox all the associated primes have codimension p. As in the reduced case we have
OZ =O/I. The sheaf of meromorphic functions is defined in precisely the same way
as in the reduced case. Thus, if Φ and Φ′ are meromorphic in the ambient space
then they define the same meromorphic φ on Z if and only if Φ−Φ′ belongs to I
generically on Z. In Section 3 we give a reasonable definition of φR for φ∈ MZ .
Here is our basic result.

Theorem 1.2. Suppose that Z ∼ I has pure codimension p and let R be the
residue current associated to a resolution of O/I. Then a meromorphic function φ

on Z is (strongly) holomorphic if and only if

(1.3) ∇(φR)= 0.

If I is Cohen–Macaulay and N=p in (1.2), then R=Rp and so (1.3) means
that ∂̄(φR)=0.

The reduced case of course corresponds to I =IZ .

Remark 1.3. If f1=(F1, ..., Fp) is a complete intersection, one can choose (1.2)
as the Koszul complex, and then the residue current is precisely the Coleff–Herrera
product μF , see, e.g., [3], Corollary 3.2. If I =IZ we thus get back Tsikh’s theorem.

Let I be any ideal sheaf of codimension p and let (1.2) be a resolution of O/I.
Let Zk be the analytic set where fk does not have optimal rank. These sets Zk

are independent of the choice of resolution, ⊂Zp+2 ⊂Zp+1 ⊂Zsing ⊂Zp=...=Z1=Z,
where Z is the zero set of I, and codim Zk ≥k for all k. Moreover, I is pure if and
only if codim Zk ≥k+1 for all k>p, and I is Cohen–Macaulay if and only if Zk=∅

for k>p. All these facts are well known and can be found in, e.g., [11], Chapter 20.
For each meromorphic function φ on Z ∼ I there is a smallest analytic subva-

riety Pφ, the pole set, outside which φ is strongly holomorphic. As an application
of Theorem 1.2 we get the following theorem.

Theorem 1.4. Assume that Z has pure codimension p. If φ is meromorphic
and

(1.4) codim (Pφ ∩Zk) ≥ k+2, k ≥ p,

then φ is (strongly) holomorphic.
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Assume now that Z is reduced. Recall that a function is called weakly holomor-
phic on Z if it is holomorphic on Zreg and locally bounded at Zsing. It is well known
that each weakly holomorphic function is meromorphic, see, e.g., [9]. If each germ
of a weakly holomorphic function at x∈Z is strongly holomorphic, then necessarily
Zx is irreducible and x is said to be a normal point. If φ is weakly holomorphic,
then clearly Pφ is contained in Zsing. From Theorem 1.4 we therefore immediately
get the following corollary.

Corollary 1.5. Assume that Z is reduced with pure codimension p and let Ix

be the corresponding local ideal at x∈Z. If

(1.5) codimZsing,x ≥ 2+p,

and

(1.6) codim Zk,x ≥ 2+k, k >p,

then x is a normal point.

Conversely, conditions (1.5) and (1.6) are fulfilled if x is a normal point. In
fact, these conditions are equivalent to Serre’s criterion (conditions R1 and S2) for
the ring OZ,x to be normal, see, e.g., [11], pp. 255 and 462. (Condition (1.5) is
precisely R1 and by an argument similar to the proof of Corollary 20.14 in [11]
it follows that (1.6) is equivalent to the condition S2.) The normality of OZ,x is
equivalent to the fact that it is equal to its integral closure in MZ,x, which in turn
is equivalent to the fact that x is a normal point, see also [1].

Remark 1.6. One can check that the sets Z0=Zsing and Zl=Zp+l for l>0 are
independent of the embedding and thus intrinsic analytic subsets of the analytic
space Z. In this notation the Serre condition says that codim Zl ≥2+l for l≥0.

Example 1.7. If Ix is a Cohen–Macaulay ideal, then Zk=∅ for k>p and hence
(1.6) is trivially fulfilled. If Zsing is just a point x, then (1.6) is fulfilled if Zk avoids
x for each k>n−2. This means that OZ,x=Ox/Ix has depth at least 2.

We also obtain a new proof of the following result due to Malgrange [13] and
Spallek [16]. One says that a function φ on Z is in Ck(Z) if it is (locally) the
restriction to Z of a Ck-function in the ambient space.

Corollary 1.8. Assume that Z has pure codimension and is reduced. There
is a natural number m such that if φ∈Cm(Z) is holomorphic on Zreg then φ is
strongly holomorphic on Z.
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It is desirable to express the ideal I as

(1.7) I =
ν⋂

l=1

ann μl,

where μj are so-called Coleff–Herrera currents, μj ∈ C HZ , on Z. In fact, (locally)
a Coleff–Herrera current μ is just a meromorphic differential operator acting on
the current of integration [Z] (combined with contractions with holomorphic vector
fields), see [7] (or [2]). Therefore φμ=0 is an elegant intrinsic way to express that
certain holomorphic differential operators applied to φ vanish on Z. If I has pure
codimension then, see, e.g., (1.6) in [2], I is equal to the annihilator of the analytic
sheaf

Hom(O/I, C HZ) = {μ ∈ C HZ ; Iμ=0}.

This sheaf turns out to be coherent, and therefore there is a finite family of global
sections in a neighborhood X of the closed unit ball such that (1.7) holds. One
can ask whether there is a criterion for strong holomorphicity expressed in terms of
the μl.

Theorem 1.9. Assume that I has pure codimension p and that μl, l=1, ..., N ,
generate Hom(O/I, C HZ). Let φ be meromorphic and assume that

(1.8) codim(Pφ ∩Zk) ≥ k+2, k > p.

Then φ is holomorphic if and only if φμl are ∂̄-closed for all l.

If for instance I is Cohen–Macaulay, then Zk is empty for k>p so (1.8) is
fulfilled for any meromorphic φ. If h is holomorphic and generically nonvanishing
on Z, then ∂̄(1/h)∧μl are Coleff–Herrera currents whose common annihilator is
precisely the ideal h+I, see Theorem 4.2 below.

2. Some residue theory

In [5] we introduced the sheaf of pseudomeromorphic currents P M in X . It
is a module over the sheaf of smooth forms, and closed under ∂̄. For any T ∈ P M
and variety V there exists a restriction T1V that is in P M and has support on V ,
and T =T1V if and only if T has support on V . Moreover, 1V 1V ′ T =1V ∩V ′ T and
ξ1V T =1V (ξT ) if ξ is smooth. If H is a holomorphic tuple such that {x; H(x)=
0}=V , then |H|2λT has a current-valued analytic continuation to Re λ>−ε and

(2.1) T1V =T − |H|2λT |λ=0.
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We say that a current T with support on a variety V has the standard exten-
sion property (SEP) (with respect to V ) if T1W =0 for each W ⊂V with positive
codimension. The following result (Corollary 2.4 in [5]) will be used frequently.

Proposition 2.1. If μ∈ P M with bidegree (∗, p) has support on a variety V

of codimension k>p then μ=0.

Let Z be a variety of pure codimension p. The sheaf of ∂̄-closed P M currents
of bidegree (0, p) with support on Z coincides with the so-called sheaf of Coleff–
Herrera currents, C HZ ; see Proposition 2.5 in [5].

We have to recall the construction of a residue current associated with a com-
plex of locally free sheaves in [4]. Let

(2.2) 0 −→EN

fN−→ ...
f3−→E2

f2−→E1

f1−→E0 −→ 0

be a generically exact complex of Hermitian vector bundles over X , where E0 �C

for simplicity, let

(2.3) 0 −→ O(EN )
fN−→ ...

f1−→ O(E0)

be the corresponding complex of locally free sheaves, and let I be the ideal sheaf
f1O(E1)⊂ O. Assume that (2.2) is pointwise exact outside the variety Z, and over
X \Z let σk : Ek−1→Ek be the minimal inverses of fk. Then fσ+σf=I , where I is
the identity on E=

⊕
k Ek, f=

⊕
k fk and σ=

⊕
k σk. The bundle E has a natural

superbundle structure E=E+ ⊕E−, where E+=
⊕

k E2k and E− =
⊕

k E2k+1, and
f and σ are odd mappings with respect to this structure, see, e.g., [4] for more
details.

The operator ∇=f −∂̄ acts as an odd mapping on C0,˝(X, E), the space of
(0, ∗)-currents with values in E, and extends to an odd mapping ∇End on
C0,˝(X, EndE), and ∇2

End=0. If

u =σ+(∂̄σ)σ+(∂̄σ)2σ+...,

then ∇Endu=I in X \Z. One can define a canonical current extension U of u across
Z as the analytic continuation to λ=0 of Uλ=|F |2λu, where F is a holomorphic
tuple that vanishes on Z; e.g., F =f1 will do if (2.3) is a resolution. From [5] we
know that U is in P M. For further reference we notice that 1V U=0 for any V

with positive codimension. In fact, since U is smooth outside Z, 1V U must vanish
there, and thus it has support on Z. However, from the definition of U it follows
that 1ZU=0. Therefore, 1V U=1Z1V U=1V 1ZU=0. Now

∇EndUλ = I −Rλ,
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where

(2.4) Rλ =(1− |F |2λ)I+∂̄|F |2λ∧u.

Then the current
R =Rλ|λ=0

is in P M, has support on Z, and

(2.5) ∇EndU = I −R.

More precisely,
R =

∑
l≥0

Rl =
∑

l,k≥0

Rl
k,

where Rl
k is a P M-current of bidegree (0, k −l) that takes values in Hom(El, Ek).

As before, let Zk be the set where fk does not have optimal rank. By the
Buchsbaum–Eisenbud theorem, see [11], Chapter 20, (2.3) is a resolution of O/I if
and only if codim Zk ≥k for all k. We also recall from [4] that if (2.3) is a resolution,
then Rl=0 for all l≥1. In view of Proposition 2.1 then R=R0=Rp+Rp+1+... . Since
E0=C we can consider R=R0 as taking values in E rather than Hom(E0, E), and
since ∇EndR=0 thus ∇R=0.

Below we will consider analogues of R and U obtained in a different way. The
following proposition is proved precisely as Proposition 2.2 in [4].

Proposition 2.2. Consider the generically exact complex (2.2) and let U and
R be any currents such that (2.5) holds. If R1=0 then ann R=I. If Rl=0 for all
l≥1 then the associated sheaf complex (2.3) is exact, i.e., a resolution of O/I.

3. Multiplication by meromorphic functions

For any pseudomeromorphic current T and holomorphic function h, the prod-
uct (1/h)T is defined in [5] (Proposition 2.1) as the value at λ=0 of |h|2λT . It is
again a pseudomeromorphic current and it is clear that α(1/h)T =(1/h)αT if α is
smooth. However, in general it is not true that f(1/fg)T =(1/g)T . One can verify,
cf. the proof of Proposition 5.1 in [3], that (1/h)T is equal to the limit of χ(|h|/ε)T/h

when ε→0, cf. (1.1) above. Moreover, if we define ∂̄(1/h)∧T as the value at λ=0
of ∂̄|h|2λ∧(1/h)T , then the Leibniz rule ∂̄[(1/h)T ]=∂̄(1/h)∧T +(1/h)∂̄T holds.

Lemma 3.1. Suppose that Z ∼ I has pure codimension p and let R be the
residue current associated with a resolution (1.2). If h is generically nonvanishing
on Z, then (1/h)R has the SEP on Z.
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Proof. Assume that V ⊂Z has positive codimension. Then ((1/h)Rp)1V =0
in view of Proposition 2.1. Outside the variety Zp+1 we have that Rp+1=αp+1Rp

where αp+1=∂̄σp+1 is smooth, and hence(
1
h

Rp+1

)
1V =

(
1
h

αp+1Rp

)
1V =

(
αp+1

1
h

Rp

)
1V =αp+1

(
1
h

Rp

)
1V =0.

It follows that ((1/h)Rp+1)1V has support on Zp+1 which has codimension ≥p+2,
and hence it vanishes by virtue of Proposition 2.1. Now Rp+2=αp+2Rp+1 out-
side Zp+2 which has codimension ≥p+3, and so (g(1/h)Rp+2)1V =0 by a similar
argument. Continuing in this way the lemma follows. �

Given a meromorphic function φ on Z we can define φR as g(1/h)R if g/h

represents φ. Since (1/h)R has the SEP also g(1/h)R has. Since the difference of
two representations of φ lies in I outside some V ⊂Z of positive codimension and
IR=0, it follows from the SEP that φR is well defined. Moreover, if ψ ∈ OZ , it
follows that

ψ(φR)= (ψφ)R =φ(ψR).

Since φR is well defined, we also have a well-defined current ∂̄φ∧R, and by the
Leibniz rule,

(3.1) ∂̄φ∧R = −∇(φR) = g∂̄
1
h

∧R.

The proof of Theorem 1.2 follows the outline of the proof of Tsikh’s theorem in the
introduction, and the following result is crucial.

Theorem 3.2. Assume that I has pure codimension and let R be the residue
current associated with a resolution. If h is generically nonvanishing on Z, then the
annihilator of

∂̄
1
h

∧R.

is precisely h+I.

Theorem 3.2 is a special case of a more general result for product complexes,
Theorem 4.2, that we obtain without too much extra effort.

Remark 3.3. Let φ be holomorphic in Z \V , where V ⊂Z has positive codimen-
sion and contains Zsing. If φ is meromorphic on Z, then we have seen that φR has
a natural current extension from X \V across V . Also the converse holds. In fact,
one can always find a holomorphic form α with values in Hom(Ep, E0) such that
Rp ·α=[Z], see [2], Example 1. Therefore, if φR has an extension across V also φ[Z]
has, and it then follows from [12] that φ is meromorphic.
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4. Tensor products of resolutions

Assume that O(Eg
k), gk and O(Eh

l ), hl are resolutions of O/I and O/J , re-
spectively. We can define a complex (2.3), where

(4.1) Ek =
⊕

i+j=k

Eg
i ⊗Eh

j ,

f=g+h, or more formally, f=g ⊗IEh +IEg ⊗h, such that

f(ξ ⊗η) = gξ ⊗η+(−1)deg ξξ ⊗hη.

Notice that E0=Eg
0 ⊗Eh

0 =C and that f1O(E1)=I +J . One extends (4.1) to current-
valued sections ξ and η and deg ξ then means total degree. It is natural to write
ξ∧η rather than ξ ⊗η, and of course we can define η∧ξ as (−1)deg ξdeg ηξ∧η. Notice
that

(4.2) ∇(ξ ⊗η) = ∇gξ ⊗η+(−1)deg ξξ ⊗ ∇hη.

Let ug and uh be the corresponding Hom(Eg)-valued and Hom(Eh)-valued forms,
cf. Section 2. Then u=uh∧ug is a Hom(E)-valued form outside Zg ∪Zh. Following
the proof of Proposition 2.1 in [5] we can define Hom(E)-valued pseudomeromorphic
currents

Rh∧Rg =Rh,λ∧Rg |λ=0 and Rg ∧Rh =Rg,λ∧Rh|λ=0.

Remark 4.1. It is important here that Rh,λ=∂̄|H|2λ∧uh with H=h1. If we
use a tuple H that vanish on a larger set than Zh, the result may be affected.
It is also important to notice that even if a certain component (Rh)l

k vanishes, it
might very well happen that (Rh)l

k ∧Rg is nonvanishing. In particular, notice that
(Rh)l

l∧Rg=1ZhIEh
l

∧Rg, cf. (2.4) and (2.1), which is nonvanishing if Zh ⊃Zg .

We can now state our main result of this section.

Theorem 4.2. Assume that I and J are ideal sheaves such that

(4.3) codim(ZI
k ∩ZJ

l ) ≥ k+l, k, l ≥ 1.

Then

(4.4) Rh∧Rg =Rg ∧Rh

and the annihilator of Rh∧Rg is equal to I +J .
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In case both sheaves are Cohen–Macaulay and both resolutions have minimal
lengths, Rh∧Rg coincides with the current obtained from the tensor product of the
resolutions.

Proof of Theorem 3.2. Let I be the sheaf associated with Z and let J =(h).
Then 0→O(Eh

1 )→O(Eh
0 ) is a resolution of O/J if Eh

1 �Eh
0 �C and the mapping

is multiplication by h. Thus Zh=Zh
1 ={z; h(z)=0} and Zh

l =∅ for l>1. Since Z

has pure codimension, codim Zk ≥k+1 for all k. Thus codim Zk ∩Zh
l ≥k+l. As

Rh∧R=∂̄(1/h)∧R, Theorem 3.2 follows from Theorem 4.2. �

Remark 4.3. Let I =(g1) and J =(h1) be complete intersections, and choose
the Koszul complexes as resolutions. Then, see [4], Rg and Rh are the Bochner–
Martinelli type residues introduced in [15]. Moreover, the tensor product of these
resolutions is the Koszul complex generated by (g1, h1), and so the last statement in
the theorem means that this product coincides with the Bochner–Martinelli residue
associated with the ideal (g1, h1). This fact is proved already in [18].

Remark 4.4. Theorem 4.2 extends in a natural way to any finite number of
ideal sheaves.

Analogously we can define currents

Uh∧Rg =Uh,λ∧Rg |λ=0 and Rg ∧Uh =Rg,λ∧Uh|λ=0,

etc. From (4.2) we get that

(4.5) ∇End(Uh∧Rg) = Ih∧Rg −Rh∧Rg.

In fact, ∇End(Uh,λ∧Rg)=(Ih −Rλ,h)∧Rg since ∇g
EndRg=0 and so (4.5) follows. In

the same way

(4.6) ∇End(Rg ∧Uh) =Rg ∧Ih −Rg ∧Rh.

If we define

U = Ih∧Ug+Uh∧Rg, R =Rh∧Rg and I = IE ,

then

(4.7) ∇EndU = I −R.

Lemma 4.5. If the hypothesis in Theorem 4.2 holds, we have that

(4.8) Uh∧Rg =Rg ∧Uh.
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Proof. We have to prove that

(4.9) (Uh)r
l (R

g)s
k −(Rg)s

k(Uh)r
l

vanishes for l>r ≥0 and k ≥s≥0. Since Uh is smooth outside Zh=Zh
1 , (4.9) vanishes

there. On the other hand, both terms have support on Zh=Zh
1 . Thus (4.9) has

support on Zh
1 ∩Zg

1 . Let us first consider the case when r=s=0. If k=0, then (4.9)
is

0−Ig
Eg

0
1Zg (Uh)0l ,

which vanishes since Zg has positive codimension, cf. Section 2 above. Next assume
that l=k=1. Then (4.9) has bidegree (0, 1) and support on Zh

1 ∩Zg
1 , which by

the hypothesis has codimension at least 2. Thus (4.9) must vanish in view of
Proposition 2.1. We now proceed by induction. Assume that we have proved that
(4.9) vanishes whenever l+k<m, and assume that l+k=m. If l≥2 we know from
the induction hypothesis that

(4.10) (Uh)0l−1(R
g)0k −(Rg)0k(Uh)0l−1 =0.

Outside Zh
l we can apply the smooth form αh

l =∂̄σh
l to (4.10), cf. the proof of

Lemma 3.1 above, and conclude that

(4.11) (Uh)0l (R
g)0k −(Rg)0k(Uh)0l

vanishes there, i.e., its support is contained in Zh
l . If k ≥2 we find in a similar way

that (4.11) must have support on Zg
k . In any case, we find that (4.9) has bidegree

(0, m−1) and has support on Zh
l ∩Zg

k , which has codimension at least l+k=m, so
(4.9) must vanish. The case when r+s>0 is handled in a similar way. �

Proof of Theorem 4.2. Applying ∇End to (4.8) we get by (4.5) and (4.6) that

(Ih −Rh)∧Rg =Rg ∧(Ih −Rh)

which is precisely (4.4). Since (Rg)s=0 for s≥1 we have that

R =
∑

s,r≥0

(Rh)r ∧(Rg)s =
∑
r≥0

(Rh)r ∧(Rg)0.

In view of (4.4) we thus have that R=(Rh)0∧(Rg)0=R0 i.e., Rm=0 for m≥1. From
Proposition 2.2 we now conclude that O(E), f is a resolution and ann R=I +J .

Finally, assume that I and J are Cohen–Macaulay sheaves and the resolutions
O(Eg), g and O(Eh), h have minimal lengths codim I and codim J , respectively.
Then the product resolution O(E), f has (minimal) length p=codim I +codim J .
Let Uf and Rf denote the currents associated with this complex. Then Rf as well as
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Rh∧Rg are ∂̄-closed pseudomeromorphic currents of bidegree (0, p) with support on
Z=Zg ∩Zh which has codimension p, and hence they are Coleff–Herrera currents,
according to Proposition 2.1. Moreover, cf. (4.7),

∇End(U −Uf ) =Rf −R =Rf −Rh∧Rg.

It follows from Lemma 3.1 in [2] that Rf −Rh∧Rg=0. �

Remark 4.6. If O(Eg), g and O(Eh), h are resolutions one can verify (without
residue calculus) that the product complex is a resolution as well if and only if (4.3)
holds. Since this should be well known we just sketch an argument: It is not too
hard to see that (for each fixed point x)

(4.12) Hm(Eh ⊗Eg) =
⊕

l+k=m

H l(Eh)⊗Hk(Eg).

In fact, choose Hermitian metrics on Eg and Eh. If g∗ and h∗ and f ∗ =g∗ +h∗

are the induced adjoint mappings and Δf =ff ∗ +f ∗f , etc., then Δf =Δg+Δh. As
usual each class in Hm(Eh ⊗Eg) has a unique harmonic representative

v =
∑

l+k=m

ξl∧ηk.

However, it is easily verified that Δfv=0 if and only if Δgξl=0=Δhηk for all l

and k. Thus (4.12) follows.
Let ZI

k and ZJ
l be the varieties associated to the sheaves I and J . Since

O(Eg), g is exact, it follows that Hk(Eg)=0 at a given point x if and only if x /∈ZI
k ,

and similarly for Eh. In view of (4.12), therefore Hm(E) �=0 at x if and only if

x ∈
⋃

l+k=m

ZI
k ∩ZJ

l .

Thus codim Zm ≥m for all m if and only if (4.3) holds, and according to the
Buchsbaum–Eisenbud theorem therefore O(E), f is a resolution if and only if (4.3)
holds.

5. Proofs of the main results

Proof of Theorem 1.2. If φ is strongly holomorphic, then it is represented by
a function Φ that is holomorphic in a neighborhood of Z. Thus ∇(φR)=∇(ΦR)=
Φ∇R=0.
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Now assume that ∇(φR)=0 and φ is represented by g/h. Then by (3.1), we
have that

0 = ∇
(

g
1
h

R

)
= −g∂̄

1
h

∧R.

This means that g annihilates the current ∂̄(1/h)∧R, and by Corollary 3.2 therefore
g=αh+ψ, where ψ ∈ I. It follows that φ is represented by α and thus φ∈ OZ . �

Proof of Theorem 1.4. Assume that φ is meromorphic and (1.4) is fulfilled.
Clearly, ∂̄φ∧R has support on Pφ ∩Z, so ∂̄φ∧Rp must vanish for degree reasons. If
now ∂̄φ∧Rk=0, then it follows that ∂̄φ∧Rk+1 has support in Pφ ∩Zk+1, and so it
must vanish for degree reasons. �

Proof of Corollary 1.8. First assume that φ is (strongly) smooth and holo-
morphic on Zreg. It is well known that each weakly holomorphic function on Z

(i.e., φ holomorphic on Zreg and locally bounded at Zsing) is meromorphic, see,
e.g., [9]. Therefore, we have a priori two definitions of φR; either as multiplication
of smooth function times R or as multiplication by the meromorphic function φ.
However, they coincide on Zreg and by the SEP therefore they coincide even across
Zsing. Therefore also the two possible definitions of ∇(φR)=−∂̄φ∧R coincide. Since
φ is holomorphic on Zreg it follows that ∂̄φ∧R has support on Zsing. On the other
hand,

(∂̄φ∧R)1Zsing = ∂̄φ∧R1Zsing =0

by Lemma 3.1, and hence ∇(φR)=−∂̄φ∧R=0. Now the corollary follows from
Theorem 1.2 with m=∞. A careful inspection of all arguments reveals that only a
finite number of derivatives (not depending on φ) come into play but we omit the
details. �

Proof of Theorem 1.9. By hypothesis, 0=∂̄(φμ) for all μ∈ Hom(O/I, C HZ). It
is proved in [2] (Theorem 1.5) that each current μ in Hom(O/I, C HZ) can be written
as μ=ξRp for some ξ ∈ O(E∗) such that f ∗

p+1ξ=0 and conversely for each such ξ

the current μ=ξRp is in Hom(O/I, C HZ). Here f ∗
k are the induced mapping(s) on

the dual complex O(E∗
k). Thus

0 = ∂̄φ∧ξRp

for each such ξ. At a given stalk outside Zp+1, the ideal Ix is Cohen–Macaulay, so
if we choose a minimal resolution O(Ẽ), f̃ there it will have length p. If R̃p denotes
the resulting (germ of a) residue current, then the hypothesis implies that

0 = ∂̄φ∧R̃p
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as then trivially f̃ ∗
p+1ξ=0 for each ξ ∈ O(Ẽ∗

p). However, Rp=αR̃p, where α is smooth
(Theorem 4.4 in [4]). It follows that ∂̄φ∧Rp vanishes outside Zp+1. Since Rp+1=
αp+1Rp outside Zp+1 it follows that also ∂̄φ∧Rp+1 has support on Zp+1. However, it
is clear that ∂̄φ∧R must have support on Pφ. Using the hypothesis codim (Pφ ∩Zk)≥
k+2 for k>p, it follows by induction that ∂̄φ∧R=0. Thus φ is strongly holomorphic
according to Theorem 1.2. �
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45 (2007), 157–178.

Mats Andersson
Department of Mathematics
Chalmers University of Technology
SE-412 96 Göteborg
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