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Homomorphisms of infinitely generated analytic
sheaves

Vakhid Masagutov

Abstract. We prove that every homomorphism OE
ζ →OF

ζ , with E and F Banach spaces

and ζ ∈Cm, is induced by a Hom(E, F )-valued holomorphic germ, provided that 1≤m<∞. A sim-

ilar structure theorem is obtained for the homomorphisms of type OE
ζ →Sζ , where Sζ is a stalk of a

coherent sheaf of positive depth. We later extend these results to sheaf homomorphisms, obtaining

a condition on coherent sheaves which guarantees the sheaf to be equipped with a unique analytic

structure in the sense of Lempert–Patyi.

1. Introduction

The theory of coherent sheaves is one of the deeper and most developed subjects
in complex analysis and geometry, see [GR]. Coherent sheaves are locally finitely
generated. However, a number of problems even in finite-dimensional geometry lead
to sheaves that are not finitely generated over the structure sheaf O, such as the
sheaf of holomorphic germs valued in a Banach space; and in infinite-dimensional
problems infinitely generated sheaves are the rule rather than the exception. This
paper is motivated by [LP], that introduced and studied the class of so called
cohesive sheaves over Banach spaces; but here we shall almost exclusively deal with
sheaves over C

m. In a nutshell, we show that O-homomorphisms among certain
sheaves of O-modules have strong continuity properties, and in fact arise by a
simple construction.
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We will consider two types of sheaves. The first type consists of coherent
sheaves S . The other consists of plain sheaves; these are the sheaves OE of holo-
morphic germs valued in some fixed complex Banach space E. The base of the
sheaves is C

m or an open set Ω⊂C
m. Thus OE is a (sheaf of) O-module(s). By an

O-homomorphism OE→OF or OE→S we shall understand a sheaf map which com-
mutes with multiplication by elements of the sheaf of local rings O and distributes
across finite sums.

We denote the Banach space of continuous linear operators between Banach
spaces E and F by Hom(E, F ). Any holomorphic map Φ: Ω→Hom(E, F ) in-
duces an O-homomorphism φ : OE→OF . If U ⊂Ω is open, ζ ∈U and a holomorphic
e : U→E represents a germ eζ ∈ OE

ζ , then φ(e)∈ OF
ζ is defined as the germ of the

function U �z �→Φ(z)e(z)∈E. Following [LP], such homomorphisms will be called
plain. In fact, if Φ is holomorphic only on some neighborhood of ζ it still defines a
homomorphism OE

ζ →OF
ζ of the local modules over the local ring Oζ . Again such

homomorphisms will be called plain.
The first question we address is how restrictive it is for a homomorphism to be

plain. It turns out it is not restrictive at all, provided 0<m<∞.

Theorem 1.1. If 0<m<∞ and Ω⊂C
m is open, then every O-homomorphism

OE→OF of plain sheaves is plain.

This came as a surprise, because it fails in the simplest of all cases, when
m=0. This was pointed out by Lempert. When Ω=C

0={0}, OE , resp. OF , are
identified with E and F , and the difference between O-homomorphisms and plain
homomorphisms boils down to the difference between linear and continuous linear
operators E→F . It would be interesting to decide whether Theorem 1.1 remains
true if C

m is replaced by a Banach space.
Another surprising aspect of this result is that it fails for homomorphisms

between modules of polynomial germs. If P , resp. P E , denote the ring/module of
C- resp. E-valued polynomials, with dim E=∞, then any discontinuous C-linear
map l : E→C induces a nonplain P -homomorphism P E→P via p �→l¨p.

A result similar to Theorem 1.1 has been obtained by Leiterer in [Lei, Propo-
sition 1.3]. In it, Leiterer, however, assumed the homomorphism in question to be
a priori continuous (AF-homomorphisms in the terminology of [Lei]), a condition
that we omit.

Lempert observed that a variant of the original proof of Theorem 1.1 gives the
corresponding theorem about local modules, and we shall derive Theorem 1.1 from
it.
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Theorem 1.2. If 0<m<∞ and ζ ∈C
m, then every Oζ-homomorphism of

plain modules OE
ζ →OF

ζ is plain.

Next, we turn our attention to O-homomorphisms from plain sheaves OE to a
coherent sheaf S . On the level of stalks, such homomorphisms also have a simple
description; however, this description applies only if the depth of each stalk Sζ

is positive, a condition that corresponds to the positivity of m in Theorems 1.1
and 1.2. The notion of depth forms an important invariant of rings and modules in
commutative and homological algebra; in our setting we can define it as follows. Let
mζ ⊂ Oζ denote the maximal ideal consisting of germs that vanish at ζ , and assume
that mζ �=0. For a finitely generated Oζ -module M , depth M=0 if M has a nonzero
submodule N such that mζ N=0 (see Definition 4.1 and Proposition 4.3), and
depth M>0 otherwise. For example, the modules OC/zOC and OC2/(z2

1 , z1z2)OC2

have zero-depth at the origin, while for comparison, the module OC2/z1OC2 is of
positive depth everywhere.

Theorem 1.3. Let ζ ∈C
m, M be a finite Oζ-module, and p : On

ζ →M be an
epimorphism. If depth M>0, then, any Oζ-homomorphism φ : OE

ζ →M factors
through p, i.e., φ=pψ with an Oζ-homomorphism ψ : OE

ζ →On
ζ .

Here, and in what will follow, we adhere to the algebraic convention of sim-
plifying “finitely generated” to “finite” when referring to modules. We also note
that the above ψ is induced by a germ in OHom(E, C

n)
ζ , since the depth condition

eliminates the possibility of a nonzero module for m=0. This condition is in fact
necessary as shown in Theorem 5.1.

This result extends also to sheaves; however, its proof is not a simple application
of Theorem 1.3. Instead, we initially obtain in Section 6 a weaker local extension,
and only later, in Section 8, we obtain a global result after applying a cohomology
vanishing theorem.

Theorem 1.4. Let S be a coherent sheaf over an open pseudoconvex Ω⊂C
m

of positive depth at each stalk, and E be a Banach space. If p : On→S is an epi-
morphism, then any O-homomorphism OE→S factors through it.

The following question motivated this line of research and is answered by the
above theorems. In [LP] Lempert and Patyi introduced the notion of analytic
structure on an infinitely generated O-module and showed that this structure in
general is not unique. However, the results of this paper, recast in their language,
show that certain analytic structures coincide; in particular, on coherent sheaves,
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analytic structures are unique. This will be explained in detail in Section 7, together
with the following corollary of Theorem 1.2.

Corollary 1.5. If ζ ∈Cm, 0<m<∞, and E is an infinite-dimensional Banach
space, then the plain module OE

ζ is not free; it cannot even be embedded in a free
module.

2. Background

Here we quickly review a few notions of complex analysis. For more see [GR],
[Muj], and [Ser]. Let X and E be Banach spaces (always over C) and Ω⊂X be open.

Definition 2.1. A function f : Ω→E is holomorphic if for all x∈Ω and ξ ∈X

df(x, ξ) = lim
λ→0

f(x+ξλ)−f(x)
λ

exists, and depends continuously on (x, ξ)∈Ω×X .

If X=C
m with coordinates (z1, ..., zm), then this is equivalent to requiring that

in some neighborhood of each a∈Ω one can expand f in a uniformly convergent
power series

f =
∑

J

eJ(z −a)J , eJ ∈ E,

where multi-index notation is used. For general X one can only talk about homo-
geneous expansion. Recall that a function P between vector spaces V and W is
an n-homogeneous polynomial if P (v)=l(v, v, ..., v) where l : V n→W is an n-linear
map. Given a ball B ⊂X centered at a∈X , any holomorphic f : B→E can be
expanded in a series

(1) f(x) =
∞∑

n=0

Pn(x−a), x ∈ B,

where the Pn : X→E are continuous n-homogeneous polynomials. The homoge-
neous components Pn are uniquely determined, and the series (1) converges locally
uniformly on B.

We denote by fx the germ at x∈Ω of a function Ω→E, and by OE the sheaf
over Ω of germs of E-valued holomorphic functions. The sheaf OC=O is a sheaf
of rings over Ω, and OE is, in an obvious way, a sheaf of O-modules. The sheaves
OE are called plain sheaves, and their stalks OE

x plain modules. When E=C
n, we

write On, resp. On
x , for OE , resp. OE

x .
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As said in the introduction, Hom(E, F ) denotes the space of continuous linear
operators between Banach spaces E and F , endowed with the operator norm. Any
holomorphic function Φ: Ω→Hom(E, F ) induces an O-homomorphism OE→OF

and any Ψ∈ OHom(E,F )
x induces an Ox-homomorphism OE

x →OF
x . The homomor-

phisms obtained in this manner are called plain homomorphisms.

3. Homomorphisms of plain sheaves and modules

We shall deduce Theorem 1.2 from a weaker variant, which, however, is valid
in an arbitrary Banach space.

Theorem 3.1. Let X , E and F be Banach spaces, with dimX>0. Let ζ ∈X

and φ : OE
ζ →OF

ζ be an Oζ-homomorphism. Then there is a plain homomorphism
ψ : OE

ζ →OF
ζ that agrees with φ on constant germs.

We need two auxiliary results to prove this result.

Proposition 3.2. Let X and G be Banach spaces and πn : X→G be continu-
ous homogeneous polynomials of degree n=0, 1, 2, ... . If for every x∈X there is an
εx>0 such that supn ‖πn(εxx)‖<∞, then there is an ε>0 such that

sup
n

sup
‖x‖<ε

‖πn(x)‖ < ∞.

Here, and in the following, we indiscriminately use ‖ · ‖ for the norms on X, G,
and whatever Banach spaces we encounter.

Proof. For numbers A and δ, consider the closed sets

XA,δ =
{

x ∈ X : sup
n

‖πn(δx)‖ ≤ A
}

.

By Baire’s theorem XA,δ contains a ball {x0+y :‖y‖<r} for some A, δ, r>0. As a
consequence of the polarization formula [Muj, Theorem 1.10],

πn(ξ) =
∑

σj=±1

σ1...σn

2nn!
πn(δx0+σ1ξ+...+σnξ) for ξ ∈ X,

see also [Muj, Exercise 2M]. Therefore if ‖ξ‖<δr/n, then πn(ξ)≤A/n!, and by
homogeneity, for ‖x‖<δr/e,

‖πn(x)‖ =nne−n‖πn(ex/n)‖ ≤ Ann/enn! ≤ A. �
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Proposition 3.3. Let X, E, F be Banach spaces, Ω⊂X be open, and g : Ω→
Hom(E, F ) be a function. If for every v ∈E the function gv : X→F is holomorphic,
then g itself is holomorphic.

Proof. This is Exercise 8.E in [Muj]. First one shows using the principle of
uniform boundedness that g is locally bounded. Standard one-variable Cauchy
representation formulas then show that g is continuous and ultimately holomor-
phic. �

Proof of Theorem 3.1. If v ∈E we write ṽ ∈ OE
ζ for the constant germ whose

value is v. Without loss of generality we can take ζ=0. Let the germ φ(ṽ)∈ OF
0

have homogeneous series

(2)
∞∑

n=0

Pn(x, v).

Thus, Pn is C-linear in v, and for fixed v, Pn( · , v) is a continuous n-homogeneous
polynomial. For each v ∈E, (2) converges if ‖x‖ is sufficiently small.

Now let λ∈Hom(X, C), and suppose that, with vj ∈E, the series
∑∞

i=0 viλ
i

represents a germ e∈ OE
0 . For example, this will be the case if the vi are unit

vectors. With an arbitrary N ∈N and some f ∈ OF
0 ,

φ(e) =
∑

i<N

φ(ṽi)λi+λNf =
∑

i<N

∞∑

n=0

Pn( · , vi)λi+λNf

=
∑

j<N

j∑

n=0

Pn( · , vj−n)λj−n+λNg,

where g ∈ OF
0 . Hence the homogeneous components of φ(e) are

(3) Qj(x) =
j∑

n=0

Pn(x, vj−n)λj−n(x), j =0, 1, 2, ... .

We use this to prove, by induction on n, that for any x∈X the map v �→Pn(x, v) is
not only linear but also continuous.

Suppose this is true for n<k. Take an x∈X , which can be supposed to be
nonzero, and λ∈Hom(X, C) so that λ(x)=1. If v �→Pk(x, v) were not continuous,
we could inductively select unit vectors vi ∈E so that

‖Pk(x, vj−k)‖ >

k−1∑

n=0

‖Pn(x, · )‖+jj +
j∑

n=k+1

‖Pn(x, vj−n)‖
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for j=k, k+1, ... . Here ‖Pn(x, · )‖ stands for the operator norm of the homomor-
phism Pn(x, · )∈Hom(E, F ), n<k. However, (3) would then imply

‖Qj(x)‖ ≥ ‖Pk(x, vj−k)‖ −
k−1∑

n=0

‖Pn(x, · )‖ −
j∑

n=k+1

‖Pn(x, vj−n)‖ >jj ,

which would preclude
∑∞

j=0 Qj from converging in any neighborhood of 0∈X . The
contradiction shows that Pk(x, · )∈Hom(E, F ), in fact for every k and x∈X . Let
us write πk(x) for Pk(x, · ).

Now, for fixed v ∈E, Pn( · , v)=πnv is a continuous n-homogeneous polynomial
and, thus, holomorphic. We can apply Proposition 3.3 to conclude, in turn, that
πn : X→Hom(E, F ) is a holomorphic, n-homogeneous polynomial.

Next we estimate ‖πn(x)‖ for fixed x∈X . Suppose a sequence δn ≥0 goes
to 0 superexponentially, in the sense that δn=o(εn) for all ε>0. Then for any
homogeneous series

∑∞
n=0 pn representing a germ f ∈ OF

0 we have supn δn‖pn(x)‖<

∞.
In particular, supn δn‖πn(x)v‖<∞ for all v ∈E, and by the principle of uniform

boundedness, δn‖πn(x)‖ is bounded. This being so, there is an ε=εx>0 such that
εn‖πn(x)‖ is bounded. Indeed, otherwise we could find n1<n2<... so that

‖πnt(x)‖ >tnt , t =1, 2, ... .

But then the sequence

δn =

{
t−nt/2, if n=nt,

0, otherwise,

would go to 0 superexponentially and yet δnt ‖πnt(x)‖→∞; a contradiction.
Thus, for each x we have found εx>0 so that supn ‖πn(εxx)‖ is bounded. By

Proposition 3.2, the πn are uniformly bounded on some ball {x:‖x‖<ε}. Therefore
the series

∞∑

n=0

πn(x)=Φ(x)

converges uniformly on some neighborhood of 0∈X , and represents a Hom(E, F )-
valued holomorphic function there. By the construction of πn(x)v=Pn(x, v), see
(2), the plain homomorphism OE

0 →OF
0 induced by Φ agrees with φ on constant

germs ṽ, and the proof is complete. �

Proof of Theorem 1.2. In view of Theorem 3.1, all we have to show is that
(for X=C

m, 0<m<∞) if an Oζ -homomorphism φ : OE
ζ →OF

ζ annihilates constant
germs then it is in fact 0. This we formulate in a slightly greater generality.
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Lemma 3.4. Let ζ ∈C
m, and M be an Oζ-module. Denote by mζ the maximal

ideal of Oζ . If a homomorphism θ : OF
ζ →M annihilates all constant germs, then

(4) Im θ ⊂
∞⋂

k=0

m
k
ζ M.

Proof. Along with constants, θ will annihilate the Oζ -module generated by
constants, in particular, the polynomial germs. Since any e∈ OE

ζ is congruent,
modulo an arbitrary power of the maximal ideal, to a polynomial, and furthermore,
θ(mk

ζ OE
ζ )⊂mk

ζ M , (4) follows. �

This then completes the proof of Theorem 1.2 since
⋂∞

k=0 mk
ζ OF

ζ =0. �

Proof of Theorem 1.1. Let φ : OE→OF be an O-homomorphism. For v ∈E let
v̂ : Ω→OE be the section that associates with ζ ∈Ω the germ at ζ of the constant
function Ω�z �→v. Then φ(v̂) is a section of OF and so there is a holomorphic
function f( · , v) : Ω→F whose germs f( · , v)z at various z ∈Ω agree with φ(ṽ)(z).
By Theorem 1.2, for each ζ ∈Ω we can find a germ Φζ ∈ OHom(E,F )

ζ such that

f( · , v)ζ =Φζv.

Therefore for fixed ζ , f(ζ, · )∈Hom(E, F ). Let Φ(ζ)=f(ζ, · ). Proposition 3.3 im-
plies that Φ: Ω→Hom(E, F ) is holomorphic and by construction induces φ on con-
stant germs.

This means that Φζ above and the germ Φζ of Φ induce homomorphisms OE
ζ →

OF
ζ that agree on constant germs. Since we are talking about plain homomorphisms,

the two induced homomorphisms in fact agree. Hence φ is induced by Φ. �

4. Auxiliary results on depth

For a general definition of depth we refer to [Eis, pp. 423, 429] or [Mat, p. 102].
Our interest in this notion is centered on its properties in the case of finite modules
over Noetherian local rings. The following definition suffices for our needs.

Definition 4.1. Let (R, m) be a Noetherian local ring (always commutative
and unital) and M �=0 be a finite R-module. We say the depth of M , depth M , is
positive if there is a nonzero divisor r ∈m on M ; otherwise the depth is 0. If M=0,
the convention is that the depth is +∞.

Alternatively, the depth of M is zero if and only if HomR(R/ m, M) �=0, see
[Eis, Proposition 18.4].
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Remark 4.2. When R is a field, the maximal ideal is m=0; hence, the depth
of a finite-dimensional vector space M is positive (infinity) if and only if M=0.

When R is not a field, there is an alternative criterion for the positivity of
depth.

Proposition 4.3. For a Noetherian local ring (R, m), not a field, a finite
R-module M has depth M=0 if and only if there is a nonzero submodule L⊂M

such that mL=0.

Proof. If depth M=0, then HomR(R/ m, M) �=0 and there is a nonzero R-
homomorphism φ : R/ m→M . Take L=Imφ to get m L=0.

Conversely, suppose L⊂M is a nonzero submodule such that mL=0. Then,
M �=0 and every r ∈m \ {0} is a zero divisor. So, depth M=0. �

For the proof of Theorem 1.3 we shall need a number of lemmas that are
algebraic in nature. Recall the notion of localization at a prime. Suppose R is a
ring, p⊂R a prime ideal, and M an R-module. Consider the multiplicatively closed
set S=R\p, then the localization of M at p is

Mp =(M ×S)/∼,

where (v, s)∼(w, t) means that q(vt−ws)=0 for some q ∈S. Elements of Mp are
written as fractions v/s. The usual rules for operating with fractions turn Rp into
a ring and Mp into a module over it. Localization is a functor, in particular, a
homomorphism α : M→M ′ of R-modules induces a homomorphism αp : Mp→M ′

p.

Lemma 4.4. Let R be a unique factorization domain and p⊂R be a principal
prime ideal. If N ⊂Rm is a finite module, then there is a finite free submodule F ⊂N

such that Fp=Np.

Proof. Let p be a generator of p; any element of Rp is either invertible or
divisible by p. As R is a unique factorization domain, any nontrivial linear relation

k∑

j=1

rjuj =0, with u1, ..., uk ∈ Rm
p and coefficients r1, ..., rk ∈ Rp,

can be solved for some uj . Hence, finitely generated submodules of Rm
p are free. In

particular, Np has a free generating set {v1/s1, ..., vk/sk }. We can, therefore, take
F to be the module generated by vj ’s. �
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Lemma 4.5. Let (R, m) be a local ring which is a unique factorization domain,
and Q be its field of fractions. Let ρ : A→B be a homomorphism of finite free
R-modules. If depth coker ρ>0, then there are a finite free R-module C and a
homomorphism θ : B→C such that

(i) ker ρ=ker θρ;
(ii) (coker θρ)⊗Q=0;
(iii) depth coker θρ>0.

Proof. Let ρ∗ : HomR(B, R)→HomR(A, R) be the pull-back operator. With
the principal prime ideal p to be chosen later, take a free R-module F ⊂N=Im ρ∗

such that Fp=Np, as in Lemma 4.4. Define a homomorphism σ : F→HomR(B, R)
by specifying its values on a free generating set so that ρ∗σ is the inclusion map
i : F ↪→HomR(A, R). We will show that with a suitable choice of p we can take

C =HomR(F, R) and θ =σ∗ : B −→C,

where B is canonically identified with HomR(HomR(B, R), R). The following com-
mutative diagrams summarize the homomorphisms in question:

A
ρ

i∗

B

θ=σ∗

C=Hom(F, R),

Hom(A, R) Hom(B, R)
ρ∗

F.

i

σ

(i) After localizing, (Im ρ∗)p=Fp=(Im i)p=Im ρ∗
pσp, and, therefore, ker ρp=

ker θpρp. Pulling back by the injective localizing map A→Ap (since A is free), we
obtain ker ρ=ker θρ.

(ii) Since (Im ρ∗
pσp)⊗Q=(Im i)p ⊗Q=F ⊗Q are vector spaces, we obtain that

dimQ(Im θρ)⊗Q =dimQ(Im ρ∗σ)⊗Q =dimQ F ⊗Q =dimQ C ⊗Q.

Consequently, (coker θρ)⊗Q=0.
(iii) If R is a field, the statement is trivial. So, assume that R is not a field and

that depth coker ρ>0. Then, there is an r ∈m \{0}, a nonzero divisor on coker ρ; let
p be one of its prime factors. Note that

(5) pβ ∈ Im ρ ==⇒ β ∈ Im ρ for all β ∈ B.

We will show that if, in the construction above, p=(p), then p is a nonzero divisor
on coker θρ, and thus, depth coker θρ>0. Suppose not, i.e., suppose that there is
γ ∈C and α∈A with pγ=θρα. Identify the elements of A with the elements of its
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double dual using the canonical isomorphism. Then, after localizing, pγp=i∗
pαp=

σ∗
pρpαp. Since, by construction, Im ip=Fp=Np=Im ρ∗

p, the restriction αp|Fp
of the

homomorphism αp : HomRp
(Ap, Rp)→Rp is divisible by p. Hence, ρpαp is also

divisible by p. Now, for any s∈R, p divides s in R precisely when p divides (s/1)
in Rp. Thus, ρα is also divisible by p, i.e., there is β ∈B with ρα=pβ. In view of
(5), β ∈Im ρ and γ=θβ ∈Im θρ. This shows that p is a nonzero divisor on coker θρ,
which completes the proof. �

Remark 4.6. The following version of Lemma 4.5 will be needed for later use.

Let M be the sheaf of meromorphic germs on Ω⊂C
m, ρ : A→B be a

homomorphism of finite free O-modules, and ζ ∈Ω. Then, there is a
finite free O-module C, a neighborhood U of ζ, and a homomorphism
θ : B |U→C |U , such that ker ρζ =ker(θρ)ζ , and (coker θρ)|U ⊗ M |U =0.

While this version of the lemma is stated under slightly different conditions, its
proof undergoes few changes. We only need to extend Lemma 4.4 to the local case,
which is done below:

Let N ⊂ On be a locally finitely generated O-module over Ω⊂Cm. Then
for any ζ ∈Ω there are an open U about ζ and a free submodule F ⊂ N |U
such that F ⊗ M |U =N |U ⊗ M |U .

Indeed, choose a basis f1
ζ , ..., fk

ζ ∈ On
ζ of the vector space Nζ ⊗ Mζ . There is a

neighborhood U of ζ so that every germ f i
ζ extends to a section of N over U . By

linear independence at ζ , there is a square submatrix M of [f1, ..., fk]∈ On×k, so that
(det M)ζ �=0. Since det M is a C-valued holomorphic function, (det M)η is nonzero
also for η �=ζ . So, f1

η , ..., fk
η are linearly independent. The same reasoning shows

also that, if g ∈ N (U), the collection of sections g, f1, ..., fk is linearly dependent.
Thus, F =(f1, ..., fk)OU ⊂ N |U is a free module with F ⊗ M |U =N |U ⊗ M |U .

In the next lemma we use the following notation. As before, O0 is the local
ring at 0∈C

m, m≥1. The subring of germs independent of the last coordinate zm

of z ∈Cm is denoted O ′
0; the maximal ideals in O0, O ′

0 are m and m′, respectively.
Any O0-module M is automatically an O ′

0-module. We will denote the O ′
0-module

structure on M by writing M ′ instead of M . We refer to [GR, Section 2.1.2] for
the notion of a Weierstrass polynomial.

Lemma 4.7. Suppose h∈ O0 is the germ of a Weierstrass polynomial and M is
a finite O0-module such that hM=0. Then depth M=0 if and only if depth M ′ =0.
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Proof. We note first that M ′ is a finite O ′
0-module. Indeed, M is an O0/hO0-

module, and finite as such. Since O0/hO0 is also finitely generated as an O ′
0-module,

our claim follows.
If M=0, then depth M=depth M ′ =∞. So, we will assume that M �=0. Sup-

pose first that depth M ′ =0. We claim that there is a nonzero u∈M such that
m′ u=0. Indeed, this is obvious when m=1, since O ′

0 is a field. On the other hand,
when m≥2, we arrive at this conclusion by applying Proposition 4.3.

Write h=zd
m+

∑d−1
j=0 ajz

j
m, where aj ∈m′, d>0. As u �=0 but

zd
mu =hu−

d−1∑

j=0

ajuzj
m =0,

there is a largest k=0, 1, ..., d−1 such that v=zk
mu �=0. Then zmv=0, whence

m v=0, and, since O0 is not a field when m≥2, we conclude by Proposition 4.3
that depth M=0.

Conversely, suppose that depth M=0. By Proposition 4.3, there is a nonzero
submodule L⊂M with m L=0. We claim that depth M ′ =0. Indeed, since m′ ⊂m,
this is a consequence of Proposition 4.3 when m≥2. On the other hand, this is
obvious if m=1, for in this case, O ′

0 is a field and M �=0. �

5. The proof of Theorem 1.3

Let us write (Tm) for the statement of Theorem 1.3, to indicate the number
of variables involved. We prove it by induction on m≥0. When m=0, the depth
assumption does not hold, unless M=0, and so, the claim is obvious.

Now assume that (Tm−1) holds for some m≥1, and prove (Tm). We are free
to take ζ=0. Let Q be the field of fractions of O0. We first verify (Tm) for torsion
modules M , i.e., those for which M ⊗Q=0.

Since each generator v ∈M is annihilated by some nonzero hv ∈ O0, there is a
nonzero h∈ O0 that annihilates all of M . By the Weierstrass preparation theorem,
we can assume that h is (the germ of) a Weierstrass polynomial of degree d≥1 in zm.
We write z=(z′, zm) for z ∈Cm. Let O ′

0 denote the ring of C-valued holomorphic
germs at 0 in C

m−1 and, for any Banach space F , O ′F
0 denote the O ′-module

of F -valued holomorphic germs at 0 in C
m−1. As before we embed O ′

0 ⊂ O0 and
O ′F

0 ⊂ OF
0 . This makes any O0-module into an O ′

0-module, and any homomorphism
φ : N1→N2 of O0-modules descends to an O ′

0-homomorphism

(6) φ′ : N1/hN1 −→N2/hN2.
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A version of Weierstrass’ division theorem remains true for holomorphic germs
valued in a Banach space F (the proof in [GR] applies). Concretely, we can write
any f ∈ OF

0 uniquely as

(7) f =hf0+
d−1∑

j=0

f ′
jz

j
m, f0 ∈ OF

0 , f ′
j ∈ O ′F

0 .

Clearly, the O ′
0-homomorphism

(8) OF
0 � f �−→ (f ′

0, ..., f
′
d−1) ∈ (O ′F

0 )⊕d

descends to an isomorphism

(9) OF
0 /hOF

0

≈
−−→ (O ′F

0 )⊕d

of O ′
0-modules. Composing this with the embedding

(10) (O ′F
0 )⊕d � (f ′

0, ..., f
′
d−1) �−→

d−1∑

j=0

f ′
jz

j
m ∈ OF

0 ,

we obtain an O ′
0-homomorphism

(11) OF
0 /hOF

0 −→ OF
0 ,

which is a right inverse of the canonical projection OF
0 →OF

0 /hOF
0 .

Now p : On
0 →M and φ : OE

0 →M of Theorem 1.3 induce O ′
0-homomorphisms

p′ : On
0 /hOn

0 −→M and φ′ : OE
0 /hOE

0 −→M,

as in (6), remembering that hM=0. Clearly, p′ is surjective. Also, by Lemma 4.7,
depth M ′ >0. Because of the isomorphism (9), (Tm−1) implies that there is an
O ′

0-homomorphism
χ̆ : OE

0 /hOE
0 −→ On

0 /hOn
0

such that φ′ =p′χ̆. Since the projection On
0 →On

0 /hOn
0 has a right inverse, cf. (11),

χ̆ is induced by an O ′
0-homomorphism χ : OE

0 →On
0 , which then satisfies φ=pχ.

All that remains is to replace χ by an O0-homomorphism ψ, which we achieve as
follows.

If a holomorphic germ, say f , at 0, valued in a Banach space (F, ‖ · ‖F ), has a
representative on a connected neighborhood V of 0, we write

[f ]V = sup
v∈V

‖f(v)‖F ≤ ∞,
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where f on the right-hand side of equality stands for the representative. Now
consider the composition of χ| O ′E

0
with (8), where F =C

n,

(12) O ′E
0

χ
−−→ On

0 −→ O ′nd
0 .

By Theorem 1.1, this O ′
0-homomorphism is induced by a Hom(E, Cnd)-valued holo-

morphic function, defined on some neighborhood U of 0∈C
m−1. It follows that if

V ′ �U and V ′ ′ �C are connected neighborhoods of 0∈Cm−1, resp. 0∈C, then there
is a constant C such that for each e′ ∈ O ′E

0 that has a representative defined on V ′

(13) [χ(e′)]V ′ ×V ′ ′ ≤ C[e′]V ′ .

Indeed, χ is obtained by composing (12) with (10) (again, F =C
n), and this latter

is trivial to estimate.
Now define ψ : OE

0 →On
0 by ψ(e)=

∑∞
j=0 χ(e′

j)z
j
m, where e=

∑∞
k=0 e′

jz
j
m ∈ OE

0 .
Cauchy estimates for e′

j and (13) together imply that the series above indeed rep-
resents a germ ψ(e)∈ On

0 . It is straightforward that φ is an O0-homomorphism.
Because of this, pψ=φ holds on hOE

0 , both sides being zero. It also holds on
polynomials e=

∑k
j=0 e′

jz
j
m, as

(pψ)(e) = p

k∑

j=0

χ(e′
j)z

j
m =

k∑

j=0

φ(e′
j)z

j
m =φ(e).

The division formula (7), this time with F =E, now implies that pψ=φ on all OE
0 .

Having taken care of torsion modules, consider a general module M as in the
theorem. Since O0 is Noetherian, ker p is finitely generated; let

ρ : Or
0 −→ On

0

have image ker p. So, M ≈coker ρ. Construct a free O0-module C together with a
homomorphism θ : On

0 →C as in Lemma 4.5. Let π : C→coker θρ be the canonical
projection. Here is a diagram to keep track of all the homomorphisms in question:

Or
0

ρ

On
0

p

θ

C
π

coker θρ

M OE
0 .

φ

φ̃

ψ̃
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We are yet to introduce φ̃ and ψ̃. For e∈ OE
0 choose v ∈ On

0 so that p(v)=φ(e). Then
πθ(v) is independent of which v we choose, since any two choices differ by an element
of ker p=Im ρ, which πθ then maps to 0. We let φ̃(e)=πθ(v). We want to lift φ̃ to
C; this certainly can be done if coker θρ=0. Otherwise Lemma 4.5 guarantees (as
depth M=depth coker ρ>0) that depth coker θρ>0 and (coker θρ)⊗Q=0. Hence we
can apply the first part of this proof to obtain a homomorphism ψ̃ : OE

0 →C such
that πψ̃=φ̃.

Finally, we lift ψ̃ to On
0 as follows. For e∈ OE

0 choose v ∈ On
0 and w ∈ Or

0 so
that φ(e)=p(v) and ψ̃(e)=θ(v)+θρ(w). Again v+ρ(w)∈ On

ζ is independent of the
choices. (It suffices to verify this for e=0. Then v ∈ker p=Im ρ; let v ∈ρ(u), u∈ Or

0.
Hence 0=θ(v)+θρ(w)=θρ(u+w). By Lemma 4.5 this implies that 0=ρ(u+w)=
v+ρw as claimed.)

Therefore we can define a homomorphism ψ : OE
0 →On

0 by letting ψ(e)=v+ρw.
Since pψ(e)=p(v)=φ(e), ψ is the homomorphism we were looking for, and the proof
of Theorem 1.3 is complete.

We conclude this section by showing that the depth condition in Theorem 1.3
is also necessary.

Theorem 5.1. Let m, n≥1, ζ ∈C
m, M �=0 be a finite Oζ-module, and

p : On
ζ →M be an epimorphism. If depth M=0, then for any infinite-dimensional

Banach space E there is a homomorphism φ : OE
ζ →M that does not factor through p.

Proof. We can view C≈ Oζ/ mζ as an Oζ -module. As depth M=0, we have
HomOζ

(C, M) �=0 by Definition 4.1. So, there is a nonzero Oζ -homomorphism
φ : C→M . Consider a homomorphism ε : OE

ζ →E of C-vector spaces given by ε(e)=
e(0) and take l : E→C to be a discontinuous C-linear map. Then, φlε : OE

ζ →M

is an Oζ -homomorphism, which in view of Theorem 1.2, does not factor through
On

ζ . �

6. A local theorem

Theorem 6.1. Let S be a coherent sheaf over an open set Ω⊂C
m such that the

depth of each nonzero stalk is positive. Suppose that p : On→S is an epimorphism
and E is a Banach space. Then, for any ζ ∈Ω, any O-homomorphism OE→S
factors through p in some neighborhood of ζ .

This theorem is a special case of the stronger Theorem 1.4. While the proof
of the global result is postponed until Section 8, this local statement is a simple
consequence of Theorem 1.3, once the following auxiliary result is shown.
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Lemma 6.2. Let S be a coherent sheaf over Ω. If ζ ∈Ω, then there is a
neighborhood U ⊂Ω of ζ so that the evaluation map S(U)→Sζ is a monomorphism.

Proof. We follow the outline given by the proof of Theorem 1.3. The lemma
holds trivially for sheaves over Ω=C

0=0. For Ω lying in higher dimensions we
proceed by induction. Initially, we verify the inductive step for torsion modules;
then, the general case is proved by reduction to the torsion case.

We are free to take ζ=0. As before, Q denotes the field of quotients of O0.
Suppose that Ω⊂C

m, m≥1, and S0 ⊗Q=0. Then S0 is annihilated by a nonzero
h∈ O0. After choosing a suitable neighborhood U=U ′ ×U ′ ′ ⊂C

m−1 ×C of 0, to be
reduced further later, we can take h to be a Weierstrass polynomial of degree d≥1
in zm and hS |U =0. We write z=(z′, zm) and O ′ for the sheaf of germs in C

m−1.
Let |A|={z ∈U ′ ×U ′ ′ : h(z)=0}, |B|=U ′ × {0}, and OA=(O/hO)| |A|. Define

complex spaces A=(|A|, OA) and B=(|B|, O ′). Since hS |U =0, supp S |U ⊂ |A| and
S | |A| has the structure of an OA-module. If

Or |V
ρ

−−→ On|V
p

−−→ S |V −→ 0

is an exact sequence for some V ⊂U , then the induced sequence

Or
A| |A|∩V

ρ
−−→ On

A| |A|∩V

p
−−→ S | |A|∩V −→ 0

is also exact. So, S | |A| is also OA-coherent. The projection U ′ ×U ′ ′→U ′ induces a
holomorphic Weierstrass map π : A→B, see [GR, Section 2.3.4]. Since π is a finite
map, [GR, Section 2.3.5], the direct image sheaf π∗(S | |A|) is a coherent sheaf over
U ′ ⊂C

m−1.
Inductively we can assume that U ′ is such that the evaluation map

π∗(S | |A|)(U ′) −→π∗(S | |A|)0

is a monomorphism. On the other hand

π∗(S | |A|)(U ′) = S | |A|(π−1U ′) = S(U) and π∗(S | |A|)0 =
∏

ξ∈π−1(0)

Sξ = S0,

see [GR, Section 2.3.3]. So, S(U)→S0 is a monomorphism.
Now consider a general coherent sheaf S . On some neighborhood U of ζ there

exists an exact sequence

Or
ρ

−−→ On
p

−−→ S |U −→ 0.
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This neighborhood U can be taken so that there exists a homomorphism θ : On|U→
Os|U as in Remark 4.6. Since (coker θρ)ζ is a torsion Oζ -module, we can apply the
first part of the proof and assume that

(14) (coker θρ)(U) −→ (coker θρ)ζ is a monomorphism.

Furthermore, we can take U to be a pseudoconvex domain.
Suppose that s∈ S(U) and sζ =0. Let v ∈ On(U) be such that p(v)=s. Then

vζ ∈Im ρζ , say vζ =ρζuζ with uζ ∈ Or
ζ , and the class of θζvζ in (coker θρ)ζ vanishes.

By (14), θv represents the zero section in coker θρ|U , i.e., there is w ∈ Or(U) with
θv=θρw. Hence, (θρ)ζ(uζ −wζ)=0. From ker ρζ =ker θζρζ and vζ ∈Im ρζ we con-
clude that ρζ(uζ −wζ)=0 and vζ =ρζwζ . On the other hand, v and ρw are holo-
morphic sections, over U , of the sheaf On. Thus, v=ρw and s=0. �

Proof of Theorem 6.1. Let φ : OE→S be an O-homomorphism. If ζ ∈Ω, then
according to Theorem 1.2 there is a plain homomorphism ψζ : OE

ζ →On
ζ so that

(15) φ| Sζ
= pψζ .

Since ψζ is induced by a homomorphism-valued holomorphic map, ψζ extends
to a plain homomorphism ψU : OE |U→On|U for a neighborhood U ⊂Ω of ζ . By
Lemma 6.2, we can assume that S(U)→Sζ is a monomorphism. In conjunction
with (15), this implies that φ(v)−pψU (v)=0 for v ∈ OE(U), in particular, if v is a
constant section. Then, an application of Lemma 3.4 shows that Im(φζ′ −(pψU )ζ′ )⊂⋂∞

j=0 m
j
ζ′ Sζ′ =0 for ζ ′ ∈U , i.e., that φ factors through p on U . �

7. Applications

Our first application is Corollary 1.5, which depends on the following proposi-
tion.

Proposition 7.1. Suppose that (R, m) is a local ring with residue field k=
R/ m, and M is a free R-module. If cν ∈k, for ν ∈N, and eν ∈M are such that
their classes ēν in M/ mM are linearly independent over k, then there is an R-
homomorphism φ : M→R such that for every ν the class of φ(eν) in k is cν .

Proof. Let φ̄ : M/ mM→k be a k-linear map such that φ̄(ēν)=cν . Composing
φ̄ with the projection M→M/ m M we obtain an R-homomorphism ψ : M→k such
that ψ(eν)=cν . If M is free then ψ can be lifted to a φ : M→R as required. �
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Proof of Corollary 1.5. Let eν ∈ OE
ζ , ν=1, 2, ..., be germs such that eν(ζ)∈E

are C-linearly independent unit vectors. Any Oζ -homomorphism φ : OE
ζ →Oζ is

plain by Theorem 1.2, whence φ(eν)(ζ)∈C is a bounded sequence. If OE
ζ were a

submodule of a free module M then by Proposition 7.1 there would exist a homo-
morphism OE

ζ →Oζ such that φ(eν)(ζ)=ν, a contradiction. �

For further applications we have to review some concepts introduced in [LP].
As there, in this review we place ourselves in an open subset Ω of a Banach space
X ; but our applications will only concern finite-dimensional X .

In the introduction we have already defined plain sheaves and homomorphisms.
For sheaves A and B of O-modules (always over Ω) we write HomO(A, B) for the
sheaf of O-homomorphisms between them; if A and B are plain sheaves we write
Homplain(A, B)⊂HomO(A, B) for the sheaf of plain homomorphisms.

Definition 7.2. An analytic structure on a sheaf S is the choice, for each plain
sheaf E , of a submodule Hom(E , S)⊂HomO(E , S) subject to

(i) If E and F are plain sheaves, x∈Ω, and ϕ∈Homplain(E , F )x, then

ϕ∗ Hom(F , S)x ⊂ Hom(E , S)x;

(ii) Hom(O, S)=HomO(O, S).

If S is endowed with an analytic structure, one also says that S is an ana-
lytic sheaf. This terminology is different from the traditional one, where “analytic
sheaves” and “sheaves of O-modules” mean one and the same thing.

If U ⊂Ω is open, an O-homomorphism ψ : S |U→S ′ |U of analytic sheaves is
called analytic if ψ∗ Hom(E |U , S |U )⊂Hom(E |U , S ′ |U ) for every plain sheaf E .

Any plain sheaf F has a canonical analytic structure given by Hom(E , F )=
Homplain(E , F ). Further, on any O-module S one can define a “maximal” analytic
structure by Hom(E , S)=HomO(E , S); and also a “minimal” analytic structure,
denoted by Hommin(E , S), consisting of germs α that can be written as a compo-
sition βγ of

γ ∈ Homplain(E , On) and β ∈ HomO(On, S),

where n<∞. Definition 7.2 implies that

Hommin(E , S) ⊂ Hom(E , S) ⊂ HomO(E , S).

In view of Theorems 1.1 and 6.1 we obtain the following uniqueness results.

Theorem 7.3. For every plain sheaf OF over an open set Ω⊂C
m, 0<m<∞,

the canonical and the maximal analytic structures coincide.
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Proof. Let E be a Banach space, U ⊂Ω be an open set, and φ : OE |U→OF |U
be an O-homomorphism. By Theorem 1.1, φ is a plain homomorphism, and
hence, an analytic homomorphism for the canonical analytic structure. Thus,
Hom(OE , OF )=HomO(OE , OF ). �

Theorem 7.4. Let S be a coherent sheaf of positive depth at each stalk. Then
the minimal and the maximal analytic structures coincide, i.e., S has unique analytic
structure.

Proof. Denote by Ω⊂C
m the base of the sheaf S . Let E be a Banach space,

U ⊂Ω be an open set, and φ : OE |U→OF |U be an O-homomorphism. If m=0, the
depth condition guarantees that S =0 and the conclusion of the theorem follows.
So, we may assume that m≥1.

Since S is a coherent sheaf, given ζ ∈U there is an epimorphism p : On|V →S |V ,
with n<∞ and V ⊂U , a suitable neighborhood of ζ . By Theorem 6.1, we can
assume that φ|V factors through p|V , i.e., there is an O-homomorphism ψ : OE |V →
On|V with φ|V =p|V ψ. Then, by Theorem 1.1, ψ is a plain homomorphism, and
so, φζ ∈Hommin(OE , OF )ζ . Since φ and ζ were arbitrary, we have shown that
Hommin(OE , OF )=HomO(OE , OF ). �

8. The proof of Theorem 1.4

This proof is based on [Lem, Theorem 4.3]: a coherent sheaf over Ω⊂C
m

endowed with its minimal analytic structure is cohesive. While [Lem] makes refer-
ences to some of the results of the present paper, the proof of [Lem, Theorem 4.3]
is independent of Theorem 1.4.

Let φ : OE→S be an O-homomorphism. In view of Theorem 6.1, there is an
open pseudoconvex cover V of Ω such that on each V ∈V there is a homomorphism
ψV : OE |V →On|V with φ|V =pψ|V . If we let K=ker p, a coherent sheaf, then ψV W =
ψV −ψW maps OE

V ∩W into K, for V, W ∈V. Thus, the O-homomorphisms ψV W

form a K-valued 1-cocycle.
We can assume that m≥1, for otherwise the depth condition implies that S

is the zero sheaf and there is nothing to prove. The module K ⊂ On is torsion-free,
i.e., rζkζ �=0 for ζ ∈Ω, rζ ∈ Oζ , and kζ ∈ Kζ , unless rζ =0 or kζ =0. Therefore, in view
of Proposition 4.3, depth Kζ >0 for all ζ ∈supp K. We endow K with the minimal
analytic structure, and note that, by Theorem 7.4, ψV W are analytic with respect
to this structure. On the other hand, K is coherent, and hence, by [Lem, Theo-
rem 4.3], is cohesive. Now H1(Ω,Hom(OE , K))=0, which is a special case of [LP,
Theorem 9.1]. Consequently, ψV W =θV −θW with some (analytic) homomorphisms
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θV : OE |V →K |V ; defining ψ : OE→On by

ψ|V =ψV −θV ,

the resulting homomorphism satisfies φ=pψ.
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