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Density of the polynomials in Hardy
and Bergman spaces of slit domains

John R. Akeroyd

Abstract. It is shown that for any t, 0<t<∞, there is a Jordan arc Γ with endpoints 0

and 1 such that Γ\ {1} ⊆D:={z :|z|<1} and with the property that the analytic polynomials are

dense in the Bergman space A
t(D\Γ). It is also shown that one can go further in the Hardy space

setting and find such a Γ that is in fact the graph of a continuous real-valued function on [0, 1],

where the polynomials are dense in Ht(D\Γ); improving upon a result in an earlier paper.

1. Introduction

Let D denote the unit disk {z :|z|<1}, let T denote the unit circle {z :|z|=1}
and let m denote normalized Lebesgue measure on T. The Hardy space Ht(D),
0<t<∞, is the collection of functions f that are analytic in D such that

‖f ‖t
Ht(D) := sup

0<r<1

∫
T

|f(rζ)|t dm(ζ) < ∞.

For 1≤t<∞, ‖ · ‖Ht(D) defines a norm relative to which Ht(D) forms a Banach space.
Let G be a bounded, simply connected region in the complex plane C and let ϕ

be a conformal mapping from D one-to-one and onto G. The Hardy space Ht(G)
is the set of functions f that are analytic in G such that f ¨ϕ∈Ht(D); which is
independent of the choice of ϕ. One may (equivalently) define Ht(G) to be the set
of functions f that are analytic in G such that |f |t has a harmonic majorant on G.
If f ∈Ht(G), then |f |t has a least harmonic majorant uf on G and, for fixed z0 in G

and 1≤t<∞, f �→uf (z0)1/t defines a norm on Ht(G), equal to ‖f ¨ϕ‖Ht(D), when ϕ

is chosen so that ϕ(0)=z0. This alternative approach has the advantage that it is
easily extendable to multiply connected regions. Let H∞(G) denote the collection
of bounded analytic functions in G. With G as above and 0<t<∞, the Bergman
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space A
t(G) is defined to be the set of functions f that are analytic in G such that

‖f ‖t
At(G) :=

∫
G

|f |t dA< ∞,

where A denotes two-dimensional Lebesgue measure on C. In the case that 1≤t<∞,
‖ · ‖At(G) defines a norm relative to which A

t(G) forms a Banach space. Since G is
bounded, the collection of analytic polynomials, which we denote by P , is a subspace
of both Ht(G) and A

t(G). In an earlier paper (cf. [1]) the author constructed a
Jordan (i.e., simple) arc Γ with endpoints 0 and 1—a tortuous, self-similar fractal—
such that Γ\ {1} ⊆D and with the property that P is dense in the Hardy space
Ht(D\Γ); for any prescribed t, 0<t<∞. In this paper we improve upon this earlier
result by showing that the arc Γ can be chosen to be the graph of a continuous real-
valued function on [0, 1]; see Corollary 3.4. We then turn to the Bergman space
setting and show that there is a Jordan arc Γ with endpoints 0 and 1 such that
Γ\ {1} ⊆D and with the property that P is dense in A

t(D\Γ); see Corollary 4.2.
This latter result puts to rest a rather long-standing question (circa 1937); cf. [3]
and [10]. Throughout this paper we confine ourselves to the Banach space setting
1≤t<∞. By Jensen’s inequality we then have the results for all t, 0<t<∞.

2. Preliminaries

Let μ be a finite, positive Borel measure compactly supported in C. Then
P ⊆Lt(μ), 1≤t<∞. We let P t(μ) denote the closure of P in Lt(μ). A point α in C

is called a bounded point evaluation for P t(μ) if there is a positive constant c such
that

|p(α)| ≤ c‖p‖Lt(μ)

for all polynomials p. If α is such a point, then by the Hahn–Banach theorem and
the Riesz representation theorem, there exists kα in Ls(μ), 1/s+1/t=1, such that
p(α)=

∫
pkα dμ for all polynomials p. For any f in P t(μ), define f̂ at α by:

f̂(α) =
∫

fkα dμ.

If, in fact, there exist positive constants c and r such that

|p(z)| ≤ c‖p‖Lt(μ)

whenever |z −α|<r and p is a polynomial, then α is called an analytic bounded point
evaluation for P t(μ). The set of analytic bounded point evaluations for P t(μ) is
a bounded, open subset of C whose components are simply connected, and is the
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largest open set to which every function in P t(μ) has a natural analytic continuation,
given by f̂ . J. Thomson has established a direct sum decomposition of P t(μ), where
the components of the set of analytic bounded point evaluations play a vital role;
cf. [12], Theorem 5.8, or Theorem 2.1 below.

Theorem 2.1. (J. Thomson) Let μ be a finite, positive Borel measure com-
pactly supported in C and let {Gn}N

n=1 be the components (there might be none, or
countably many) of the set of analytic bounded point evaluations for P t(μ). Then
there is a Borel partition {Δn}N

n=0 of the support of μ such that

P t(μ) =Lt(μ|Δ0)⊕
( N⊕

n=1

P t(μ|Δn)
)

,

where Δn ⊆Gn and P t(μ|Δn) is irreducible, n≥1. Moreover, for n≥1, the mapping
f �→f̂ is one-to-one on P t(μ|Δn) and, under this mapping, the Banach algebras
P t(μ|Δn)∩L∞(μ|Δn) and H∞(Gn) are algebraically and isometrically isomorphic,
and weak-star homeomorphic.

A recent paper of A. Aleman, S. Richter and C. Sundberg refines our under-
standing of the irreducible summands P t(μ|Δn) in Theorem 2.1; cf. [2].

Let G be a bounded, simply connected region in C. Since the Hardy space
Ht(G) is conformally invariant, it is straightforward that H∞(G) is dense in Ht(G).
A result of L. I. Hedberg tells us that the same holds in the Bergman space setting;
for a proof in the case that t=2, one may consult [11], pp. 112–114.

Theorem 2.2. (L. I. Hedberg) Let G be a bounded, simply connected region
in C. Then H∞(G) is dense in A

t(G), 1≤t<∞.

Once again, let G be a bounded, simply connected region in C and, for z0 in G,
define ρz0 : CR(∂G)→R by ρz0(u)=û(z0), where û now denotes the continuous, real-
valued function on G that is harmonic in G and has boundary values u. By the
maximum principle, ρz0 defines a (positive) bounded linear functional on CR(∂G);
and, processing the function u≡1, we find that ρz0 is of norm equal to 1. Hence, by
the Riesz representation theorem, there is a unique positive, probability measure
ω( · , G, z0) with support in ∂G such that

û(z0) =
∫

∂G

u(ζ) dω(ζ, G, z0)

for all u in CR(∂G). The measure ω( · , G, z0) is the so-called harmonic measure
on ∂G for evaluation at z0. By Harnack’s inequality, ω( · , G, w0) is boundedly
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equivalent to ω( · , G, z0) for any other choice of point w0 in G. And one may
interpret the distribution of ω( · , G, z0) on ∂G in terms of Brownian motion paths:
For any Borel subset B of ∂G, ω(B, G, z0) is the probability that a Brownian motion
path starting at z0 will first exit G through a point in B; cf. [7], Appendix F.

To minimize some of the technical details involved in our constructions, we
follow the general plan of [1] and initially focus on the rectilinear annular region
E :={z :1<max(|Re(z)|, |Im(z)|)<2}. If Γ is any Jordan arc with endpoints 1 and 2
such that Γ\ {1, 2} ⊆E \

{
− 3

2

}
, then let EΓ denote the set difference E \Γ. Further,

let ωΓ denote harmonic measure on ∂EΓ for evaluation at − 3
2 and let νΓ denote

two-dimensional Lebesgue measure restricted to EΓ. In this paper we first pro-
duce a continuous real-valued function f : [1, 2]→[−1, 1], where f(1)=f(2)=0, such
that Γ:={x+if(x):1≤x≤2} has the property that P is dense in the Hardy space
Ht(EΓ); see Theorem 3.3. We then produce a Jordan arc Γ with endpoints 1 and
2 such that Γ\ {1, 2} ⊆E and with the property that the polynomials are dense in
A

t(EΓ); see Theorem 4.1. After each of these results, we indicate how minor mod-
ifications give us the aforementioned Corollaries 3.4 and 4.2. Now, by elementary
methods, EΓ is contained in the set of analytic bounded point evaluations for both
P t(ωΓ) and P t(νΓ). And if the rational function z �→1/z is in P t(ωΓ) (abbreviated,
1/z ∈P t(ωΓ)), then no point in {z :max(|Re(z)|, |Im(z)|)≤1} is an analytic bounded
point evaluation for P t(ωΓ) and indeed EΓ is precisely the set of analytic bounded
point evaluations for P t(ωΓ). We can then apply Theorem 2.1 and find that P
is dense in Ht(EΓ). Making use of Theorem 2.2, the same argument carries over
to the Bergman space setting and we find that if 1/z ∈P t(νΓ), then P is dense
in A

t(EΓ). This makes our target quite clear: Construct the various Jordan arcs
Γ so that 1/z ∈P t(ωΓ) (respectively, 1/z ∈P t(νΓ)). Now, if 1/z ∈P t(ωΓ), then, in
the terminology of [12], there is a sequence of “light routes” from 0 to ∞; and the
same applies in the Bergman space setting. And by the characters of the measures
under consideration, the portions of these light routes that are within E need to
converge to Γ. This points to our strategy here, which is reminiscent of an argument
of W. W. Hastings; cf. [9], or the proof of Lemma 10.7 in Chapter II of [4]. In the
Hardy space setting, we find a sequence of Jordan arcs {γn} ∞

n=1 and a sequence of
polynomials {pn} ∞

n=1 such that:
(i) γn has endpoints 1 and 2 and γn \ {1, 2} ⊆E \

{
− 3

2

}
, n≥1;

(ii) for n≥1 and 1≤k ≤n,
∫

∂Eγn
|1/z −pk |t dωγn <1/k;

(iii) {γn} ∞
n=1 converges uniformly to a Jordan arc Γ in (E ∪ {1, 2})\

{
− 3

2

}
,

as n→∞.
From (i)–(iii) it follows that

∫
∂EΓ

|1/z −pk |t dωΓ ≤1/k for k ≥1, and hence
1/z ∈P t(ωΓ). The sequence of light routes here are essentially tubular neighbor-
hoods of the arcs γn. In the Bergman space setting our strategy is largely the same,
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except that we find the process more manageable if we express the Jordan arc Γ as
the limit of a sequence of continua that are not themselves Jordan arcs.

3. The Hardy space setting

We begin with two results concerning harmonic measure. The proof of the first,
which is omitted, is a straightforward consequence of Lemma 5.1 in Chapter IV
of [7].

Lemma 3.1. For b and n, 0<b≤1 and n a positive integer, let Wb,n=
{z :Im(z)>0} \ {z :0<Im(z)≤b and |Re(z)|=k/n for some k=0, 1, 2, ..., n}. Given
b as above, for any ε>0, there exists a positive integer N such that

ω([−1, 1], Wb,n, 2i) <ε,

whenever n≥N .

Now, in order for a Brownian motion path starting at 2i to first exit Wb,n

through a point in the interval (−1, 1), it must successfully navigate down one of
the corridors in Wb,n that leads to (−1, 1); and each of these corridors has aspect
ratio (length to width) equal to bn. The import of Lemma 3.1 is that one can reduce
the probability of such an event to as small a positive value as one might wish by
choosing n to be sufficiently large. And this result does not essentially depend
upon the corridors being rectilinear in shape; see the discussion on extremal length
in Chapter IV of [7]. Our next result makes use of this fact, but we first need to
clarify our terms. For 0<a<1 and any positive integer k, define fa,k on [1, 2] by
fa,k(x)=a sin(2πkx). Notice that fa,k(1)=fa,k(2)=0 and that fa,k has period 1/k

and amplitude a on [1, 2]. For any function g : [1, 2]→[−1, 1] that is continuous
on [1, 2], with g(1)=g(2)=0, and for any δ, 0<δ<1, let T (g, δ)={x+iy :1≤x≤2
and |y −g(x)|<δ}.

Lemma 3.2. Suppose that g : [1, 2]→[−1, 1] is continuous on [1, 2] and that
g(1)=g(2)=0. If 0<a<1, ε>0 and 0<δ<a, then, provided k is sufficiently large,
γ :={x+i(g(x)+fa,k(x)):1≤x≤2} has the property: The probability that a Brownian
motion path starting at − 3

2 will reach a point in Eγ ∩T (g, δ) before it exits Eγ is
less than ε; and hence

ωγ(T (g, δ)) <ε.

Sketch of proof. By our hypothesis, g can be uniformly approximated on [1, 2]
by a sequence of step functions. Thus, via a piecewise analysis, we can reduce to
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the case that g is constant on [1, 2]; indeed, that g ≡0 on [1, 2]. Now, in order for a
Brownian motion path starting at − 3

2 to reach a point in Eγ ∩T (g, δ) before it exits
Eγ it must successfully navigate down one of 2k corridors delineated by portions
of γ, each of length a−δ and of maximum width 1/k. Hence, by extremal length
estimates (cf. Chapter IV of [7]), the probability of such an event can be reduced
to less than any prescribed positive value by choosing k to be sufficiently large. �

Theorem 3.3. For any t, 1≤t<∞, there is a continuous function f : [1, 2]→
[−1, 1] such that f(1)=f(2)=0 and the Jordan arc Γ:={x+if(x) : 1≤x≤2} has the
property that P is dense in Ht(EΓ).

Proof. Define g0 on [1, 2] by g0 ≡0. Notice that F1 :=E \T
(
g0,

1
4

)
is a con-

nected, compact subset of C whose complement in C has just one component, and
that component contains 0. So, by Runge’s theorem, there is a polynomial p1 such
that |1/z −p1(z)|t<1 for all z in F1. Since |1/z −p1(z)|t is bounded on E and har-
monic measure has total mass equal to 1, we can apply Lemma 3.2 and find an
integer k1 sufficiently large so that γ1 :={x+if1/2,k1(x):1≤x≤2} satisfies:

∫
∂Eγ1

∣∣∣∣1z −p1(z)
∣∣∣∣
t

dωγ1(z) < 1.

Define g1 on [1, 2] by g1 ≡f1/2,k1 . Notice that F2 :=E \T
(
g1,

1
8

)
is a connected,

compact subset of C whose complement in C has just one component, and that
component contains 0. So, again by Runge’s theorem, there is a polynomial p2 such
that |1/z −p2(z)|t< 1

2 for all z in F2. Applying Lemma 3.2 once again, we can find a
positive integer k2 sufficiently large so that γ2 :={x+i(g1(x)+f1/4,k2(x)):1≤x≤2}
satisfies: ∫

∂Eγ2

∣∣∣∣1z −p2(z)
∣∣∣∣
t

dωγ2(z) <
1
2
.

Moreover, the probability that a Brownian motion path starting at − 3
2 will reach

a point in Eγ2 ∩T
(
g0,

1
4

)
before it exits Eγ2 is less than the sum of:

(i) The probability that a Brownian motion path starting at − 3
2 will reach

a point in Eγ2 ∩T
(
g0,

1
4

)
before it reaches a point in Eγ2 ∩T

(
g1,

1
8

)
, and before it

exits Eγ2 .
(ii) The probability that a Brownian motion path starting at − 3

2 will reach a
point in Eγ2 ∩T

(
g1,

1
8

)
before it exits Eγ2 .

Now, since T
(
g1,

1
8

)
is a tube around γ1, the probability mentioned in (i) is

clearly less than the probability that a Brownian motion path starting at − 3
2 will

reach a point in Eγ2 ∩T
(
g0,

1
4

)
before it exits Eγ2 and before it reaches a point in γ1;

i.e., before it exits Eγ2 or Eγ1 . So this value is no bigger than our estimate on the
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size of ωγ1

(
T

(
g0,

1
4

))
, given by Lemma 3.2. And, by Lemma 3.2, the probability

mentioned in (ii) can be made as small as we wish by choosing k2 sufficiently large.
Therefore, by choosing k2 sufficiently large, we also have:

∫
∂Eγ2

∣∣∣∣1z −p1(z)
∣∣∣∣
t

dωγ2(z) < 1,

without any modification in our earlier choice of k1. Let g2=g1+f1/4,k2 . Since
F3 :=E \T

(
g2,

1
16

)
is a connected, compact subset of C whose complement in C has

just one component, and that component contains 0, we can find a polynomial p3

such that |1/z −p3(z)|t< 1
3 for all z in F3. Applying Lemma 3.2, we can find a

positive integer k3 sufficiently large so that γ3 :={x+i(g2(x)+f1/8,k3(x)):1≤x≤2}
satisfies: ∫

∂Eγ3

∣∣∣∣1z −p3(z)
∣∣∣∣
t

dωγ3(z) <
1
3
.

And, arguing as above, we find that, for a sufficiently large choice of k3 we can also
ensure that ∫

∂Eγ3

∣∣∣∣1z −p1(z)
∣∣∣∣
t

dωγ3(z) < 1

and that ∫
∂Eγ3

∣∣∣∣1z −p2(z)
∣∣∣∣
t

dωγ3(z) <
1
2
,

without making a change in our earlier choices of k1 and k2. Continuing this process
ad infinitum we find a sequence {γn} ∞

n=1 of Jordan arcs that satisfies conditions (i)
and (ii) set forth at the end of Section 2 of this paper. Notice that this sequence of
arcs also satisfy condition (iii), since γN is the “graph” of gN—the N th partial sum
of the sequence of functions {f2−n,kn

} ∞
n=1, whose amplitudes sum to 1. Therefore,

our goal is reached. �

One can modify the proof of Theorem 3.3 to produce a function f : [0, 1]→
[− 1

2 , 1
2 ] that is continuous on [0, 1], with f(0)=f(1)=0, such that Γ:={x+if(x):

0≤x≤1} satisfies: P is dense in Ht(ΩΓ), where Ω:={z :max(|Re(z)|, |Im(z)|)<1}
and ΩΓ :=Ω\Γ. As before, we base our construction on the functions fa,k(x):=
a sin(2πkx), now restricted to [0, 1] and with reduced amplitudes. In this context
we work with a process that does not in any way depend on the function z �→1/z.
One can do this by choosing a sequence of points {zn} ∞

n=1 that converges to 0 such
that zn is in the interior of T (gn, 2−n−3)—now defined over [0, 1]—and by using
Runge’s theorem to find a polynomial pn such that |pn(zn)| ≥n and yet |pn(z)|t<1,
for all z in Ω\T (gn, 2−n−3). The rest of the construction is similar to that in the



8 John R. Akeroyd

proof of Theorem 3.3, the functions gN being the N th partial sums of the sequence
{f2−n−1,kn

} ∞
n=1 and γn :={x+ign(x):0≤x≤1}, chosen so that

∫
∂Ωγn

|pk |t dωγn ≤ 1,

whenever 1≤k ≤n; where ωγn now denotes harmonic measure on ∂Ωγn for evaluation
at − 1

2 . The sequence {γn} ∞
n=1 then converges uniformly to a Jordan arc Γ, with

endpoints 0 and 1, such that Γ\ {1} ⊆Ω. And, by our construction, there is a
sequence of polynomials {pn} ∞

n=1 such that ‖pn‖Lt(ωΓ) ≤1 and yet |pn(zn)| ≥n, for
all n. Since {zn} ∞

n=1 converges to 0, it follows that 0 is not an analytic bounded point
evaluation for P t(ωΓ). Therefore, the set of analytic bounded point evaluations for
P t(ωΓ) is precisely ΩΓ, and so we conclude (as we did before) that P is dense in
Ht(ΩΓ). One can go a step further and replace Ω by D in this process. Yet, in
order to be sure that Γ\ {1} ⊆D, it is necessary to modify the functions fak,k so
that their amplitudes ak are themselves functions of x in [0, 1]. The details are a
bit more cumbersome, but the general process is the same.

Corollary 3.4. For any t, 1≤t<∞, there is a continuous real-valued function
f on [0, 1] such that f(0)=f(1)=0, |f(x)|<

√
1−x2 on [0, 1) and the Jordan arc

Γ:={x+if(x):0≤x≤1} has the property that P is dense in Ht(D\Γ).

4. The Bergman space setting

In this section we build a Jordan arc Γ with endpoints 1 and 2 such that
Γ\ {1, 2} ⊆E and with the property that P is dense in the Bergman space A

t(EΓ);
for any prescribed t, 1≤t<∞. We cannot duplicate the result of Section 3 here since
the graph of any continuous real-valued function on [1, 2] has zero two-dimensional
Lebesgue measure. The arc we construct in this context must have positive two-
dimensional Lebesgue measure in any neighborhood of any of its points; and this
alone is by no means sufficient to ensure that P is dense in A

t(EΓ). We begin
with a description of the building blocks of our construction, which have prece-
dent in the literature; cf. [8], pp. 136–138. First of all, we call a subset of C a
square if it has the form {x+iy :a≤x≤b and c≤y ≤d}, where 0<b−a=d−c. Let
Σ={x+iy :0≤x, y ≤1}. For any nonincreasing sequence Λ={εn} ∞

n=1 in (0, 1], let CΛ

denote the Cantor-type subset of I :=[0, 1] obtained by deleting from I the middle
open interval of length ε13−1 and, proceeding recursively, in stage n, n≥2, deleting
the middle open intervals of length εn3−n from each of the intervals remaining from
the previous stage. Let In denote the union of the intervals remaining after stage n;
then CΛ=

⋂∞
n=1 In. This process generalizes the well-known case that Λ is a constant
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sequence, ε=εn for all n, where CΛ is easily found to have Lebesgue measure equal
to 1−ε. In general, {x+iy :x, y ∈ CΛ} is a compact subset of Σ with two-dimensional
Lebesgue measure equal to the square of the Lebesgue measure of CΛ. For n≥1, let
Σn={x+iy :x, y ∈In}—a finite, pairwise disjoint union of squares of equal size that
contains {x+iy :x, y ∈ CΛ}. The equality between {x+iy :x, y ∈ CΛ} and

⋂∞
n=1 Σn

leads to the description of a Jordan arc γ in Σ that contains {x+iy :x, y ∈ CΛ} and
has endpoints 0 and 1; cf. [8], pp. 136–138, or continue with the development here.
In Figure 1 we illustrate the squares of Σ1 along with three connecting segments.
We denote this set by Σ∗

1 and call it a first string of squares for Σ based on its
lower side. We could base this string of squares on any of the other three sides
of Σ, which would simply amount to a rotation of Σ∗

1 (as depicted) through 1
2π,

π or 3
2π radians about the point 1

2 + 1
2 i. A second string of squares for Σ (based

on its lower side), denoted Σ∗
2, involves the squares of Σ2 and is obtained from a

first string by replacing its squares by rotated and contracted versions of itself, as
illustrated in Figure 1. One can recursively repeat this process for all n and produce
a string of squares Σ∗

n for each collection of squares Σn.
Associated with the first and second strings of squares mentioned above are

Jordan arcs γ1 and γ2, respectively, as illustrated in Figure 2.

Figure 1.

Figure 2.
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Figure 3.

In this way one generates a sequence of Jordan arcs {γn} ∞
n=1 that converges

uniformly to a Jordan arc γ in Σ, with endpoints 0 and 1, such that {x+iy :
x, y ∈ CΛ} ⊆γ. Notice that γ=

⋂∞
n=1 Σ∗

n. Countably many portions of this arc γ

are segments, which, of course, have zero two-dimensional Lebesgue measure. And
so γ itself is not the candidate we are looking for here. The arc that does the job
for us has the form of γ, though iterated ad infinitum over all of the segments that
arise. It turns out to be much easier to work with sequences of strings of squares.
The proof of our main theorem proceeds along these lines.

Theorem 4.1. For any t, 1≤t<∞, there is a Jordan arc Γ with endpoints 1
and 2 such that Γ\ {1, 2} ⊆E and with the property that P is dense in A

t(EΓ).

Proof. Let S be a square of side-length less than one, centered and resting on
the interval [1, 2] in E; see Figure 3.

If S were enlarged to have side-length equal to 1, then E \S would be a compact
subset of C whose complement in C has just one component, and that component
would contain 0. Thus, by Runge’s theorem, we could find a polynomial p1 such
that |1/z −p1(z)|t< 1

12 for all z in E \S. Therefore, we would have:

∫
E\S

∣∣∣∣1z −p1(z)
∣∣∣∣
t

dA(z) < 1.

Now, since |1/z −p1|t is integrable over E with respect to two-dimensional Lebesgue
measure,

∫
E\S

|1/z −p1(z)|t dA(z) varies continuously with respect to the side-length
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Figure 4.

of S. Hence, we can find S, centered and resting on the interval [1, 2], with side-
length less than 1, such that

∫
E\S

∣∣∣∣1z −p1(z)
∣∣∣∣
t

dA(z) < 1;

and we may assume that S has side-length at least 3
5 . Let K1=[1, 2]∪S. Once again

using the absolute continuity of the integral, we now replace S by a first string of
squares S∗

1 for S based on its lower side, chosen with squares sufficiently large so
that ∫

E\S∗
1

∣∣∣∣1z −p1(z)
∣∣∣∣
t

dA(z) < 1.

Notice that [1, 2]\S has two components. Attaching these to S∗
1 , we have a string

of squares, let us call it K∗
1 , that starts at 1 and ends at 2; see Figure 4.

This sets the stage for a repetition of our algorithm. On each of the exposed
segments of K∗

1 we now install a square, five in all, centered (between existing
squares) and having side-lengths less than the lengths of the segments on which
they rest; see Figure 5. Let K2 denote the union of these five new squares along
with K∗

1 .
If these five new squares were increased in size so that their side-lengths were to

equal the lengths of the segments on which they rest, then E \K2 would be a compact
set in C whose complement in C has just one component, and that component would
contain 0. Therefore, by Runge’s theorem, we could find a polynomial p2 such that
|1/z −p2(z)|t< 1

24 for all z in E \K2. Thus, we would have
∫

E\K2

∣∣∣∣1z −p2(z)
∣∣∣∣
t

dA(z) <
1
2
.
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Figure 5.

And, since |1/z −p2|t is integrable over E with respect to two-dimensional Lebesgue
measure,

∫
E\K2

|1/z −p2(z)|t dA(z) varies continuously with respect to the side-
lengths of these five new squares. Hence, we can choose them with side-lengths less
than the lengths of the segments on which they rest such that

∫
E\K2

∣∣∣∣1z −p2(z)
∣∣∣∣
t

dA(z) <
1
2
.

Since S∗
1 ⊆K2, we also have

∫
E\K2

∣∣∣∣1z −p1(z)
∣∣∣∣
t

dA(z) < 1.

And, as before, we may assume that these five new squares have side-lengths at
least three-fifths the lengths of the exposed segments of K∗

1 on which they rest.
Proceeding recursively, we now replace S∗

1 with a second string of squares for S

based on its lower side, which we call S∗
2 (see Figure 1); leaving the aforementioned

five new squares in position. And then we replace each of these five squares by a
choice of one of its first string of squares, based on the side of the square that makes
contact with K∗

1 . Let K∗
2 denote the resulting set. Now all of these choices can be

made so that ∫
E\K∗

2

∣∣∣∣1z −p1(z)
∣∣∣∣
t

dA(z) < 1,

and ∫
E\K∗

2

∣∣∣∣1z −p2(z)
∣∣∣∣
t

dA(z) <
1
2
.
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As before, we now install a square on each of the exposed segments of K∗
2 , centered

(between existing squares) and of side-lengths less than the lengths of the segments
on which they rest, and proceed as in earlier iterations. We continue this process
ad infinitum to obtain a sequence of polynomials {pn} ∞

n=1 and a sequence of strings
of squares {Kn} ∞

n=1 such that

(4.1)
∫

E\Kn

∣∣∣∣1z −pk(z)
∣∣∣∣
t

dA(z) <
1
k

,

whenever 1≤k ≤n. We define Γ to be the limit supremum of the sequence {Kn} ∞
n=1,

namely

Γ :=
∞⋂

N=1

∞⋃
n=N

Kn.

Then

E \Γ=
∞⋃

N=1

∞⋂
n=N

(E \Kn)

is the limit infimum of the sequence {E \Kn} ∞
n=1. Thus, by (4.1) and Fatou’s lemma,

∫
E\Γ

∣∣∣∣1z −pk(z)
∣∣∣∣
t

dA(z) ≤ 1
k

for k=1, 2, 3, ... . This tells us that 1/z ∈P t(νΓ). What remains to be shown is
that Γ (as defined above) is a Jordan arc that lies in E, except for its endpoints 1
and 2. Once we have this, we can refer to our discussion in Section 2 to get that
P is dense in A

t(EΓ). To resolve this final issue concerning Γ, we first review our
construction of the Kn’s, starting with K1. That we chose S to have side-length
at least 3

5 ensures that each of the squares in K2 has diameter less than one-half
the diameter of S. And that we chose the five additional squares of stage two to
have side-lengths at least three-fifths the lengths of the exposed segments of K∗

1 on
which they rest, ensures that each square in K3 has diameter less than one-half the
diameter of any square in S∗

1 and hence less than one-fourth the diameter of S. In
general,

(4.2) max{diameter(σ) : σ is a square in Kn} ≤ diameter(S)
2n−1

for all n. For any positive integer N , let JN =
⋃∞

n=N Kn. We call a square σ in
some Kn a maximal square (of {Kn} ∞

n=1) if whenever σ′ is a square in some Km,
then either σ′ ⊆σ or σ′ ∩σ=∅. Notice that the first square mentioned in this whole
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process, namely S, is a maximal square. Moreover, every maximal square rests
on the interval [1, 2], no pair of them have any point in common and there are
countably many of them: {σk } ∞

k=1. And indeed, [1, 2]∪
(⋃∞

k=1 σk

)
=J1. So J1 looks

like [1, 2] along with squares whose bases are the closures of the complementary
intervals of some Cantor-type subset of [1, 2]. It follows that J1 is a continuum that
is contained in E ∪ {1, 2}. Observe that J2 is J1 with four open swaths deleted;
and by an open swath we mean the interior of a rectangle or a set that looks like a
contracted, rotated version of {x+iy :1<x<2 and 0<y<r} \J1 for some r ≥1. And
these swaths can be chosen with lengths less than the side-length of S. Hence,
J2 is itself a continuum contained in E ∪ {1, 2}. Similarly, J3 is obtained from J2

by deleting finitely many open swaths having lengths no greater than one-half the
lengths of the earlier swaths. In general, JN is found to be a continuum in E ∪ {1, 2}
that contains 1 and 2. Since Γ=

⋂∞
N=1 JN , it follows that Γ itself is a continuum in

E ∪ {1, 2} that contains 1 and 2; cf. [13], Theorem 28.2. We now argue that every
point α in Γ\ {1, 2} is a so-called cut-point of Γ; that is, Γ\ {α} is not connected.
By our analysis above and (4.2), any point in Γ\ {1, 2} can be reached from above
(and below) in E \Γ by traversing (at most) a sequence of swaths that decrease in
length by one-half each time. From this it follows that any point α in Γ\ {1, 2} can
be reached from above (and below) in E \Γ via a rectifiable arc. Hence, for any such
α we can build a Jordan curve Cα such that Cα ⊆E, 1∈inside(Cα), 2∈outside(Cα)
and {α}=Γ∩Cα. Therefore, by the Jordan curve theorem, α is a cut-point for Γ;
and indeed, Γ\ {1, 2} is the set of cut-points for Γ. Applying Theorem 28.13 of [13],
we conclude that Γ is a Jordan arc that lies in E, except for its endpoints 1 and 2;
which completes our proof. �

The method described just after the proof of Theorem 3.3 carries over to this
context to give us a Jordan arc Γ, with endpoints 0 and 1, such that Γ\ {1} ⊆Ω
and with the property that P is dense in A

t(ΩΓ). Let ϕ be a conformal mapping
from D one-to-one and onto Ω such that ϕ(0)=0 and ϕ(1)=1; and let ψ=ϕ−1.
Then ψ(Γ) is a Jordan arc with endpoints 0 and 1 such that ψ(Γ)\ {1} ⊆D. Let
η denote two-dimensional Lebesgue measure on D\ψ(Γ) and define μ on D\ψ(Γ)
by: dμ=|ϕ′ |2dη. Since ϕ is uniformly approximable by polynomials on D, a change
of variables argument gives us that the set of analytic bounded point evaluations
for P t(μ) is D\ψ(Γ). Yet |ϕ′ | is bounded below by a positive constant on D; see
Theorem A.1 in Appendix A. Therefore, D\ψ(Γ) is the set of analytic bounded
point evaluations for P t(η). It now follows that P is dense in A

t(D\ψ(Γ)).

Corollary 4.2. For any t, 1≤t<∞, there is a Jordan arc Γ with endpoints 0
and 1, such that Γ\ {1} ⊂D and with the property that P is dense in A

t(D\Γ).
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Appendix A

We do not claim that the next (and last) result of this paper is new to the
literature, yet we have no easy reference for it. We include it and a proof.

Theorem A.1. Let G be a convex region in C, G �=C, let w0 be a point in G

and let δ(w0) denote the distance from w0 to ∂G. If ϕ is a conformal mapping from
D onto G such that ϕ(0)=w0, then, for all z in D,

|ϕ′(z)| ≥ δ(w0)
2

.

Proof. Now, since G is convex, we can express G as G=
⋃∞

n=1 Gn, where
w0 ∈Gn ⊂Gn+1 for all n and each Gn is the interior of a convex polygon. For
each n, let ϕn be the conformal mapping from D onto Gn such that ϕn(0)=w0 and
ψ′

n(w0)>0, where ψn :=ϕ−1
n . Notice that ψn+1¨ϕn maps D conformally into D and

sends 0 to 0; and hence, 0<ϕ′
n(0)≤ϕ′

n+1(0) for all n. Therefore, by a normal fam-
ilies argument and a corollary to Hurwitz’s theorem, {ϕn} ∞

n=1 has a subsequence
(indeed, {ϕn} ∞

n=1) that converges uniformly on compact subsets of D to a conformal
mapping ϕ from D onto G, where ϕ(0)=w0. In view of this, we may reduce to the
case that G itself is the interior of a convex polygon. Proceeding along these lines,
let [α, β]:={(1−t)α+tβ :0≤t≤1}, α �=β, be a segment contained in ∂G and let H

be the half-plane that contains G such that ∂H=L:={(1−t)α+tβ :t∈R}. Let ϕ be
as in our hypothesis, let ψ=ϕ−1, and let ξ �→Pw0(ξ) denote the Poisson kernel on L

for evaluation at w0; cf. [6], p. 12. Then, by the conformal invariance of harmonic
measure and the maximum principle,

|ψ′(ξ)| =
2πdω(ξ, G, w0)

|dξ| ≤ 2πPw0(ξ)

for all ξ in [α, β]. Now Pw0(ξ) attains a maximum on L at ξ0—the projection of
w0 on L—and that maximum value is 1/π|ξ0 −w0|. And, clearly, δ(w0)≤ |ξ0 −w0|.
Therefore, |ϕ′(ζ)| ≥ 1

2δ(w0) for all ζ in T. Since G is a Smirnov domain (cf. [5],
Section 10.3) it follows that |ϕ′(z)| ≥ 1

2δ(w0) for all z in D. �
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domains, Ark. Mat. 15 (1977), 117–168.

4. Conway, J. B., The Theory of Subnormal Operators, Math. Surveys Monogr. 36,
Amer. Math. Soc., Providence, RI, 1991.

5. Duren, P. L., Theory of Hp Spaces, Academic Press, New York, 1970.
6. Garnett, J. B., Bounded Analytic Functions, Academic Press, Orlando, FL, 1981.
7. Garnett, J. B. and Marshall, D. E., Harmonic Measure, Cambridge University

Press, New York, 2005.
8. Gelbaum, B. R. and Olmstead, J. M. H., Counterexamples in Analysis, Dover,

Mineola, NY, 2003.
9. Hastings, W. W., A construction of Hilbert spaces of analytic functions, Proc. Amer.

Math. Soc. 74 (1979), 295–298.
10. Mergelyan, S. N., On the completeness of systems of analytic functions, Uspekhi

Mat. Nauk 8 (1953), 3–63 (Russian). English transl.: Amer. Math. Soc. Transl.
19 (1962), 109–166.

11. Shields, A. L., Weighted shift operators and analytic function theory, in Topics in Op-
erator Theory, Math. Surveys 13, pp. 49–128, Amer. Math. Soc., Providence,
RI, 1974.

12. Thomson, J. E., Approximation in the mean by polynomials, Ann. of Math. 133
(1991), 477–507.

13. Willard, S., General Topology, Addison-Wesley, Reading, MA, 1970.

John R. Akeroyd
Department of Mathematics
University of Arkansas
Fayetteville, AR 72701
U.S.A.
akeroyd@uark.edu

Received March 16, 2009
published online September 25, 2009

mailto:akeroyd@uark.edu

	Density of the polynomials in Hardy and Bergman spaces of slit domains
	Abstract
	Introduction
	Preliminaries
	The Hardy space setting
	The Bergman space setting
	Appendix A
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


