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Finiteness results for lattices in certain
Lie groups
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This paper is dedicated to the memory of our colleague Larry Corwin.

Abstract. In this note we establish some general finiteness results concerning lattices Γ

in connected Lie groups G which possess certain “density” properties (see Moskowitz, M., On

the density theorems of Borel and Furstenberg, Ark. Mat. 16 (1978), 11–27, and Moskowitz, M.,

Some results on automorphisms of bounded displacement and bounded cocycles, Monatsh. Math.

85 (1978), 323–336). For such groups we show that Γ always has finite index in its normalizer

NG(Γ). We then investigate analogous questions for the automorphism group Aut(G) proving,

under appropriate conditions, that StabAut(G)(Γ) is discrete. Finally we show, under appropri-

ate conditions, that the subgroup ˜Γ={iγ :γ ∈Γ}, iγ(x)=γxγ−1, of Aut(G) has finite index in

StabAut(G)(Γ). We test the limits of our results with various examples and counterexamples.

1. Introduction

In this note we shall establish some general finiteness results concerning lattices
Γ in certain connected Lie groups G. For all notation see the paragraph below. The
Lie groups we are interested in possess “density” properties (see [10] and [11]) which
we will exploit here. For these groups we shall prove that Γ always has finite index in
its normalizer NG(Γ) (Proposition 2.1), a result which extends the classical theorem
of Hurwitz that a compact Riemann surface has a finite automorphism group; here
the appropriate manifolds have finite automorphism groups. In particular, our
results apply to certain simply connected solvable groups G having all real roots;
these are known to always contain lattices via constructions developed in [9]. In
a future publication [4] we will give effective computational tools to get explicit
bounds for the index of Γ in NG(Γ) for this class of solvable groups. Returning
to the general situation, we then investigate analogous questions for the group of
automorphisms Aut(G), proving under appropriate conditions that StabAut(G)(Γ)
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is discrete (Theorems 3.1 and 3.3 and their corollaries). Then under appropriate
hypotheses we show that the subgroup of inner automorphisms ˜Γ={iγ :γ ∈Γ}, with
iγ(g)=γgγ−1, has finite index in StabAut(G)(Γ) (Corollary 3.8). Finally, we test the
limits of our results with various examples and counterexamples.

Given a connected Lie group G with Lie algebra g, we denote the radical by
Rad(G) and the center by Z(G). Aut(G) stands for the group of C∞ automor-
phisms; M(G) the (left) Haar measure preserving automorphisms; Int(G) is the
subgroup of inner automorphisms ig(x)=gxg−1. Aut(G) is topologized by uniform
convergence (together with the inverses) on compact sets. Since taking the dif-
ferential yields a faithful smooth representation Aut(G)→Aut(g), Aut(G) is a Lie
group by Cartan’s theorem. Because this map is injective we can consider Aut(G)
as a subset of Aut(g). A discrete subgroup Γ of G is a lattice if G/Γ possesses a
finite regular G-invariant measure. Because the groups we are interested in con-
tain lattices, they are unimodular [13]. ZG(Γ) and NG(Γ) denote respectively the
centralizer and normalizer of Γ in G and, as above, ˜Γ is the subgroup of Int(G)
given by {iγ :γ ∈Γ}. The modulus Δ(α) of an automorphism α of G is given by
Δ(α)=μ(α(S))/μ(S), where μ is the left Haar measure on G and S is any set of
finite positive measure. The map Δ: Aut(G)→R

×
+ is a continuous homomorphism.

The identity component of a Lie group H is indicated by H0. For a group action
H ×X→X and Y ⊆X we denote the stabilizer of Y by StabH(Y ) and the orbit by
OH(Y ).

2. Finiteness results for inner automorphisms

Let G be an arbitrary connected Lie group (or indeed a Lie group with a
countable number of components) and let B(G) stand for the elements in G whose
conjugacy classes have compact closure. Although not obvious, this “bounded”
part of G happens to be a closed subgroup. Its significance lies in the fact that
B(G)=

⋃

Supp μ, where μ is an arbitrary finite, regular, Int(G)-invariant measure
on G. These facts were proved in [5], and then in more general form in [6]. In this
connection an important “density” condition on G is the property B(G)=Z(G). It
will play a role in Proposition 2.1 below which will be the prototype of more general
results along the same lines. Since our results impose hypotheses only on G and
not Γ, it is not necessary to have specific knowledge of the lattice. Hence it does
not matter, for example, whether the results in [9] apply to all lattices in G, or only
to some. These remarks will also apply to other results in the sequel.

We remark that Proposition 2.1 is itself a considerable generalization, with the
same conclusion, of a result in [1], p. 378, where G is any non-compact simple group.
The result of Hurwitz applies to SL(2, R).
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Proposition 2.1. Let G be a connected Lie group and Γ be a lattice in G.
Then NG(Γ)0 ⊆B(G). In particular, if B(G)=Z(G) and Z(G) is discrete, then
NG(Γ) is itself discrete. Hence any lattice in such a group has finite index in its
normalizer.

Proof. Following [13], Lemma 1.6, once we know that NG(Γ) is discrete, finite
index follows because G/Γ has finite volume, as does G/NG(Γ), and then we have
[NG(Γ):Γ]=vol(G/Γ)/vol(G/NG(Γ)). Let {exp(tX)} be a 1-parameter subgroup of
G normalizing Γ. Then exp(tX)γ exp(−tX)=γt ∈Γ for all t∈R. For a fixed γ this is
a continuous function from R→Γ and hence is constant since Γ is discrete. Taking
t=0 tells us that exp(tX)γ exp(−tX)=γ for every γ ∈Γ, so that exp(RX)⊆ZG(Γ).
Now let H be a connected subgroup of G which normalizes Γ. Since all 1-parameter
subgroups of H are in ZG(Γ) and these generate H we see that H ⊆ZG(Γ).

Next we show that ZG(Γ)⊆B(G). If g ∈ZG(Γ), then Γ⊆ZG(g) so we get a
surjective map G/Γ→G/ZG(g). Pushing the finite G-invariant measure on G/Γ
forward gives a finite G-invariant measure on G/ZG(g) and hence by equivariance
a finite Int(G)-invariant measure on O(g), the conjugacy class of g. Thus g ∈B(G).

Hence any connected subgroup H of G which normalizes Γ is contained in
B(G). In particular, NG(Γ)0 ⊆B(G). Since B(G)=Z(G) and Z(G) is discrete we
see that NG(Γ)0 is trivial and so NG(Γ) is discrete. Finally because Γ is a lattice
in G and NG(Γ) is a closed subgroup of G it follows from Lemma 1.6 of [13] that
NG(Γ)/Γ has finite volume and is therefore finite. �

Corollary 2.2. Let G be a connected semisimple Lie group without compact
factors that contains a lattice Γ. Then

Γ0 =Γ, Γ1 =NG(Γ0), ..., Γi =NG(Γi−1), ...

is a finite increasing chain of lattices which eventually stabilizes with Γm=NG(Γm).

Thus the length m of this sequence gives us an integer-valued invariant m(Γ)
of the lattice Γ.

Proof. A semisimple Lie group of non-compact type has B(G)=Z(G) (see [5])
and of course Z(G) is discrete. Hence by Proposition 2.1 each Γi is a lattice con-
taining the previous one. If this sequence did not stabilize, the finite index at each
stage would be ≥2. With a fixed normalization of the Haar measure on G we would
get vol(G/Γi)≤vol(G/Γ)/2i. This cannot be true because according to a result of
Kazhdan–Margulis (Corollary 11.9 of [13]) there is a minimum positive volume for
the fundamental domains of lattices in G. �
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3. Finiteness conditions involving the full automorphism group

We now want to extend these results to the automorphism group Aut(G). If
a connected Lie group G contains a lattice Γ and we let ˜Γ={iγ :γ ∈Γ} in Int(G) as
above, we ask whether [StabAut(G)(Γ):˜Γ] is finite. If Z(G) is finite this conclusion
is stronger than finiteness of [StabInt(G)(Γ):˜Γ]=[NG(Γ):Γ] addressed in Proposi-
tion 2.1. We shall first find conditions that guarantee that StabAut(G)(Γ) is discrete.
The following is Proposition 1.1 of [8], whose short proof will figure in the discussion
that follows.

The following “density condition” will play an important role in the sequel.

The group G has no automorphisms of bounded displacement.

The displacement of an automorphism α is {α(g)g−1 :g ∈G} and bounded displace-
ment means this set has compact closure. This density condition is somewhat
stronger than the condition B(G)=Z(G) of Proposition 2.1.

Theorem 3.1. Let G be a connected Lie group containing a lattice Γ. Sup-
pose that G has no non-trivial automorphisms of bounded displacement. Then
StabAut(G)(Γ) is a discrete subgroup of Aut(G).

Proof. Let U be a neighborhood of 1 in G such that U ∩Γ=(1) and F =
{γ1, ..., γn} be a finite generating set for Γ, which exists for lattices in arbitrary
connected Lie groups G (see [13], Remark 13.21, p. 210, together with remarks in
[1], p. 373). A neighborhood basis of the identity I in Aut(G) is given by sets of
the form

W (K, U) = {α : α(g)g−1 ∈ U and α−1(g)g−1 ∈ U for g ∈ K},

where K is compact in G and U is any neighborhood of the identity. In particular,

W (F, U) = {α ∈ Aut(G) : α(γ)γ−1 ∈ U for all γ ∈ F }

is a neighborhood of 1 in Aut(G). Our sets W (F, U) are open neighborhoods, and
although they may not be cofinal in the neighborhood system, they will suffice for
our purposes.

Let α∈W (F, U)∩StabAut(G)(Γ). If α(γi)γ−1
i ∈U ∩Γ, then since U ∩Γ=(1) and

α(γi)=γi for all i, it follows that α=I on Γ because the γi generate Γ. Hence the
fixed point set Gα={g ∈G:α(g)=g} is a closed subgroup of G containing Γ. Pushing
the finite invariant measure on G/Γ forward we see that G/Gα also supports a finite
invariant measure. By [6] we conclude that α has bounded displacement. Therefore
α=I throughout G and so StabAut(G)(Γ) is discrete. �

As a consequence (see [11]) we get the following result.
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Corollary 3.2. If any one of the following conditions hold
(i) Rad(G) is simply connected of type E and the Levi factor of G has no

compact part ;
(ii) G is complex analytic linear ;
(iii) G is complex analytic and Z(G)0 is simply connected ;

then StabAut(G)(Γ) is a discrete subgroup of Aut(G).

Another approach to the discreteness of StabAut(G)(Γ) uses a different technol-
ogy to get similar but not identical results.

Theorem 3.3. Let Γ be a lattice in a connected linear Lie group G and assume
that Γ is Zariski dense in G. Then any connected Lie subgroup H of Aut(G) which
stabilizes Γ is trivial. In particular the identity component StabAut(G)(Γ)0 is trivial
and StabAut(G)(Γ) is discrete. If in addition Z(G) is discrete, then every lattice has
finite index in its normalizer.

Proof. Let αt be a 1-parameter subgroup of Aut(G) which stabilizes Γ. Since
Γ is discrete and the action is continuous, αt must fix Γ as in Proposition 2.1.
Now, as above, we can consider Aut(G) as a subset of the real algebraic group,
Aut(g)⊆GL(g). Hence the Zariski closure L of {αt :t∈R} in Aut(g) must also fix
Γ because fixing Γ is a Zariski-closed condition in GL(g). Since Γ is Zariski dense
in G this means that L acts as the identity on G and in particular so does αt for
all t. Now let H be any connected Lie subgroup of Aut(G) which stabilizes Γ.
Since H is generated by its 1-parameter subgroups, H is also trivial. Finally, since
StabAut(G)(Γ) is discrete so is StabInt(G)(Γ). Combining this with the fact that now
Z(G) is also discrete shows that the same is true of NG(Γ). The proof then proceeds
as in Proposition 2.1. �

Applying the density theorem of [7] we conclude the following.

Corollary 3.4. Let G and Γ be as in Theorem 3.3. Then StabAut(G)(Γ) is
discrete whenever G is a connected linear group of one of the following types :

(i) G is minimally almost periodic;(1)
(ii) G is complex ;
(iii) the radical Rad(G) has all real eigenvalues and the Levi factor has no

compact part.
Furthermore, if Z(G) is discrete in Γ then Γ has finite index in NG(Γ).

(1) This case is due to H. Furstenberg. G is minimally almost periodic if all continuous
finite-dimensional unitary representations are trivial.
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Remark. If Z(G) is trivial (as is the case for the solvable groups with real roots
mentioned earlier), Theorems 3.1 and 3.3 already follow from Proposition 2.1. To see
this we first show that NAut(G)(˜Γ)=StabAut(G)(Γ). Since α·iγ ·α−1=iα(γ), being in
NAut(G)(˜Γ) just means that iα(γ)=iγ′ for some γ′ ∈Γ. That is, α(γ)(γ′)−1 ∈Z(G).
When Z(G) is trivial this just says that α(γ)=γ′, so α∈StabAut(G)(Γ). As all
steps are reversible the conclusion follows. In particular, NInt(G)(˜Γ)=StabInt(G)(Γ).
Hence if B(G)=Z(G), Proposition 2.1 tells us that [NG(Γ):Γ] is finite. Therefore
so is

[StabInt(G)(Γ) : ˜Γ] = [NG(Γ) : Γ].

Continuing our assumption that G is a connected Lie group with a lattice Γ,
we now turn to the question of when [StabAut(G)(Γ):˜Γ] is finite. To do this we need
the following lemma.

Lemma 3.5. If Γ is a lattice in a connected Lie group G then ZG(Γ)=Z(G),
and in particular Z(Γ)=Z(G)∩Γ in the following situations:

(i) B(G)=Z(G);
(ii) G is a linear group such that Γ is Zariski-dense in G.

Proof. In case (i), the result follows as in our proof of Proposition 2.1: if g

centralizes Γ then Γ⊆ZG(g). Therefore the finite G-invariant measure on G/Γ
pushes forward to a finite invariant measure on G/ZG(g), which in turn gives a
finite invariant measure on the conjugacy class Int(G)·g. This class must lie in
B(G). Therefore g ∈Z(G).

In case (ii), any element centralizing Γ must be in the center of G by Zariski
density. �

Lemma 3.6. If Γ is a lattice in a connected Lie group G, then Aut(Γ) is
discrete. If in addition Z(Γ)=Z(G)∩Γ then ˜Γ is discrete in the relative topology
inherited from Aut(G).

Proof. Discreteness of Int(Γ) follows because Γ is finitely generated and dis-
crete. In fact if we take U={1} as our neighborhood of the identity, and any finite
set F ⊆Γ, then

W (F ) = {α ∈ Aut(Γ) : α(γ) = γ}

is a typical compact-open neighborhood of the identity operator in Aut(Γ). But Γ
is finitely generated. If F is a generating set {γ1, ..., γn} then α∈W (F ) implies that
α(γi)γ−1

i =1 for all i which implies that α=I .
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Consider a net {γν } in Γ such that iγν →I uniformly on compact sets K ⊆G;
we must show that eventually iγν =I throughout G. Take K=F , a finite set of
generators for Γ. Since Γ is discrete we get iγν =I on F , and hence on all of Γ, for
all large indices ν. That implies that γν ∈Z(Γ). Hence γν is central in G and iγν =I

on G eventually. �

Remark. The property Z(Γ)=Z(G)∩Γ holds for all types of groups we have
considered so far:

(1) The groups mentioned in Corollary 3.2 have this property for various rea-
sons, all discussed in [11].

(2) For the linear groups considered in Corollary 3.4 see [10].

We now pass from arbitrary automorphisms to the subgroup M(G) of auto-
morphisms that preserve left Haar measure. This is a closed normal subgroup in
Aut(G), and hence is a Lie subgroup since M(G) is the kernel of the continuous
map Δ.

Proposition 3.7. Let G be any locally compact group and Γ be a lattice in G.
Then StabAut(G)(Γ)⊆M(G). Hence StabAut(G)(Γ)=StabM(G)(Γ).

Proof. Suppose α and its inverse preserve Γ. Then ᾰ(gΓ)=α(g)Γ gives a
well-defined diffeomorphism of G/Γ. Let Ω be a fundamental domain for Γ in
G and π : G→G/Γ. Then G=ΩΓ and so π(Ω)=G/Γ. If μ is a left Haar mea-
sure on G we have μ(α(Ω))=Δ(α)μ(Ω). Letting Ā=π(A) and μ̄=π∗(μ) for sets
and measures on G, we have μ̄(ᾰ(¯Ω))=Δ(α)μ̄(¯Ω). But ᾰ(¯Ω)=G/Γ=¯Ω. Therefore
μ̄(G/Γ)=Δ(α)μ̄(G/Γ) and then Δ(α)=1 since 0<μ̄(G/Γ)<∞. �

Because G is unimodular, Int(G) preserves Haar measure so Int(G)⊆M(G). In
particular, StabM(G)(Γ)⊇ ˜Γ and when G is connected Int(G)⊆M(G)0. Now assume
that G is simply connected. By taking the differential on Aut(G), and therefore
also on M(G) and Int(G), these can be regarded as subgroups of the linear group
GL(g). As was shown in [8], in this representation M(G) is the set of real points of
an algebraic group defined over R. Therefore M(G)0 has finite index in M(G) (see
[14]).

Corollary 3.8. Let G be a simply connected Lie group containing a lattice Γ.
Suppose G satisfies either the conditions of Theorem 3.1 or 3.3. Then the stabilizer
[StabAut(G)(Γ):˜Γ] is finite if M(G)0/Int(G) is compact.
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We remark that when G is a complex linear group in Corollary 3.8 we can
of course take M(G)0 to be the identity component of the group of holomorphic
measure-preserving automorphisms.

Proof. Since M(G)0/Int(G) is compact so is M(G)/Int(G) (because M(G) is a
real algebraic group, M(G)0 has finite index in M(G) by [14]). Hence M(G)/Int(G)
has finite volume since Int(G) is normal in M(G). By pushing the measure on G/Γ
forward we see that there is a finite invariant measure on Int(G)/˜Γ. Hence M(G)/˜Γ
also has a finite invariant measure. Now the closed subgroup StabM(G)(Γ) of M(G)
sits in between the two,

˜Γ ⊆ StabM(G)(Γ) ⊆ M(G).

By Theorem 3.1 or 3.3, StabAut(G)(Γ) is discrete. Hence by Proposition 3.7 it follows
that [StabAut(G)(Γ):˜Γ] is finite. �

Next we determine when M(G)0/Int(G) is compact, under the conditions of
Corollary 3.8.

Corollary 3.9. Let Γ be a lattice in a simply connected real Lie group G. Sup-
pose G satisfies either the conditions of Theorem 3.1 or 3.3. Then M(G)0/Int(G) is
compact if and only if M(G)0/StabM(G)0(Γ) has finite volume and StabM(G)0(Γ)/˜Γ
is finite. In particular, if the quotient space M(G)0/StabM(G)0(Γ) is known to have
finite volume, then M(G)0/Int(G) is compact if and only if StabM(G)0(Γ)/˜Γ is fi-
nite.

Proof. Consider the following commutative diagram:

StabM(G)0(Γ) �� M(G)0

{iγ :γ ∈Γ}=˜Γ ��

��

Int(G).

��

The subgroup ˜Γ⊆Int(G) is discrete by Lemma 3.6. Since Int(G)/˜Γ supports
a finite invariant measure (the push-forward of a finite invariant measure
on G/Γ), M(G)0/Int(G) is compact if and only if M(G)0/˜Γ has a finite invariant
measure. It follows from the commutativity of the diagram above that this is equiv-
alent to M(G)0/StabM(G)0(Γ) and StabM(G)0(Γ)/˜Γ each having finite volume. Since
StabM(G)0(Γ) is discrete, StabM(G)0(Γ)/˜Γ is finite. Conversely, if the latter two have
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finite volume so does M(G)0/˜Γ by [13]. This means that M(G)0/Int(G) also has
finite volume, and then M(G)0/Int(G) is compact because Int(G) is normal. �

Corollary 3.10. Let Γ be a uniform lattice in a simply connected real
Lie group G. Assume that G satisfies the conditions of Theorem 3.1 or 3.3. Then
M(G)0/Int(G) is compact if and only if M(G)0/StabM(G)0(Γ) is compact and
StabM(G)0(Γ)/˜Γ is finite.

Proof. This follows since here Int(G)/˜Γ is compact. �

In particular Corollary 3.9 applies when G is a simply connected solvable group
of type E. In [4] we intend to conduct a detailed study of these indices for the groups
and lattices that were constructed in [9]. These groups are semidirect products
in which a 1-parameter group of automorphisms acts on R

n. As we shall see in
[4] when n=2, M(G)0=Int(G) and so M(G)0/Int(G) is trivially compact. Hence
[StabAut(G)(Γ):˜Γ] is finite, and in [4] we expect to get effective bounds on this index.
This is no longer the case when n≥3. Indeed then M(G)0/Int(G) is (R×

+ )n−2, so
M(G)0/Int(G) does not have finite volume and [StabAut(G)(Γ):˜Γ] is infinite.

We remark that M(G)0/Int(G) is also compact in any semisimple Lie group
without compact factors because then [Aut(G):Int(G)] is finite.

We conclude with some examples and counterexamples involving groups of
Heisenberg type. By [3] these Lie algebras all have rational structure constants,
hence the corresponding simply connected groups contain uniform lattices.

Abelian and Heisenberg cases. Suppose that G=R
n, or G=Nn, the Heisen-

berg group of dimension 2n+1, and let Γ be the usual integer lattice in G. In
both these cases M(G)0/StabM(G)0(Γ) does support a finite invariant measure, but
M(G)0/Int(G) is not compact (see, e.g., [12]). In this setting StabAut(G)(Γ)/˜Γ is
always infinite, because when G=R

n we have Int(G)={I} and M(G)0=SL(n, R).
Hence M(G)0/Int(G)=SL(n, R) and

[StabM(G)(Γ) : ˜Γ] =SL±(n, Z)

which is infinite.
When G=Nn, we have M(G)0=Sp(n, R)×R

2n (where × stands for semidirect
product), while Int(G)=R

2n. Here M(G)0/Int(G)=Sp(n, R) while

[StabM(G)0(Γ) : ˜Γ] = |Sp(n, Z)×Z
2n/Z

2n| = |Sp(n, Z)|

which is also infinite. Thus in both these cases, although Der0(g)/Nil(Der0(g)) is
semisimple it is not of compact type.
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Quaternionic and Cayley number analogs. Now we consider irreducible Lie
algebras g of Heisenberg type with center z of dimension 3 or 7. This means that
g is either

dim z=3: hn=v⊕z=H
n ⊕Im(H), dim hn=4n+3,

dim z=7: cn=v⊕z=O
n ⊕Im(O), dim cn=8n+7,

where H is the set of real quaternions and O is the set of octonians.
Let G be the associated simply connected nilpotent group of Heisenberg type.

Der0(g) denotes the derivations of g of trace zero, which is the Lie algebra of M(G)
(see [8]).

Lemma 3.11. In these cases Nil(Der0(g))=ad(g) and Der0(g)/Nil(Der0(g))
is semisimple of compact type, where

Der0(g) = {T ∈ Der(g) : tr(T )= 0}

and Nil(Der0(g)) is the nilradical.

Proof. The nilradical Nil(Der0(g)) is the largest ideal in the radical of Der0(g)
consisting of nilpotent operators. Since g is a nilpotent Lie algebra each adX is
a nilpotent derivation. Also ad(g) is a nilpotent ideal in Der(g) and therefore also
in Der0(g). Hence ad(g)⊆Nil(Der0(g)) as subalgebras. Now g=v⊕z so dim ad(g)=
dim g−dim z=dim v. On the other hand, by Theorem 5.4 of Barbano [2] (see also
[8]), Der0(g)/Nil(Der0(g)) is not merely reductive, but in fact is compact semisimple
with dim Nil(Der0(g))=dim v. This means that Nil(Der0(g))=ad(g). �

It follows from this lemma that M(G)0/Int(G) is compact. (For example,
the quotient M(Hn)0/Int(Hn) is actually the direct product Sp(1)×Sp(n) by [2],
p. 263.) Hence by Corollary 3.10 we conclude the following result.

Corollary 3.12. Let G be an irreducible group of Heisenberg type with center
of dimension 3 or 7. Then [StabAut(G)(Γ):˜Γ] is finite for any lattice Γ in G.
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