Quasi-parabolic analytic transformations of \mathbb{C}^n . Parabolic manifolds

Feng Rong

Abstract. In [RONG, F., Quasi-parabolic analytic transformations of \mathbb{C}^n , J. Math. Anal. Appl. **343** (2008), 99–109], we showed the existence of "parabolic curves" for certain quasi-parabolic analytic transformations of \mathbb{C}^n . Under some extra assumptions, we show the existence of "parabolic manifolds" for such transformations.

1. Introduction

In this paper, we continue to study the local dynamics of quasi-parabolic analytic transformations of \mathbb{C}^n . An analytic germ Φ of \mathbb{C}^n at a fixed point p is said to be *quasi-parabolic* if $d\Phi_p = \text{Diag}(I, \Lambda)$, where I is the identity matrix and Λ is a diagonal matrix with eigenvalues λ_j , such that $|\lambda_j|=1$ and $\lambda_j \neq 1$. Such transformations have been studied by Bracci and Molino [1] in dimension two, and by the author ([4] and [5]) in any dimensions.

As in [5], we suppose that Φ is of finite order ν , that Φ has a non-degenerate characteristic direction [v], and that Φ is dynamically-separating in the direction [v] (see Section 2 for the precise definitions of the terms just mentioned). In [5], we associated with the direction [v] an (n-1, n-1)-matrix N, whose eigenvalues are invariants of Φ in the direction [v]. We divide the eigenvalues of N into two sets, counted with multiplicity, $\{\gamma_j\}_{j=1}^a$ and $\{\mu_k\}_{k=1}^b$, with a+b=n-1, in such a way that for some positive real number α , we have

(1.1)
$$\begin{array}{l} \operatorname{Re} \gamma_j > \alpha > 0 \quad \text{for } j = 1, ..., a, \\ \operatorname{Re} \mu_k < \alpha \quad \text{for } k = 1, ..., b. \end{array}$$

A parabolic manifold of dimension d for Φ at p is an injective holomorphic map $\varphi \colon \Delta \to \mathbb{C}^n$ satisfying the following properties:

- (i) Δ is a simply-connected domain in \mathbf{C}^d with $0 \in \partial \Delta$;
- (ii) φ is continuous on $\partial \Delta$ and $\varphi(0) = p$;

(iii) $\varphi(\Delta)$ is invariant under Φ and $\Phi^k(\varphi(\zeta)) \to p$, as $k \to \infty$, for any $\zeta \in \Delta$.

Furthermore, if $[\varphi(\zeta)] \rightarrow [v] \in \mathbf{P}^{n-1}$ as $\zeta \rightarrow 0$ (where $[\cdot]$ denotes the canonical projection of $\mathbf{C}^n \setminus \{p\}$ onto \mathbf{P}^{n-1}), we say that φ is *tangent to* [v] at p. A parabolic manifold of dimension one is also called a *parabolic curve*.

Our main result is the following.

Theorem 1.1. Let Φ be an analytic transformation of \mathbb{C}^n , with a quasiparabolic fixed point p. Assume that Φ is of finite order ν , that [v] is a nondegenerate characteristic direction for Φ , and that Φ is dynamically-separating in the direction [v]. Let N be the matrix associated with [v] and assume that we divide the eigenvalues of N as in (1.1). Then there exist at least $\nu - 1$ parabolic manifolds of dimension a+1 tangent to [v] at p.

In Section 2, we recall some definitions and results from [5]. We prove the main theorem in Section 3, following the approach of Hakim in [3]. In Section 4, we extend some other results of Hakim in [3] to the quasi-parabolic case.

Acknowledgements. Part of this work was done while the author was visiting Institut Mittag-Leffler. The author would like to thank the hosts of the institute for the generous hospitality and support. The author would also like to thank the referee for his/her comments.

2. Preliminaries

In this section, we briefly recall some definitions and results for quasi-parabolic analytic transformations of \mathbf{C}^n . We refer the reader to [5] for details (cf. [1]).

Let Φ be an analytic transformation of \mathbb{C}^n , with an isolated quasi-parabolic fixed point p. In some local coordinates around p, $u=(w,z)\in\mathbb{C}^l\times\mathbb{C}^m$, l+m=n, we can write Φ as

$$\begin{cases} w_1 = w + a_2(u) + a_3(u) + \dots, \\ z_1 = \Lambda z + b_2(u) + b_3(u) + \dots, \end{cases}$$

where $a_i(u)$ and $b_i(u)$ are homogeneous polynomials of degree $i \ge 2$. Let $\Phi_i(u) = (a_i(u), b_i(u))$.

Let ν (resp. μ) be the least |j| for the terms w^j in the expression for w_1 (resp. z_1). If $\nu < \infty$ and $\mu \ge \nu$, then we say that Φ is *ultra-resonant*, and that the *order* of Φ is ν . This is well defined by [5, Lemma 2.3].

Assume now that Φ is ultra-resonant of order ν . A characteristic direction for Φ is a vector $[v] = [v_1:...:v_n] \in \mathbf{P}^{n-1}$, with $v_i = 0$ for $l < i \le n$, such that $\Phi_{\nu}(v) = \lambda v$ for some $\lambda \in \mathbf{C}$. If $\lambda \neq 0$, we say that [v] is non-degenerate, otherwise it is degenerate.

Assume now that Φ has a non-degenerate characteristic direction [v]. In some suitable local coordinates $u=(x, y, z) \in \mathbf{C} \times \mathbf{C}^{l-1} \times \mathbf{C}^m$, we can assume that [v]=[1:0:0]. We can then write Φ as

$$\begin{cases} x_1 = x + p_{\nu}(x, y, 0) + P(x, y, z) + O(\nu + 1), \\ y_1 = y + q_{\nu}(x, y, 0) + Q(x, y, z) + O(\nu + 1), \\ z_1 = \Lambda z + R(x, y, z) + O(\nu + 1), \end{cases}$$

where P(x, y, z), Q(x, y, z) and R(x, y, z) contain terms $x^i y^j z^k$ with $2 \le i + |j| + |k| \le \nu$ and $|k| \ge 1$.

Write $\Lambda = \text{Diag}(\Lambda_1, ..., \Lambda_r)$, where $\Lambda_i = \lambda_{(i)} I_{m_i}$ with the $\lambda_{(i)}$'s being mutually different and $m_1 + ... + m_r = m$. Similarly, write $z = (z_{(1)}, ..., z_{(r)})$ with $z_{(i)} = (z_{(i),1}, ..., z_{(i),m_i})$ and write $R(x, y, z) = (R_1(x, y, z), ..., R_r(x, y, z))$. By [5, Lemma 2.7], we can assume, after a suitable change of coordinates, that there are no terms $x^i y^j z_{(q),s}$ in $R_p(x, y, z)$ for any $1 \le p \le r$ and $q \ne p$. We say that Φ is dynamically separating in the characteristic direction [v] = [1:0:0] if $R_p(x, y, z)$ contains no terms $x^i z_{(p),s}$ with $i < \nu - 1$ for any $1 \le p \le r$. This is well defined by [5, Lemma 2.10].

In [5], we obtained the following result.

Theorem 2.1. ([5], Theorem 1.5) Let Φ be an analytic transformation of \mathbb{C}^n , with a quasi-parabolic fixed point p. If Φ is of finite order ν and is dynamically separating in a non-degenerate characteristic direction [v], then there exist at least $\nu - 1$ parabolic curves tangent to [v] at p.

3. Parabolic manifolds

Let Φ be an analytic transformation of \mathbb{C}^n , with a quasi-parabolic fixed point. Assume that $[v]=[1:0:\ldots:0]\in\mathbb{P}^{n-1}$ is a non-degenerate characteristic direction for Φ and that Φ is dynamically-separating in the direction [v]. For simplicity, we will assume that the order of Φ is $\nu=2$. (One can easily pass from $\nu=2$ to an arbitrary ν as in [3, Section 6].)

Choose local coordinates (x, y, z) such that the parabolic curve in Theorem 2.1 is given by $\zeta = 0$, where $\zeta = (y, z)$. By [5, Proposition 2.14], after a finite number of blow-ups and changes of coordinates, we can write Φ as

(3.1)
$$\begin{cases} x_1 = x - x^2 + O(x^2 \|\zeta\|) + O_1(x^3), \\ y_1 = (I - xA)y + O(x \|\zeta\|^2) + O_1(x^2 \|\zeta\|), \\ z_1 = (\Lambda - xB)z + O(x \|\zeta\|^2) + O_1(x^2 \|\zeta\|), \end{cases}$$

where $O_1(*) = O(* \cdot (\log x)^{\mu})$ for some unspecified integer $\mu \ge 0$. (Note that we always work in a region where $\log x$ is well defined.) Moreover, we can assume, without loss of generality, that both A and B are in Jordan canonical form. We also know that the eigenvalues of A and $\Lambda^{-1}B$ are invariants associated with the non-degenerate characteristic direction [v]. Dividing these eigenvalues into subsets according to their real parts, we can rewrite (3.1) as

(3.2)
$$\begin{cases} x_1 = x - x^2 + O(x^2 \|\zeta\|) + O_1(x^3), \\ u_1 = (I_p - xA_p)u + O(x \|\zeta\|^2) + O_1(x^2 \|\zeta\|), \\ v_1 = (I_q - xA_q)v + O(x \|\zeta\|^2) + O_1(x^2 \|\zeta\|), \\ r_1 = (\Lambda_l - xB_l)r + O(x \|\zeta\|^2) + O_1(x^2 \|\zeta\|), \\ s_1 = (\Lambda_m - xB_m)s + O(x \|\zeta\|^2) + O_1(x^2 \|\zeta\|). \end{cases}$$

Set w=(u,r), t=(v,s), $J=\text{Diag}(I_p,\Lambda_l)$, $K=\text{Diag}(I_q,\Lambda_m)$, $C=\text{Diag}(A_p,B_l)$ and $D=\text{Diag}(A_q,B_m)$. We can then rewrite (3.2) as

(3.3)
$$\begin{cases} x_1 = f(x, w, t) = x - x^2 + F(x, w, t), \\ w_1 = g(x, w, t) = (J - xC)w + G(x, w, t), \\ t_1 = h(x, w, t) = (K - xD)t + H(x, w, t), \end{cases}$$

with

$$\begin{split} F(x,w,t) &= O(x^2 \|\zeta\|) + O_1(x^3), \\ G(x,w,t) &= O(x \|\zeta\|^2) + O_1(x^2 \|\zeta\|), \\ H(x,w,t) &= O(x \|\zeta\|^2) + O_1(x^2 \|\zeta\|). \end{split}$$

If $\{\gamma_j\}_{j=1}^a$ and $\{\mu_k\}_{k=1}^b$ are the eigenvalues for $L=J^{-1}C$ and $M=K^{-1}D$, respectively, we require that $\operatorname{Re} \gamma_j > \alpha > 0$ for $1 \le j \le a$ and $\operatorname{Re} \mu_k < \alpha$ for $1 \le k \le b$.

Proposition 3.1. Let Φ be as in (3.3). Then, for all integers $m, k \ge 2$, we can choose local coordinates such that $H(x, w, 0) = O(x ||w||^m + x^k ||w||)$.

Proof. Set $E_{\beta} = \{\gamma \in \mathbf{N} : |a_{\beta,\gamma}(\zeta)| \neq 0\}$, where $a_{\beta,\gamma}(\zeta)$ are the coefficients of the terms $x^{\beta}(\log x)^{\gamma}$ in (3.3). It is a finite set as a consequence of the construction in [2].

364

Write H(x, w, 0) as

$$H(x,w,0) = \sum_{\substack{1 \le \beta \le k-1\\ \gamma \in E_{\beta}}} x^{\beta} (\log x)^{\gamma} a_{\beta,\gamma}(w) + O_1(x^k ||w||).$$

We want to show that there exists a change of coordinates such that $a_{\beta,\gamma}(w) = O(||w||^m)$. This is done by induction on β , γ and the degree d of homogeneous terms in $a_{\beta,\gamma}(w)$. We start with the smallest β , the biggest γ in E_{β} and the smallest d of homogeneous terms in $a_{\beta,\gamma}(w)$.

We only consider the term $x^{\beta}(\log x)^{\gamma}Q(w)$ in the expression of s_1 in (3.2), where Q(w) is a \mathbb{C}^m -valued homogeneous polynomial of degree d. Such a term in the expression of v_1 in (3.2) can be dealt with similarly.

We need to break down Λ_m into Jordan blocks and consider each block separately. For simplicity, we will assume without loss of generality that $\Lambda_m = \lambda I_m$.

For a monomial w^l , $l = (l_1, ..., l_a) \in \mathbf{N}^a$, we define the weight of w^l as $\omega(l) := \sum_{i=1}^a i l_i$. We start with monomials w^l in Q(w) with the smallest weight.

Let $R(w) = (R_1(w), ..., R_m(w))$, with $R_i(w) = c_i w^l$, $c_i \in \mathbb{C}$, $1 \le i \le m$. Since R(w) is a monomial, we have $R(Jw) = \tilde{\lambda}R(w)$ for some constant $\tilde{\lambda} \in \mathbb{C}$.

If $\lambda \neq \lambda$, the following transformation cancels the term $x^{\beta}(\log x)^{\gamma}R(w)$:

$$s = \tilde{s} + \frac{1}{\tilde{\lambda} - \lambda} x^{\beta} (\log x)^{\gamma} R(w).$$

If $\tilde{\lambda} = \lambda$, we consider the transformation of the form

(3.4)
$$s = \tilde{s} + x^{\beta - 1} (\log x)^{\gamma} P(w),$$

where $P(w) = (P_1(w), ..., P_m(w))$, with $P_i(w) = e_i w^l$, $e_i \in \mathbb{C}$, $1 \le i \le m$. One readily checks that such a transformation cancels the term $x^{\beta} (\log x)^{\gamma} R(w)$ if and only if

$$P((J - xC)w) - \lambda I_m P(w) + x(B_m - (\beta - 1)\lambda I_m)P(w) = xR(w) + x\tilde{R}(w) + O(x^2 ||w||),$$

where $\widetilde{R}(w)$ is a sum of monomials with bigger weights.

The linear part of the left-hand side of (3.5) is equal to

$$x[-\lambda \langle \operatorname{grad} P_i, Lw \rangle + ((B_m - (\beta - 1)\lambda I_m)P(w))_i], \quad 1 \leq i \leq m.$$

Since B_m is in Jordan canonical form, the above system is reduced to

$$x\lambda \bigg[-\bigg(\frac{\partial P_i}{\partial w_1}(Lw)_1 + \dots + \frac{\partial P_i}{\partial w_a}(Lw)_a\bigg) + ((\mu_{i+q} - \beta + 1)P_i + \varepsilon_{i,i+1}P_{i+1})\bigg], \quad 1 \le i \le m,$$

where $\varepsilon_{i,i+1}$ is 0 or 1 if i < m and $\varepsilon_{m,m+1} = 0$.

Feng Rong

By decreasing induction on i from i=m to i=1, we see that (3.5) is satisfied with

$$e_{m} = [l_{1}\gamma_{1} + \ldots + l_{a}\gamma_{a} - (\mu_{m+q} - \beta + 1)]^{-1} \left(-\frac{1}{\lambda}c_{m}\right)$$

and

$$e_i = [l_1 \gamma_1 + \ldots + l_a \gamma_a - (\mu_{i+q} - \beta + 1)]^{-1} \left(\varepsilon_{i,i+1} e_{i+1} - \frac{1}{\lambda} c_i \right), \quad 1 \le i < m.$$

Note that $\operatorname{Re}\left[l_1\gamma_1+\ldots+l_a\gamma_a-(\mu_{i+q}-\beta+1)\right]>(d\alpha-\operatorname{Re}\mu_{i+q})+\beta-1>0, 1\leq i\leq m.$ So $l_1\gamma_1+\ldots+l_a\gamma_a-(\mu_{i+q}-\beta+1)\neq 0, 1\leq i\leq m.$

Thus, an induction on the weight $\omega(l)$ will get rid of all terms in $x^{\beta}(\log x)^{\gamma}w^{l}$ for fixed β and γ . Note that the transformation (3.4) also introduces new terms in $x^{\beta}(\log x)^{\gamma-1}w^{l}$, which are taken care of by our induction on γ .

Finally we finish with an induction on d and β . \Box

For $\tau, \sigma, \rho > 0$ small enough, let

$$\Delta_{\tau,\sigma,\rho} = \{(x,w) \in \mathbf{C} \times \mathbf{C}^a : |\operatorname{Im} x| \le \tau \operatorname{Re} x, \ |x| \le \sigma \text{ and } \|w\| < \rho\}.$$

We want to show that there exists a function $t = \varphi(x, w)$, analytic in some $\Delta_{\tau, \sigma, \rho}$, such that

(3.6)
$$\varphi(f(x, w, \varphi(x, w)), g(x, w, \varphi(x, w))) = h(x, w, \varphi(x, w)),$$

with $\lim_{\{x\to 0, w\to 0\}} \varphi(x, w) = 0$. Define

(3.7)
$$H_1(x, w, t) := t - x^M K^{-1} x_1^{-M} t_1.$$

Then as in [5, Section 3], we have

$$H_1(x, w, t) = O(x \|\zeta\|^2) + O_1(x^2 \|\zeta\|),$$

and, by Proposition 3.1,

(3.8)
$$H_1(x, w, 0) = O(x ||w||^m, x^k ||w||), \quad m, k \ge 2.$$

The functional equation (3.6) is equivalent to

(3.9)
$$x^{-M}\varphi(x,w) - K^{-1}x_1^{-M}\varphi(x_1,w_1) = x^{-M}H_1(x,w,\varphi(x,w)).$$

Define

(3.10)
$$T\varphi(x,w) = x^M \sum_{i=0}^{\infty} K^{-i} x_i^{-M} H_1(x_i, w_i, \varphi(x_i, w_i)).$$

Let B_0 be the Banach space of holomorphic functions φ on the set $\Delta_{\tau,\sigma,\rho} \cap \{(x,w): |x|^{-\alpha} \|w\| \leq 1\}$ such that

(3.11)
$$\|\varphi\|_{0} := \sup_{x,w} \frac{|\varphi(x,w)|}{\|w\|^{m} + |x|^{k-1}\|w\|}$$

is bounded, endowed with the norm $\|\varphi\|_0$. Since the spectrum of $d\Phi_p$ lies in the unit circle, all the estimates in the proof of [3, Theorem 1.6] carry over to our case. Therefore, we have that T is well defined on a closed subset B_1 of B_0 , with $T\varphi \in B_1$. Furthermore, the operator T is continuous and contracting on a closed subset B_2 of B_1 . Hence T has a fixed point, which is a solution to (3.9), and thus to (3.6). This proves Theorem 1.1.

4. Fatou coordinates

Let Φ be as in the previous section. We want to take a closer look at the dynamics of Φ in the parabolic manifolds provided by Theorem 1.1. For this, we assume that all the eigenvalues associated with the direction [1:0:...:0] have positive real parts. Thus, we can write Φ as

(4.1)
$$\begin{cases} x_1 = x - x^2 + F(x, w), \\ w_1 = (J - xC)w + G(x, w) \end{cases}$$

Let $\{\gamma_j\}_{j=1}^h$ be the distinct eigenvalues of $L=J^{-1}C$, with $\alpha_j=\operatorname{Re}\gamma_j, 1\leq j\leq h$, and $\alpha_1\geq\alpha_2\geq\ldots\geq\alpha_h>\alpha>0$. Write further $J=\operatorname{Diag}(J_1,\ldots,J_h), C=\operatorname{Diag}(C_1,\ldots,C_h)$ and $L=\operatorname{Diag}(L_1,\ldots,L_h)$. Rewrite Φ as

(4.2)
$$\begin{cases} x_1 = x - x^2 + F(x, w), \\ w_1^1 = (J_1 - xC_1)w^1 + G^1(x, w), \\ \vdots \\ w_1^h = (J_h - xC_h)w^h + G^h(x, w). \end{cases}$$

For j=1,...,h, let $w^{\leq j}=(w^1,...,w^j)$ and $w^{>j}=(w^{j+1},...,w^h)$. We have the following proposition (cf. [3, Proposition 4.1]).

Proposition 4.1. Let Φ be as in (4.2). Then, for all integers $m, k \ge 2$, we can choose local coordinates such that $G^j(x, (0, w^{>j})) = O(x ||w^{>j}||^m + x^k ||w^{>j}||)$ for $1 \le j \le h$.

367

Proof. We fix j and let $u=w^j$ and $v=w^{>j}$. We also rewrite (4.2) as

(4.3)
$$\begin{cases} x_1 = x - x^2 + F(x, w), \\ w_1^{j} - xC_{>j})v + G^{>j}(x, w). \end{cases}$$

Here $G^{<j} = (G^1, ..., G^{j-1}), \quad G^{>j} = (G^{j+1}, ..., G^h), \quad J_{<j} = \text{Diag}(J_1, ..., J_{j-1}), \quad J_{>j} = \text{Diag}(J_{j+1}, ..., J_h), \quad C_{<j} = \text{Diag}(C_1, ..., C_{j-1}) \text{ and } C_{>j} = \text{Diag}(C_{j+1}, ..., C_h). \text{ Set } A = J_j^{-1}C_j \text{ and } B = J_{>j}^{-1}C_{>j}. \text{ Let } p \text{ and } q \text{ be the respective dimensions of } u \text{ and } v. \text{ Let } \{\beta_1, ..., \beta_q\} \text{ be the eigenvalues of } B.$

Write $G^{j}(x, (0, v))$ as

$$G^{j}(x,(0,v)) = \sum_{\substack{1 \le \beta \le k-1\\\gamma \in E_{\beta}}} x^{\beta} (\log x)^{\gamma} a_{\beta,\gamma}(v) + O_{1}(x^{k} \|v\|),$$

where E_{β} is as in Proposition 3.1.

We want to show that there exists a change of coordinates such that $a_{\beta,\gamma}(v) = O(||v||^m)$.

Depending on the eigenvalues of J_j , we need to divide A into smaller Jordan blocks and consider each block separately. For simplicity, we will assume without loss of generality that $J_j = \lambda I_p$.

As in Proposition 3.1, we work with monomials in $a_{\beta,\gamma}(v)$. So consider terms $x^{\beta}(\log x)^{\gamma}R(v)$, where $R(v)=cv^{l}$ with $c\in \mathbb{C}^{p}$, $l=(l_{1},...,l_{q})\in \mathbb{N}^{q}$ and $l_{1}+...+l_{q}=d < m$. We prove the proposition by an induction on β , d, $\omega(l)$ and γ . We start with the smallest $(\beta, d, \omega(l))$. As for γ , there are two different cases which we discuss below.

Since R(v) is a monomial, we have $R(J_{>j}v) = \tilde{\lambda}R(v)$ for some constant $\tilde{\lambda} \in \mathbb{C}$. If $\tilde{\lambda} \neq \lambda$, the following transformation cancels the term $x^{\beta}(\log x)^{\gamma}R(v)$:

$$u = \tilde{u} + \frac{1}{\tilde{\lambda} - \lambda} x^{\beta} (\log x)^{\gamma} R(v).$$

If $\tilde{\lambda} = \lambda$, there are two different cases, depending on $l \in \mathbb{N}^q$. Let

$$L = \{ l = (l_1, ..., l_q) \in \mathbf{N}^q : \ l_1\beta_1 + ... + l_a\beta_q - (\gamma_j - \beta + 1) = 0 \}.$$

For $l \in L$, we consider a transformation of the form

$$u = \tilde{u} + x^{\beta - 1} (\log x)^{\gamma + 1} P(v),$$

where $P(v) = ev^l$ with $e \in \mathbb{C}^p$.

368

One readily checks that if we choose $e = -c/(\gamma+1)$ then the above transformation cancels the term $x^{\beta}(\log x)^{\gamma}R(v)$. Note that the terms in $x^{\beta}(\log x)^{\gamma+1}v^{l}$ vanish for $l \in L$. Thus, an induction on the weight $\omega(l)$ will get rid of all terms in $x^{\beta}(\log x)^{\gamma}v^{l}$ for fixed β and γ . Note also that we have introduced a new term $x^{\beta}(\log x)^{\gamma+1}\widetilde{R}(v)$, but with $\widetilde{R}(v)$ as a sum of monomials with bigger weights. So there can only be finitely many such new terms, which are taken care of by an induction on γ , starting with the smallest γ .

For $l \notin L$, we consider a transformation of the form

$$u = \tilde{u} + x^{\beta - 1} (\log x)^{\gamma} P(v).$$

We can solve P(v) as in Proposition 3.1. And an induction on the weight $\omega(l)$ will get rid of all terms in $x^{\beta}(\log x)^{\gamma}v^{l}$ for fixed β and γ . Note that the above transformation also introduces new terms in $x^{\beta}(\log x)^{\gamma-1}v^{l}$, with $l \notin L$, which are taken care of by an induction on γ , starting with the biggest γ .

Finally we finish with an induction on d and β . \Box

With the above proposition, we are now ready to extend Theorems 1.9, 1.10 and 1.11 in [3] to the quasi-parabolic case. First, we have the following result.

Theorem 4.2. Let Φ be as in (4.1). Then one can choose local coordinates (X, W) such that Φ is conjugated to $(1/X_1=1/X+1, W_1=JW)$.

Proof. On $\Delta_W := \Delta_{\tau,\sigma,\rho} \cap \{(x,w): |x|^{-\alpha_j + \varepsilon} ||w^{\leq j}|| \leq 1 \text{ for all } j\}$, with $0 < \varepsilon \ll \alpha_h$, define

$$W(x,w) := x^{-L}w + \sum_{i=0}^{\infty} J^{-i} (J^{-1}x_{i+1}^{-L}w_{i+1} - x_i^{-L}w_i) = \lim_{i \to \infty} J^{-i}x_i^{-L}w_i.$$

As in [3, Lemma 4.5], one sees that the above series converges normally on Δ_W and that $W_1 = JW$. We can then proceed as in the proof of [3, Theorem 1.9]. \Box

We now get back to the general case, with Φ as in (3.3). (We are only going to state our results for $\nu=2$. The statements for $\nu>2$ are similar.) The following is an immediate consequence of the above theorem and Theorem 1.1.

Corollary 4.3. Let Φ be as in (3.3). One can choose local coordinates (X, W, T) such that the parabolic manifold M provided by Theorem 1.1 is given by $\{(X, W, T): T=0\}$, and that the restriction of Φ to M is conjugated to $(1/X_1=1/X+1, W_1=JW)$.

When Φ is a global isomorphism of \mathbb{C}^n , which takes the form (3.3) at a fixed point p, we can consider the global attracting set of Φ at p. By Theorem 1.1, we will assume that H(x, w, 0)=0. Define

$$\Omega_p = \big\{ Z \in \mathbf{C}^n \setminus \{p\} : \lim_{i \to \infty} Z_i = p \text{ and } \lim_{i \to \infty} [Z_i] = [1:0] \big\},$$

if $\operatorname{Re} \gamma_j > \alpha > 0$, $1 \le j \le a$, and $\operatorname{Re} \mu_k < 0$, $1 \le k \le b$, or

$$\Omega_p = \left\{ Z \in \mathbf{C}^n \setminus \{p\} : \lim_{i \to \infty} Z_i = p, \ \lim_{i \to \infty} [Z_i] = [1:0] \text{ and } \lim_{i \to \infty} x_i^{-\alpha} t_i = 0 \right\},$$

if $\operatorname{Re} \gamma_j > \alpha > 0$, $1 \le j \le a$, and $\operatorname{Re} \mu_k \le 0$, $1 \le k \le b$. (For $\nu > 2$, one needs to require instead that $\lim_{i\to\infty} x_i^{-(\nu-1)\alpha} t_i = 0$.) Note that the definition of Ω_p does not depend on the α chosen.

We have the following theorem, whose proof is essentially the same as that of [3, Theorem 1.10] and [3, Theorem 1.11].

Theorem 4.4. Let Φ be a global isomorphism of \mathbb{C}^n . Let p be a fixed point of Φ , where Φ takes the form (3.3). Then Ω_p is isomorphic to \mathbb{C}^{a+1} .

References

- BRACCI, F. and MOLINO, L., The dynamics near quasi-parabolic fixed points of holomorphic diffeomorphisms in C², Amer. J. Math. 126 (2004), 671–686.
- 2. HAKIM, M., Analytic transformations of $(\mathbf{C}^p, 0)$ tangent to the identity, *Duke Math. J.* 92 (1998), 403–428.
- 3. HAKIM, M., Transformations tangent to the identity. Stable pieces of manifolds, *Preprint*, 1998
- RONG, F., Linearization of holomorphic germs with quasi-parabolic fixed points, *Ergodic Theory Dynam. Systems* 28 (2008), 979–986.
- RONG, F., Quasi-parabolic analytic transformations of Cⁿ, J. Math. Anal. Appl. 343 (2008), 99–109.

Feng Rong Department of Mathematics Syracuse University Syracuse, NY 13244 U.S.A. frong@syr.edu

Received June 30, 2008 in revised form May 4, 2009 published online August 28, 2009