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A moment problem for pseudo-positive definite
functionals

Ognyan Kounchev and Hermann Render

Abstract. A moment problem is presented for a class of signed measures which are termed

pseudo-positive. Our main result says that for every pseudo-positive definite functional (subject

to some reasonable restrictions) there exists a representing pseudo-positive measure.

The second main result is a characterization of determinacy in the class of equivalent pseudo-

positive representation measures. Finally the corresponding truncated moment problem is dis-

cussed.

1. Introduction

Let C[x1, ..., xd] denote the space of all polynomials in d variables with complex
coefficients and let T : C[x1, ..., xd]→C be a linear functional. The multivariate
moment problem asks for conditions on the functional T such that there exists a
non-negative measure μ on R

d with

(1) T (P ) =
∫

Rd

P (x) dμ(x)

for all P ∈C[x1, ..., xd]. It is well known that positive definiteness of the functional
T is a necessary condition which means that

T (P ∗P ) ≥ 0 for all P ∈ C[x1, ..., xd];

here P ∗ is the polynomial whose coefficients are the complex conjugates of the
coefficients of P. By a theorem of Haviland, a necessary and sufficient condition
for the existence of a non-negative measure μ satisfying (1) is the positivity of the
functional T , i.e. P (x)≥0 for all x∈R

d implies T (P )≥0 for all P ∈C[x1, ..., xd],
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cf. [5, p. 111]. In the case d=1 it is a classical fact that a functional T is positive
if and only if it is positive-definite, which is proved by using the representation of a
non-negative polynomial as a sum of two squares of polynomials, cf. [1, Chapter 1,
Section 1.1]. A counterexample of D. Hilbert shows that a representation of a
multivariate non-negative polynomial as a finite sum of squares is in general not
possible, cf. [14] and [6]. Many authors have tried to find additional assumptions on
the functional T such that positive definiteness and positivity become equivalent,
see [6], [12], [13, p. 47], [22], [24], [25] and [30].

In this paper we shall be concerned with a modified moment problem which
arose in the investigation of a new cubature formula of Gauss–Jacobi type for mea-
sures μ in the multivariate setting, see [19], [20] and [21]. In contrast to the classical
multivariate moment problem we allow the measures μ under consideration to be
signed measures on R

d. Our approach is based on the new notions of pseudo-positive
definite functionals T and pseudo-positive signed measures μ, to be explained below.

A cornerstone of our approach is the Gauss representation of a polynomial
which we provide below. First we recall some definitions and notation: Let |x|=√

x2
1+...+x2

d be the euclidean norm and S
d−1 :={x∈R

d :|x|=1} be the unit sphere.
We shall write x∈R

d in spherical coordinates x=rθ with θ ∈S
d−1. Let Hk(Rd) be

the set of all harmonic homogeneous complex-valued polynomials of degree k. Then
f ∈ Hk(Rd) is called a solid harmonic and the restriction of f to S

d−1 a spherical
harmonic of degree k. Throughout the paper we shall assume that Yk,l : R

d→R,

l=1, ..., ak :=dim Hk(Rd), is an orthonormal basis of Hk(Rd) with respect to the
scalar product 〈f, g〉Sd−1 :=

∫
Sd−1 f(θ)g(θ) dθ. We shall often use the trivial identity

Yk,l(x)=rkYkl(θ). The Gauss representation (cf. [3], [28] or [18, Theorem 10.2]) tells
us that for every P ∈C[x1, ..., xd] there exist polynomials pk,l such that

(2) P (x) =
deg P∑
k=0

ak∑
l=1

pk,l(r2)rkYk,l(θ) =
deg P∑
k=0

ak∑
l=1

pk,l(|x|2)Yk,l(x),

where deg P is the degree of the polynomial P. By this formula it is clear that the
set of polynomials

{ |x|2jYk,l(x) : j ≥ 0, k ≥ 0 and l =1, 2, ..., ak }

forms a basis for the space of all polynomials, hence this is an alternative basis to
the standard basis {xα :α∈Z

d and α≥0}. The numbers

(3) cj,k,l :=
∫

Rd

|x|2jYk,l(x) dμ(x)

are sometimes called the distributed moments of μ, cf. [8], [9], [15], [16] and [17].
Let us remark that for fixed k and l one may consider the correspondence j �→cj,k,l
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as a univariate moment sequence in the variable j ∈N0. The distributed moments
can be expressed linearly by the classical monomial moments

(4)
∫

Rd

xα dμ(x)

which are considered in the standard approach, and vice versa.
Now we will introduce our basic notions: A signed measure μ over R

d is pseudo-
positive with respect to the orthonormal basis Yk,l, l=1, ..., ak, k ∈N0, if the inequality

(5)
∫

Rd

h(|x|)Yk,l(x) dμ(x) ≥ 0

holds for every non-negative continuous function h : [0, ∞)→[0, ∞) with compact
support, and for all k ∈N0 and l=1, 2, ..., ak. Obviously, the radially-symmetric mea-
sures represent a subclass of the pseudo-positive measures.

Given a linear functional T : C[x1, ..., xd]→C and Yk,l ∈ Hk(Rd) we define the
“component functional” Tk,l : C[x1]→C by putting

(6) Tk,l(p) :=T (p(|x|2)Yk,l(x)) for every p ∈ C[x1].

Note that in the notation (3), Tk,l(p)=cj,k,l for p(t)=tj with j ∈N0. We say that
the functional T is pseudo-positive definite with respect to the orthonormal basis
Yk,l, l=1, ..., ak, k ∈N0, if

Tk,l(p∗(t)p(t)) ≥ 0 and Tk,l(tp∗(t)p(t)) ≥ 0

for every p(t)∈C[x1], and for every k ∈N0 and l=1, ..., ak.
Our main result in Section 2 provides a reasonable sufficient criterion guaran-

teeing that for a pseudo-positive definite functional T : C[x1, ..., xd]→C there exists
a pseudo-positive signed measure μ on R

d with

(7)
∫

Rd

P (x) dμ=T (P ) for all P ∈ C[x1, ..., xd].

This means that we give a solution to the pseudo-positive moment problem: this
problem asks for conditions on the moments (3) which provide the existence of
a pseudo-positive (signed) measure μ satisfying the equalities (3). The sufficient
criterion is a summability assumption of the type

(8)
∞∑

k=0

ak∑
l=1

∫ ∞

0

rNr−k dσk,l(r) < ∞ for all N ∈ N0,

where the measures σk,l are representing measures of the component functionals
Tk,l, cf. Proposition 2.2.
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An essential advantage of our approach is that there exists a naturally defined
truncated moment problem in the class of pseudo-positive definite functionals. In
Section 3 we shall formulate and solve this problem which is important also from
the practical point of view.

The second main result in Section 4 says that the pseudo-positive representing
measure μ of a pseudo-positive definite functional T : C[x1, ..., xd]→C is unique in
the class of all pseudo-positive signed measures whenever each functional Tk,l de-
fined in (5) has a unique representing measure on [0, ∞) in the sense of Stieltjes (for
the precise definition see Section 4). And vice versa, if a pseudo-positive functional
T is determinate in the class of all pseudo-positive signed measures and the sum-
mability condition (8) is satisfied, then each functional Tk,l is determinate in the
sense of Stieltjes. The proof is essentially based on the properties of the Nevanlinna
extremal measures. In the last section we shall give examples and some further
properties of pseudo-positive definite functionals.

Let us recall some terminology from measure theory: a signed measure on R
d

is a set function on the Borel σ-algebra on R
d which takes real values and is σ-

additive. For the standard terminology, as Radon measure, Borel σ-algebra, etc.,
we refer to [6]. By the Jordan decomposition [11, p. 125], a signed measure μ is
the difference of two non-negative finite measures, say μ=μ+ −μ− with the property
that there exists a Borel set A such that μ+(A)=0 and μ−(Rn \A)=0. The variation
of μ is defined as |μ|:=μ++μ−. The signed measure μ is called moment measure
if all polynomials are integrable with respect to μ+ and μ−, which is equivalent
to integrability with respect to the total variation. The support of a non-negative
measure μ on R

d is defined as the complement of the largest open set U such that
μ(U)=0. In particular, the support of the zero measure is the empty set. The support
of a signed measure σ is defined as the support of the total variation |σ|=σ++σ−

(see [11, p. 226]). Recall that in general, the supports of σ+ and σ− are not disjoint
(cf. Exercise 2 in [11, p. 231]). For a surjective measurable mapping ϕ : X→Y and
a measure ν on X the image measure νϕ on Y is defined by

(9) νϕ(B) := ν(ϕ−1B)

for all Borel subsets B of Y. The equality
∫

X
g(ϕ(x)) dν(x)=

∫
Y

g(y) dνϕ(y) holds
for all integrable functions g.

2. The moment problem for pseudo-positive definite functionals

Recall that for a continuous function f : R
d→C the Laplace–Fourier coefficient

is defined by
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(10) fk,l(r) =
∫

Sd−1
f(rθ)Yk,l(θ) dθ.

The formal expansion

(11) f(rθ) =
∞∑

k=0

ak∑
l=1

fk,l(r)Yk,l(θ)

is the Laplace–Fourier series. The following result may be found e.g. in [4] or [27].

Proposition 2.1. The Laplace–Fourier coefficient fk,l of a polynomial f given
by (10) is of the form fk,l(r)=rkpk,l(r2), where pk,l is a univariate polynomial.
Hence, the Laplace–Fourier series (11) is equal to

(12) f(x) =
deg f∑
k=0

ak∑
l=1

pk,l(|x|2)Yk,l(x).

The next two propositions characterize pseudo-positive definite functionals:

Proposition 2.2. Let T : C[x1, ..., xd]→C be a pseudo-positive definite func-
tional. Then for each k ∈N0, and l=1, ..., ak, there exist non-negative measures σk,l

with support in [0, ∞) such that

(13) T (f) =
deg f∑
k=0

ak∑
l=1

∫ ∞

0

fk,l(r)r−k dσk,l(r)

holds for all f ∈C[x1, ..., xd], where fk,l(r), k ∈N0, l=1, ..., ak, are the Laplace–
Fourier coefficients of f.

Proof. By the solution of the Stieltjes moment problem there exists a non-
negative measure μk,l with support in [0, ∞) representing the functional Tk,l, i.e. sat-
isfying

(14) Tk,l(p) =
∫ ∞

0

p(t) dμk,l(t) for every p ∈ C[t].

Let now ϕ : [0, ∞)→[0, ∞) be defined by ϕ(t)=
√

t. Then we put σk,l :=μϕ
k,l, where

μϕ
k,l is the image measure defined in (9). We obtain

(15)
∫ ∞

0

h(t) dμk,l(t) =
∫ ∞

0

h(r2) dμϕ
k,l(r).
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Now use (12), the linearity of T and the definition of Tk,l in (6), and the equations
(14) and (15) to obtain

T (f) =
deg f∑
k=0

ak∑
l=1

Tk,l(pk,l) =
deg f∑
k=0

ak∑
l=1

∫ ∞

0

pk,l(r2) dμϕ
k,l(r).

Since pk,l(r2)=r−kfk,l(r) the claim (13) follows from the last equation, which ends
the proof. �

The next result shows that the converse of Proposition 2.2 is also true; not less
important, it is a natural way of defining pseudo-positive definite functionals.

Proposition 2.3. Let σk,l, k ∈N0, l=1, ..., ak, be non-negative moment mea-
sures with support in [0, ∞). Then the functional T : C[x1, ..., xd]→C defined by

(16) T (f) :=
deg f∑
k=0

ak∑
l=1

∫ ∞

0

fk,l(r)r−k dσk,l

is pseudo-positive definite, where fk,l(r), k ∈N0, l=1, ..., ak, are the Laplace–Fourier
coefficients of f.

Proof. Let us compute Tk,l(p) where p is a univariate polynomial: by defi-
nition, Tk,l(p)=T (p(|x|2)Yk,l(x)). The Laplace–Fourier series of the function x �→
|x|2jp(|x|2)Yk,l(x) is equal to r2jp(r2)rkYk,l(θ), hence

Tk,l(tjp(t)) =T (|x|2jp(|x|2)Yk,l(x)) =
∫ ∞

0

rjp(r2) dσk,l

for every natural number j. Taking j=0 and j=1 one concludes that Tk,l(p∗(t)p(t))≥
0 and Tk,l(tp∗(t)p(t))≥0 for all univariate polynomials p, hence T is pseudo-positive
definite. �

By C(X) we denote the space of all continuous complex-valued functions on a
topological space X while Cc(X) is the set of all f ∈C(X) having compact support.
Further Cpol(Rd) is the space of all polynomially bounded, continuous functions,
so for each f ∈Cpol(Rd) there exists N ∈N0 such that |f(x)| ≤CN (1+|x|)N for some
constant CN (depending on f ) for all x∈R

d. A useful space of test functions is

(17) C×(Rd) :=
{ N∑

k=0

ak∑
l=1

fk,l(|x|)Yk,l(x) : N ∈ N0 and fk,l ∈ C[0, ∞)
}

which can be rephrased as the set of all continuous functions with a finite Laplace–
Fourier series.
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Proposition 2.4. Let μ be a pseudo-positive moment measure on R
d. Then

there exist unique moment measures μk,l defined on [0, ∞) such that

(18)
∫ ∞

0

h(t) dμk,l(t) =
∫

Rd

h(|x|)Yk,l(x) dμ

holds for all h∈Cpol[0, ∞). Further for each f ∈C×(Rd)∩Cpol(Rd),

∫
Rd

f(x) dμ=
∞∑

k=0

ak∑
l=1

∫ ∞

0

fk,l(r)r−k dμk,l.

Proof. By definition of pseudo-positivity, Mk,l(h):=
∫

Rd h(|x|)Yk,l(x) dμ defines
a positive functional on Cc([0, ∞)). By the Riesz representation theorem there
exists a unique non-negative measure μk,l such that Mk,l(h)=

∫ ∞
0

h(t) dμk,l for all
h∈Cc([0, ∞)). We want to show that (18) holds for all h∈Cpol[0, ∞). For this, let
uR :[0, ∞)→[0, 1] be a cut-off function, so uR is continuous and decreasing such that

(19) uR(r) = 1 for all 0 ≤ r ≤ R and uR(r) = 0 for all r ≥ R+1.

Let h∈Cpol[0, ∞). Then uRh∈Cc([0, ∞)) and

(20)
∫ ∞

0

uR(t)h(t) dμk,l =
∫

Rd

uR(|x|)h(|x|)Yk,l(x) dμ.

Note that |uR(t)h(t)| ≤ |uR+1(t)h(t)| for all t∈[0, ∞). Hence by the monotone con-
vergence theorem

(21)
∫ ∞

0

|h(t)| dμk,l = lim
R→∞

∫ ∞

0

|uR(t)h(t)| dμk,l.

On the other hand, it is obvious that

(22)
∣∣∣∣
∫

Rd

uR(|x|)
∣∣h(|x|)

∣∣Yk,l(x) dμ

∣∣∣∣ ≤
∫

Rd

∣∣h(|x|)Yk,l(x)
∣∣ d|μ|.

The last expression is finite since μ is a moment measure. From (21), (20) applied
to |h| and (22) it follows that |h| is integrable for μk,l. Using (20) and Lebesgue’s
convergence theorem for μ it is easy to see that (18) holds. For the last statement
recall that each f ∈C×(Rd) has a finite Laplace–Fourier series, and it is easy to see
that the Laplace–Fourier coefficients fk,l are in Cpol[0, ∞) if f ∈Cpol(Rd), see (25)
below. �

The next theorem is the main technical result of this section.
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Theorem 2.5. Let σk,l, k ∈N0, l=1, ..., ak, be non-negative measures with sup-
port in [0, ∞) such that for any N ∈N0,

(23) CN :=
∞∑

k=0

ak∑
l=1

∫ ∞

0

rNr−k dσk,l < ∞.

Then for the functional T : C[x1, ..., xd]→C defined by (16) there exists a pseudo-
positive, signed moment measure σ such that

T (f) =
∫

Rn

f dσ for all f ∈ C[x1, ..., xd].

Remark 2.6. (1) If the measures σk,l have supports in the compact interval
[ρ, R] for all k ∈N0, l=1, ..., ak, then the measure σ in Theorem 2.5 has support in
the annulus {x∈R

d :ρ≤ |x| ≤R}.

(2) In the case of R<∞, it obviously suffices to assume that C0<∞ instead of
CN <∞ for all N ∈N0.

(3) The proof of Theorem 2.5 shows that σk,l is equal to the measure induced
by σ with respect to the solid harmonic Yk,l(x), cf. (5).

Proof. (1) We show at first that T can be extended to a linear functional T̃

defined on Cpol(Rd) by the formula

(24) T̃ (f) :=
∞∑

k=0

ak∑
l=1

∫ ∞

0

fk,l(r)r−k dσk,l

for f ∈Cpol(Rd), where fk,l(r) are the Laplace–Fourier coefficients of f . Indeed,
since f ∈Cpol(Rd) is of polynomial growth there exist C>0 and N ∈N such that
|f(x)| ≤C(1+|x|N ). Let ωd−1 denote the surface area of the unit sphere. It follows
from (10) that

(25) |fk,l(r)| ≤ C(1+rN )
√

ωd−1

√∫
Sd−1

|Yk,l(θ)|2 dθ =C(1+rN )
√

ωd−1,

where we used the Cauchy–Schwarz inequality and the fact that Yk,l is orthonormal.
Hence, ∫ ∞

0

|fk,l(r)|r−k dσk,l ≤ √
ωd−1C

∫ ∞

0

(1+rN )r−k dσk,l.

By assumption (23) the latter integral exists, so fk,l(r)r−k is integrable with respect
to σk,l. By summing over all k and l we obtain by (23) that

∞∑
k=0

ak∑
l=1

∣∣∣∣
∫ ∞

0

fk,l(r)r−k dσk,l

∣∣∣∣< ∞,
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which implies the convergence of the series in (24). It follows that T̃ is well-defined.
(2) Let T0 be the restriction of the functional T̃ to the space Cc(Rd). We will

show that T0 is continuous. Let f ∈Cc(Rd) and suppose that f has support in the
annulus {x∈R

d :ρ≤ |x| ≤R} (for the case ρ=0 this is a ball). Then by a similar
technique as above |fk,l(r)| ≤ √

ωd−1 maxρ≤ |x|≤R |f(x)|. Using (24) one arrives at

(26) |T0(f)| ≤ max
ρ≤ |x|≤R

|f(x)| √
ωd−1

∞∑
k=0

ak∑
l=1

∫ R

ρ

r−k dσk,l.

(3) First consider the case when all measures σk,l have supports in the interval
[ρ, R] with R<∞ (cf. Remark 2.6). Then (26) and the Riesz representation theorem
for compact spaces yield a representing measure μ with support in the annulus
{x∈R

d :ρ≤ |x| ≤R}. Clearly μ is a moment measure. The pseudo-positivity of μ will
be proved in (5) below.

(4) In the case that σk,l have supports in [0, ∞), we apply the Riesz repre-
sentation theorem given in [6, p. 41, Theorem 2.5]: there exists a unique signed
measure σ such that T0(g)=

∫
Rd g dσ for all g ∈Cc(Rd). Next we will show that the

polynomials are integrable with respect to the variation of the representation mea-
sure σ. Let σ=σ+ −σ− be the Jordan decomposition of σ. Following the techniques
of Theorems 2.4 and 2.5 in [6, p. 42], we have the equality

(27)
∫

Rd

g(x) dσ+ =sup{T0(h) : h ∈ Cc(Rd) with 0 ≤ h ≤ g}

which holds for any non-negative function g ∈Cc(Rd). Let uR be the cut-off function
defined in (19). We want to estimate

∫
Rd g(x) dσ+ for the function g :=|x|NuR(|x|2).

In view of (27), let h∈Cc(Rd) with 0≤h(x)≤ |x|NuR(|x|2) for all x∈R
d. Then for

the Laplace–Fourier coefficient hk,l of h we have the estimate

|hk,l(r)| ≤

√∫
Sd−1

|h(rθ)|2 dθ

√∫
Sd−1

|Yk,l(θ)|2 dθ ≤ rNuR(r2)
√

ωd−1.

According to (24),

T0(h) ≤ |T0(h)| ≤ √
ωd−1

∞∑
k=0

ak∑
l=1

∫ ∞

0

rNr−k dσk,l =: DN .

From (27) it follows that
∫

Rd |x|NuR(|x|2) dσ+ ≤DN for all R>0 (note that DN

does not depend on R). By the monotone convergence theorem (note that uR(x)≤
uR+1(x) for all x∈R

d) we obtain∫
Rd

|x|N dσ+ = lim
R→∞

∫
Rd

|x|NuR(|x|2) dσ+ ≤ DN .



106 Ognyan Kounchev and Hermann Render

Similarly one shows that
∫

Rd |x|Ndσ− <∞ by considering the functional S=−T0. It
follows that all polynomials are integrable with respect to σ+ and σ−. Using similar
arguments it is not difficult to see that for all g ∈C×(Rd)∩Cpol(Rd),

(28)
∫

Rd

g(x) dσ = T̃ (g).

(5) It remains to prove that σ is pseudo-positive. Let h∈Cc([0, ∞)) be a non-
negative function. The Laplace–Fourier coefficients fk′,l′ of f(x):=h(|x|)Yk,l(x) are
given by fk′,l′ (r)=δk,k′ δl,l′ h(r)rk and by (28) it follows that

∫
Rd

h(|x|)Yk,l(x) dσ = T̃ (f) =
∫ ∞

0

fk,l(r)r−k dσk,l =
∫ ∞

0

h(r) dσk,l.

Since σk,l are non-negative measures, the last term is non-negative, thus σ is pseudo-
positive. The proof is complete. �

The following theorem is the main result of the present section and is an im-
mediate consequence of Theorem 2.5. It provides a simple sufficient condition for
the pseudo-positive definite functional on C[x1, ..., xd] defined in (16) to possess a
pseudo-positive representing measure. Let us note that not every pseudo-positive
definite functional has a pseudo-positive representing measure, see Theorem 5.7.

Theorem 2.7. Let T : C[x1, ..., xd]→C be a pseudo-positive definite functional.
Let σk,l, k ∈N0, l=1, ..., ak, be non-negative measures with supports in [0, ∞) repre-
senting the functional T as obtained in Proposition 2.2. If for any N ∈N0,

(29)
∞∑

k=0

ak∑
l=1

∫ ∞

0

rNr−k dσk,l < ∞,

then there exists a pseudo-positive, signed moment measure σ such that

T (f) =
∫

Rd

f dσ for all f ∈ C[x1, ..., xd].

It would be interesting to see whether the summability condition (29) may be
weakened, cf. also the discussion at the end of Section 5.

By the uniqueness of the representing measure in the Riesz representation
theorem for compact spaces we conclude from Theorem 2.5:

Corollary 2.8. Let μ be a signed measure with compact support. Then μ

is pseudo-positive if and only if μ is pseudo-positive definite as a functional on
C[x1, ..., xd].
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Let us remark that Corollary 2.8 does not hold without the compactness as-
sumption which follows from well-known arguments in the univariate case: Indeed,
let ν1 be a non-negative moment measure on [0, ∞) which is not determined in
the sense of Stieltjes; hence there exists a non-negative moment measure ν2 on
[0, ∞) such that ν1(p)=ν2(p) for all univariate polynomials. Since ν1 �=ν2 there
exists a continuous function h : [0, ∞)→[0, ∞) with compact support such that
ν1(h) �=ν2(h). Without loss of generality assume that

(30)
∫ ∞

0

h(r) dν1 −
∫ ∞

0

h(r) dν2 < 0.

For i=1, 2 define dμi=dθ dνi, so for any f ∈C(Rd) of polynomial growth
∫

Rd

f dμi =
∫ ∞

0

∫
Sd−1

f(rθ) dθ dνi.

For a polynomial f let f0 be the first Laplace–Fourier coefficient. Then
∫

Rd f dμi=∫ ∞
0

f0(r) dνi for i=1, 2. Since ν1(p)=ν2(p) for all univariate polynomials it follows
that

∫
Rd f dμ1=

∫
Rd f dμ2 for all polynomials. Then μ:=μ1 −μ2 is a signed measure

which is pseudo-positive definite since μ(P )=0 for all polynomials P. It is not
pseudo-positive since μ0(h)=

∫
Rd h(|x|) dμ<0 by (30).

3. The truncated moment problem for pseudo-positive definite
functionals

The classical truncated moment problem of order 2n−1 for a sequence of real
numbers s0, s1, s2, ... asks for conditions providing the existence of a non-negative
measure σn on the real line such that

(31) sk =
∫ ∞

− ∞
tk dσn(t) for k =0, ..., 2n−1,

cf. [1, p. 30]. Let P≤m denote the space of all univariate polynomials of degree ≤m,

and let us associate to the numbers s0, ..., s2n the linear functional Tn : P ≤2n→R

defined by
Tn(tk) := sk for k =0, ..., 2n.

A necessary and sufficient condition for the existence of a non-negative measure σn

on the real line satisfying (31) is that Tn is positive definite on P ≤2n which means
that

Tn(p∗(t)p(t)) ≥ 0 for all p ∈ P≤n,
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see [1, p. 30]. Moreover, if Tn is strictly positive definite on P ≤2n (i.e. it is true
that Tn(p∗(t)p(t))>0 for all p∈ P≤n, p �=0) then one can find a whole continuum of
solutions to the truncated problem of order 2n−1.

A classical argument based on the Helly theorem shows that the solutions σn of
the truncated moment problem of order 2n−1 for n∈N0 converge to a solution σ of
the moment problem. For discussions of truncated multivariate moment problems
we refer to [12] and [29].

We now formulate a truncated moment problem in our framework. A ba-
sic question is of course which moments are assumed to be known. Our formulation
will depend on two parameters, namely n∈N0 and k0 ∈N0 ∪ {∞}. We define the
space Un(k0) as the set of all polynomials f ∈C[x1, ..., xd] such that the Laplace–
Fourier series (cf. (12))

f(x) =
deg f∑
k=0

ak∑
l=1

pk,l(|x|2)Yk,l(x)

satisfies the restriction

deg pk,l ≤ n for k =0, ..., k0 and pk,l =0 for all k ∈ N0 with k >k0.

A functional Tn : U2n(k0)→C is called pseudo-positive definite with respect to the
orthonormal basis Yk,l, l=1, ..., ak, k ∈N0, k ≤k0, if the component functionals Tn,k,l :
P ≤2n→C defined by

Tn,k,l(p) :=Tn(p(|x|2)Yk,l(x)) for p ∈ P ≤2n

satisfy

Tn,k,l(p∗p) ≥ 0 for all p ∈ P ≤n,(32)

Tn,k,l(tp∗(t)p(t)) ≥ 0 for all p ∈ P≤n−1.(33)

If k0<∞, the space Un(k0) is obviously finite-dimensional and in this case we can
solve the truncated moment problem.

Theorem 3.1. Suppose that n and k0 are natural numbers. If Tn : U2n(k0)→C

is pseudo-positive definite with respect to the orthonormal basis Yk,l, l=1, ..., ak,
k ∈N0, then there exists a pseudo-positive measure σ such that

Tn(P ) =
∫

Rd

P (x) dσ(x)

for all P ∈U2n−1(k0).
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Proof. Let k ∈ {0, ..., k0} and let Tn,k,l : P ≤2n→C be the component functional.
In the first case assume that there exists a polynomial pm ∈ P ≤n, pm �=0, with
Tn,k,l(p∗

mpm)=0. We may assume that pm has minimal degree, say m≤n. Then
Tn,k,l(p∗p)>0 for all p∈ P ≤m−1, p �=0. Using the Gauss–Jacobi quadrature for the
functional Tn,k,l restricted to P ≤2m it follows that there exist points t1,k,l<...<

tm,k,l ∈R and weights α1,k,l, ..., αm,k,l>0 such that the measure σk,l :=α1,k,lδt1,k,l
+

...+αm,k,lδtm,k,l
coincides with Tn,k,l on P ≤2m−1. Moreover, condition (33) implies

that t1,k,l>0. By the Cauchy–Schwarz inequality we have for all q ∈ P ≤2n−m,

|Tn,k,l(qpm(t))|2 ≤ Tn,k,l(q∗q)Tn,k,l(p∗
mpm)= 0.

It follows that Tn,k,l and σk,l coincide on P ≤2n−1. Hence we have proved that
there exists a non-negative moment measure σk,l with support in [0, ∞) such that
Tn,k,l(p)=

∫ ∞
0

p(t) dσk,l(t) for all p∈ P ≤2n−1, and (since t1,k,l>0)

(34)
∫ ∞

0

r−k dσk,l < ∞.

In the second case, we have Tn,k,l(p∗p)>0 for all p∈ P ≤n, p �=0. Using the Gauss–
Jacobi quadrature again one obtains a non-negative moment measure σk,l with
support in [0, ∞), such that Tn,k,l(p)=

∫ ∞
0

p(t) dσk,l(t) for all p∈ P ≤2n−1, satisfying
(34).

Let σk,l for k=0, ..., k0 be as above and define σk,l=0 for k>k0. Define a
functional T : C[x1, ..., xd]→C by

T (f) :=
deg f∑
k=0

ak∑
l=1

∫ ∞

0

fk,l(r)r−k dσk,l.

By Theorem 2.5 (note that the summability condition is satisfied) there exists a
pseudo-positive moment measure σ with the same moments as T. The proof is
accomplished by the fact that T and Tn agree on the subspace U2n−1(k0). �

Now we consider the case k0=∞, so the space Un(k0) is infinite-dimensional.
Using the same method of proof one obtains the following result.

Theorem 3.2. Suppose that n is a natural number and that Tn : U2n(∞)→C is
pseudo-positive definite with respect to the orthonormal basis Yk,l, l=1, ..., ak, k ∈N0.

Assume that the non-negative measures σk,l constructed in the proof of Theorem 3.1
satisfy the following conditions

CN :=
∞∑

k=0

ak∑
l=1

∫ ∞

0

rNr−k dσk,l < ∞
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for any N ∈N0. Then there exists a pseudo-positive, signed moment measure σ such
that

T (f) =
∫

Rn

f dσ for all f ∈ U2n−1(∞).

Remark 3.3. Let us note that (in the case k0=∞) the space U2n(∞) coincides
with the set of all polynomials h which are polyharmonic of order n+1, i.e. satisfy
Δn+1h=0 , where Δ is the Laplace operator and Δj is its jth iterate. Apparently for
the first time such representing measures have been considered more systematically
in [26]. In the case n=0 the problem we consider is equivalent to the inverse magnetic
problem, cf. [31].

4. Determinacy for pseudo-positive definite functionals

Let M ∗(Rd) be the set of all signed moment measures, and M ∗
+(Rd) be the

set of non-negative moment measures on R
d. On M ∗(Rd) we define an equivalence

relation: we say that σ ∼μ for two elements σ, μ∈M ∗(Rd) if and only if
∫

Rd f dσ=∫
Rd f dμ for all f ∈C[x1, ..., xd].

Definition 4.1. Let μ∈ M ∗(Rd) be a pseudo-positive measure. We define

Vμ = {σ ∈ M ∗(Rd) : σ is pseudo-positive and σ ∼ μ}.

We say that the measure μ∈ M ∗(Rd) is determined in the class of pseudo-positive
measures if Vμ has only one element, i.e. is equal to {μ}.

Recall that a positive definite functional φ : P1→R is determined in the sense
of Stieltjes if the set

(35) W Sti
φ :=

{
τ ∈ M ∗

+([0, ∞)) :
∫ ∞

0

rm dτ =φ(rm) for all m ∈ N0

}

has exactly one element, cf. [7, p. 210].
According to Proposition 2.4, we can associate to a pseudo-positive measure

μ the sequence of non-negative measures μk,l, k ∈N0, l=1, ..., ak, with support in
[0, ∞). The measures μk,l contain all information about μ. Indeed, we prove the
following result.

Proposition 4.2. Let μ and σ be pseudo-positive measures and let μk,l and
σk,l be as in Proposition 2.4. If μk,l=σk,l for all k ∈N0, l=1, ..., ak, then μ=σ.
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Proof. Let h∈Cc[0, ∞). Then, using the assumption μk,l=σk,l, we obtain that
∫

Rd

h(|x|)Yk,l(x) dμ=
∫ ∞

0

h(t) dμk,l =
∫

Rd

h(|x|)Yk,l(x) dσ.

Since each f ∈C×(Rd)∩Cc(Rd) is a finite linear combination of functions of the
type h(|x|)Yk,l(x) with h∈Cc[0, ∞), we obtain that

∫
Rd f dμ=

∫
Rd f dσ for all f ∈

C×(Rd)∩Cc(Rd). We apply Proposition 4.3 to see that μ is equal to σ. �

The following result is proved in [7, Proposition 3.1].

Proposition 4.3. Let μ and σ be signed measures on R
d. If

∫
Rd f dμ=

∫
Rd f dσ

for all f ∈C×(Rd)∩Cc(Rd), then μ is equal to σ.

We can characterize Vμ in the case that only finitely many μk,l are non-zero.

Theorem 4.4. Let μ be a pseudo-positive measure on R
n such that μk,l=0

for all k>k0, l=1, ..., ak. Then Vμ is affinely isomorphic to the set

(36)
k0⊕

k=0

ak⊕
l=1

{
ρk,l ∈ W Sti

μψ
k,l

:
∫ ∞

0

t−k/2 dρk,l < ∞
}

,

where the isomorphism is given by σ �→(σψ
k,l)k=1,..,k0,l=1,...,ak

and the map ψ : [0, ∞)→
[0, ∞) is defined by ψ(t)=t2, cf. (9).

Proof. Let σ be in Vμ. Let σk,l and μk,l be the unique moment measures ob-
tained in Proposition 2.4. Then

∫ ∞

0

h(t) dσψ
k,l =

∫ ∞

0

h(t2) dσk,l =
∫

Rn

h(|x|2)Yk,l(x) dσ(x)

for all h∈Cpol[0, ∞), and an analogous equation is valid for μk,l and μ. Taking
polynomials h(t) we see that σk,l ∈W Sti

μψ
k,l

using the assumption that μ∼σ. Using a

simple approximation argument it is easy to see from (18) that
∫ ∞

0

t−k/2 dσψ
k,l =

∫
Rn

Yk,l

(
x

|x|

)
dσ(x).

Since x �→Yk,l(x/|x|) is bounded on R
n, say by M, we obtain the estimate

∣∣∣∣
∫ ∞

0

t−k/2 dσψ
k,l

∣∣∣∣ ≤ M

∫
Rn

1 d|σ| < ∞.
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It follows that (σψ
k,l)k=1,..,k0,l=1,...,ak

is contained in the set defined by (36).
Let now ρk,l ∈W Sti

μψ
k,l

be given such that
∫ ∞
0

t−k/2 dρk,l<∞ for k=1, ..., k0, l=

1, ..., ak. Define σk,l=ρψ−1

k,l and σk,l=0 for k>k0. Then by Theorem 2.5 there exists
a measure τ ∈Vμ such that τk,l=σk,l. This shows the surjectivity of the map. Let
now σ and τ belong to Vμ with σψ

k,l=τψ
k,l for k=1, ..., k0, l=1, ..., ak. The property

σ ∈Vμ implies that σψ
k,l ∈W Sti

μψ
k,l

for all k ∈N0, l=1, ..., ak, hence σψ
k,l=0 for k>k0,

and similarly τψ
k,l=0. Thus σk,l=τk,l for all k ∈N0, l=1, ..., ak, and this implies that

σ=τ by Proposition 4.2. �

The following is a sufficient condition for a functional T to be determined in
the class of pseudo-positive measures.

Theorem 4.5. Let T : C[x1, ..., xd]→R be a pseudo-positive definite functional.
If the functionals Tk,l : C[x1]→C are determined in the sense of Stieltjes then there
exists at most one pseudo-positive, signed moment measure μ on R

d with

(37) T (f) =
∫

Rd

f dμ for all f ∈ C[x1, ..., xd].

Proof. Let us suppose that μ and σ are pseudo-positive, signed moment mea-
sures on R

d representing T. Taking f=|x|2NYk,l(x) we obtain from (37) that

∫
Rd

|x|2NYk,l(x) dμ=Tk,l(tN ) =
∫

Rd

|x|2NYk,l(x) dσ

for all N ∈N0. Let μk,l and σk,l be as in Proposition 2.4, and consider the function
ψ : [0, ∞)→[0, ∞) defined by ψ(t)=t2. Then the image measures μψ

k,l and σψ
k,l are

non-negative measures with supports on [0, ∞) such that
∫ ∞
0

tNdμψ
k,l=Tk,l(tN )=∫ ∞

0
tNdσψ

k,l. Our assumption implies that μψ
k,l=σψ

k,l, so μk,l=σk,l. Proposition 4.2
implies that μ is equal to σ. �

In the following we want to prove the converse of the last theorem, which is
more subtle. We now need some special results about Nevanlinna extremal measures.
Let us introduce the following notation: for a non-negative measure φ∈M ∗

+(R) we
put(1)

[φ] := {σ ∈ M ∗
+(R) : σ ∼ φ}.

(1) Here in order to avoid mixing of the notations, we retain the notation [φ] from the
one-dimensional case in [7].
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Proposition 4.6. Let ν be a non-negative moment measure on R with support
in [0, ∞) which is not determined in the sense of Stieltjes, or applying the notation
(35) W Sti

ν �={ν}. Then there exist uncountably many σ ∈W Sti
ν such that

∫ ∞
0

u−k dσ<

∞ for all k ∈N0.

Proof. In the proof we will borrow some arguments about the Stieltjes problem
as given in [10] or [23]. As in the proof of Proposition 4.1 in [23] let ϕ : (−∞, ∞)→
[0, ∞) be defined by ϕ(x)=x2. If λ is a measure on R define a measure λ− by
λ−(A):=λ(−A) for each Borel set A where −A:={−x:x∈A}. The measure is sym-
metric if λ− =λ. For each τ ∈W Sti

ν define a measure τ̃ := 1
2 (τϕ+(τϕ)−) which is

clearly symmetric, in particular ν̃ is symmetric. As pointed out in [23], the map
·̃ : W Sti

ν →[ν̃] is injective and the image is exactly the set of all symmetric measures
in the set [ν̃]. The inverse map of ·̃ defined on the image space is just the map
σ �→σϕ.

It follows that ṽ is not determined, so we can make use of the Nevanlinna theory
for the indeterminate measure ν̃, see p. 54 in [1]. We know by formulas II.4.2 (9)
and II.4.2 (10) in [1] that for every t∈R there exists a unique Nevanlinna-extremal
measure σt such that ∫ ∞

− ∞

dσt(u)
u−z

= − A(z)t−C(z)
B(z)t−D(z)

,

where A(z), B(z), C(z) and D(z) are entire functions. Since the support of σt is
the zero-set of the entire function B(z)t−D(z) it follows that the measure σt has
no mass at 0 for t �=0, and now it is clear that σt([−δ, δ])=0 for t �=0 and suitable
δ>0 (this fact is pointed out at least in the reference [7, p. 210]). It follows that

(38)
∫ ∞

− ∞
|u| −k dσt < ∞

since the function u �→|u| −k is bounded on R\[−δ, δ] for each δ>0. Using the fact
that the functions A(z) and B(z) of the Nevanlinna matrix are odd, while the
functions B(z) and C(z) are even, one derives that the measure ρt := 1

2σt+ 1
2σ−t

is symmetric. Further from the equation A(z)D(z)−B(z)C(z)=1 it follows that
ρt �=ρs for positive numbers t �=s. By the above we know that ρϕ

t �=ρϕ
s . This finishes

the proof. �

Theorem 4.7. Let μ be a pseudo-positive signed measure on Rd such that the
summability assumption (8) holds. Then Vμ contains exactly one element if and
only if each μψ

k,l is determined in the sense of Stieltjes.
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Proof. Let μk,l be the component measures as defined in Proposition 2.4. As-
sume that Vμ={μ} but that some τ :=μψ

k0,l0
is not determined in the sense of Stielt-

jes, where ψ(t)=t2 for t∈[0, ∞). By Proposition 4.6 there exists a measure σ ∈W Sti
τ

such σ �=τ and
∫ ∞
0

r−k dσ<∞. By Theorem 2.5 there exists a pseudo-positive mo-
ment measure μ̃ representing the functional

T̃ (f) :=
∞∑

k=0
k �=k0

ak∑
l=1
l �=l0

(∫ ∞

0

fk,l(r)r−k dμk,l+
∫ ∞

0

fk0,l0(r)r
−k dσψ−1

)
.

Then μ̃ is different from μ since σψ−1 �=μk0,l0 and μ̃∈Vμ since σ ∈W Sti
τ . This con-

tradiction shows that μψ
k0,l0

is determined in the sense of Stieltjes. The sufficiency
follows from Theorem 4.5. The proof is complete. �

5. Miscellaneous results

In this section we provide some examples and results on pseudo-positive mea-
sures which throw more light on these new notions.

5.1. The univariate case

As we mentioned in the introduction the non-negative spherically symmetric
measures are pseudo-positive and, as it is easy to see from (3), our theory reduces to
the classical Stieltjes moment problem. Other pseudo-positive measures μ for which
our theory reduces essentially to the Stieltjes one-dimensional moment problem
are those having only one non-zero component measure μk,l; this is the problem∫ ∞
0

rk+2j dμk,l(r)=cj,k,l for j=0, 1, 2, ..., (cf. (18) and (3)).
On the other hand it is instructive to consider the univariate case of our theory:

then d=1, S
0={ −1, 1}, and the normalized measure is ω0(θ)= 1

2 for all θ ∈S
0. The

harmonic polynomials are the linear functions, their basis are the two functions
defined by Y0(x)=1 and Y1(x)=x for all x∈R. The following is now immediate
from the definitions.

Proposition 5.1. Let d=1. A functional T : C[x]→C is pseudo-positive def-
inite if and only if T (p∗(x2)p(x2))≥0 and T (xp∗(x2)p(x2))≥0 for all p∈C[x].

Recall that a functional T : C[x]→C defines a Stieltjes moment sequence if
T (q∗(x)q(x))≥0 and T (xq∗(x)q(x))≥0 for all q ∈C[x], hence this property implies
pseudo-positive definiteness; the next example shows that the converse is not true.
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Example 5.2. Let σ be a non-negative finite measure on the interval [a, b] with
a>0. Then the functional T : C[x]→C defined by

T (f) =
∫ b

a

f(x) dσ −
∫ b

a

f(−x) dσ

is pseudo-positive definite but not positive definite.

Proof. As pointed out in [28, Chapter 4.1], the Laplace–Fourier expansion of
f is given by f(rθ)=f0(r)Y0(θ)+f1(r)Y1(θ) for x=rθ with r=|x| and θ ∈S0, where

f0(r) =
∫

S0
f(rθ)Y0(θ) dω0(θ) =

f(r)+f(−r)
2

,

f1(r) =
∫

S0
f(rθ)Y1(θ) dω0(θ) =

f(r)−f(−r)
2

.

Since f0 is even, f1 is odd and f=f0+f1 we infer that T (f)=2
∫ b

a
f1(r) dσ. By

Proposition 2.3, T is pseudo-positive definite. As T (1)=0 and T �=0 it is clear that
T is not positive definite. �

5.2. A criterion for pseudo-positivity

The following is a simple criterion for pseudo-positivity.

Proposition 5.3. Let μ be a signed moment measure on R
d. Assume that μ

has a density w(x) with respect to the Lebesgue measure dx such that θ �→w(rθ) is
in L2(Sd−1) for each r>0. If the Laplace–Fourier coefficients of w,

wk,l(r) :=
∫

Sd−1
w(rθ)Yk,l(θ) dθ,

are non-negative then μ is pseudo-positive and

dμk,l(r) = rk+d−1wk,l(r),(39)
∫ ∞

0

r−k dμk,l(r) =
∫ ∞

0

wk,l(r)rd−1 dr(40)

if the last integral exists. The measures μk,l are defined by means of equality (18).

Proof. Since μ has a density w(x) we can use polar coordinates to obtain, for
f ∈Cpol(Rd),

(41)
∫

Rd

f dμ=
∫

Rd

f(x)w(x) dx=
∫ ∞

0

∫
Sd−1

f(rθ)w(rθ)rd−1 dθ dr.
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For any h∈Cpol[0, ∞) we put f(x)=h(|x|)Yk,l(x). Then we obtain

(42)
∫

Rd

h(|x|)Yk,l(x) dμ=
∫ ∞

0

∫
Sd−1

h(r)rk+d−1Yk,l(θ)w(rθ) dθ dr.

Since θ �→w(rθ) is in L2(Sd−1), we know that wk,l(r)=
∫

Sd−1 w(rθ)Yk,l(θ) dθ. Hence,
by the definition of μk,l, we obtain

(43)
∫ ∞

0

h(r) dμk,l :=
∫

Rd

h(|x|)Yk,l(x) dμ=
∫ ∞

0

h(r)wk,l(r)rk+d−1 dr.

Thus the measure μ is pseudo-positive, and (39) follows. Let us prove (40): we
define the cut-off functions hm ∈Cpol[0, ∞) such that hm(t)=t−k for t≥1/m and
such that hm ≤hm+1. Now use (43) and the monotone convergence theorem to
obtain (40). �

5.3. Examples in the two-dimensional case

Let us consider the case d=2, and take the usual orthonormal basis of solid
harmonics, defined by Y0(eit)=1/2π and

(44) Yk,1(reit) =
1√
π

rk cos kt and Yk,2(reit) =
1√
π

rk sin kt for k ∈ N.

We define a density w(α) : Rn→[0, ∞), depending on the parameter α>0, by

w(α)(reit):=(1−rα)P (reit) for 0≤r<1,

w(α)(reit)=0 for r ≥1;

here the function P (reit) is the Poisson kernel for 0≤r<1 given by (see e.g. 5.1.16
in [2, p. 243])

(45) P (reit) :=
1−r2

1−2r cos t+r2
=1+

∞∑
k=1

2rk cos kt.

By Proposition 5.3, the measure dμα :=w(α)(x) dx is pseudo-positive. For k>0, by
(40) and (44) we obtain

∫
Rd

r−k dμα
k,1 =2

√
π

∫ 1

0

rk+1(1−rα) dr =
2

√
πα

(k+2)(α+k+2)
.

It follows that w(α)(x) dx satisfies the summability condition (8).
On the other hand, there exist pseudo-positive measures which do not satisfy

the summability condition (8).
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Proposition 5.4. Let w(reit):=P (reit) for 0≤r<1 and w(reit):=0 for r ≥1,
where P (x) is given by (45). Then dμ:=w(x) dx is a pseudo-positive, non-negative
moment measure which does not satisfy the summability condition (8).

Proof. It follows from (40) for k ≥1∫
r−k dμk,1 =

∫ ∞

0

wk,1(r)rd−1 dr =2
√

π

∫ 1

0

rk+1 dr =
2

√
π

k+2
,

so we see that the summability condition (8) is not fulfilled. �

5.4. The summability condition

The next result shows that the spectrum of the measures σk,l is contained in
the spectrum of the representation measure μ.

Theorem 5.5. Let σk,l be non-negative measures on [0, ∞). If the functional
T : C[x1, ..., xd]→C defined by (16) possesses a representing moment measure μ with
compact support then

σk,l({ |x|2}) ≤ max
θ∈Sd−1

|Yk,l(θ)| |x|k |μ|(|x|2S
d−1)

for any x∈Rd, where |μ| is the total variation and |x|2Sd−1={|x|2θ :θ ∈Sd−1}.

Proof. Let the support of μ be contained in BR. Let x0 ∈Rd be given. For
every univariate polynomial p(t) with p(|x0|2)=1 we have

σk,l({ |x0|2}) ≤
∫ ∞

0

p(r2) dσk,l ≤
∫

Rd

∣∣p(|x|2)Yk,l(x)
∣∣ d|μ|

≤ max
θ∈Sd−1

|Yk,l(θ)|
∫

Rd

∣∣p(|x|2)
∣∣ |x|k d|μ|.

Now choose a sequence of polynomials pm with pm(|x0|2)=1 which converges on
[0, R] to the function f defined by f(|x0|2)=1 and f(t)=0 for t �=|x0|2. Since |μ| has
support in BR Lebesgue’s convergence theorem shows that

σk,l({ |x0|2}) ≤ max
θ∈Sd−1

|Yk,l(θ)|
∫

Rd

|f(x)| |x|k d|μ|.

This implies our statement. �

The following result shows that the summability condition is sometimes equiv-
alent to the existence of a pseudo-positive representing measure.

Corollary 5.6. Let d=2. Let σk,l be non-negative measures on [0, ∞) and
assume that they have disjoint and at most countable supports. If the functional
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T : C[x1, x2]→C defined by (16) possesses a representing moment measure with com-
pact support then

∞∑
k=0

ak∑
l=1

∫ ∞

0

r−k dσk,l(r) < ∞.

Proof. Let Σk,l be the support set of σk,l. The last theorem shows that σk,l({0})
=0, hence 0 /∈Σk,l. Moreover it tells us that

∫ ∞

0

r−k dσk,l(r) ≤ max
θ∈Sd−1

|Yk,l(θ)| ·
∑

r∈Σk,l

|μ|(rS
d−1).

Since d=2 we know that maxθ∈Sd−1 |Yk,l(θ)| ≤1. Hence
∞∑

k=0

ak∑
l=1

∫ ∞

0

r−k dσk,l(r) ≤
∞∑

k=0

ak∑
l=1

∑
r∈Σk,l

|μ|(rS
d−1) ≤ |μ|(Rd),

where the last inequality follows from the fact that Σk,l are pairwise disjoint. �

Recall that the converse of the last theorem holds under the additional assump-
tion that the supports of all σk,l are contained in some interval [0, R].

Theorem 5.7. There exists a functional T : C[x1, ..., xd]→C which is pseudo-
positive definite but does not possess a pseudo-positive representing measure.

Proof. Let σ be a non-negative measure over [0, R]. Let f ∈C[x1, .., xd] and let
fk,l be the Laplace–Fourier coefficient of f. By Proposition 2.3 it is clear that

T (f) :=
∫ R

0

f1,1(r)r−1 dσ(r)

is pseudo-positive definite. We take now for σ the Dirac functional at r=0. Suppose
that T has a signed representing measure μ which is pseudo-positive. Then the
measure μ11 is non-negative, and it is defined by the equation

∫ ∞
0

h(r) dμ11(r):=∫
Rn h(|x|)Y11(x) dμ for any continuous function h : [0, ∞)→C with compact support.

Take now h(r)=r2. Then by Proposition 2.4,∫ ∞

0

r2 dμ11(r) =
∫

Rn

|x|2Y11(x) dμ=T (|x|2Y11(x)) = 0.

It follows that μ11 has support {0}. On the other hand, if we take a sequence of
functions hm ∈Cc([0, ∞)) such that hm→1{0}, then we obtain

μ11({0}) = lim
m→∞

∫
Rn

hm(|x|)Y11(x) dμ.



A moment problem for pseudo-positive definite functionals 119

But hm(|x|)Y11(x) converges to the zero-function, and Lebesgue’s theorem shows
that μ11({0})=0, so μ11=0. This is a contradiction since

∫ ∞

0

1 dμ11(r) =
∫

Rn

Y11(x) dμ=T (Y11) =
∫ R

0

1 dσ(r)= 1.

The proof is complete. �
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Birkhäuser, Basel, 1977.

27. Sobolev, S. L., Cubature Formulas and Modern Analysis: An Introduction, Gordon
and Breach, Montreux, 1992.

28. Stein, E. M. and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces,
Princeton University Press, Princeton, NJ, 1971.

29. Stochel, J., Solving the truncated moment problem solves the full moment problem,
Glasgow Math. J. 43 (2001), 335–341.

30. Stochel, J. and Szafraniec, F. H., The complex moment problem and subnormality:
a polar decomposition approach, J. Funct. Anal. 159 (1998), 432–491.

31. Zidarov, D., Inverse Gravimetric Problem in Geoprospecting and Geodesy, Elsevier,
Amsterdam, 1990.

Ognyan Kounchev
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 18
BG-1113 Sofia
Bulgaria
kounchev@gmx.de

Hermann Render
School of Mathematical Sciences
University College Dublin
Belfield
Ireland
render@gmx.de

Received January 2, 2008
published online June 10, 2009

mailto:kounchev@gmx.de
mailto:render@gmx.de

	A moment problem for pseudo-positive definite functionals
	Abstract
	Introduction
	The moment problem for pseudo-positive definite functionals
	The truncated moment problem for pseudo-positive definite functionals
	Determinacy for pseudo-positive definite functionals
	Miscellaneous results
	The univariate case
	A criterion for pseudo-positivity
	Examples in the two-dimensional case
	The summability condition

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


