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Balanced complexes and complexes without
large missing faces

Michael Goff, Steven Klee and Isabella Novik

Abstract. The face numbers of simplicial complexes without missing faces of dimension

larger than i are studied. It is shown that among all such (d−1)-dimensional complexes with

non-vanishing top homology, a certain polytopal sphere has the componentwise minimal f -vector;

and moreover, among all such 2-Cohen–Macaulay (2-CM) complexes, the same sphere has the

componentwise minimal h-vector. It is also verified that the l-skeleton of a flag (d−1)-dimensional

2-CM complex is 2(d−l)-CM, while the l-skeleton of a flag piecewise linear (d−1)-sphere is 2(d−l)-

homotopy CM. In addition, tight lower bounds on the face numbers of 2-CM balanced complexes

in terms of their dimension and the number of vertices are established.

1. Introduction

In this paper we study balanced simplicial complexes and complexes without
large missing faces. For the latter class of complexes we settle in the affirmative
several open questions raised in the recent papers by Athanasiadis [1] and Nevo [14],
while for the former class we establish tight lower bounds on their face numbers in
terms of dimension and the number of vertices, thus strengthening the celebrated
lower bound theorem for spheres.

A simplicial complex Δ on the vertex set [n]:={1, 2, ..., n} is a collection of
subsets of [n] that is closed under inclusion and contains all singletons {i} for
i∈[n]. The elements of Δ are called its faces. A set F ⊆[n] is called a missing face
of Δ if it is not a face of Δ, but all its proper subsets are. Hence the collection of
all missing faces of Δ carries the same information as Δ itself. Thus it is perhaps
not very surprising that imposing certain conditions on the allowed sizes of missing
faces may result in severe restrictions on the corresponding simplicial complexes.

Novik’s research was partially supported by an Alfred P. Sloan Research Fellowship and NSF
grant DMS-0801152.
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One simple example of this phenomenon is that while a simplicial (d−1)-sphere
may have as few as d+1 vertices, a flag (d−1)-sphere (that is, a simplicial com-
plex with all its missing faces of size two or, equivalently, 1-dimensional) needs at
least 2d vertices. In fact, Meshulam [12] proved that among all (d−1)-dimensional
flag simplicial complexes with non-vanishing top homology, the boundary of the
d-dimensional cross-polytope simultaneously minimizes all the face numbers. Sim-
ilarly, it was recently verified in [1] that among all 2-Cohen–Macaulay (2-CM, for
short) flag (d−1)-dimensional complexes, the boundary of the d-dimensional cross-
polytope simultaneously minimizes all of the h-numbers.

In [14], Nevo considered the more general class of (d−1)-dimensional simpli-
cial complexes with no missing faces of dimension larger than i (equivalently, of
size larger than i+1). He conjectured [14, Conjecture 1.3] that among all such
complexes with non-vanishing top homology, a certain polytopal sphere, S(i, d−1)
(that for i=1 coincides with the boundary of the cross-polytope), simultaneously
minimizes all of the face numbers. He also asked [14, Problem 3.1] if the same sphere
S(i, d−1) has the componentwise minimal h-vector in the class of all homology
(d−1)-spheres without missing faces of dimension larger than i. One of our main
results, Theorem 3.1, establishes both of these conjectures.

In addition to verifying that the h-numbers of flag spheres are at least as
large as those of the cross-polytope, Athanasiadis shows in [1, Theorem 1.1] that
the graph of a flag simplicial pseudomanifold of dimension d−1 is 2(d−1)-vertex-
connected. This is in contrast to the fact that without the flag assumption one can
only guarantee its d-connectedness (for polytopes this is Balinski’s theorem, see [18,
Theorem 3.14]; the general case is due to Barnette [3]). The above result prompted
Athanasiadis to ask [1, Remark 3.2] if, for every 0≤l≤d−1, the l-skeleton of a flag
homology (d−1)-sphere is 2(d−l)-CM and if the l-skeleton of a flag piecewise linear
(PL, for short) (d−1)-sphere is 2(d−l)-homotopy CM. In Theorem 4.1 we settle
both of these questions in the affirmative.

The face numbers of flag complexes are closely related to those of balanced
complexes. (A simplicial (d−1)-dimensional complex is called balanced [15] if its
1-skeleton, considered as a graph, is vertex d-colorable.) Indeed, it is a result of
Frohmader [10] that for every flag complex Δ there exists a balanced complex Γ
with the same f -vector, and it is a conjecture of Kalai [17, p. 100] that if Δ is flag
and CM, then one can choose the corresponding balanced Γ to also be CM.

The lower bound theorem for spheres [4], [11] asserts that among all homol-
ogy (d−1)-spheres on n vertices, a stacked sphere has the componentwise minimal
f -vector. Here we provide a sharpening of these bounds for the class of balanced
homology spheres in Theorem 5.3. In the case of balanced (d−1)-spheres whose
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number of vertices, n, is divisible by d, our result amounts to the statement that
the spheres obtained by taking the connected sum of n/d−1 copies of the boundary
of the d-dimensional cross-polytope have the componentwise minimal f -vector.

The rest of the paper is structured as follows. In Section 2 we review basic facts
and definitions related to simplicial complexes and their face numbers. Section 3
is devoted to complexes without large missing faces. Section 4 deals with CM
connectivity of skeletons of flag complexes. Finally, in Section 5 we discuss balanced
complexes. Sections 3–5 are independent of each other and can be read in any order.
We hope that our results will be helpful in attacking additional stronger conjectures
proposed in [14].

2. Preliminaries

Here we review basic facts and definitions related to simplicial complexes. An
excellent reference to this material is Stanley’s book [17].

Let Δ be a simplicial complex on the vertex set [n]. For F ∈Δ, set dim F :=
|F | −1 and define the dimension of Δ, dimΔ, as the maximal dimension of its faces.
We say that Δ is pure if all of its facets (maximal faces under inclusion) have the
same dimension. The f -vector of Δ is f(Δ)=(f−1, f0, ..., fd−1), where d−1=dimΔ
and fj is the number of j-dimensional faces of Δ. Thus f−1=1 (unless Δ is the
empty complex) and f0=n. We also consider the f -polynomial of Δ,

f(Δ, x) :=
d∑

j=0

fj−1x
j .

It is sometimes more convenient to work with the h-vector,

h(Δ) = (h0, h1, ..., hd),

(or the h-polynomial, h(Δ, x):=
∑d

j=0 hjx
j) instead of the f -vector (f -polynomial,

resp.). It carries the same information as the f -vector and is defined by the following
relation:

h(Δ, x)= (1−x)df

(
Δ,

x

1−x

)
.

In particular, h0=1, h1=n−d, and the f -numbers of Δ are non-negative linear
combinations of its h-numbers.

Let Δ1 and Δ2 be simplicial complexes on disjoint vertex sets V1 and V2. Then
their join is the following simplicial complex on V1 ∪V2,

Δ1 ∗Δ2 := {F1 ∪F2 : F1 ∈ Δ1 and F2 ∈ Δ2}.
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Therefore,

f(Δ1 ∗Δ2, x) = f(Δ1, x)f(Δ2, x) and h(Δ1 ∗Δ2, x) =h(Δ1, x)h(Δ2, x).

Also, a set F ⊆V1 ∪V2 is a missing face of Δ1 ∗Δ2 if and only if it is a missing face of
either Δ1 or Δ2. Thus if both complexes have no missing faces of dimension larger
than i, then so does their join.

Similarly, if Δ1 and Δ2 are pure simplicial (d−1)-dimensional complexes on
disjoint vertex sets, and F1={v1, ..., vd} ∈Δ1 and F2={w1, ..., wd} ∈Δ2 are facets,
then the complex obtained from Δ1 and Δ2 by identifying F1 and F2 via the bijec-
tion ρ(vi)=wi, and then removing this identified face, is called the connected sum
of Δ1 and Δ2 along F1 and F2, and is denoted Δ1#ρΔ2. While the combinatorics
of the resulting complex depends on F1, F2, and ρ, its f - and h-vectors do not:

hi(Δ1#Δ2) =

{
hi(Δ1)+hi(Δ2)−1, if i=0 or d,

hi(Δ1)+hi(Δ2), if 0<i<d.

If Δ is a simplicial complex and F is a face of Δ, then the link of F in Δ is
lkΔ F =lk F :={G∈Δ:F ∪G∈Δ and F ∩G=∅}, the star of F in Δ is stΔ F =st F :=
{G∈Δ:F ∪G∈Δ}, and the antistar of F in Δ is astΔ F =ast F ={G∈Δ:F �⊆G}.
Also, for W ⊆[n], let Δ−W :={F ∈Δ:F ⊆[n]\W } denote the restriction of Δ to
[n]\W . The links, stars, antistars, and restrictions are simplicial complexes in
their own right. If Δ is a complex without missing faces of dimension larger than i,
then so are links, stars, and restrictions of Δ; furthermore this property is preserved
under taking antistars of faces of dimension at most i.

We say that a (d−1)-dimensional complex Δ is Cohen–Macaulay over k (CM,
for short) if H̃i(lk F ;k)=0 for all F ∈Δ and all i<d− |F | −1. Here k is either a field
or Z and H̃i( · ,k) denotes the ith reduced simplicial homology with coefficients in k.
If in addition, H̃d− |F |−1(lk F ;k)∼=k for every F ∈Δ, then Δ is a k-homology sphere.
We say that Δ is q-CM if for all W ⊂[n], |W | ≤q −1, the complex Δ−W is CM
and has the same dimension as Δ. 2-CM complexes are also known as doubly CM
complexes. Every simplicial sphere (that is, a simplicial complex whose geometric
realization is homeomorphic to a sphere) is a homology sphere (over any k), and
every k-homology sphere is doubly CM over k. Moreover, joins and connected sums
of (homology) spheres are (homology) spheres.

Similarly, we say that Δ is homotopy Cohen–Macaulay (homotopy CM, for
short) if lkF is (d− |F | −2)-connected for all F ∈Δ, and that Δ is q-homotopy CM
if Δ−W is homotopy CM and has the same dimension as Δ for all W ⊂[n], |W | ≤q −1.
(Recall that a complex, or more precisely its geometric realization, is i-connected if
all of its homotopy groups from 0th to the ith one vanish.) Unlike the usual Cohen–
Macaulayness, homotopy Cohen–Macaulayness is not a topological property: there
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exist simplicial spheres that are not homotopy CM. It is however worth pointing
out that all PL simplicial spheres are homotopy CM (in fact, 2-homotopy CM).

Two simplicial complexes are said to be PL homeomorphic if there exists a
piecewise linear map between their geometric realizations that is also a homeomor-
phism. A simplicial complex is a PL (d−1)-sphere if it is PL homeomorphic to the
boundary of the d-simplex. The importance of PL spheres is that all their links are
also PL spheres (see e.g. [5, Section 12(2)]).

3. Counting face numbers
The goal of this section is to prove the following result conjectured in [14].

Throughout this section we fix positive integers i and d and write d=qi+r, where
q and r are (uniquely defined) integers satisfying 1≤r ≤i. Let σj denote the
j-dimensional simplex, ∂σj its boundary complex, and (∂σj)∗q the join of q copies
of ∂σj . Define

(1) S(i, d−1) := (∂σi)∗q ∗∂σr.

We remark that S(1, d−1) coincides with the boundary of the d-dimensional cross-
polytope.

Theorem 3.1. Let Δ be a (d−1)-dimensional simplicial complex without
missing faces of dimension larger than i, and let k be a field or Z.

1. If Δ has a non-vanishing top homology (with coefficients in k), then fj(Δ)≥
fj(S(i, d−1)) for all j. Moreover, if f0(Δ)=f0(S(i, d−1)) and either d is divisible
by i or fr(Δ)=fr(S(i, d−1)), then Δ=S(i, d−1).

2. If Δ is 2-CM over k, then hj(Δ)≥hj(S(i, d−1)) for all j. Moreover, if
h1(Δ)=h1(S(i, d−1)) and either d is divisible by i or hr+1(Δ)=hr+1(S(i, d−1)),
then Δ=S(i, d−1).

Several cases of Theorem 3.1 are known: Nevo [14, Theorem 1.1] verified the
inequalities in part 1 for all j assuming that i divides d, and for all j ≤r if i does
not divide d; the i=1 case of part 2 is due to Athanasiadis [1, Theorem 1.3].

Throughout the proof, the inequality P (x)≥Q(x) between two polynomials
means that the polynomial P (x)−Q(x) has non-negative coefficients. The proof of
both parts relies on the following simple property of the h-numbers of S(i, d−1).

Lemma 3.2. For every 1≤s≤i, one has

h(S(i, d−1), x) ≤ h(∂σs, x)h(S(i, d−1−s), x),(2)

and hence also

f(S(i, d−1), x) ≤ f(∂σs, x)f(S(i, d−1−s), x).
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Proof. Since the f -numbers are non-negative combinations of the h-numbers,
it is enough to verify the first inequality. Express d as d=s+(q′i+r′), where q′ and
r′ are integers satisfying 1≤r′ ≤i. Then q −q′ ∈ {0, 1} and s+r′ =(q −q′)i+r. Since
h(∂σj , x)=

∑j
l=0 xl, the inequality in (2) divided by (

∑i
l=0 xl)q′

reads

( i∑

l=0

xl

)q−q′ ( r∑

l=0

xl

)
≤

( r′∑

l=0

xl

)( s∑

l=0

xl

)
.

If q=q′, then r=r′ +s, and the above inequality holds without equality. Other-
wise, q −q′ =1 and i+r=r′ +s with i=max(r, r′, s, i), and the assertion follows by
comparing coefficients. �

Proof of Theorem 3.1, part 1. We first prove the inequalities on the f -numbers
of Δ by induction on d. If d≤i, then S(i, d−1)=∂σd, and the result follows from the
well-known and easy-to-prove fact that among all simplicial complexes of dimen-
sion d−1 with non-vanishing top homology, ∂σd has the componentwise minimal
f -vector. So assume that d>i and that the statement holds for all d′ <d.

If F is a face with 0≤dim F ≤i and H̃d−1− |F |(lk F ;k)=0, then consider Δ′ :=
ast F and Δ′ ′ :=st F , so that Δ=Δ′ ∪Δ′ ′ and Δ′ ∩Δ′ ′ =∂F ∗lk F . (Here F denotes
the simplex F together with all its faces.) Since

H̃d−2(Δ′ ∩Δ′ ′;k) ∼= H̃d−1− |F |(lk F ;k)= 0

and since Δ′ ′ is a cone, and hence acyclic, the Mayer–Vietoris sequence [6, p. 229]
yields that H̃d−1(Δ′;k)∼=H̃d−1(Δ;k) �=0. Therefore, by considering Δ′ instead of
Δ, we may assume without loss of generality that every face F of Δ with dimF ≤i

satisfies H̃d−1− |F |(lk F ;k) �=0.
Let G be a missing face of Δ and consider G′

�G. Define ΔG′
to be the

collection of faces of Δ of the form G′ ∪F , where F ∩G=∅. Note that ΔG′
is not

generally a simplicial complex. Since H ∩G=G′ for all H ∈ΔG′
, the collections ΔG′

are pairwise disjoint as G′ ranges over all proper subsets of G. For G′ ⊂G, choose
G′ ⊆G′ ′ ⊂G satisfying |G′ ′ |=|G| −1. Since G is a missing face in Δ, lkG′ ′ does not
contain any vertices from G, and therefore F ∪G′ ∈ΔG′

for all F ∈lk G′ ′. Hence
f(ΔG′

, x)≥x|G′ |f(lkG′ ′, x)≥x|G′ |f(S(i, d− |G|), x) by the inductive hypothesis. As
the collections ΔG′

are pairwise disjoint for G′
�G, by summing over all such G′,

we obtain

f(Δ, x) ≥
∑

G′�G

x|G′ |f(S(i, d− |G|), x) = f(S(i, d− |G|), x)
∑

G′ �G

x|G′ |

= f(S(i, d− |G|), x)f(∂G, x) ≥ f(S(i, d−1), x),

where the last step is by Lemma 3.2.
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We now prove the statement on equality by induction on d. Assume that
f0(Δ)=f0(S(i, d−1)) and, if r<i, that fr(Δ)=fr(S(i, d−1)). Then

fj(Δ) =
(

f0(Δ)
j+1

)
= fj(S(i, d−1)) for all j < r.

Furthermore, Δ has a missing face of dimension r. In the case that r<i this
follows from fr(Δ)=fr(S(i, d−1))=

(
f0(Δ)
r+1

)
−1. When r=i, this follows from the

fact that Δ has a complete (r −1)-dimensional skeleton and no missing face of
Δ has dimension greater than i. Finally, H̃d−1− |G|(lk G;k) �=0 for all G∈Δ with
dim G<r: otherwise

H̃d−1(ast G;k) �=0 and fdim G(ast G) <fdim G(S(i, d−1)),

a contradiction.
Let F be a missing face of Δ of dimension r and G be a maximal proper

subset of F . We claim that if F ′ is a missing face in lkG of dimension i, then F ′

is a missing face in Δ as well. Let G′ be a minimal subface of G such that lkG′

does not contain F ′ as a face. Then every proper subface of G′ ∪F ′ is a face in Δ,
but not G′ ∪F ′ itself. Since dim F ′ =i, we infer that G′ =∅ and F ′ is a missing face
in Δ.

We have that f0(lk G)≤f0(Δ)−r −1, since lk G contains no vertex of F ; and,
in fact, equality holds here by the inductive hypothesis since lkG has non-vanishing
top homology. Also dim(lk G)+1=dim(Δ)+1−r=d−r is divisible by i, and so it
follows by the inductive hypothesis that lkG=S(i, d−1−r). Label the missing faces
of lk G by F1, ..., Fq . Every missing face of lk G has dimension i, and hence every
missing face of lk G is also a missing face of Δ by the previous paragraph. Thus Δ
has F, F1, ..., Fq as disjoint missing faces with dim F =r and dim F1=...=dimFq=
i. These are precisely the missing faces of S(i, d−1), and so Δ is contained in
S(i, d−1). Since S(i, d−1) has componentwise minimal face numbers, Δ=
S(i, d−1). �

The proof of part 2 utilizes the following results in addition to Lemma 3.2. The
first of them is due to Stanley [17, Corollary II.3.2], the second appears in works of
Adin, Kalai, and Stanley, see e.g. [16], and the third one is [1, Lemma 4.1].

Lemma 3.3. If Δ is a (d−1)-dimensional CM complex, then h(Δ, x)≥0.
Moreover, if Δ has a non-vanishing top homology (which happens, for instance, if
Δ is a homology sphere, or more generally, if Δ is 2-CM ), then h(Δ, x)≥

∑d
l=0 xl=

h(∂σd, x).
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Lemma 3.4. Let Δ be a simplicial complex and Γ be a subcomplex of Δ.
If Δ and Γ are both CM (over the same k) and have the same dimension, then
h(Δ, x)≥h(Γ, x).

Lemma 3.5. Let Δ be a pure simplicial complex and v be a vertex of Δ. If
astΔ v has the same dimension as Δ, then h(Δ, x)=xh(lkΔ v, x)+h(astΔ v, x).

We are now in a position to prove part 2 of the theorem. It follows the same
general outline as the proof of [1, Theorem 1.3], but requires a bit more bookkeeping.

Proof of Theorem 3.1, part 2. The proof is by induction on d. If d≤i, then
S(i, d−1)=∂σd, and the statement follows from Lemma 3.3. So assume that d>i

and that the statement holds for all d′ <d.
Let F ={v0, v1, ..., vs} be a missing face of Δ (in particular, s≤i). Then Fj :=

{v0, v1, ..., vj } is a face for every −1≤j ≤s−1, and so is F \{vj }:={v0, ..., v̂j , ..., vs}
for every 0≤j ≤s. Repeatedly applying Lemma 3.5 and using the fact that lklk G H=
lkΔ(H ∪G) for all G∈Δ and H ∈lkΔ G (here and below, lk without a subscript refers
to the link in Δ), we obtain

h(Δ, x) = xh(lkΔ v0, x)+h(astΔ v0, x)

= x(xh(lklk v0 v1, x)+h(astlk v0 v1, x))+h(astΔ v0, x)

= x2(xh(lklk F1 v2, x)+h(astlk F1 v2, x))+xh(astlk F0 v1, x)+h(astΔ v0, x)

= ...

= xsh(lkΔ Fs−1, x)+
s−1∑

j=0

xjh(astlk Fj−1 vj , x).(3)

Since Δ is 2-CM, all its links are also 2-CM [2], and so all the complexes
appearing in (3) are CM. We now show that the h-polynomial of each of these
complexes is (componentwise) at least as large as h(S(i, d−s−1), x), and hence

h(Δ, x) ≥
s∑

j=0

xjh(S(i, d−s−1), x) =
( s∑

j=0

xj

)
h(S(i, d−s−1), x)

= h(∂σs, x)h(S(i, d−s−1), x) ≥ h(S(i, d−1), x)

(by Lemma 3.2), as required.
And indeed, lkΔ Fs−1 is (d−s−1)-dimensional, 2-CM, and has no missing faces

of dimension larger than i. Hence h(lkΔ Fs−1, x)≥h(S(i, d−s−1), x) by the induc-
tive hypothesis. For all other complexes appearing in (3), observe that since F is
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a missing face, the complex vs ∗vs−1 ∗...∗vj+1 ∗lkΔ(F −vj) is well defined, does not
contain vj , and is contained in lkΔ Fj−1. In other words,

astlk Fj−1 vj ⊇ vs ∗vs−1 ∗...∗vj+1 ∗lkΔ(F −vj).

As both of these complexes are CM of dimension d−j −1, Lemma 3.4 yields that

h(astlk Fj−1 vj , x) ≥ h(vs ∗...∗vj+1 ∗lk(F −vj), x)

= h(lk(F −vj), x) ≥ h(S(i, d−s−1), x),

where the last step is by the inductive hypothesis. This completes the proof. The
treatment of equality follows from the first part and the observation that S(i, d−1)
has a complete (r −1)-dimensional skeleton. �

4. Cohen–Macaulay connectivity of flag complexes

This section is devoted to the proof of the following theorem. Recall that the
l-skeleton of a simplicial complex Δ, Skell(Δ), consists of all faces of Δ of dimension
at most l.

Theorem 4.1. Let Δ be a flag simplicial complex of dimension d−1.
1. If Δ is 2-CM over k, then Skell(Δ) is 2(d−l)-CM over k for all 0≤l≤d−1.
2. Moreover, if Δ is a simplicial PL sphere, then Skell(Δ) is 2(d−l)-homotopy

CM for all 0≤l≤d−1.

Throughout the proof, ‖Δ‖ stands for the geometric realization of Δ; for W ⊂
[n], W denotes the simplex on the vertex set W together with all its faces, and pW

denotes the barycenter of ‖W ‖. If Γ is a subcomplex of Δ, and W is a subset of
[n] (but not necessarily a subset of V (Γ)—the vertex set of Γ), we write Γ−W to
denote the restriction of Γ to V (Γ)\W . We make use of the following observation:
for F ∈Δ and W ⊆[n]\F ,

(4) lk(Skell(Δ))−W
F =(lkSkell(Δ) F )−W =(Skell− |F |(lkΔ F ))−W .

Proof of part 1. In the following k is fixed and is suppressed from our notation.
The proof is by induction on d. Since Δ is flag and 2-CM, we already know that
it has at least 2d vertices, and hence that Skel0(Δ) is 2d-CM. This implies the
assertion for d≤2 as well as for l=0 and any d.

Assume now that the statement holds for all d′ <d. In particular, it holds for all
links of non-empty faces of Δ since they are also 2-CM and have dimension strictly
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smaller than d−1. Thus for a non-empty face F ∈Δ, the complex Skell− |F |(lk F )
is 2((d− |F |)−(l− |F |))=2(d−l)-Cohen–Macaulay. Putting this together with (4)
and using that for j<l the jth simplicial homology of Skell(Δ) coincides with that
of Δ, to complete the proof it only remains to show that (i) for every W ⊂[n] of size
2(d−l)−1, Δ−W is at least l-dimensional, and (ii) for all j<l≤d−1 and any subset
W ={v1, ..., vk } ⊂[n] of size 1≤k ≤2(d−l)−1, the homology H̃j(Δ−W ) vanishes.

To verify (i) consider F ∈Δ−W of dimension at most l−1. We need to show
that F is not a maximal (under inclusion) face in Δ−W . Since the link of F in Δ is
a flag 2-CM complex of dimension ≥d−l−1, it has at least 2(d−l)>|W | vertices.
Thus, at least one of these vertices, say v, is not in W , yielding that F ∪ {v} ∈Δ−W

is a larger face.
To prove (ii) we induct on k. There are two possible cases to consider.

Case 1. Every two vertices of W are connected by an edge in Δ (this, for
instance, happens if k=1).

Since Δ is flag, this condition implies that W ∈Δ. Then ‖Δ−W ‖ is a strong
deformation retract of ‖Δ‖ \ ‖W ‖ (see e.g. [5, Lemma 11.15]) which in turn is a
strong deformation retract of ‖Δ‖ \pW . Since Δ is 2-CM, the latter complex is
(d−2)-acyclic (this is essentially due to Walker, see [17, Proposition III.3.7]), and
the statement follows.

Case 2. Not every two vertices of W form an edge.

By reordering the vertices, if necessary, assume that {vk−1, vk } /∈Δ. Consider
complexes Δk−1 :=Δ−(W −vk), stΔk−1 vk, and the intersection Δ−W ∩stΔk−1 vk=
lkΔk−1 vk. The first two complexes have vanishing jth homology: indeed, the star is
contractible and for Δk−1 this holds by our inductive hypothesis on k. Also, since
vk−1 and vk are not connected by an edge, vk−1 is not in the link of vk. Hence

lkΔk−1 vk =(lkΔ vk)− {v1,...,vk−2}.

But dim(lkΔ vk)=d−2 and k −2≤2(d−l)−3=2((d−1)−l)−1, so our inductive hy-
pothesis on d applies to lkΔ vk and shows that H̃j−1(lkΔk−1 vk)=0. Finally, since
Δk−1=Δ−W ∪stΔk−1 vk, the appropriate portion of the Mayer–Vietoris sequence
[6, p. 229] yields that H̃j(Δ−W )=0, and the assertion follows. �

We now turn to part 2 of the theorem. A PL sphere is 2-CM over Z, so
part 1 implies vanishing of relevant homology groups computed with coefficients
in Z. In particular, all the spaces involved are (path) connected, and this allows us
to suppress the base point when discussing homotopy groups. We also write πj(Δ)
instead of πj(‖Δ‖).



Balanced complexes and complexes without large missing faces 345

The Hurewicz theorem [6, p. 479] asserts that if Δ is j-connected, j ≥1, then
πj+1(Δ)∼=H̃j+1(Δ; Z). In particular, if Δ is simply connected and H̃i(Δ; Z)=0
for all 0≤i≤j, then H̃j+1(Δ; Z)∼=πj+1(Δ). Also, PL spheres are simply connected
and their links are PL spheres in their own right. Thus part 2 will follow from
part 1 if we can show that for a PL (d−1)-sphere Δ and an arbitrary W ⊂[n] of
size 1≤k ≤2(d−2)−1=2d−5, π1(Δ−W )=0. This is done exactly as in the proof
of part 1: except that in case 2 one needs to use the Seifert–van Kampen theorem
[6, p. 161] instead of the Mayer–Vietoris sequence. It asserts (using notation of
case 2 in the proof of part 1) that

π1(Δk−1) ∼= π1(Δ−W )∗π1(lkΔk−1 vk)π1(stΔk−1 vk).

Since by the inductive hypothesis all groups, except possibly π1(Δ−W ), in this
equation are trivial, it follows that π1(Δ−W ) is trivial as well. As for case 1, just
notice that a topological sphere with a point removed is a topological ball, and
hence contractible.

We close this section with several remarks.
1. In part 2 of the theorem the ‘PL sphere’ condition cannot be relaxed to the

‘triangulated sphere’ one. This can be seen by considering the double suspension
of the Poincaré sphere. According to Edwards, see [7], the resulting space is a
topological sphere. Now start with any triangulation of the Poincaré sphere, and
let Γ be its barycentric subdivision. Then Δ=(∂σ1)∗2 ∗Γ is a flag complex that
triangulates Edwards’ sphere. But Δ is not homotopy CM: indeed, some of the
edges of Δ have Γ as their link, and Γ is not simply connected.

2. Let n≥2d be any integer, and let Ck denote the graph-theoretical cycle
on k vertices. Then the complex S(1, d−1, n):=(∂σ1)∗(d−2) ∗Cn−2d+4 is a (d−1)-
dimensional polytopal sphere on n vertices. It is flag, and for all 1≤l≤d−1, its
l-skeleton is 2(d−l)-CM, but not (2(d−l)+1)-CM. Thus part 1 of Theorem 4.1
is as strong as one can hope for. This example together with the theorem also
adds plausibility to Conjecture 1.4 from [14] asserting that among all flag homology
(d−1)-spheres on n vertices, S(1, d−1, n) has the smallest face numbers.

3. An immediate consequence of part 1 of the theorem is that if Δ is a (d−1)-
dimensional flag complex that is k-CM for some k ≥2, then Skell(Δ) is (2(d−l−1)+
k)-CM for 0≤l≤d−1. Indeed to show that Skell(Δ)−W is CM and of dimension l

for any |W | ≤2(d−l)+k −3, consider a subset W ′ of W of size min(k −2, |W |) and
its complement W ′ ′ =W \W ′. Then |W ′ ′ | ≤2(d−l)−1. Since Δ−W =(Δ−W ′ )−W ′ ′ ,
and since Δ−W ′ is 2-CM, Theorem 4.1 applied to Δ−W ′ and W ′ ′ completes the
proof.
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It is interesting to compare this result with a theorem of Fløystad [8] asserting
that if Δ is an arbitrary (d−1)-dimensional k-CM simplicial complex, then its l-
skeleton is ((d−l−1)+k)-CM.

5. The lower bound theorem for balanced complexes

In this section we establish tight lower bounds on the face numbers of balanced
2-CM complexes in terms of their dimension and the number of vertices. Recall that
a (d−1)-dimensional complex Δ on the vertex set V is (completely) balanced if its
1-dimensional skeleton is d-colorable: that is, there exists a coloring ˇ :V →[d] such
that for all F ∈Δ and distinct v, w∈F , ˇ(v) �=ˇ(w). We assume that a balanced
complex Δ comes equipped with such a coloring ˇ. The order complex of a rank-d
graded poset is one example of a balanced simplicial complex.

If Δ is a balanced complex and T ⊆[d], then the T -rank selected subcomplex of
Δ is ΔT :={F ∈Δ:ˇ(F )⊆T }. We make use of the following basic facts from [15].

Lemma 5.1. Let Δ be a (d−1)-dimensional balanced CM complex. Then for
any T ⊆[d], ΔT is also CM, and hi(Δ)=

∑
|T |=i hi(ΔT ) for all 0≤i≤d.

Since deleting a vertex commutes with taking a rank-selected subcomplex:
(ΔT )−v=(Δ−v)T for any v with ˇ(v)∈T , one consequence of the above lemma
is that a rank-selected subcomplex of a 2-CM complex is 2-CM as well.

The lower bound theorem for simplicial spheres [4], [11] asserts that among
all (d−1)-dimensional homology spheres with n vertices, a stacked sphere, S T (n,

d−1), has the componentwise minimal f -vector. A stacked sphere, S T (n, d−1), is
defined as the connected sum of n−d copies of the boundary of the d-simplex. Since
h1(∂σd)=h2(∂σd)=1 if d≥2, it follows that for d≥3,

h1(S T (n, d−1)) =h2(S T (n, d−1)).

Therefore, via a well-known reduction due to McMullen, Perles, and Walkup (see
[4, Theorem 1] or [11, Section 5]), the proof of the lower bound theorem for d≥3
reduces to showing that the h-vector of a homology sphere of dimension at least
2 satisfies h2 ≥h1. Recently, Nevo [13] extended this result to all 2-CM simplicial
complexes.

Lemma 5.2. If Δ is a simplicial 2-CM complex of dimension at least 2, then
h2(Δ)≥h1(Δ).
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It follows easily from the results of [15] that the boundary of the d-dimensional
cross-polytope has the componentwise minimal h-vector among all balanced (d−1)-
dimensional spheres. This motivates us to define a stacked cross-polytopal sphere,
S T ×(n, d−1), for n that is a multiple of d, as the connected sum of n/d−1 copies
of the boundary complex of the d-dimensional cross polytope. At each step the
vertices of the same colors are identified to guarantee that the resulting complex is
balanced as well.

What are the h-numbers of S T ×(n, d−1)? Since the h-numbers of the
d-dimensional cross-polytope are given by hj =

(
d
j

)
, it follows that for 0<j<d,

hj(S T ×(n, d−1)) =
(

n

d
−1

)(
d

j

)
,

that is,

(j+1)hj+1 =(d−j)hj for 0 <j <d−1.

In particular, (d−1)h1=2h2 if d≥3. Similarly, a direct computation shows that

ψj−1(n, d−1) := jfj−1(S T ×(n, d−1))

=

⎧
⎨

⎩
(2j −1)

(
d−1
j −1

)
(n−d)+d

(
d−1
j −1

)
, 1≤j ≤d−1,

(2d −2)(n−d)+2d, j=d.

One advantage of the last expression is that it is defined for all n rather than just
multiples of d. This allows us to state and prove the main theorem of this section—
the lower bound theorem for balanced spheres and, more generally, balanced 2-CM
complexes.

Theorem 5.3. Let Δ be a balanced 2-CM simplicial complex of dimension
d−1. If d≥3, then 2h2(Δ)≥(d−1)h1(Δ). In particular, if d≥2 and f0(Δ)=n, then
jfj−1(Δ)≥ψj−1(n, d−1) for all 2≤j ≤d.

Proof. Repeatedly applying Lemma 5.1, we see that
∑

|T |=3

h2(ΔT ) =
∑

|T |=3

∑

S ⊂T
|S|=2

h2(ΔS) =
∑

|S|=2

(d−2)h2(ΔS)= (d−2)h2(Δ),

and
∑

|T |=3

h1(ΔT ) =
∑

|T |=3

∑

S ⊂T
|S|=1

h1(ΔS) =
∑

|S|=1

(
d−1

2

)
h1(ΔS) =

(
d−1

2

)
h1(Δ).
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Since Δ is balanced and 2-CM, its rank-selected subcomplexes share the same prop-
erties. In particular, when |T |=3, ΔT is a 2-dimensional 2-CM complex, and so by
Lemma 5.2, h2(ΔT )≥h1(ΔT ). Thus we infer that (d−2)h2(Δ)≥

(
d−1
2

)
h1(Δ), and

the inequality 2h2(Δ)≥(d−1)h1(Δ) (for d≥3) follows.
The proof of the “in particular” part is a routine computation similar in spirit

to the McMullen–Perles–Walkup reduction. We sketch it here for completeness.
We use induction on d. For d=2 we need only show that 2f1(Δ)≥2n. This indeed
holds, since Δ is a 2-CM graph, hence it is 2-connected, and so every vertex of Δ
has degree at least 2.

Suppose now that d≥3. Then
∑

v∈Δ

h1(lk v)= 2h2(Δ)+(d−1)h1(Δ) ≥ 2(d−1)h1(Δ)

by the first part. Inductively, for 3≤j ≤d−1, we have

jfj−1(Δ) =
∑

v∈Δ

fj−2(lk v)

≥
∑

v∈Δ

1
j −1

[
(2j−1 −1)

(
d−2
j −2

)
h1(lk v)+(d−1)

(
d−2
j −2

)]

≥ (2j −2)
(

d−1
j −1

)
h1(Δ)+

(
d−1
j −1

)
f0(Δ)

= (2j −1)
(

d−1
j −1

)
h1(Δ)+d

(
d−1
j −1

)

= ψj−1(n, d−1).

The proof for j=d is similar and is omitted. �

It is worth remarking that at present we do not know whether the assertion
of Theorem 5.3 is tight when n is not divisible by d. We also do not know if the
stacked cross-polytopal spheres are the only balanced 2-CM complexes satisfying
2h2=(d−1)h1 when d divides n.

In the case when Γ is a 2j-dimensional homology sphere, the Dehn–Sommerville
relations assert that hj(Γ)=hj+1(Γ). If we knew that every balanced 2-CM complex
Γ of dimension 2j satisfies hj(Γ)≤hj+1(Γ), a proof similar to that of Theorem 5.3
would imply that for a balanced 2-CM complex Δ of dimension d−1≥2j,

(j+1)hj+1(Δ) ≥ (d−j)hj(Δ).

Finally, we observe that the lower bound theorem [3], [11] holds not only for
simplicial spheres, but also for triangulations of connected manifolds, and even
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normal pseudomanifolds of dimension at least two. (The latter result is due to
Fogelsanger [9].) Does Theorem 5.3 hold for balanced triangulations of such spaces?
Using results of [13] and standard tools from rigidity theory, one can show that
any connected pure 3-dimensional simplicial complex all of whose vertex links are
2-CM, satisfies h2 ≥h1. The proof analogous to that of Theorem 5.3 then implies
that if Δ is a balanced triangulation of a manifold of dimension at least 3, then
3h2(Δ)≥(d−1)h1(Δ). This inequality, however, is weaker than that of Theorem 5.3.
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Added in proof. Theorem 5.3 continues to hold for balanced triangulations
of orientable manifolds. This was recently verified by J. Browder and the second
author.
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