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Equidistribution of points via energy
Igor E. Pritsker

Abstract. We study the asymptotic equidistribution of points with discrete energy close

to Robin’s constant of a compact set in the plane. Our main tools are the energy estimates from

potential theory. We also consider the quantitative aspects of this equidistribution. Applications

include estimates of growth for the Fekete and Leja polynomials associated with large classes of

compact sets, convergence rates of the discrete energy approximations to Robin’s constant, and

problems on the means of zeros of polynomials with integer coefficients.

1. Asymptotic equidistribution of discrete sets

Let E be a compact set in the complex plane C. Given a set of points Zn=
{zk,n}n

k=1 ⊂C, n≥2, the associated Vandermonde determinant is

V (Zn) :=
∏

1≤j<k≤n

(zj,n −zk,n).

Let the nth diameter of E be defined by

δn(E) := max
Zn ⊂E

|V (Zn)|2/n(n−1).

A set of points Fn is called the nth Fekete points of E if it achieves the above max-
imum. The classical result of Fekete [6] states that δn(E), n≥2, form a decreasing
sequence that converges to a limit called the transfinite diameter δ(E). Szegő [23]
found that δ(E) is equal to the logarithmic capacity cap(E) from potential theory,
which is defined as follows. For a Borel measure μ with compact support, define its
energy by [25, p. 54]

I[μ] :=
∫∫

log
1

|z −t| dμ(t) dμ(z).
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Consider the problem of finding the minimum energy

VE := inf
μ∈M(E)

I[μ],

where M(E) is the space of all positive unit Borel measures supported on E. The
capacity of E is given by

cap(E) := e−VE .

If Robin’s constant VE is finite (i.e. cap(E) �=0), then the infimum is attained by the
equilibrium measure μE ∈ M(E) [25, p. 55], which is a unique probability measure
expressing the steady state distribution of charge on the conductor E. For detailed
expositions of potential theory, we refer the reader to the books of Ransford [17],
Tsuji [25] and Landkof [12].

Consider the counting measure τ(Zn) for the set Zn={zk,n}n
k=1, given by

τ(Zn) :=
1
n

n∑

k=1

δzk,n
,

where δzk,n
is the unit point mass at zk,n ∈Zn. It is clear that I[τ(Zn)]=∞, but we

can define the discrete energy of τ(Zn) (or of the set Zn) by setting

Î[τ(Zn)] := −log |V (Zn)|2/n(n−1) =
2

n(n−1)

∑

1≤j<k≤n

log
1

|zj,n −zk,n| .

Note that the discrete energy Î[τ(Zn)] is finite if and only if all points of Zn are
distinct. The Fekete–Szegő results may be restated as

lim
n→∞

inf
Zn ⊂E

Î[τ(Zn)] = lim
n→∞

Î[τ(Fn)] = lim
n→∞

(−log δn(E)) =VE = I[μE ],

which simply indicates that the discrete approximations of the minimum energy
converge to Robin’s constant, see [17, p. 153]. It is also well known that the counting
measures τ(Fn) converge to μE in the weak-* topology (written τ(Fn) ∗→μE), as
n→∞, provided that cap(E)>0 [1, p. 226]. Such equidistribution property is shared
by many sequences of discrete sets whose energies converge to Robin’s constant, see
Andrievskii and Blatt [1] for history and references. Our new equidistribution result
is as follows.

For an arbitrary compact set E ⊂C, let ΩE be the unbounded connected com-
ponent of C\E. If cap(E)>0 then the Green function gE(z, ∞) for ΩE with pole
at ∞ [25, p. 14] is well defined. We use the quantity

mE(Zn) :=
1
n

∑

zk,n ∈ΩE

gE(zk,n, ∞)
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to measure how close Zn is to E. If Zn ∩ΩE =∅ then we set mE(Zn)=0 by defini-
tion.

Theorem 1.1. Let E ⊂C be compact, with cap(E)>0. If the sets

Zn = {zk,n}n
k=1 ⊂ C, n ≥ 2,

satisfy

(1.1) lim
n→∞

Î[τ(Zn)] =VE

and

(1.2) lim
n→∞

mE(Zn)= 0,

then

(1.3)

⎧
⎪⎪⎨

⎪⎪⎩

(i) τ(Zn) ∗→μE , as n→∞,

(ii) lim
R→∞

lim
n→∞

1
n

∑

|zk,n |≥R

log |zk,n| =0.

Conversely, (1.2) holds for any sequence of the sets Zn={zk,n}n
k=1 ⊂C, n∈N, satis-

fying (1.3).

When Zn ⊂E, we clearly have that mE(Zn)=0 for all n≥2, and (1.1) implies
the well known fact that τ(Zn) ∗→μE , as n→∞. A new feature of the above result
is that Zn is not required to be a subset of E. Introduction of mE(Zn) is inspired
by the generalized Mahler measure that was used in [16] to study the asymptotic
zero distribution for polynomials with integer coefficients. Theorem 1.1 is a gener-
alization of Theorem 2.1 in [16]. The majority of equidistribution results in analysis
are stated in terms of zeros of polynomials, with the assumptions expressed via the
supremum norms ‖Pn‖E :=supz∈E |Pn(z)| of polynomials, see [1]. We recall one of
the most frequently used results of this kind, due to Blatt, Saff and Simkani [2].

Theorem BSS. Let E ⊂C be a compact set, with cap(E)>0, and set E∗ :=
supp(μE). If the sets Zn={zk,n}n

k=1 ⊂C, n≥2, and the corresponding polynomials
Pn(z):=

∏n
k=1(z −zk,n) satisfy

(1.4) lim
n→∞

‖Pn‖1/n
E∗ =cap(E)

and

(1.5) lim
n→∞

τn(A)= 0,
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where τn :=τ(Zn) and A is any closed set in the bounded components of C\E∗, then

(1.6) τn
∗→μE , as n→ ∞.

We note that (1.4) implies (1.2) because

mE(Zn) ≤ 1
n

n∑

k=1

gE(zk,n, ∞)

=
∫

gE(z, ∞) dτn(z)

=
∫ (∫

log |z −t| dμE(t)−log cap(E)
)

dτn(z)

=
∫∫

log |z −t| dτn(z) dμE(t)−log cap(E)

=
∫

log |Pn(t)|1/n dμE(t)−log cap(E)

≤ log ‖Pn‖1/n
E∗ −log cap(E),

where we used the standard representation of gE(z, ∞) given in (3.2). Thus using
mE(Zn) instead of ‖Pn‖E∗ (or ‖Pn‖E) gives stronger results, in general. How-
ever, conditions (1.5) and (1.1) are substantially different, so that Theorem 1.1 and
Theorem BSS complement each other.

The following fact about the supremum norms of polynomials is of independent
interest.

Theorem 1.2. Let E ⊂C be a regular compact set. Suppose that the sets
Zn={zk,n}n

k=1 ⊂C, n≥2, satisfy (1.1). We have that

(1.7) lim
n→∞

‖Pn‖1/n
E =cap(E)

for the polynomials Pn(z)=
∏n

k=1(z −zk,n) is equivalent to (1.2) or (1.3).

Regularity is understood here in the sense of the Dirichlet problem for ΩE ,
which means that the limiting boundary values of gE(z, ∞) in ΩE are all zero, see
[25, p. 82]. Regularity of E also implies that cap(E)>0. We recall that any monic
polynomial Pn of degree n satisfies ‖Pn‖E ≥cap(E)n, see [1, p. 16]. Thus (1.7) (and
(1.4)) means that Pn have asymptotically minimal supremum norms on E.

Our results have clear analogues in Rn, n>2, where one should use the theory
of Newtonian potentials and the associated Green functions. Such extensions are
also valid for the majority of quantitative estimates stated in the next section.
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2. Rate of convergence and discrepancy in equidistribution

This section is devoted to the quantitative estimates of how close τ(Zn) is to
the equilibrium measure μE , which are often called discrepancy estimates. Consider
a class of continuous test functions φ : R

2→R with compact support in the plane
R

2=C. Recall that τ(Zn) ∗→μE , as n→∞, means that

lim
n→∞

1
n

n∑

k=1

φ(zk,n) = lim
n→∞

∫
φ dτ(Zn) =

∫
φ dμE .

Let
ωφ(r) := sup

|z−ζ|≤r

|φ(z)−φ(ζ)|

be the modulus of continuity of φ in C. We also require that the functions φ have
finite Dirichlet integral

D[φ] :=
∫∫

R2
(φ2

x+φ2
y) dx dy,

where it is assumed that the partial derivatives φx and φy exist a.e. on R2 in the
sense of the area measure. Define the distance from a point z ∈C to a compact set
E by

dE(z) :=min
t∈E

|z −t|.

Theorem 2.1. Let E ⊂C be an arbitrary compact set of positive capacity, and
let φ : C→R be a continuous function with compact support such that D[φ]<∞. If
Zn={zk,n}n

k=1 ⊂C, n≥2, then we have for any r>0 that

(2.1)
∣∣∣∣
1
n

n∑

k=1

φ(zk,n)−
∫

φ dμE

∣∣∣∣ ≤ ωφ(r)+

√
D[φ]
2π

√
I,

where

(2.2) I =2mE(Zn)+
n−1

n
Î[τ(Zn)]−VE − log r

n
+2 max

dE(z)≤2r
gE(z, ∞).

Perhaps the most interesting new feature of Theorem 2.1 is its generality.
All previous discrepancy results imposed strict geometric conditions on the set E.
A typical application of our result is given by a sequence of sets Zn satisfying (1.1)
and (1.2). We choose r=rn→0, as n→∞, so that the right-hand side of (2.1)
tends to 0 with a certain rate under the mere assumption that the Green func-
tion gE(z, ∞) is continuous at the boundary points of ΩE (i.e. E is regular). For
the effective estimates, one would usually take rn=c/na, with a, c>0, and consider
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sets with uniformly Hölder continuous Green functions. We state the condition of
Hölder continuity for gE(z, ∞) in the following form:

(2.3) gE(z, ∞) ≤ C(E)dE(z)s, z ∈ ΩE ,

where C(E)>0 and 0<s≤1. It holds for all uniformly perfect sets, various Cantor-
type sets, and many other compact sets, see Carleson and Totik [4, pp. 562–563] and
Totik [24] for a discussion and further references. Uniformly perfect sets form the
widest known class given by a natural geometric condition, for which (2.3) is valid.
A compact set E is called uniformly perfect if there exist constants c, d>0 such
that for any z ∈E and any r ∈(0, d) there is ζ ∈E satisfying cr<|z −ζ|<r. Several
interesting characterizations and many applications of uniformly perfect sets are
discussed in the survey by Sugawa [22], where the reader may also find history and
numerous additional references. Uniformly perfect sets trivially include compact
sets consisting of finitely many non-degenerate connected components.

We consider an application to the “near-Fekete” points, i.e., to the sets Zn ⊂E

whose discrete energies are close to VE .

Theorem 2.2. Let E ⊂C be a compact set, with cap(E)>0, such that the
Hölder condition (2.3) holds for gE(z, ∞). Suppose that Zn={zk,n}n

k=1 ⊂E, n≥2,

satisfy

(2.4) Î[τ(Zn)]−VE ≤ C1
log n

n
, n ≥ 2,

where C1>0 is independent of Zn, and consider Ωn :={z ∈ΩE :gE(z, ∞)>1/n}.
Then we have for the polynomials Pn(z):=

∏n
k=1(z −zk,n) that

(2.5)
∣∣∣∣
1
n

log |Pn(z)|+VE −gE(z, ∞)
∣∣∣∣ ≤ C2

log n√
n

, z ∈ Ωn, n ≥ 2,

where C2>0 is independent of z and Zn. Furthermore,

(2.6) log ‖Pn‖E +nVE ≤ C2

√
n log n+1, n ≥ 2,

and

(2.7) −C3
log n√

n
≤ Î[τ(Zn)]−VE , n ≥ 2,

with C3>0 being independent of Zn.

One of the standard applications for arrays of equidistributed points is interpo-
lation of analytic functions. Thus (2.5) and (2.6) are used in the effective estimates
of convergence rates for Lagrange interpolation polynomials via Hermite’s interpo-
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lation formula, see Gaier [7, Chapter 2] and Walsh [26, Chapter 4]. The Fekete
points Fn={ζk,n}n

k=1 represent very convenient nodes for interpolation, and one
can easily verify that Theorem 2.2 applies in this case. However, they are difficult
to find explicitly and even numerically, as all points of Fn change with n. Another
choice of interpolation nodes frequently used in practice is given by Leja points.
They have advantage of being defined as a sequence. If E ⊂C is a compact set of
positive capacity, then the Leja points {ξk } ∞

k=0 are defined recursively in the fol-
lowing way. We choose ξ0 ∈E as an arbitrary point. When {ξk }n

k=0 are selected, we
choose the next point ξn+1 ∈E as a point satisfying

n∏

k=0

|ξn+1 −ξk | =max
z∈E

n∏

k=0

|z −ξk |.

It is known that Leja points are equidistributed in E, cf. [3]. However, the properties
of Leja points are not as well studied as those of Fekete points. Thus Theorem 2.2
provides new information about Leja points and corresponding polynomials for quite
general sets.

Corollary 2.3. Theorem 2.2 holds for Fekete and Leja points.

Surveys of results on Fekete points and Fekete polynomials may be found in
Korevaar [10], Andrievskii and Blatt [1] and Korevaar and Monterie [11]. We note
that the estimates of Theorem 2.2 can be improved for the Fekete points and Fekete
polynomials of a set E satisfying more restrictive smoothness conditions. Results on
Leja points and interpolation may be found in Bloom–Bos–Christensen–Levenberg
[3], while Götz [8] considered questions of discrepancy in their distribution.

We now state a consequence of Theorem 2.1 for the Lipschitz continuous func-
tions φ.

Theorem 2.4. Let E ⊂C be a compact set, having cap(E)>0, with Green
function satisfying the Hölder condition (2.3). Suppose that φ : C→R is a Lipschitz
continuous function with compact support. If Zn={zk,n}n

k=1 ⊂C, n≥2, satisfy (2.4),
then

(2.8)
∣∣∣∣
1
n

n∑

k=1

φ(zk,n)−
∫

φ dμE

∣∣∣∣ ≤ C4

√

max
(

log n

n
, mE(Zn)

)
, n ≥ 2,

where C4>0 does not depend on Zn.

As an application, we give an estimate of how close the complex moments of
the discrete measures τ(Zn) are to the moments of μE . A similar result for the real
moments

∫
|z|m dμ(z) may also be easily deduced from Theorem 2.4.
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Corollary 2.5. Let E ⊂C be a compact set, having cap(E)>0, with Green
function satisfying (2.3). If Zn={zk,n}n

k=1 ⊂E, n≥2, satisfy (2.4), then for each
m∈N we have

(2.9)
∣∣∣∣
1
n

n∑

k=1

zm
k,n −

∫
zm dμE(z)

∣∣∣∣ ≤ C5

√
log n

n
, n ≥ 2,

where C5>0 does not depend on Zn (but depends on m and E).

Several applications of this kind to Schur’s problems on means of algebraic
numbers [20] were given in [15] and [16]. We would like to highlight an interesting
fact that Schur’s paper [20] prompted Fekete to introduce his transfinite diameter in
[6]. While the work of Fekete [6] is well known in analysis, and is clearly considered
a cornerstone of the area dealt with in this paper, the fundamental nature of Schur’s
work [20] has become somewhat obscured with time. In fact, Schur’s ideas contained
in [20] started several important areas of research in analysis and number theory.

We state below a generalization of Theorems 3.1 and 3.4 from [16] to much
more general sets.

Theorem 2.6. Let E ⊂C be a compact set, having cap(E)=1, with Green
function satisfying (2.3). Suppose that φ : C→R is a Lipschitz continuous function
with compact support. If Pn(z)=an

∏n
k=1(z −zk,n), an �=0, is a polynomial with

integer coefficients and simple zeros Zn={zk,n}n
k=1 ⊂C, n≥2, then

(2.10)
∣∣∣∣
1
n

n∑

k=1

φ(zk,n)−
∫

φ dμE

∣∣∣∣ ≤ C6

√

max
(

log(n|an|)
n

, mE(Zn)
)

,

where C6>0 does not depend on Pn.

Let Zs
n(E, M) be a class of polynomials Pn(z)=anzn+... with integer coeffi-

cients and simple zeros in a set E ⊂C, satisfying 0<|an| ≤M for a fixed number
M>0. Schur [20, Sections 4–8] studied the limit behavior of the arithmetic means
An of zeros for polynomials from Z

s
n(E, M), as n→∞. For E=D, the closed unit

disk, Schur proved that

lim sup
n→∞

|An| ≤ 1−
√

e

2
< 0.1757.

We showed [15] that limn→∞ An=0 for any sequence of polynomials from Schur’s
classes Z

s
n(D, M), n∈N, as a consequence of the asymptotic equidistribution of

zeros near the unit circle. We also gave estimates of the convergence rates for An.

The following result generalizes Corollary 1.6 from [15], as well as Corollary 3.5
from [16], to centrally symmetric compact sets of capacity 1.
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Corollary 2.7. Let E ⊂C be a compact set, having cap(E)=1, symmetric with
respect to the origin, with gE(z, ∞) satisfying (2.3). If Pn(z)=an

∏n
k=1(z −zk,n)∈

Z
s
n(E, M) then

(2.11)
∣∣∣∣
1
n

n∑

k=1

zk,n

∣∣∣∣ ≤ C7

√
log n

n
, n ≥ max(M, 2),

where C7>0 does not depend on Pn.

Note that (2.5), (2.6), (2.9) and (2.11) are sharp up to certain logarithmic
factors, even for polynomials with integer coefficients and E=D, the closed unit
disk.

Example 2.8. Let pm be the mth prime number in the increasing ordering of
primes. Define the monic polynomials

Pn(z) :=
k∏

m=1

zpm −1
z −1

, k ∈ N,

and note that each Pn has simple zeros Zn={zj,n}n
j=1 at the roots of unity, and

integer coefficients. Hence the discriminant Δ(Pn)=V (Zn)2 is a non-zero integer,
see [13, p. 24]. We conclude that |Δ(Pn)| ≥1 and Î[τ(Zn)]=− log |Δ(Pn)|1/n(n−1) ≤
0=VD, so that (2.4) is satisfied. Using number-theoretic arguments, we show in the
proof that the degree of Pn is

n=
k∑

m=1

pm −k =
k2 log k

2
+o(k2 log k), as k→ ∞,

and that

‖Pn‖D =Pn(1) =
k∏

m=1

pm ≥ ec1

√
n log n, n ≥ 2,

with a constant c1>0. Therefore, the upper bound in (2.6) is of correct order of
magnitude up to the factor

√
log n. The same conclusion is true for (2.5) by the

maximum principle. Furthermore, since the sum of the roots of each

zpm −1
z −1

is equal to −1, we obtain for the roots of Pn that
∣∣∣∣
1
n

n∑

j=1

zj,n

∣∣∣∣ =
k

n
≥ c2√

n log n
,

where c2>0. Hence (2.9) and (2.11) are sharp up to the factor log n.
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In conclusion, we mention that Schur [20] also considered the limit behavior
of the arithmetic means of zeros for polynomials from Z

s
n(E, M) when E=(0, ∞)

and E=R. The case E=(0, ∞) was developed by Siegel [21] and others, see [16] for
history, more references, and new results.

3. Proofs

We give a brief review of basic facts from potential theory. A complete account
may be found in the books by Ransford [17], Tsuji [25] and Landkof [12]. For a
Borel measure μ with compact support, define its potential [25, p. 53] by

Uμ(z) :=
∫

log
1

|z −t| dμ(t), z ∈ C.

It is known that Uμ(z) is a superharmonic function in C, which is harmonic outside
supp(μ). If UμE (z) is the equilibrium (conductor) potential for E, then Frostman’s
theorem [25, p. 60] gives that

(3.1) UμE (z) ≤ VE , z ∈ C, and UμE (z) =VE q.e. on E.

The second statement means that equality holds quasi everywhere on E, i.e., except
for a subset of zero capacity in E. This may be made even more precise, as UμE (z)=
VE for any z ∈C\ΩE . Hence UμE (z)=VE for any z in the interior of E [25, p. 61].
Furthermore, UμE (z)=VE for z ∈∂ΩE if and only if z is a regular point for the
Dirichlet problem in ΩE [25, p. 82]. We mention a well-known connection of the
equilibrium potential for E with the Green function gE(z, ∞) for ΩE with pole
at ∞:

(3.2) gE(z, ∞) =VE −UμE (z), z ∈ C.

This gives a standard extension of gE(z, ∞) from ΩE to the whole plane C, see
[25, p. 82]. Thus gE(z, ∞)=0 for quasi every z ∈∂ΩE , and gE(z, ∞)=0 for any
z ∈C\ΩE , by (3.1) and (3.2).

Proof of Theorem 1.1. Set τn :=τ(Zn) for brevity. We first prove that (1.1)
and (1.2) imply (1.3). Observe that each closed set K ⊂ΩE contains o(n) points of
Zn, as n→∞, i.e.

(3.3) lim
n→∞

τn(K)= 0.

This fact follows because minz∈K gE(z, ∞)>0 and

0 ≤ τn(K) min
z∈K

gE(z, ∞) ≤ 1
n

∑

zk,n ∈K

gE(zk,n, ∞) ≤ mE(Zn)→ 0, as n→ ∞.
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Thus if R>0 is sufficiently large, so that E ⊂DR :={z :|z|<R}, we have o(n) points
of Zn in C\DR, Another consequence of the above inequalities is that

lim
n→∞

1
n

∑

|zk,n |≥R

gE(zk,n, ∞)= 0.

Recall that limz→∞(gE(z, ∞)−log |z|)=VE , see [25, p. 83]. It follows that for any
ε>0, there is a sufficiently large R>0 such that VE −ε<gE(z, ∞)−log |z|<VE +ε

for |z| ≥R, and

o(n)
n

(VE −ε) ≤ 1
n

∑

|zk,n |≥R

gE(zk,n, ∞)− 1
n

∑

|zk,n |≥R

log |zk,n| ≤ o(n)
n

(VE +ε).

Therefore, (1.3)(ii) is proved by passing to the limit as n→∞.
Consider

τ̂n :=
1
n

∑

|zk,n |<R

δzk,n
.

Since supp(τ̂n)⊂DR, n∈N, we use Helly’s theorem [19, p. 3] to select a weak-*
convergent subsequence from the sequence τ̂n. Preserving the same notation for
this subsequence, we assume that τ̂n

∗→ τ , as n→∞. It is clear from (3.3) that
τn

∗→ τ , as n→∞, and that τ is a probability measure supported on the compact
set Ê :=C\ΩE . Suppose that R>0 is large, and order zk,n as follows

|z1,n| ≤ |z2,n| ≤ ... ≤ |zmn,n| <R ≤ |zmn+1,n| ≤ ... ≤ |zn,n|.

Then

Î[τn] = Î[τ̂n]− 2
n(n−1)

∑

1≤j<k
mn<k≤n

log |zj,n −zk,n|

≥ Î[τ̂n]− 2
n

n∑

k=mn+1

log 2|zk,n|

= Î[τ̂n]− 2(n−mn)
n

log 2− 2
n

n∑

k=mn+1

log |zk,n|,(3.4)

where we used that |zj,n −zk,n| ≤2 max(|zj,n|, |zk,n|)=2|zk,n| for j<k. Note that
limn→∞ mn/n=1 by (3.3). For any ε>0, we find R>0 such that

lim sup
n→∞

2
n

n∑

k=mn+1

log |zk,n| = lim sup
n→∞

2
n

∑

|zk,n |≥R

log |zk,n| <ε
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by (1.3)(ii). Thus we obtain from (3.4), (1.1) and the above estimate that

(3.5) lim sup
n→∞

Î[τ̂n] ≤ lim sup
n→∞

Î[τn]+lim sup
n→∞

2
n

n∑

k=mn+1

log |zk,n| <VE +ε.

We now follow a standard potential-theoretic argument to show that τ =μE .
Let KM (z, t):=min(−log |z −t|, M). It is clear that KM (z, t) is a continuous func-
tion in z and t on C×C, and that KM (z, t) increases to −log |z −t|, as M→∞.

Using the monotone convergence theorem and the weak-* convergence of τ̂n ×τ̂n to
τ ×τ , we obtain for the energy of τ that

I[τ ] = −
∫∫

log |z −t| dτ(z) dτ(t)

= lim
M→∞

(
lim

n→∞

∫∫
KM (z, t) dτ̂n(z) dτ̂n(t)

)

= lim
M→∞

(
lim

n→∞

(
2
n2

∑

1≤j<k≤mn

KM (zj,n, zk,n)+
M

n

))

≤ lim
M→∞

(
lim inf
n→∞

2
n2

∑

1≤j<k≤mn

log
1

|zj,n −zk,n|

)

= lim inf
n→∞

mn(mn −1)
n2

Î[τ̂n]

< VE +ε,

where we applied (3.5) and the fact that limn→∞ mn/n=1 in the last estimate.
Since ε>0 is arbitrary, we conclude that I[τ ]≤VE . Recall that supp(τ)⊂Ê=C\ΩE ,

where V
Ê

=VE and μ
Ê

=μE by [25, pp. 79–80]. Note also that I[ν]>V
Ê

for any
probability measure ν �=μ

Ê
, with supp(ν)⊂Ê, see [25, pp. 79–80]. Hence τ =μ

Ê
=μE

and (1.3)(i) follows.
Let us turn to the converse statement (1.3) ⇒ (1.2). As in the first part of

the proof, we note that limz→∞(gE(z, ∞)−log |z|)=VE . For any ε>0, we choose
R>0 so large that E ⊂DR and |gE(z, ∞)−log |z| −VE |<ε when |z| ≥R. Thus we
have from (1.3)(i) that

1
n

∑

|zk,n |≥R

gE(zk,n, ∞) ≤ 1
n

∑

|zk,n |≥R

log |zk,n|+ o(n)
n

(VE +ε).

Increasing R if necessary, we can achieve that

1
n

∑

|zk,n |≥R

log |zk,n| <ε
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for large n∈N by (1.3)(ii), which implies that

(3.6) lim sup
n→∞

1
n

∑

|zk,n |≥R

gE(zk,n, ∞) ≤ ε.

On setting gE(z, ∞)=VE −UμE (z), z ∈C, we continue gE(z, ∞) as a subharmonic
function in C. Since gE(z, ∞) is now upper semi-continuous in C, we obtain from
(1.3)(i) and Theorem 0.1.4 of [19, p. 4] that

lim sup
n→∞

1
n

∑

|zk,n |<R

gE(zk,n, ∞) = lim sup
n→∞

∫

DR

gE(z, ∞) dτn(z)

≤
∫

DR

gE(z, ∞) dμE(z)

= VE −
∫

UμE (z) dμE(z)

= VE −I[μE ]
= 0,(3.7)

where the last equality follows as the energy I[μE ]=VE , see [25, p. 55]. Observe
from the definition of mE(Zn) and (3.6) and (3.7) that

0 ≤ lim sup
n→∞

mE(Zn) ≤ lim sup
n→∞

1
n

n∑

k=1

gE(zk,n, ∞) ≤ ε.

We now let ε→0, to obtain that

(3.8) lim
n→∞

1
n

n∑

k=1

gE(zk,n, ∞) = lim
n→∞

mE(Zn)= 0. �

Remark 3.1. Since (1.1) and (1.2) imply (1.3), and (1.3) implies (3.8) by the
above proof, we arrive at

lim
n→∞

1
n

n∑

k=1

gE(zk,n, ∞)= 0.

Hence the sets Zn satisfying (1.1) and (1.2) essentially avoid irregular points of E

(in the bulk).

Proof of Theorem 1.2. Using the definition of mE(Zn) and (3.2), we obtain
that (1.7) implies (1.2) because

0 ≤ mE(Zn) ≤ 1
n

n∑

k=1

gE(zk,n, ∞)

=
∫

gE(z, ∞) dτn(z)
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=
∫ (∫

log |z −t| dμE(t)−log cap(E)
)

dτn(z)

=
∫∫

log |z −t| dτn(z) dμE(t)−log cap(E)

=
∫

log |Pn(t)|1/n dμE(t)−log cap(E)

≤ log ‖Pn‖1/n
E −log cap(E).

Since we assume that (1.1) holds true, (1.2) is equivalent to (1.3) by Theorem 1.1.
Thus it remains to show that (1.3) implies (1.7). For any ε>0, we find R>0 such
that E ⊂DR={z :|z|<R} and

lim
n→∞

( ∏

|zk,n |≥R

|zk,n|
)1/n

< 1+ε

by (1.3)(ii). As there are o(n) numbers zk,n outside DR by (1.3)(i), and since
‖z −zk,n‖E ≤2|zk,n| for |zk,n| ≥R, we obtain that

lim sup
n→∞

∥∥∥∥
∏

|zk,n |≥R

(z −zk,n)
∥∥∥∥

1/n

E

≤ lim sup
n→∞

2o(n)/n

( ∏

|zk,n |≥R

|zk,n|
)1/n

≤ 1+ε.

Let ‖Pn‖E =|Pn(zn)|, zn ∈E, and assume that limn→∞ zn=z0 ∈E by compactness.
Define

τ̂n :=
1
n

∑

|zk,n |<R

δzk,n
,

and note that τ̂n
∗→μE , as n→∞, by (1.3)(i). For the polynomial

P̂n(z) :=
∏

|zk,n |<R

(z −zk,n),

we have by the principle of descent (Theorem I.6.8 of [19]) that

lim sup
n→∞

|P̂n(zn)|1/n = lim sup
n→∞

exp(−U τ̂n(zn)) ≤ exp(−UμE (z0)) = cap(E),

where the last equality is a consequence of Frostman’s theorem (3.1) and the reg-
ularity of E. It is known that ‖Pn‖E ≥cap(E)n, see [1, p. 16]. We use this fact
together with the above estimates to obtain that

cap(E) ≤ lim sup
n→∞

‖Pn‖1/n
E ≤ lim sup

n→∞
|P̂n(zn)|1/n lim sup

n→∞

( ∏

|zk,n |≥R

|zn −zk,n|
)1/n

≤ (1+ε) cap(E).

Letting ε→0, we obtain (1.7). �
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Proof of Theorem 2.1. Given r>0, define the measures νr
k by

dνr
k(zk,n+reit) =

dt

2π
, t ∈ [0, 2π).

Let τn :=τ(Zn) and

τ r
n :=

1
n

n∑

k=1

νr
k,

and estimate

(3.9)
∣∣∣∣
∫

φ dτn −
∫

φ dτ r
n

∣∣∣∣ ≤ 1
n

n∑

k=1

1
2π

∫ 2π

0

|φ(zk,n)−φ(zk,n+reit)| dt ≤ ωφ(r).

We now assume that E is bounded by finitely many piecewise smooth curves, and
remove this assumption in the end of the proof. Let gE(z, ∞)=VE −UμE (z), z ∈C.
Since E is regular [25, p. 104], we have that gE(z, ∞)=0, z ∈C\ΩE . Consider
the signed measure σ :=τ r

n −μE , with σ(C)=0. This measure is recovered from its
potential by the formula

dσ = − 1
2π

(
∂Uσ

∂n+

+
∂Uσ

∂n−

)
ds,

where ds is the arc length on supp(σ)=supp(μE)∪
⋃n

k=1{z :|z −zk,n|=r}, and n± are
the inner and the outer normals. The above representation follows from Theorem 1.1
of [14], see also Example 1.2 therein. Let DR :={z :|z|<R} be a disk containing the
support of φ. We use Green’s identity

∫∫

G

uΔv dA=
∫

∂G

u
∂v

∂n
ds−

∫∫

G

∇u∇v dA

with u=φ and v=Uσ in each connected component G of DR \supp(σ). Since Uσ

is harmonic in G, we have that ΔUσ=0 in G. Adding Green’s identities for all
domains G, we obtain that

(3.10)
∣∣∣∣
∫

φ dσ

∣∣∣∣ =
1
2π

∣∣∣∣
∫∫

DR

∇φ∇Uσ dA

∣∣∣∣ ≤ 1
2π

√
D[φ]

√
D[Uσ],

by the Cauchy–Schwarz inequality. It is known that D[Uσ]=2πI[σ] [12, Theo-
rem 1.20], where I[σ]=−

∫∫
log |z −t| dσ(z) dσ(t)=

∫
Uσ dσ is the energy of σ. We

observe that
∫

UμE dμE =I[μE ]=VE , so that

I[σ] =
∫

Uτr
n dτ r

n −2
∫

UμE dτ r
n+VE .

Since gE(z, ∞) is harmonic in ΩE , the mean-value property gives that
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−
∫

UμE dτ r
n =

∫
(gE(z, ∞)−VE) dτ r

n(z)

=
1
n

( ∑

dE(zk,n)≤r

+
∑

dE(zk,n)>r

)∫
gE(z, ∞) dνr

k(z)−VE

≤ 1
n

( ∑

dE(zk,n)≤r

max
dE(z)≤2r

gE(z, ∞)+
∑

dE(zk,n)>r

gE(zk,n, ∞)
)

−VE

≤ max
dE(z)≤2r

gE(z, ∞)+mE(Zn)−VE .

Taking into account the representation [19, p. 22]

Uνr
k (z) = − log max(r, |z −zk,n|), z ∈ C,

we further deduce that

∫
Uτr

n dτ r
n =

1
n2

n∑

j,k=1

∫
Uνr

k dνr
j ≤ 1

n2

(∑

j �=k

log
1

|zj,n −zk,n| −n log r

)

=
n−1

n
Î[τn]− log r

n
,

and combine the energy estimates to obtain

I[σ] ≤ 2mE(Zn)+
n−1

n
Î[τn]−VE − log r

n
+2 max

dE(z)≤2r
gE(z, ∞).

Using (3.9), (3.10) and the above estimate, we proceed to (2.1) and (2.2) via the
following estimates

∣∣∣∣
∫

φ dτn −
∫

φ dμE

∣∣∣∣ ≤
∣∣∣∣
∫

φ dτn −
∫

φ dτ r
n

∣∣∣∣+
∣∣∣∣
∫

φ dτ r
n −

∫
φ dμE

∣∣∣∣

≤ ωφ(r)+

√
D[φ]

√
D[Uσ]

2π
=ωφ(r)+

√
D[φ]
2π

√
I[σ].

Thus we proved the result for sets bounded by finitely many piecewise smooth
curves. To show that (2.1) and (2.2) hold for an arbitrary compact set E of positive
capacity, we approximate E by a decreasing sequence Em, m∈N, of compact sets
with piecewise smooth boundaries. Let ε1=1 and consider an open cover of E by the
disks {D(z, ε1)}z∈E , where D(z, ε1) is centered at z and has radius ε1. There exists
a finite subcover such that E ⊂

⋃N1
k=1 D(ck,1, ε1). Define E1 :=

⋃N1
k=1 D(ck,1, ε1). We
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construct the sets Em inductively for m≥2. Set εm :=dist(E, ∂Em−1)/2>0. As
before, we have a finite subcover such that

E ⊂
Nm⋃

k=1

D(ck,m, εm), m ∈ N,

where ck,m ∈E, k=1, ..., Nm. Let

Em :=
Nm⋃

k=1

D(ck,m, εm), m ∈ N,

and note that Em ⊂Em−1 and εm ≤εm−1/2, m≥2. Clearly, the boundary of every
Em consists of finitely many piecewise smooth curves, and each curve is composed of
finitely many circular arcs. Thus (2.1) and (2.2) hold for every Em, m∈N. Observe
that limm→∞ εm=0, so that

E =
∞⋂

m=1

Em.

If gEm(z, ∞) is the Green function for C\Em with pole at ∞, then

gEm(z, ∞) ≤ gE(z, ∞), z ∈ C,

for any m∈N, by Corollary 4.4.5 of [17, p. 108]. This gives that

max
dEm (z)≤2r

gEm(z, ∞) ≤ max
dEm (z)≤2r

gE(z, ∞), m ∈ N.

Since gE(z, ∞) is subharmonic in C and harmonic in ΩE , the maximum on the right
of the above inequality is attained on the set {z ∈C:dEm(z)=2r} ⊂ΩE . We have
that

lim
m→∞

max
dEm (z)=2r

gE(z, ∞) = max
dE(z)=2r

gE(z, ∞),

because dEm(z)≤dE(z)≤dEm(z)+εm, z ∈C, by the triangle inequality. Thus

(3.11) lim sup
m→∞

max
dEm (z)≤2r

gEm(z, ∞) ≤ max
dE(z)≤2r

gE(z, ∞).

Furthermore, Theorem 4.4.6 of [17, p. 108] implies that

lim
m→∞

gEm(z, ∞) = gE(z, ∞), z ∈ ΩE ,

so that

(3.12) lim
m→∞

mEm(Zn) =mE(Zn).
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Recall that gEm(z, ∞)=VEm −UμEm (z), z ∈C, and the same formula holds with Em

replaced by E. Using Theorem 5.1.3 of [17, p. 128], we obtain that

(3.13) lim
m→∞

VEm =VE ,

which gives that
lim

m→∞
UμEm (z) =UμE (z), z ∈ ΩE .

Since supp(μEm)⊂∂ΩEm ⊂∂Em, m∈N, we can select a subsequence of measures
μj :=μEmj

such that μj
∗→μ, see [19, p. 3]. It follows that μ is a probability

measure supported on ∂ΩE , as E=
⋂∞

m=1 Em and ΩEm ⊂ΩEm+1 ⊂ΩE , m∈N. Hence
we have by the weak-* convergence that

lim
j→∞

Uμj (z) =Uμ(z), z ∈ ΩE ,

which means that
Uμ(z) =UμE (z), z ∈ ΩE .

Since supp(μ)⊂∂ΩE and supp(μE)⊂∂ΩE , Carleson’s unicity theorem [19, p. 123]
implies that μ=μE . This argument applies to any subsequence of the sequence
μEm , m∈N. Therefore we conclude that μEm

∗→μE , as m→∞. Consequently,

lim
m→∞

∫
φ dμEm =

∫
φ dμE .

We now pass to the limit in (2.1) stated for Em, as m→∞, and use the above equa-
tion together with (3.11)–(3.13) to prove that (2.1) and (2.2) also hold for E. �

Proof of Theorem 2.2. Since Zn ⊂E and limz→∞(gE(z, ∞)−log |z|)=VE , the
function (log |Pn(z)|)/n+VE −gE(z, ∞) is harmonic in ΩE (including ∞, where it
has the value 0). By the maximum–minimum principle, it is sufficient to prove
(2.5) for z ∈Γn :=∂Ωn={z ∈ΩE :gE(z, ∞)=1/n}, where n≥2. Define the distance
between E and Γn by

ρn := dist(E, Γn) = min
t∈E

w∈Γn

|t−w|,

and note that

(3.14) ρn ≤ |z −t|+dE(t), t ∈ C, z ∈ Γn,

by the triangle inequality. Let diam(E):=maxt,w∈E |t−w| be the diameter of E,
and set R:=diam(E)+1. We apply Theorem 2.1 with the function

(3.15) φ(t) :=min(log(|z −t|+dE(t))−log R, 0), t ∈ C, z ∈ Γn.
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It is clear that supp(φ)⊂D(z, R):={t∈C:|t−z|<R}. Furthermore, E ⊂supp(φ) for
all large n∈N, because dE(z)→0 for z ∈Γn, as n→∞, by the continuity of g(z, ∞)
in ΩE . One readily finds from the triangle inequality that

∣∣|z −t1| − |z −t2|
∣∣ ≤ |t1 −t2|, t1, t2 ∈ C,

and
|dE(t1)−dE(t2)| ≤ |t1 −t2|, t1, t2 ∈ C,

see also Federer [5, p. 434] for more details about the function dE . Hence the
function f(t):=|z −t|+dE(t), t∈C, satisfies the Lipschitz condition

|f(t1)−f(t2)| ≤ 2|t1 −t2|, t1, t2 ∈ C.

Thus the partial derivatives fx and fy exist a.e. with respect to the area measure
(and the linear measure on vertical and horizontal lines), and we obtain that

|fx(t)| ≤ 2 and |fy(t)| ≤ 2 for a.e. t =x+iy ∈ C.

Hence φx and φy also exist a.e. in the same sense, with

|φx(t)| ≤ 2
|z −t|+dE(t)

≤ 2
ρn

and
|φy(t)| ≤ 2

|z −t|+dE(t)
≤ 2

ρn

for a.e. t=x+iy ∈C by (3.14). This gives the estimates

|φ(t1)−φ(t2)| ≤ |t1 −t2| sup
C

√
φ2

x+φ2
y ≤ 2

√
2

ρn
|t1 −t2|

and

(3.16) ωφ(r) ≤ 2
√

2
ρn

r.

Furthermore, we obtain for the Dirichlet integral

D[φ] =
∫∫

C

(φ2
x+φ2

y) dA

≤
∫∫

D(z,R)

8 dA(t)
(|z −t|+dE(t))2

≤
∫∫

|z−t|≤ρn

8 dA(t)
(|z −t|+dE(t))2

+
∫∫

ρn ≤ |z−t|≤R

8 dA(t)
(|z −t|+dE(t))2
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≤ 8
(

1
ρ2

n

πρ2
n+

∫ 2π

0

∫ R

ρn

r dr

r2
dθ

)

= 8π

(
1+2 log

R

ρn

)

by supp(φ)⊂D(z, R) and (3.14). If the Green function g(z, ∞) satisfies the Hölder
condition (2.3), then ρn ≥(Cn)−1/s with C=C(E)>0, and D[φ]=O(log n), as
n→∞. Letting r=n−1/2−1/s, we obtain that ωφ(r)=O(n−1/2) by (3.16). Since
2r ≤ρn for large n, we have that

max
dE(z)≤2r

gE(z, ∞) ≤ 1
n

.

Applying the above estimates and (2.4) in (2.1) and (2.2), we arrive at
∣∣∣∣
1
n

n∑

k=1

φ(zk,n)−
∫

φ dμE

∣∣∣∣ ≤ O(n−1/2)+O
(√

log n
)(

O

(
log n

n

)
+

2
n

)1/2

≤ O

(
log n√

n

)
, as n→ ∞,(3.17)

where we also used that mE(Zn)=0. Note that all constants in the O terms are
independent of the point z ∈Γn, of the set Zn, as well as of n≥2. It remains to
observe that φ(t)=log |z −t| −log R for t∈E, so that

1
n

n∑

k=1

φ(zk,n)−
∫

φ dμE =
1
n

log |Pn(z)| −
∫

log |z −t| dμE(t)

=
1
n

log |Pn(z)|+VE −gE(z, ∞), z ∈ Γn,

by (3.2). Thus (2.5) follows from (3.17) by the maximum–minimum principle. Fur-
ther, we obtain from (2.5) for z ∈Γn that

(3.18) log ‖Pn‖E ≤ log ‖Pn‖Γn ≤ C2

√
n log n−nVE +1, n ≥ 2,

which proves (2.6).
For the proof of (2.7), we write

P ′
n(w) =

1
2πi

∫

|t−w|=ρn

Pn(t) dt

(t−w)2
, w ∈ ∂E.

Hence
|P ′

n(w)| ≤
max|t−w|=ρn

|Pn(t)|
ρn

, w ∈ ∂E,

and
‖P ′

n‖E ≤ 1
ρn

‖Pn‖Γn ≤ (Cn)1/s‖Pn‖Γn ,
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because ρn ≥(Cn)−1/s. Note that

exp(−n(n−1)Î[τ(Zn)]) =
n∏

k=1

|P ′
n(zk,n)| ≤ (Cn)n/s‖Pn‖n

Γn
.

Thus (2.7) follows from (3.18) and the above equation. �

Proof of Corollary 2.3. We first observe that the Fekete points Fn satisfy

(3.19) Î[τ(Fn)] ≤ VE , n ≥ 2.

This fact holds because the discrete energies of Fekete sets increase to VE with n,

see [17, p. 153]. Hence (2.4) holds true and Theorem 2.2 applies to Fn.
It turns out that (3.19) is also true for the Leja points Ln={ξk }n−1

k=0 , n∈N.

Consider the corresponding Leja polynomials Ln(z):=
∏n−1

k=0(z −ξk), n∈N, and re-
call that

‖Ln‖E = |Ln(ξn)| =
n−1∏

k=0

|ξn −ξk |

by definition. Hence we have for the Vandermonde determinant

|V (Ln)| =
∏

0≤j<k≤n−1

|ξj −ξk | =
n−1∏

k=1

|Lk(ξk)| =
n−1∏

k=1

‖Lk(ξk)‖E .

Since ‖Pk ‖E ≥cap(E)k holds for any monic polynomial Pk, with deg(Pk)=k, see
[1, p. 16], we obtain that

|V (Ln)| ≥ cap(E)n(n−1)/2

and
Î[τ(Ln)] = − log |V (Ln)|2/n(n−1) ≤ VE . �

Proof of Theorem 2.4. Suppose that supp(φ)⊂ {z :|z| ≤R}, and that φ satisfies
the Lipschitz condition |φ(z)−φ(t)| ≤A|z −t|, z, t∈C. It is clear that ωφ(r)≤Ar.

Also, |φx| ≤A and |φy | ≤A a.e. in C, so that D[φ]≤2πR2A2. If the Green func-
tion g(z, ∞) satisfies the Hölder condition (2.3), then ρn=mint∈E,w∈Γn |t−w| ≥
(Cn)−1/s, with C=C(E)>0 and 0<s≤1, as in the proof of Theorem 2.2. Let-
ting r=n−2/s, we obtain that ωφ(r)≤An−2/s. Since 2r ≤ρn for large n, we have
that

max
dE(z)≤2r

gE(z, ∞) ≤ 1
n

.

Hence (2.8) follows from (2.1) and (2.2) by combining the above estimates with
(2.4). �



170 Igor E. Pritsker

Proof of Corollary 2.5. We let φ(z)=Re(zm), z ∈E, and extend this function
outside of E to be a Lipschitz continuous function with compact support in C.
Then (2.8) holds true for this choice of φ, with mE(Zn)=0 as Zn ⊂E. The same
argument applies to φ(z)=Im(zm), z ∈E, continued appropriately. Combining the
estimates obtained from (2.8), we arrive at (2.9). �

Proof of Theorem 2.6. In the first part, we repeat the proof of Theorem 2.4.
Namely, we assume that supp(φ)⊂ {z :|z| ≤R}, and that φ satisfies the Lipschitz
condition |φ(z)−φ(t)| ≤A|z −t|, z, t∈C. It is clear that ωφ(r)≤Ar. Also, |φx| ≤
A and |φy | ≤A a.e. in C, so that D[φ]≤2πR2A2. If the Green function g(z, ∞)
satisfies the Hölder condition (2.3), then ρn ≥(Cn)−1/s, with C=C(E)>0 and 0<

s≤1. Letting r=n−2/s, we obtain that ωφ(r)≤An−2/s. Since 2r ≤ρn for large n,
we have that

max
dE(z)≤2r

gE(z, ∞) ≤ 1
n

.

Noting that VE =log cap(E)=0, we seek an upper estimate for Î[τ(Zn)], in order
to apply Theorem 2.1. As Pn has integer coefficients and simple zeros, we obtain
that its discriminant Δ(Pn)=a2n−2

n V (Zn)2 is a non-zero integer [13, p. 24]. Hence
|Δ(Pn)| ≥1 and

Î[τ(Zn)] = − 1
n(n−1)

log |Δ(Pn)|+ 2
n

log |an| ≤ 2
n

log |an|.

Combining the above estimates in (2.1) and (2.2), we obtain (2.10). �

Proof of Corollary 2.7. Since the roots Zn={zk,n}n
k=1 of Pn come in complex

conjugate pairs, we have that

1
n

n∑

k=1

zk,n =
1
n

n∑

k=1

Re(zk,n).

Hence we consider φ(z)=Re(z), z ∈E, and extend this function outside of E to a
Lipschitz continuous function with compact support in C. Note that mE(Zn)=0 as
Zn ⊂E. Also, |an| ≤M . The electrostatic centroid of E lies at the origin because of
the set symmetry and uniqueness of the equilibrium measure μE , i.e.,

∫
z dμE(z)=0.

Thus (2.11) follows from (2.10) by Theorem 2.6. �

Proof of Example 2.8. We recall some basic facts from prime number theory,
which may be found, for example, in Ingham [9]. Let π(x) be the number of primes
not exceeding x. The prime number theorem states that

π(x) =
x

log x
+o

(
x

log x

)
, as x→ ∞.
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It is equivalent to the following asymptotic formulas from prime number theory. If
pm is the mth prime number, then [9, p. 36]

(3.20) pm =m log m+o(m log m), as m→ ∞.

For the Chebyshev θ-function, we have [9, p. 13]

(3.21) θ(x) :=
∑

p≤x

log p=x+o(x), as x→ ∞,

where the sum extends over all primes p≤x.
An asymptotic formula for the sum of consecutive primes is found by using

the method described in Rosser and Schoenfeld [18, pp. 67–68]. Consider the prime
number theorem with error term [9, p. 65]:

(3.22) π(x)= li x+O
(
xe−a

√
log x

)
, as x→ ∞,

where a>0 and

li x :=
∫ x

2

dt

log t
.

Suppose that f : [0, ∞)→R is a continuously differentiable function. Using the
Stieltjes integral and integration by parts, we obtain by following [18, p. 67] that

∑

p≤x

f(p) =
∫ x

2

f(t) dπ(t) = f(x)π(x)−
∫ x

2

f ′(t)π(t) dt

=
∫ x

2

f(t) dt

log t
+f(x)(π(x)−li x)−

∫ x

2

f ′(t)(π(t)−li t) dt.

If we set f(x)=x and use (3.22) in the above formula, it gives that

∑

p≤x

p=
x2

2 log x
+o

(
x2

log x

)
, as x→ ∞.

Taking into account (3.20), we arrive at the asymptotic formula

(3.23) n=
k∑

m=1

pm −k =
k2 log k

2
+o(k2 log k), as k→ ∞.

Combining (3.20), (3.21) and (3.23), we obtain that

log
( k∏

m=1

pm

)
= θ(pk) ≥ c1

√
n log n, n ≥ 2,
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with a constant c1>0. This implies our estimate for ‖Pn‖D, because

|Pn(z)| =
∣∣∣∣

k∏

m=1

(pm −1∑

j=0

zj

)∣∣∣∣ ≤
k∏

m=1

pm =Pn(1), |z| ≤ 1.

Also, (3.23) immediately gives that

k

n
≥ c2√

n log n
, n ≥ 2,

where c2>0. �
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4. Carleson, L. and Totik, V., Hölder continuity of Green’s functions, Acta Sci. Math.
(Szeged) 70 (2004), 557–608.

5. Federer, H., Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491.
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