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Boundary integral operators and boundary
value problems for Laplace’s equation

TongKeun Chang and John L. Lewis

Abstract. In this paper, we define boundary single and double layer potentials for Laplace’s

equation in certain bounded domains with d-Ahlfors regular boundary, considerably more general

than Lipschitz domains. We show that these layer potentials are invertible as mappings between

certain Besov spaces and thus obtain layer potential solutions to the regularity, Neumann, and

Dirichlet problems with boundary data in these spaces.

1. Introduction

In this note we study layer potentials for Laplace’s equation on the bound-
aries of certain bounded domains with d-Ahlfors regular boundary in Rn, n≥3.
As an application of our results, we obtain layer potential solutions to the regu-
larity, Neumann, and Dirichlet problems for the Laplacian with boundary data in
certain Besov spaces. We remark that in Lipschitz domains, there is an extensive
literature concerning solution of the regularity, Neumann, and Dirichlet problems
by way of layer potentials (with boundary data in Lp) for classical linear ellip-
tic partial differential equations arising in mathematical physics, e.g., Laplace’s
equation, Maxwell’s equation, Stokes and Láme systems of equations (see [2], [3],
[4], [14] and [18]). More recently layer potential solutions to these problems have
been studied for Laplace’s equation in domains beyond Lipschitz domains and in
Lipschitz domains with boundary data in certain Besov spaces (see [7] and [13]
for references). To compare our results with those cited above, we shall need
some notation. Let X=(X1, ..., Xn) denote a point in Rn, let |X| be the stan-
dard Euclidean norm of X and for given r>0, set B(X, r)={Y ∈Rn :|Y −X|<r}.
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240 TongKeun Chang and John L. Lewis

Let d(E, F )=inf{ |X −Y |:X ∈E and Y ∈F } denote the Euclidean distance between
E, F ⊂Rn and let diam E=sup{ |X −Y |:X, Y ∈E} be the diameter of E. Given
k>0, define Hausdorff k-measure on Rn, denoted Hk, as follows: For fixed 0<δ<r0

and E ⊆Rn, let L(δ)={B(Zi, ri)} ∞
i=1 be such that E ⊆

⋃∞
i=1 B(Zi, ri) and 0<ri<δ,

i=1, 2, ... . Set

φδ(E) = inf
L(δ)

∞∑

i=1

rk
i .

Then
Hk(E) = lim

δ→0
φδ(E).

If 1≤q ≤ ∞, let Lq be the usual Lebesgue space of qth power integrable functions
h on Rn with norm denoted by ‖h‖Lq . Let W 1,q be the Sobolev space of functions
f : Rn→R with distributional gradient ∇f=(fx1 , ..., fxn), both of which are qth
power integrable on Rn. Let

‖f ‖W 1,q = ‖f ‖Lq +
∥
∥| ∇f |

∥
∥

Lq

be the norm of f in W 1,q . Lq(O) and W 1,q(O) are defined similarly whenever O is
an open set. Let ‖ · ‖Lq(O) and ‖ · ‖W 1,q(O) denote the norms in these spaces and
let C∞

0 (O) be the class of infinitely differentiable functions with compact support
in O. Let W 1,q

0 (O) be the closure of C∞
0 (O) in the W 1,q(O) norm. If 1≤q<n and

q∗ =nq/(n−q), we let R1,q be the Riesz potential space consisting of real-valued
functions f on Rn with distributional gradients and norm

‖f ‖R1,q = ‖f ‖Lq∗ +
∥
∥| ∇f |

∥
∥

Lq < ∞.

Recall that a measurable function ω : Rn→[0, ∞] is an A2 weight provided there is
a number C, 0<C<∞, such that

∫

B(Z,ρ)

ω dX

∫

B(Z,ρ)

1
ω

dX ≤ CHn(B(Z, ρ))2.

The least such C for which the above inequality holds is denoted by ‖ω‖̂ and is
called the A2 constant for ω. Let L2

ω be the space of Lebesgue measurable functions
that are square integrable with respect to ω dX and with norm denoted by ‖ · ‖L2

ω
.

Throughout this paper we assume that Ω is an open set and ∂Ω⊂Rn is a bounded
d=(d1, ..., dN )-Ahlfors regular set. That is, we make the following assumption.

Assumption A1. (a) ∂Ω=
⋃N

i=1 Ei, where Ei ⊂Rn, 1≤i≤N<∞, is compact.
(b) There is an r1>0 with d(Ei, Ej)>r1 whenever i 
=j and 1≤i, j ≤N .
(c) There exist c1<1≤c2 and di, 1≤i≤N , such that n−2<di<n and c1r

di ≤
Hdi(B(X, r)∩Ei)≤c2r

di whenever X ∈Ei and 0<r<r1.
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We note that if N=1, then our definition agrees with the definition of a d-set
in [10]. In our theorems involving double layer potentials we also require Assump-
tions A2 and A3.

Assumption A2. Let G be either Ω or Rn \¯Ω. There exists σ0>0 such that
if q ∈[2−σ0, 2+σ0] and v ∈W 1,q with v=a=constant in G, then v(X)=a for Hdi -
almost every X ∈Ei and 1≤i≤N .

Assumption A3. Let G be either Ω or Rn \¯Ω. There exists c3 and c4, 0<

c3, c4<∞, such that the following is true whenever ω is an A2 weight with ‖ω‖̂ ≤c3.
Let f be in W 1,1(O) whenever O ⊂G is a bounded open set. Then f has a locally
integrable extension f̂ to Rn with distributional derivative ∇f̂ . Moreover,

‖ ∇f̂ ‖2
L2

ω
≤ c4

∫

G

| ∇f |2ω dX.

Note that the above inequality holds trivially if the right-hand side is infi-
nite. Also if G is bounded, then f ∈W 1,1(G). Next, given p, 1<p<∞, let Lp(Ei),
1≤i≤N , be the Lebesgue space of pth power integrable functions g on Ei with

‖g‖p
Lp(Ei)

=
∫

Ei

|g|p dHdi < ∞.

If f : ∂Ω→R and f |Ei ∈Lp(Ei), 1≤i≤N , set

‖f ‖Lp(∂Ω) =
N∑

i=1

‖f |Ei ‖Lp(Ei).

If 1<p<∞, 0<si<1 and 1≤i≤N , let B̃p,si(Ei) be the Besov space of Hdi measur-
able functions f on Ei with ‖f ‖B̃p,si (Ei)

<∞, where

‖f ‖B̃p,si (Ei)
=

(∫

Ei

∫

Ei

|f(P )−f(Q)|p
|P −Q|sip+di

dHdi(P ) dHdi(Q)
)1/p

+‖f ‖Lp(Ei).

If f : ∂Ω→R and f |Ei ∈B̃p,si(Ei) for 1≤i≤N we put s=(s1, ..., sN ) and write

‖f ‖Bp,s(∂Ω) =
N∑

i=1

‖f |Ei ‖B̃p,si (Ei)
.

We note that Bp,s(∂Ω) is a Banach space. Let Bp,s
∗ (∂Ω) denote the space of bounded

linear functionals on Bp,s(∂Ω). Given θ ∈Bp,s
∗ (∂Ω) and f ∈Bp,s(∂Ω) let 〈θ, f 〉 be the
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duality pairing between a Besov space and its dual (see [11] for further descriptions
of this pairing).

We now introduce the layer potentials we shall consider. Fix p, 1<p<∞,
and let p′ =p/(p−1), αi=1−(n−di)/p and βi=1−(n−di)/p′ for 1≤i≤N . Put α=
(α1, ..., αN ) and β=(β1, ..., βN ). If φ∈Bp′,β

∗ (∂Ω) and ∂Ω satisfies Assumption A1
set

(1.1) Sφ(X) = 〈φ, Γ(X − · )〉, X ∈ Rn \∂Ω,

where

Γ(X) = − 1
(n−2)ωn

1
|X|n−2

is the fundamental solution of Laplace’s equation in Rn.
If Ω is a bounded connected open set (i.e., a domain) for which ∂Ω satisfies

Assumption A1, we put Ω+=Ω and Ω− =Rn \¯Ω, and for f ∈Bp,α(∂Ω), set

(1.2) K ±f(X) =
∫

Ω∓

∇Y Γ(Y −X)· ∇F (Y ) dY, X ∈ Rn,

where F ∈W 1,p is an extension of f . We remark that K ±f does not depend on the
particular extension of f , as will follow from Lemma 2.3 and Proposition 2.2. Also,
we observe that Sφ is harmonic in Rn \∂Ω and K ±f are harmonic in Ω±. Our
boundary layer potentials are defined by

(1.3) Sφ = Sφ|∂Ω and T±f = K ±f |∂Ω.

We refer to Sφ as the single layer potential of φ in Rn. Also, K ±f are called
the double layer potentials of f in Rn. Finally define T ∗

± : Bp,α
∗ (∂Ω)→Bp,α

∗ (∂Ω) by
〈T ∗

±ψ, f 〉=〈ψ, T±f 〉 whenever ψ ∈Bp,α
∗ (∂Ω) and f ∈Bp,α(∂Ω).

Our main results in this paper are stated as follows.

Theorem 1.1. Let ∂Ω satisfy Assumption A1. There exists ε0>0, depending
only on d=(d1, ..., dn), c1, c2, r1, N , n and diam ∂Ω, such that if 2−ε0 ≤p≤2+ε0,
then S : Bp′,β

∗ (∂Ω)→Bp,α(∂Ω) is one-to-one, bounded, and onto, and thus invertible.

Theorem 1.2. Let Ω⊂Rn be a bounded domain satisfying Assumption A1 as
well as Assumptions A2 and A3 with G=Rn \¯Ω. There exists ε1>0 depending on
the same quantities as ε0 in Theorem 1.1 and also on σ0, c3 and c4, such that if
p∈[2−ε1, 2+ε1], then T+ : Bp,α(∂Ω)→Bp,α(∂Ω) is one-to-one, bounded, and onto,
and thus invertible.
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Theorem 1.3. Let Ω⊂Rn be a bounded domain satisfying Assumption A1 as
well as Assumptions A2 and A3 with G=Ω. There exists ε2>0 depending on the
same quantities as ε1 in Theorem 1.2 such that for p∈[2−ε2, 2+ε2], T ∗

− : B̂p,α
∗ (∂Ω)→

B̂p,α
∗ (∂Ω) is one-to-one, bounded, and onto, and thus invertible.

In Theorem 1.3, B̂p,α
∗ (∂Ω)={φ∈Bp,α

∗ (∂Ω):〈φ, 1〉=0}. We note that in Re-
mark 5.5 at the end of Section 5 we shall define the weak normal derivative,
∂u/∂n∈B̂p,α

∗ (∂Ω), of a harmonic functions u defined on Ω, with | ∇u| ∈Lp′
(Ω). If

φ∈B̂p,α
∗ (∂Ω) and u=Sφ|Ω, then it turns out that φ→∂u/∂n=T ∗

−φ.
Using this remark and Theorems 1.1–1.3 we easily obtain Theorems 1.4–1.6.

Theorem 1.4. Let ∂Ω satisfy Assumption A1. If 2−ε0 ≤p≤2+ε0, then given
f ∈Bp,α(∂Ω), there is a unique φ∈Bp′,β

∗ (∂Ω) with ‖φ‖
Bp′ ,β

∗ (∂Ω)
≤c‖f ‖Bp,α(∂Ω) and

the property that if u=Sφ, then
{

Δu=0 in Rn \∂Ω,

u=f on ∂Ω,

where c>0 has the same dependence as ε0.

Theorem 1.5. Let G, Ω and ε1 be as in Theorem 1.2. If 2−ε1 ≤p≤2+ε1,
then given f ∈Bp,α(∂Ω), there is a unique h∈Bp,α(∂Ω) for which u=K+h satisfies

⎧
⎪⎨

⎪⎩

Δu=0 in Ω,

u=f on ∂Ω,

‖h‖Bp,α(∂Ω) ≤c‖f ‖Bp,α(∂Ω),

where c>0 has the same dependence as ε2.

Theorem 1.6. Let G, Ω and ε2 be as in Theorem 1.3. If 2−ε2 ≤p≤2+ε2,
then given ψ ∈B̂p,α

∗ (∂Ω), there is a unique harmonic û in Rn \∂Ω, satisfying
⎧
⎪⎪⎨

⎪⎪⎩

û=Sφ for some φ∈B̂p,α
∗ (∂Ω),

∂u

∂n
=ψ if u=û|Ω,

‖φ‖Bp,α
∗ (∂Ω) ≤c‖ψ‖Bp,α

∗ (∂Ω),

where c>0 has the same dependence as ε2.

Remark 1.7. Theorems 1.4–1.6 can be thought of as weak versions for Besov
spaces of the regularity, Neumann, and Dirichlet problems with boundary data in a
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Besov space. For Lipschitz domains it follows from the results in [13] that analogues
of Theorems 1.4–1.6 hold for boundary data in a variety of other Besov and Hardy
spaces. On the other hand, as mentioned earlier, the domains we consider are con-
siderably more general than Lipschitz domains or even those considered in [7]. For
example Theorem 1.4 holds when ∂Ω is a finite union of Cantor sets (with the proper
dimension) and fractal surfaces. Theorems 1.5 and 1.6 are less general. For example
it follows easily from Propositions 2.1 and 2.2 that necessarily ∂Ω=∂(Rn \¯Ω) when
Assumption A2 holds and G=Rn \¯Ω. Thus in this case N=1 and n>d1 ≥n−1.
Assumption A3 further restricts the class of admissible domains. Still there are
numerous non-Lipschitz fractal-type surfaces satisfying these requirements, as we
point out in Section 6.

As for the plan of this paper, in Section 2, we prove a trace lemma which
together with theorems from [9] enables us to define our single layer potentials on
Rn \∂Ω under Assumption A1. In this section we also study harmonic functions
with Lipschitz boundary values on a portion of a d-Ahlfors regular boundary and
state a Whitney-type extension theorem. In Sections 3, 4 and 5 we prove Theo-
rems 1.1, 1.2 and 1.3, respectively. In Section 6 we discuss Assumptions A2 and A3
and indicate some domains for which Theorems 1.1–1.3 are valid.

2. Preliminary reductions

In the sequel we let c≥1 denote a positive constant “depending only on the
data”, not necessarily the same at each occurrence. By this phrase we include
dependence on c1, c2, d=(d1, ..., dN ), N , r1 and diam ∂Ω, and if explicitly stated,
p, throughout Sections 2 and 3. In Sections 4 and 5 we also allow dependence on
c3, c4 and Hn(Ω). In the proof of Theorems 1.1–1.3 we shall need the following
extension and restriction theorems.

Proposition 2.1. (Extension theorem) Let Ω be a bounded domain satisfy-
ing Assumption A1 and p be fixed, n−min{d1, ..., dN }<p<∞. Then for all f ∈
Bp,α(∂Ω) there exists F ∈W 1,p such that F |∂Ω=f and

‖F ‖W 1,p ≤ c‖f ‖Bp,α(∂Ω),

where c depends on the data (including p).

Proposition 2.2. (Restriction theorem) Let Ω be a bounded domain satisfying
Assumption A1 and p be as in Proposition 2.1. Then the operator

R : W 1,p −→Bp,α(∂Ω)
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defined by R(F )=F |∂Ω is bounded. That is, there is a positive constant c≥1, having
the same dependence as in Proposition 2.1, such that

‖ R(F )‖Bp,α(∂Ω) ≤ c‖F ‖W 1,p .

Propositions 2.1 and 2.2 are proved in [9] when N=1. It is easily seen that
Propositions 2.1 and 2.2 follow from the just cited N=1 case. Indeed to get Propo-
sition 2.1 we extend f |Ei to fi ∈W 1,p for 1≤i≤n where ‖fi‖W 1,p ≤c‖f |Ei‖Bp,αi (Ei).
Let 0≤ψi ∈C∞

0 (Rn) with support contained in {X :d(X, Ei)<r1}, | ∇ψi| ≤c/r1 and
ψi ≡1 on Ei for 1≤i≤n. If F =

∑N
i=1fiψi, it is easily checked that Proposition 2.1

holds for this F . Proposition 2.2 follows from applying the N=1 case to each
Ei, 1≤i≤N. We note that since ∂Ω is bounded, we may assume that F in Propo-
sitions 2.1 and 2.2 has compact support. We shall also need the following lemma.

Lemma 2.3. Let ∂Ω satisfy Assumption A1 and p be fixed and satisfy
n−min{d1, ..., dn}<p<∞. Suppose that F ∈W 1,p with F =a=constant Hdi -almost
everywhere on Ei for 1≤i≤N . Then given ε>0 there exists g ∈W 1,p with compact
support, g=a in a neighborhood of ∂Ω, and ‖g −F ‖W 1,p <ε.

Proof. We remark that Lemma 2.3 is perhaps implied by the results in [9]
or [10], although we could not find any direct reference. Also if we knew that F ≡0
almost everywhere with respect to a certain Riesz p-capacity (defined below), then
Lemma 2.3 would follow from [1], Section 9.2. Since this also is not apparent to
the authors we give a proof of Lemma 2.3. In the proof c may also depend on p.
To begin, given a bounded set Ê ⊂Rn and 1<p<∞ define the outer Riesz capacity
of Ê by γp(Ê)=inf

∫
Rn | ∇θ|p dX , where the infimum is taken over all θ ∈C∞

0 (Rn)
with θ ≡1 on Ê. It is well known (see [1], Chapter 5) that for 1<p≤n,

(2.1) γp(Ê)= 0 =⇒ Hn−p+ε(Ê) = 0 whenever ε> 0.

If p>n, then nonempty sets have positive capacity. Let F be as in Lemma 2.3 for
fixed p, n−min{d1, ..., dN }<p<∞, and let FB(X,r) be the average of F on B(X, r).
Then F can be defined almost everywhere on Rn, with respect to the γp-capacity
(see [1] or [17]), by F (X)=limX→0 FB(X,r). If E denotes the set where this limit
does not exist, then from (2.1) it follows that Hdi(E ∩Ei)=0 for p≤n, while E=∅

when p>n. Let X ∈Ei, 0<r ≤r1/100 and

I1(χ| ∇F |)(Y ) =
∫

B(X,r)

| ∇F (Z)| |Z −Y |1−n dZ, Y ∈ B(X, r),

where χ denotes the characteristic function of B(X, r). Approximating F by C∞

functions and taking limits it follows once again from Sobolev-type estimates and
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arguments involving γp that

(2.2) |F (Y )−FB(X,r)| ≤ cI1(χ| ∇F |)(Y )

for Hdi -almost every Y ∈B(X, r/2). Let μ be r−di times the Hdi measure on
∂Ω∩B(X, r/2) and set

I1μ(Y ) =
∫

Rn

|Y −Z|1−n dμ(Z).

Using that F ≡a Hdi -almost everywhere on ∂Ei, as well as Assumption A1, and
integrating (2.2) with respect to μ we deduce from Hölder’s inequality that

|(F −a)B(X,r)| ≤ c

∫

B(X,r)

| ∇F (Z)|I1μ(Z) dZ(2.3)

≤ c2
∥
∥χ| ∇F |

∥
∥

Lp ‖χI1μ‖Lp′ ≤ c3
∥
∥χ| ∇F |

∥
∥

Lpr1−n/p.

For p≥n, (2.3), is a consequence of theorems of Sobolev and Morrey. Equation (2.3)
for p<n follows from Hölder’s inequality and the fact that (see [1], Section 4.5)

(2.4) ‖I1μ‖p′

Lp′ ≈
∫

Rn

W (Y ) dμ(Y ),

where W is the Wolff potential defined by

W (X) =
∫ ∞

0

[tp−nμ(B(X, t))]1/(p−1) dt

t
.

Indeed from Assumption A1 and the definition of μ we find that W (X)≤cr(p−n)/(p−1)

whenever X ∈Rn. Using this inequality in (2.4) we deduce first that

‖I1μ‖Lp′ ≤ cr1−n/p

and thereupon that (2.3) is true.
From (2.3) we get upon raising both sides to the pth power and then dividing

by r−p that

(2.5) r−p|(F −a)B(X,r)|p ≤ c(| ∇F |p)B(X,r).

Next given η, 0<η �r1, we define Oj ={X ∈Rn :d(X, ∂Ω)<jη}, j=1, 2. Let
ζ ∈C∞

0 (O2) with ζ ≡1 on O1 and | ∇ζ| ≤c/η. Put ĝ=F −(F −a)ζ . We shall show
that if η=η(ε)>0 is small enough then

(2.6) ‖ĝ −F ‖W 1,p ≤ 1
2ε.
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Indeed, from the definition of ĝ and our choice of ζ , we have that

(2.7) ‖ĝ −F ‖p
W 1,p ≤ c

∫

O2

(| ∇F |p+η−p|F −a|p) dX.

To estimate the right-hand side of this equation we first use a well-known covering
lemma to get a covering {B(Xi, 10η)}∞

i=1 of O2 with centers in O2 and the property
that the balls {B(Xi, η)}∞

i=1 are pairwise disjoint. Let Zi be a point in ∂Ω with
|Xi −Zi|=d(Xi, ∂Ω) and let O3={X :d(X, ∂Ω)<12η}. Then

∫

O2

|F (X)−a|p dX ≤
∞∑

i=1

∫

B(Zi,12η)

|F (X)−a|p dX(2.8)

≤ c

∞∑

i=1

∫

B(Zi,12η)

|F (X)−FB(Zi,12η)|p dX

+cηn
∞∑

i=1

|(F −a)B(Zi,12η)|p

= J1+J2.

J1 can be estimated using Poincaré’s inequality. We get

(2.9) J1 ≤ c
∞∑

i=1

ηp

∫

B(Zi,12η)

| ∇F |p dX ≤ c2ηp

∫

O3

| ∇F |p dX,

where to get the last inequality we observed that each point in
⋃∞

i=1 B(Zi, 12η) lies
in at most c of the balls {B(Zi, 12η)}∞

i=1, as follows from a “volume” argument
using the disjointness of {B(Xi, η)}∞

i=1. To estimate J2 we use (2.5) to get

ηn
∞∑

i=1

|(F −a)B(Zi,12η)|p ≤ cηp
∞∑

i=1

∫

B(Zi,12η)

| ∇F (X)|p dX(2.10)

≤ c2ηp

∫

O3

| ∇F (X)|p dX.

Using (2.8)–(2.10) in (2.7), we get (2.6) for η=η(ε) sufficiently small, since F ∈W 1,p.
Finally let ψ ∈C∞

0 (B(0, 2R)) with ψ ≡1 on B(0, R) and | ∇ψ| ≤c/R. Let g=(ĝψ)δ

denote convolution of ĝψ with an approximate identity whose support is contained
in B(0, δ). If R is large enough and δ>0 small enough we obtain from standard
properties of mollifiers that ‖g −ĝ‖W 1,p <ε/2. Using this inequality in (2.6) we
conclude the validity of Lemma 2.3. �

Next we prove the following lemma.
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Lemma 2.4. Suppose that v is harmonic in B(X̂, 4ρ)\∂Ω, where X̂ ∈∂Ω,
0<ρ<r1/100 and r1 is as in Assumption A1. Let ζ ∈C∞

0 (B(X̂, 3ρ)) with ζ ≡1
on B(X̂, 2ρ) and

∥
∥| ∇ζ|

∥
∥

L∞ ≤1000/ρ. Assume that (v −F )ζ ∈W 1,2
0 (B(X̂, 3ρ)\∂Ω),

where F : Rn→R is in W 1,q . Then there exists δ>0, depending only on the data,
such that if 2<q ≤2+δ, then ‖v‖W q

1 (B( bX,ρ)\∂Ω)<∞. Moreover,

∫

B( bX,ρ)

| ∇v|q dX ≤ cρn(1−q/2)

(∫

B( bX,2ρ)

| ∇v|2 dX

)q/2

+c

∫

B( bX,2ρ)

| ∇F |q dX.

Proof. To prove Lemma 2.4, we show that if Y ∈B(X̂, ρ) and 0<r ≤ρ/100, then
∫

B(Y,r)

| ∇v|2 dX(2.11)

≤ 1
100n

∫

B(Y,12r)

| ∇v|2 dX+crn(b−2)/b

(∫

B(Y,12r)

| ∇v|b dX

)2/b

+cM,

where b= 6
5 for n=3, 4 and b=2−4/n for n≥5. Also, M=

∫
B(Y,12r)

| ∇F |2 dX . Lem-
ma 2.4 then follows from this reverse Hölder-type inequality and an argument orig-
inally due to Gehring (see [5]). Thus we prove only (2.11).

We consider two cases. If 0<r ≤d(Y, ∂Ω)/2, then (2.11) follows from standard
estimates for harmonic functions in balls. If d(Y, ∂Ω)≤2r, Ŷ ∈∂Ω and |Ŷ −Y |=
d(Y, ∂Ω), then

B(Y, t) ⊂ B(Ŷ , 3t) ⊂ B(Y, 6t) whenever t ≥ r.

Hence it suffices to prove that (2.11) holds with Y , r and 12r, replaced by Ŷ , 3r

and 6r, respectively. To this end, let 0≤ψ ∈C∞
0 (B(Ŷ , 6r)) with ψ ≡1 on B(Ŷ , 3r)

and | ∇ψ| ≤c/r. If w=(v −F )ψ2, then from the hypotheses of Lemma 2.4 we see
that

(2.12)
∫

B(bY ,6r)

∇v · ∇w dX =0,

where · denotes the standard inner product on Rn. Using (2.12) and Cauchy’s
inequality with ε’s, we obtain that

(2.13)
∫

B(bY ,3r)

| ∇v|2 dX ≤ cM+
c

r2

∫

B(bY ,6r)

G2 dX,

where we have put G=v −F . From (2.5) with a=0, p=b and r, X and F replaced
by 6r, Ŷ and G, respectively, we get that

(2.14) |GB(bY ,6r)| ≤ cr1−n/b
∥
∥χ̃| ∇G|

∥
∥

Lb ,
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where χ̃ denote the characteristic function of B(Ŷ , 6r). From (2.14) and Poincaré’s
inequality, we deduce that

1
r2

∫

B(bY ,6r)

|G|2 dX ≤ 4
r2

∫

B(bY ,6r)

|G−GB(bY ,6r)|2 dX+crn−2(GB(bY ,6r))
2

≤ c′

r2

∫

B(bY ,6r)

|v −vB(bY ,6r)|2 dX+c′M(2.15)

+c′rn−2n/b
∥
∥χ̃| ∇v|

∥
∥2

Lb ,

where c′ depends only on the data. Putting (2.15) in (2.13) we find that
∫

B(bY ,3r)

| ∇v|2 dX ≤ c

r2

∫

B(bY ,6r)

|v −vB(bY ,6r)|2 dX(2.16)

+cM+crn−2n/b
∥
∥χ̃| ∇v|

∥
∥2

Lb .

Next we note from (2.2) with F =v and r, Y and X replaced by 4r, X and Ŷ ,
respectively, that

(2.17) |v(X)−vB(bY ,6r)| ≤ cI1(χ̃| ∇v|)(X) whenever X ∈B(Ŷ , 6r).

Also (see [1], Proposition 3.1.2), we have

(2.18) I1(χ̃| ∇v|)(X) ≤ c
∥
∥χ̃| ∇v|

∥
∥2/n

L2 M̂(χ̃| ∇v|)(X)1−2/n for X ∈ B(Ŷ , 6r),

where

(2.19) M̂k(X)= sup
r>0

1
Hn(B(X, r))

∫

B(X,r)

|k| dX

denotes the Hardy–Littlewood maximal function of a locally integrable function k

on Rn. Squaring both sides of (2.17) and integrating over B(Ŷ , 4r), we deduce from
(2.18) and the Hardy–Littlewood maximal theorem (see [15]) that

1
r2

∫

B(bY ,6r)

|v −vB(bY ,6r)|2 dX ≤ c

r2

∥
∥χ̃| ∇v|

∥
∥4/n

L2

∫

B(bY ,6r)

M̂(χ̃| ∇v|)(X)2−4/n dX

≤ crλ
∥
∥χ̃| ∇v|

∥
∥4/n

L2

(∫

B(bY ,6r)

| ∇v|b dX

)(2n−4)/nb

,(2.20)

where λ=(n−2)(b−2)/b. The right-hand side of (2.20) can be estimated using
Young’s inequality with η’s. Doing this we find that
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rλ
∥
∥χ̃| ∇v|

∥
∥4/n

L2

(∫

B(bY ,6r)

| ∇v|b dX

)(2n−4)/nb

(2.21)

≤ cηn/2
∥
∥χ̃| ∇v|

∥
∥2

L2 +cη−n/(n−2)rn−2n/b
∥
∥χ̃| ∇v|

∥
∥2

Lb .

Combining (2.20) and (2.21), and using the resulting inequality in (2.16) we conclude
for sufficiently small η>0 that

(2.22)
∫

B(bY ,3r)

| ∇v|2 dX ≤ 1
100n

∫

B(bY ,6r)

| ∇v|2 dX+crn−2n/b
∥
∥χ̃| ∇v|

∥
∥2

Lb +cM.

In view of our earlier remarks we now conclude the validity of Lemma 2.4. �

Finally in this section we state the following result.

Lemma 2.5. Given k ∈W 1,p ∪R1,p and λ>0 there exists a Lipschitz function
θ on Rn with θ(x)=k(x) for Hn-almost every x of L(λ)={y :M̂(| ∇k|)(y)≤λ} and∥
∥| ∇θ|

∥
∥

L∞ ≤cλ.

Proof. Note from the definition of M̂(| ∇k|) in (2.19) that L(λ) is closed. Also,
L(λ) 
=∅ since M(| ∇k|)∈Lp by the Hardy–Littlewood maximal theorem. Now for
almost every X, Y ∈L(λ) if r=2|X −Y |, then

(2.23) |k(X)−k(Y )| ≤ cI1(χ| ∇k|)(X)+cI1(χ| ∇k|)(Y ),

where we have used (2.2) with F replaced by k. One can write the integral involving
I1 as a sum and make simple estimates to show (see [1])

I1(χ| ∇k|)(X)+I1(χ| ∇k|)(Y ) ≤ c|X −Y |(M̂(| ∇k|)(X)+M̂(| ∇k|)(Y ))(2.24)

≤ c2λ|X −Y |,

since X, Y ∈L(λ). From (2.23) and (2.24) we conclude that k agrees Hn-almost
everywhere on L(λ) with a Lipschitz function on L(λ) having norm ≤cλ. Existence
of θ now follows from applying the Whitney extension theorem to the Lipschitz
function on L(λ) (see [15], Chapter VI). �

3. Proof of Theorem 1.1

In the proof of Theorem 1.1 we assume that p>n−min{d1, ..., dN } and that
|p−2| ≤δ. Initially we allow δ>0 to vary but shall later fix δ to be a small positive
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number satisfying several conditions. We then put ε0=δ. Since the Laplacian is
invariant under translations we assume, as we may, that 0∈∂Ω. Let p′ =p/(p−1),
αi=1−(n−di)/p and βi=1−(n−di)/p′ for 1≤i≤N , and set α=(α1, ..., αN ) and
β=(β1, ..., βN ). As in (1.1) and (1.3), we put

Sφ(X) = 〈φ, Γ(X − · )〉, X ∈ Rn,

and Sφ=Sφ|∂Ω whenever φ∈Bp′,β
∗ (∂Ω). We first prove the following lemma.

Lemma 3.1. If φ∈Bp′,β
∗ (∂Ω), then Sφ∈R1,p and Sφ∈Bp,α(∂Ω) with

‖ Sφ‖R1,p +‖Sφ‖Bp,α(∂Ω) ≤ c‖φ‖
Bp′ ,β

∗ (∂Ω)
.

Proof. If X ∈Rn \¯Ω, then it follows easily from linearity of φ, Taylor’s theorem
with remainder, and a difference quotient argument that

(3.1) DλSφ(X) = 〈φ, Dλ
XΓ(X − · )〉, where Dλ

X =
∂|λ|

∂Xλ1
1 ...∂Xλn

n

and λ is a multi-index. As Γ is harmonic in Rn \ {0}, it follows that Sφ is harmonic in
Rn \∂Ω. Let F ∈C∞

0 (Rn) and set Oε={x∈Rn :d(x, ∂Ω)>ε} for ε>0 while O0=Rn.
We note that if χε is the characteristic function of Oε and

I2(χεF )(X) =
∫

χε(Y )F (Y )Γ(X −Y ) dY for ε ≥ 0,

then from well-known properties of Riesz potentials (see [1], Section 1) we have that

(3.2) ‖I2(χεF )‖Lq̃ +
∥
∥| ∇I2(χεF )|

∥
∥

Lp′ ≤ c‖F ‖Lq ,

where 1/q̃=1/q −2/n and 1/q=1/p′ +1/n. We also note for ε>0 that

(3.3)
∫

Oε

SφF dX =
∫

Oε

〈φ, Γ(X − · )〉F (X) dX = 〈φ, I2(χεF )|∂Ω〉

as follows from writing the left-hand integral as a limit of Riemann sums and using
the linearity of φ. To estimate the right-hand term in (3.3) let R0 be the smallest
positive number ≥1 such that ∂Ω⊂B(0, R0) and let ζ ∈C∞

0 (B(0, 4R0)) with ζ ≡1
on B(0, 2R0) and | ∇ζ| ≤1000/R0. Then ζI2(χεF )∈W 1,p′

and from Proposition 2.2
we have that

| 〈φ, I2(χεF )|∂Ω〉| ≤ ‖φ‖
Bβ,p′

∗ (∂Ω)
‖I2(χεF )|∂Ω‖Bβ,p′ (∂Ω)(3.4)

≤ c‖φ‖
Bβ,p′

∗ (∂Ω)
‖ζI2(χεF )‖W 1,p′ .
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Using (3.2) and Hölder’s inequality we deduce first that

‖ζI2(χεF )‖W 1,p′ ≤ c‖F ‖Lq

and thereupon from (3.3) and (3.4) that for ε>0,

(3.5)
∣
∣
∣
∣

∫

Oε

SφF dX

∣
∣
∣
∣ ≤ c‖φ‖

Bβ,p′
∗ (∂Ω)

‖F ‖Lq .

As C∞
0 (Rn) is dense in Lq it follows from a duality argument that

(3.6) ‖ Sφ‖Lp∗ (Oε) ≤ c‖φ‖
Bβ,p′

∗ (∂Ω)
,

where p∗ =np/(n−p). Since c is independent of ε we conclude that (3.6) holds with
ε=0. We now take limits in (3.3). Using (3.6), Proposition 2.2 and the fact that
ζI2(χεF )→ζI2F pointwise and in W 1,p′

we deduce that

(3.7)
∫

Rn

SφF dX = 〈φ, I2F |∂Ω〉.

Similarly for F , Oε and ζ as above we find for 1≤i≤n and ε>0 that

(3.8)
∫

Oε

∂Sφ

∂Xi
F dX = −

〈

φ,
∂I2(χεF )

∂Xi

∣
∣
∣
∣
∂Ω

〉

.

From Calderón–Zygmund singular integral estimates we have that

(3.9)
∥
∥
∥
∥ζ

∂I2(χεF )
∂Xi

∥
∥
∥
∥

W 1,p′
≤ c‖F ‖Lp′ ,

where c is independent of ε≥0. Using Proposition 2.2 once again it follows that

(3.10)
∣
∣
∣
∣

∫

Oε

∂Sφ

∂Xi
F dX

∣
∣
∣
∣ ≤ c‖φ‖

Bβ,p′
∗ (∂Ω)

‖F ‖Lp′ .

From duality and (3.10) we conclude first that

(3.11)
∥
∥
∥
∥χε

∂Sφ

∂Xi

∥
∥
∥
∥

Lp

≤ c‖φ‖
Bβ,p′

∗ (∂Ω)
,

where c is independent of ε. Second, letting ε→0 we get (3.11) when ε=0.
It remains to show that ∂Sφ/∂Xi is the distributional derivative of Sφ. To

this end we note again from Calderón–Zygmund singular integral theory that
ζ∂I2(χεF )/∂Xi converges to ζ∂I2F/∂Xi in W 1,p′

. Using this fact, Proposition 2.2
and (3.10) in (3.8) we obtain that

(3.12)
∫

Rn

∂Sφ

∂Xi
F dX = −

〈

φ,
∂I2F

∂Xi

∣
∣
∣
∣
∂Ω

〉

= −
〈

φ, I2

(
∂F

∂Xi

)∣
∣
∣
∣
∂Ω

〉

,
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where the last equality follows from integration by parts. Finally from (3.7) with
F replaced by ∂F/∂Xi for 1≤i≤n we see that

(3.13)
∫

Rn

Sφ
∂F

∂Xi
dX =

〈

φ, I2

(
∂F

∂Xi

)∣
∣
∣
∣
∂Ω

〉

.

Hence ∂Sφ/∂Xi, 1≤i≤n, is the distributional derivative of Sφ. This fact, Propo-
sition 2.2 applied to ζSφ, and (3.6), (3.11) with ε=0, imply Lemma 3.1. �

To begin the proof of Theorem 1.1 we observe from Lemma 3.1 and Propo-
sition 2.2 that S is a bounded linear operator from Bp′,β

∗ (∂Ω) into Bp,α(∂Ω). To
show that S is one-to-one we prove the following lemma.

Lemma 3.2. There exists δ>0 such that if |p−2| ≤δ and φ∈Bp′,β
∗ (∂Ω), with

Sφ=0, then φ=0.

Proof. As in Lemma 3.1 we assume that 0∈∂Ω and ∂Ω⊂B(0, R0). We first
prove Lemma 3.2 when p′ ≤2. In this case given ρ>2R0, choose σ ∈C∞

0 (B(0, 2ρ))
with σ ≡1 on B(0, ρ) and

∥
∥| ∇σ|

∥
∥

L∞ ≤c/ρ. Then from Lemma 3.1, the hypotheses
of Lemma 3.2, and Hölder’s inequality we see that σSφ∈W 1,p with trace 0 on ∂Ω.
In view of Lemma 2.3 it follows that we can approximate this function in the W 1,p

norm by functions in C∞
0 (Rn \∂Ω). This fact, the fact that p>2, and harmonicity

of Sφ in Rn \∂Ω imply that

(3.14)
∫

Rn

∇Sφ· ∇(σSφ) dX =0.

Equation (3.14) and the usual estimates involving Cauchy’s inequality with ε’s yield

(3.15)
∫

B(0,ρ)

| ∇ Sφ|2 dX ≤ c

ρ2

∫

B(0,2ρ)\B(0,ρ)

| Sφ|2 dX.

Now from linearity of φ we see there exists ρ∗ with

(3.16) | Sφ(X)| ≤ c|X|2−n‖φ‖
Bp′ ,β

∗
for |X| >ρ∗.

Using (3.16) to estimate the right-hand side in (3.15) and letting ρ→∞, we conclude
first from (3.15) that ∫

Rn

| ∇ Sφ|2 dX =0

and thereupon from (3.16) that ∇Sφ≡0 in Rn \∂Ω. Finally replacing F by ∂F/∂Xi

in (3.12) and summing the resulting expression, we get that

(3.17)
∫

Rn

∇Sφ· ∇F dX = −〈φ, I2(ΔF )〉 = −〈φ, F |∂Ω〉,
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where we have used the fact that F =I2(ΔF ) when F ∈C∞
0 (Rn) (see [15]). From

Proposition 2.2 and an approximation argument we see that (3.17) holds whenever
F ∈W 1,p′

with compact support. From Proposition 2.1, (3.17) and ∇Sφ≡0 in
Rn \∂Ω, we conclude that φ=0. Hence Lemma 3.2 is valid when p′ ≤2.

If p′ >2, and λ>0 is fixed, we use Lemma 2.5 with k=Sφ to get θ ∈W 1,∞ with∥
∥| ∇θ|

∥
∥

L∞ ≤cλ and θ=Sφ for Hn-almost every X ∈L(λ)={X :M̂(| ∇ Sφ|)(X)≤λ}.
For fixed ρ>R0 let û=û( · , ρ) be the unique harmonic function in B(0, 2ρ)\∂Ω
with û−σθ ∈W 1,2

0 (B(0, 2ρ)\∂Ω). Here σ is as in (3.14). Existence of û follows from
the usual minimizing argument involving the Dirichlet integral and the fact that
γ2(∂Ω)>0 (see [1]). From the maximum principle for harmonic functions we see
that

(3.18) û(X) ≤ C|X|2−n in B(0, 2ρ)\B(0, 2R0),

where C is independent of ρ. Using (3.18), properties of harmonic functions, and
the fact that W 1,2

0 (B(0, 2ρ)) is reflexive, we deduce that û( · , ρ)→u as ρ→∞, where
u satisfies:

u is harmonic in Rn \∂Ω,(3.19a)

(u−θ)σ ∈ W 1,2
0 (B(0, 2ρ)\∂Ω) whenever ρ>R0,(3.19b)

u(X) ≤ C|X|2−n in Rn \B(0, 2R0).(3.19c)

From (3.19), Lemma 2.4, compactness of ∂Ω and Sobolev’s theorem we see that
σu∈W 1,q for some q>2 depending only on the data. Also from (3.19b) and Propo-
sition 2.2 we see that (u−θ)σ=0 on ∂Ω in the sense of Lemma 2.3. From these facts
and Lemma 2.3, we conclude that there exists a sequence of C∞

0 (Rn \∂Ω) functions
converging to (u−θ)σ in the norm of W 1,q . Using these functions as test functions
and taking a limit, we see from Hölder’s inequality and Lemma 3.1, that

(3.20)
∫

Rn

∇Sφ· ∇(σ(u−θ)) dX =0

provided δ>0 is small enough and 2−δ ≤p<2. Thus,

(3.21)
∫

Rn

∇Sφ·[∇(u−θ)]σ dX = −
∫

Rn \B(0,ρ)

(∇Sφ· ∇σ)(u−θ) dX.

From (3.16), (3.19c) and properties of harmonic functions it also follows that there
exists ρ∗ with

(3.22) | ∇ Sφ(X)|+| ∇u(X)| ≤ c(‖φ‖
Bp′ ,β

∗
+C)|X|1−n in Rn \B(0, 2ρ∗).
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Next note from (3.16) that for ρ∗ large enough

(3.23) θ(X) = Sφ(X) in Rn \B(0, 2ρ∗).

From (3.16), (3.19c) and (3.23), it is easily seen that the right-hand side of
(3.21) tends to 0 as ρ→∞. Likewise from (3.22) and (3.23) the left-hand side of
(3.21) converges in L1 to

(3.24)
∫

Rn

∇Sφ·[∇(u−θ)] dX.

Since | ∇u|, | ∇θ| ∈Lq for some q>2, it follows that

(3.25)
∫

Rn

∇Sφ· ∇u dX =
∫

Rn

∇Sφ· ∇θ dX.

Now we can use Lemma 2.3 applied to F =Sφ, harmonicity of u in Rn \∂Ω, and
(3.16), (3.19c) and (3.22), to conclude that the left-hand side of (3.25) is zero. Hence

(3.26)
∫

Rn

∇Sφ· ∇θ dX =0.

From (3.26) and Lemma 2.5 it follows that

(3.27) T1(λ) =
∫

L(λ)

| ∇ Sφ|2 dX ≤ cλ

∫

Rn \L(λ)

| ∇ Sφ| dX =T2(λ).

Multiplying the left-hand side of (3.27) by λp−3 and integrating over λ∈(0, ∞) we
have

∫ ∞

0

λp−3T1(λ) dλ =
∫

Rn

| ∇ Sφ|2
(∫ ∞

cM(|∇Sφ|)
λp−3 dλ

)

dX(3.28)

=
1

2−p

∫

Rn

M̂(| ∇ Sφ|)p−2| ∇ Sφ|2 dX.

Similarly,

∫ ∞

0

λp−3T2(λ) dλ = c

∫

Rn

| ∇ Sφ|
(∫

cM(|∇Sφ|)

0

λp−2 dλ

)

(3.29)

=
c

p−1

∫

Rn

M̂(| ∇ Sφ|)p−1| ∇ Sφ| dX.

From (3.27)–(3.29) we see that

(3.30) I =
∫

Rn

M̂(| ∇ Sφ|)p−2| ∇ Sφ|2 dX ≤ cδ

∫

Rn

M̂(| ∇ Sφ|)p−1| ∇ Sφ| dX = cδJ.
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We note that if |2−p| ≤ 1
4 , then M̂(| ∇ Sφ|)p−2 is an A2 weight (see [16], Chapter V)

with A2 constant depending only on n. Using this fact and properties of A2 weights
we find that

(3.31) K =
∫

Rn

M̂(∇Sφ|)p dX ≤ cI.

Also, trivially J ≤K. In view of (3.30) it follows that K ≤cδK where c depends only
on the data. Hence K ≡0 for δ>0 small enough, depending only on the data, which
implies as earlier that Sφ≡0. Thus Lemma 3.2 is valid if δ>0 is small enough. �

Next we prove the following result.

Lemma 3.3. There exists δ>0 such that if |p−2| ≤δ, then S(Bp′,β
∗ (∂Ω)) is

closed.

Proof. Since S is continuous it is easily seen that Lemma 3.3 follows from the
inequality

(3.32) ‖Sφ‖Bp,α(∂Ω) ≥ η‖φ‖
Bp′ ,β

∗ (∂Ω)

for some η>0 and all φ∈Bp′,β
∗ (∂Ω). The proof of (3.32) is by contradiction. Oth-

erwise, there exists φm ∈Bp′,β
∗ (∂Ω), m=1, 2, ..., with

(3.33) ‖φm‖
Bp′ ,β

∗ (∂Ω)
=1 and Sφm → 0, as m→∞, in Bp,α(∂Ω).

Again we consider two cases. If p≥2, we can put φ=φm and F =σSφm in (3.17).
Here σ ∈C∞

0 (B(0, 2ρ)) is as in (3.14). Using (3.16), (3.22) and letting ρ→∞ it
follows as earlier that

(3.34)
∫

Rn

| ∇ Sφm|2 dX = −〈φm, Sφm〉 ≤ c‖Sφm‖Bp,α(∂Ω) → 0 as m→ ∞.

Here we have used the fact that

(3.35) Bp,α(∂Ω) ⊂ Bp′,β(∂Ω) when p≥2 with ‖ · ‖Bp′ ,β(∂Ω) ≤c‖ · ‖Bp,α(∂Ω).

If p>2 we note that (3.34) and (3.16) yield that

(3.36) Sφm → 0 uniformly in Oε,

where Oε was define below (3.1). From Proposition 2.1 and Lemma 3.1, we deduce
for p>2 the existence of Fm ∈W 1,p, m=1, 2, ..., with compact support and such
that Fm|∂Ω=Sφm and

(3.37) ‖Fm‖W 1,p ≤ c‖Sφm‖Bp,α(∂Ω) → 0 as m→ ∞.
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Given X̂ ∈∂Ω, let ρ and ζ be as in Lemma 2.4 and note from Lemma 2.3 that
(Sφm −Fm)ζ ∈W 1,p

0 [B(X̂, 3ρ)\∂Ω] whenever X̂ ∈∂Ω. Thus we can apply Lemma 2.4
with v=Sφm and p=q, to conclude for δ>0 small enough that

∫

B( bX,ρ)

| ∇ Sφm|p dX ≤ cρn(1−p/2)

(∫

B( bX,2ρ)

| ∇ Sφm|2 dX

)p/2

(3.38)

+c

∫

B( bX,2ρ)

| ∇Fm|p dX.

In view of (3.38), (3.34) and (3.37) it follows that
∫

B( bX,ρ)
| ∇ Sm|p dX→0 as m→∞.

Next from arbitrariness of X̂ ∈∂Ω and compactness of ∂Ω, we see for ε>0 small
enough that

∫
Ω\Oε

| ∇ Sm|p dX→0 as m→∞. Finally, this limit, (3.36), properties
of harmonic functions and (3.22) imply for 2<p≤2+δ that

(3.39)
∥
∥| ∇ Sφm|

∥
∥

Lp → 0 as m→ ∞.

If p=2, then (3.39) follows from (3.34). From (3.39) we can easily get a contra-
diction to (3.33) when 2≤p≤2+δ. In fact if g ∈Bβ,p′

(∂Ω) and G∈W 1,p′
are as in

Proposition 2.1 with compact support and G=g on ∂Ω, then from (3.17) we see
that
(3.40)

〈φm, g〉 = −
∫

Rn

∇Sφm · ∇GdX ≤ c
∥
∥| ∇ Sφm|

∥
∥

Lp ‖g‖Bp′ ,β(∂Ω) ≤ 1
2

‖g‖Bp′ ,β(∂Ω)

for m large enough independent of g ∈Bβ,p′
(∂Ω). We have reached a contradiction

since ‖φm‖
Bp′ ,β

∗ (∂Ω)
=1. From this contradiction we obtain first (3.32) and after

that Lemma 3.3 when 2≤p≤2+δ.
If 2−δ ≤p<2, suppose φ∈Bp′,β

∗ (∂Ω), ψ ∈Bp,α
∗ (∂Ω), and that σ is as in (3.14).

Putting F =σSψ in (3.17), using Lemma 3.1, (3.16) and (3.22), and letting ρ→∞
it follows now from standard arguments that

(3.41)
∫

Rn

∇Sφ· ∇Sψ dX = −〈φ, Sψ〉 = −〈ψ, Sφ〉,

where the last equality follows from interchanging the roles of φ and ψ. We now
also interchange the roles of p and p′ in the earlier case proved of Lemma 3.3. Thus

(3.42) ‖ψ‖Bp,α
∗ (∂Ω) ≤ c‖Sψ‖Bp′ ,β(∂Ω).

From (3.41) and (3.42) we find that

(3.43) | 〈φm, Sψ〉 | = | 〈ψ, Sφm〉| ≤ c‖Sφm‖Bp,α(∂Ω)‖Sψ‖Bp′ ,β(∂Ω) → 0 as m→ ∞.
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We conclude from (3.43) (as in (3.40)), that if S(Bp,α
∗ (∂Ω)) is dense in Bp′,β(∂Ω)

with respect to the norm of this space, then again we have reached a contradiction
to (3.33). Otherwise, it follows from the Hahn–Banach theorem and (3.41) that
there exists φ∈Bp′,β

∗ , φ 
≡0, with

(3.44) 0 = 〈φ, Sψ〉 =
∫

Rn

∇Sφ· ∇Sψ dX whenever ψ ∈ Bp,α
∗ (∂Ω).

To get a contradiction, we essentially repeat the argument after (3.15) with
a few twists. Given λ>0 construct θ relative to k=Sφ and λ, as in Lemma 2.5.
This construction is permissible due to Lemma 3.1. Next construct u relative to
θ, satisfying (3.19). Then | ∇u|, | ∇θ| ∈Lp′

provided 2<p′ ≤2+δ. Using this fact,
(3.19), (3.22) and harmonicity of Sφ in Rn \∂Ω, we get as in (3.25) that

(3.45)
∫

Rn

∇Sφ· ∇u dX =
∫

Rn

∇Sφ· ∇θ dX.

Now if h∈Bp,α(∂Ω) then from Proposition 2.1 there is an extension H of h with
compact support and such that ‖H‖W 1,p ≤c‖h‖Bp,α(∂Ω). Hence

(3.46)
∣
∣
∣
∣

∫

Rn

∇u· ∇H dX

∣
∣
∣
∣ ≤ c‖ ∇u‖Lp′ ‖h‖Bp,α(∂Ω).

Since | ∇u| ∈Lp′
it follows from (3.46) and (3.17), that if ψ is defined by

(3.47) 〈ψ, h〉 =
∫

Rn

∇u· ∇H dX for all h ∈ Bp,α(∂Ω),

then ψ ∈Bp,α
∗ (∂Ω) and

(3.48)
∫

Rn

∇u· ∇H dX = −
∫

Rn

∇Sψ · ∇H dX.

Also, if h=Sφ then we can argue as earlier using Lemmas 2.3 and 3.1, (3.48), (3.44)
and (3.45) to deduce that

(3.49) 0 =
∫

Rn

∇Sψ · ∇Sφ dX = −
∫

Rn

∇u· ∇Sφ dX = −
∫

Rn

∇θ · ∇Sφ dX.

Armed with (3.49) we can now repeat verbatim the argument after (3.26) to get
Sφ≡0. From Lemma 3.2 it follows that φ≡0. We have reached a contradiction to
our assumption that φ 
≡0. The proof of Lemma 3.3 is now complete. �

We complete the proof of Theorem 1.1 with the following lemma.
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Lemma 3.4. If |p−2| ≤δ and δ>0 is small enough, depending only on the
data, then S maps Bp′,β

∗ (∂Ω) onto Bp,α(∂Ω).

Proof. The proof of Lemma 3.4 is by contradiction. Otherwise it follows from
Lemma 3.3 and the Hahn–Banach theorem that there exists ψ ∈Bp,α

∗ (∂Ω), ψ 
≡0,

with 〈ψ, Sφ〉=0 whenever φ∈Bβ,p′

∗ (∂Ω). For 2<p≤2+δ the argument from (3.44)
to the end of Lemma 3.3 gives a contradiction. If 2−δ ≤p≤2, we can use (3.35) with
p and p′ interchanged and argue as in (3.34) to get first that

∫
Rn | ∇ Sψ|2 dX=0 and

second that ψ ≡0. In either case we have reached a contradiction. Thus Lemma 3.4
is true. Finally, invertibility follows from Lemmas 3.2–3.4 and (3.32). In fact it is
well known that a one-to-one, onto linear operator is invertible. �

4. Proof of Theorem 1.2

In the proofs of Theorems 1.2 and 1.3 we assume that Ω=Ω+ is a bounded
domain with 0∈Ω⊂B(0, R0) and Ω− =Rn \¯Ω+.

Recall from (1.2) and (1.3), that the double layer and boundary double layer
potentials are defined for f ∈Bp,α(∂Ω) by

(4.1)
K ±f(X) =

∫

Ω∓

∇Y Γ(Y −X)· ∇F (Y ) dY, X ∈ Rn,

T±f = K ±f |∂Ω,

where F ∈W 1,p with compact support in Rn and F |∂Ω=f . Existence of one such F

is a consequence of Proposition 2.1. Using Calderón–Zygmund theory and properties
of Riesz potentials we also deduce that K ±f ∈R1,p with

(4.2) ‖ K ±f ‖R1,p ≤ c‖ ∇F ‖Lp .

We now show that T±f is independent of the choice of F . Indeed, suppose that
F, F̃ ∈W 1,p and f=F̃ |∂Ω=F |∂Ω ∈Bp,α(∂Ω). Then G=F −F̃ has trace 0 so by Lem-
ma 2.3, given ε>0 there exists g ∈W 1,p(Rn)∩C∞

0 (Rn \∂Ω) with ‖g −G‖W 1,p <ε.
Let ζ ∈C∞

0 (B(0, 2R0)) with ζ ≡1 on B(0, R0) and | ∇ζ| ≤c/R0. We note that T±g ≡0
on ∂Ω as follows easily from integration by parts in the integral defining K ±g. Using
this fact, (4.2) and Proposition 2.2, we deduce that

‖T±G‖Bp,α(∂Ω) = ‖T±(g −G)‖Bp,α(∂Ω) ≤ c‖ζK ±(g −G)‖W 1,p(4.3)

≤ c2‖ K ±(g −G)‖R1,p ≤ c3‖∇g − ∇G‖Lp ≤ c3ε.



260 TongKeun Chang and John L. Lewis

Letting ε→0 we get T±G=0 in Bp,α(∂Ω). Hence T±F =T±F̃ and T± is well defined
on Bp,α(∂Ω). Next for given f ∈Bp,α(∂Ω) we choose F as in Proposition 2.1 with
support in B(0, 2R0) and use the same argument as in (4.3) to get

(4.4) ‖T±f ‖Bp,α(∂Ω) ≤ c‖ζK ±f ‖W 1,p ≤ c2‖∇F ‖Lp ≤ c3‖f ‖Bp,α(∂Ω).

From (4.4) we see that T± is a bounded linear operator from Bp,α(∂Ω)→Bp,α(∂Ω).
Now let f ∈Bp,α(∂Ω) and ψ ∈Bp,α

∗ (∂Ω). From Theorem 1.1 we see, for δ>0 small
enough, that there exists φ∈Bp′,β(∂Ω) with Sφ=f . Arguing as in the proof of
Theorem 1.1 we find as in (3.41) that

(4.5) 〈ψ, T±(Sφ)〉 =
∫

Ω∓

∇Sψ · ∇Sφ dX = 〈φ, T±(Sψ)〉.

Now assume that Assumption A3 holds with G=Ω− or G=Ω+. Given p with
|p−2| ≤ 1

4 , let v be as in Assumption A3 with v=f . Assume also that | ∇v| ∈Lp(G).
Let v̂ be the extension of v to Rn guaranteed by Assumption A3. Put h=| ∇v̂|
when G=Ω− and h=| ∇v̂|χ when G=Ω+ where χ is the characteristic function of
B(0, ρ) for some ρ>R0. Once again we observe that (M̂h)p−2 is an A2 weight when
|p−2| ≤ 1

4 . Using this observation, properties of A2 weights, Assumption A3, and
either Young’s inequality with ε’s or M̂h≥h, we see that

∫

Rn

(M̂h)p dX ≤ c

∫

Rn

(M̂h)p−2| ∇v|2 dX ≤ c2

∫

G

(M̂h)p−2| ∇v̂|2 dX(4.6)

≤ 1
2

∫

Rn

(M̂h)p dX+c′
∫

G

| ∇v|p dX,

where c′ depends only on the data. Subtracting the first term on the lower right-
hand side of (4.6) from the left-hand side we get that

∫

Rn

(M̂h)p dX ≤ c

∫

G

| ∇v|p dX.

This equality and (4.6) imply for G=Ω− that

(4.7)
∫

Rn

| ∇v̂|p dX ≈
∫

Rn

M̂(| ∇v̂|)p−2| ∇v̂|2 dX ≈
∫

G

| ∇v|p dX,

where ≈ means that the ratio of any two quantities is bounded above and below
by constants depending only on the data. If G=Ω+, then (4.7) is also valid as
we deduce from letting ρ→∞ in the above inequalities and using the monotone
convergence theorem.
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We now begin the proof of Theorem 1.2. Fix p, |p−2| ≤ 1
4 , and let V 1,p(Ω−)

be the space of all locally integrable functions v on Ω− with distributional gradi-
ent ∇v satisfying limρ→∞ vB(0,ρ)=0 and ‖v‖V 1,p(Ω−)=

∥
∥| ∇v|

∥
∥

Lp(Ω−)
. Recall that

vB(0,ρ) is the average of v on B(0, ρ). Let v̂ be the extension of v to Rn given by
Assumption A3. From (4.7) and Sobolev-type estimates we see that v̂ ∈R1,p with

1
c

‖v‖V 1,p(Ω−) ≤ ‖v̂‖R1,p ≤ c‖v‖V 1,p(Ω−).

Thus V 1,p is a reflexive Banach space. The following lemma will play a key role in
our proof of Theorem 1.2.

Lemma 4.1. There are δ>0 and c≥1, depending only on the data, such that if
|p−2| ≤δ and v ∈V 1,p(Ω−), then there is ũ∈C∞

0 (Rn) with ū=ũ|Ω− , ‖ū‖V 1,p′ (Ω−) ≤c

and

(4.8) ‖v‖V 1,p(Ω−) ≤
∫

Ω−

∇ū· ∇v dX.

Proof. If v=0 set ũ=0. Otherwise, from the linearity we may assume that
‖v‖V 1,p(Ω−)=1. Let v̂ denote the extension of v to Rn guaranteed by Assump-
tion A3. Given η>0 we claim that there exists ŵ ∈C∞

0 (Rn) such that if w=ŵ|Ω−

then

(4.9)
(a) ‖w −v‖V 1,p(Ω−) ≤η,

(b) (4.7) is valid with v, v̂ and G replaced by w, ŵ and Ω−, respectively.

To prove (4.9) we note that if σ and ρ are as in (3.14) and v∗ =(v̂ −v̂B(0,2ρ))σ then
v∗ converges to v̂ in the norm of V 1,p as ρ→∞. To prove this note, we could for
example use (2.2) with F =v, X=0 and r=2ρ. Writing the resulting integral on
the right-hand side of (2.2) as a sum one gets as in (2.24) that

|v̂(Y )−v̂B(0,2ρ)| ≤ cρM̂(| ∇v̂|)(Y ) whenever Y ∈ B(0, 2ρ).

Our note follows easily from this inequality and the Hardy–Littlewood maximal
theorem. Regularizing v∗, we see that there exists a sequence, vj ∈C∞

0 (Rn), j=
1, 2, ..., converging to v̂ pointwise and in the norm of V 1,p. Clearly (a) of (4.9) is
valid if we take ŵ=vj and j is large enough. Moreover, using (4.6) for v̂ and v, the
Fatou lemma, and the fact that

M(| ∇(v′ −v′ ′)|) ≤ M(| ∇v′ |)+M(| ∇v′ ′ |) whenever v′, v′ ′ ∈ {vj , v̂ :j=1, 2, ...},

we get that
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lim sup
j→∞

∫

Rn

M̂(| ∇vj |)p dX ≤ c lim inf
j→∞

∫

Ω−

M̂(| ∇ vj |)p−2| ∇vj |2 dX

≤ 1
2

lim sup
j→∞

∫

Rn

M̂(| ∇vj |)p dX+c′ lim inf
j→∞

∫

Ω−

| ∇vj |p dX.

It follows from this inequality and the Hardy–Littlewood maximal theorem that we
can also choose ŵ=vj in (b) of (4.9) when j is large enough.

To continue the proof of Lemma 4.1 we suppose that η is a small positive num-
ber and ŵ has been chosen relative to η. First suppose that 0<2−p≤ 1

4 . Let λ0>0
be the largest number such that M̂(| ∇ŵ|)≥2λ0 on the support of ŵ. Construct
θ=θ( · , λ) relative to ŵ and λ as in Lemma 2.5. Put

u =(2−p)
∞∑

m=m0

2m(p−2)θ( · , 2m),

where m0 is the largest integer such that 2m0 ≤λ0. We note that since M(| ∇ŵ|)
is bounded, we have θ( · , λ)=ŵ for large λ. Also, θ( · , λ)≡0 in a neighborhood of
∞ independent of λ≥λ0/2. From these remarks it is easily seen that u is Lipschitz
and for almost every X ,

(4.10) ∇u(X) = ∇ŵ(X)(2−p)
∑

m∈Λ(X)

2m(p−2)+E(X),

where Λ(X) denotes the set of all integers m≥m0 with 2m ≥M(| ∇ŵ|)(X). More-
over, if Λ1(X) denotes all integers ≥m0 that are not in Λ(X), then

(4.11) |E(X)| ≤ c(2−p)
∑

m∈Λ1

2m(p−1) ≤ c′(2−p)M(| ∇ŵ|)(X)p−1.

Finally if h(X)=(2−p)
∑

m∈Λ(X) 2m(p−2) then

(4.12)
h≤cM(| ∇ŵ|)p−2 almost everywhere on Rn,

h≥ 1
c
M(| ∇ŵ|)p−2 almost everywhere on the support of ŵ.

These inequalities can be proved by comparing h(X) with
∫ ∞
cM(|∇ bw|)(X)

λp−3 dλ.
From (4.10)–(4.12), we conclude first that | ∇u| ≤cM(| ∇ŵ|)p−1 so from the Hardy–
Littlewood maximal theorem and (a) of (4.9),

(4.13) ‖u‖V 1,p′ (Ω−) ≤ c‖w‖p−1
V 1,p(Ω−) ≤ 2c.

Second, from (4.10)–(4.12) we get
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∫

Ω−

∇u· ∇w dX ≥ 1
c

∫

Ω−

| ∇w|2M̂(| ∇ŵ|)2−p dX(4.14)

−c(2−p)
∫

Rn

M(| ∇ŵ|)p dX.

From (4.13), (4.14) and (4.9), we see first that (4.8) holds with ū and v replaced by
u and w, respectively, provided δ>0 is small. Secondly, choosing η small enough,
depending only on the data, we find that this display holds for u and v. Finally,
as in the approximation of v̂ by vj , we can approximate u by ũ∈C∞

0 (Rn) in such
a way that Lemma 4.1 is valid when 2−δ ≤p<2.

The case p=2 of Lemma 4.1 is easily handled so we assume that 2<p≤2+δ. Let
V 1,p

∗ (Ω−) be the space of bounded linear functions on V 1,p(Ω−) and let Γ⊂V 1,p
∗ (Ω−)

be the set of all linear functionals ψ which can be written in the form

(4.15) 〈ψ, v〉 =
∫

Ω−

∇u· ∇v dX, v ∈ V 1,p(Ω−), where u∈V 1,p′
(Ω−).

We claim that

(4.16) Γ=V 1,p
∗ (Ω−).

Once (4.16) is proved we can use the Hahn–Banach theorem to get, for v ∈V 1,p(Ω−)
with ‖v‖V 1,p(Ω−)=1, a linear functional ψ as in (4.15) with ‖ψ‖V 1,p

∗ (Ω−)=1 and

(4.17) 1 = 〈ψ, v〉 =
∫

Ω−

∇u· ∇v dX.

Also, since p′ <2 we can apply the previous case with p and p′ interchanged to
conclude that ‖u‖V 1,p′ ≤c. As in the case 2−δ ≤p<2, we can then extend u to
û as in Assumption A3 and after that approximate û by a C∞

0 (Rn) function in
such a way that Lemma 4.1 holds. Thus to complete the proof of Lemma 4.1 when
2<p≤2+δ, it suffices to prove (4.16). To do this given u∈V 1,p′

(Ω−) let Λ(u) be the
bounded linear functional on V 1,p(Ω) defined in (4.15). From Hölder’s inequality
we see that Λ: V 1,p′

(Ω−)→V 1,p
∗ (Ω−) is a bounded linear operator with norm ≤1.

From the 2−δ ≤p<2 case of Lemma 4.1 with p and p′ interchanged it is easily seen
that

(4.18)
1
c

‖u‖V 1,p′ ≤ ‖Λ(u)‖V 1,p
∗

≤ ‖u‖V 1,p′ .

Clearly (4.18) implies that Γ=Λ(V 1,p′
(Ω−)) is closed in V 1,p

∗ (Ω−). If (4.16) is false,
it follows from an argument involving the Hahn–Banach theorem and reflexivity of
V 1,p(Ω−) that there exists v ∈V 1,p(Ω−), v 
≡0, with

(4.19)
∫

Ω−

∇u· ∇v dX =0 for all u ∈ V 1,p′
(Ω−).
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It is easily seen that (4.19) implies that v is harmonic in Ω−. Using subharmonicity
of | ∇v|, v ∈V 1,p, and Hölder’s inequality one sees for some constant C that

(4.20) | ∇v(X)| ≤ C|X| −n/p

for |x| ≥2R0. Using (4.20), the mean-value theorem, and limρ→∞ vB(0,ρ)=0, it fol-
lows that v(X)→0 as |X|→∞. This fact and either the Kelvin transformation or
the Poisson integral formula for Rn \B(0, 2R0) imply for some constant C ′ that

(4.21) |v(X)|+|X| | ∇v(X)| ≤ C ′ |X|2−n for |X| ≥ 2R0.

Armed with (4.21) we can now argue as earlier to get a contradiction. That is, let
σ and ρ be as in (3.14) and set u=vσ. Then u∈V 1,p′

(Ω−), and from (4.19) and
(4.21) it follows that

∫

B(0,ρ)

| ∇v|2 dX ≤ c

ρ2

∫

B(0,2ρ)\B(0,ρ)

v2 dX → 0 as ρ→ ∞.

Thus v ≡0 in Ω−, which is a contradiction. We conclude that (4.16) and Lemma 4.1
are true when 2<p≤2+δ provided δ>0 is sufficiently small, depending only on the
data. �

We continue the proof of Theorem 1.2 with the following lemma.

Lemma 4.2. There exists δ>0 such that if |p−2| ≤δ and f ∈Bp,α(∂Ω) with
T+f=0 then f=0.

Proof. Let φ∈Bp′,β(∂Ω) with f=Sφ. From (4.5) we see that

(4.22) 〈ψ, T+f 〉 =
∫

Ω−

∇Sφ· ∇Sψ dX =0 whenever ψ ∈Bp,α
∗ (∂Ω).

Also, from Lemma 3.1 we find that v=Sφ∈V 1,p(Ω−) so by Lemma 4.1 there exists
ũ∈C∞

0 (Rn) with ũ|Ω− =ū, ‖ū‖V 1,p′ (Ω−) ≤c and

(4.23) ‖ Sφ‖V 1,p(Ω−) ≤
∫

Ω−

∇Sφ· ∇ū dX.

Choose ψ ∈Bp,α(∂Ω) with Sψ=ũ|∂Ω. This choice is possible as we see from Proposi-
tion 2.2 and Theorem 1.1. Using once again Lemma 2.3, the fact that ũ has compact
support, and the decay of Sψ near ∞ given by (3.16) and (3.22), we conclude that

(4.24)
∫

Ω−

∇Sφ·(∇Sψ − ∇ū) dX =0.
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Combining (4.22)–(4.24) we have that
∫

Ω−

| ∇ Sφ|p dX =0,

which in view of (3.16) implies that Sφ=0 in Ω−. Using Assumption A2 we see
that f=Sφ=0. �

Next we prove the following result.

Lemma 4.3. There exists δ>0 such that if |p−2| ≤δ then T+(Bp,α(∂Ω)) is
closed.

Proof. As in (3.32) it is easily seen that Lemma 4.3 follows once we show the
existence of η>0 so that

(4.25) ‖T+f ‖Bp,α(∂Ω) ≥ η‖f ‖Bp,α(∂Ω).

To prove (4.25) we again argue by contradiction. Otherwise there exist functions
fm ∈Bp,α(∂Ω), m=1, 2, ..., with

(4.26) ‖fm‖Bp,α(∂Ω) =1 and ‖T+fm‖Bp,α(∂Ω) → 0 as m→ ∞.

Choose φm ∈Bp′,β(∂Ω) with Sφm|∂Ω=fm, m=1, 2, ..., and note from (4.5) and
(4.26) that

(4.27)
∫

Ω−

∇Sφm · ∇Sψ dX = 〈ψ,T+fm〉 → 0 as m→∞,

whenever ψ ∈Bp,α
∗ (∂Ω). As in Lemma 4.2 we set v=Sφm and choose ũ and ū as in

Lemma 4.1 relative to v. We then find ψ ∈Bp,α(∂Ω) with Sψ=ũ|Ω− . Arguing as in
(4.22)–(4.24) it follows that

∫

Ω−

| ∇ Sφm|p dX ≤
∫

Ω−

∇Sφm · ∇ū dX(4.28)

=
∫

Ω−

∇Sφm · ∇Sψ dX → 0 as m→∞.

Let Ŝφm be the extension of Sφm|Ω− to Rn guaranteed by Assumption A3. Then
from (4.28) and (4.7) we deduce that

(4.29)
∥
∥| ∇Ŝφm|

∥
∥

Lp ≤ c
∥
∥| ∇ Sφm|

∥
∥

Lp(Ω−)
→ 0 as m→ ∞.
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From Assumption A2 applied to Ŝφm − Sφm with G=Ω−, we see that Ŝφm|∂Ω=fm.
Using this fact and applying Proposition 2.2 to σŜφm (σ and ρ as in (3.14)) we get
upon letting ρ→∞ that

(4.30) ‖fm‖Bp,α(∂Ω) ≤ c
∥
∥| ∇Ŝφm|

∥
∥

Lp → 0 as m→ ∞.

Equation (4.30) contradicts (4.26). Thus Lemma 4.3 is true. �

To complete the proof of Theorem 1.2 we prove the following lemma.

Lemma 4.4. If |p−2| ≤δ and δ>0 is small enough, depending only on the
data, then T+ maps Bp,α(∂Ω) onto Bp,α(∂Ω).

Proof. The proof of Lemma 4.4 is also by contradiction. Otherwise it follows
from Lemma 4.3, the Hahn–Banach theorem, and Theorem 1.1 that there exists
ψ ∈Bp,α

∗ (∂Ω), ψ 
≡0, with 〈ψ, T+(Sφ)〉=0 whenever φ∈Bp′,β
∗ (∂Ω). From (4.5) we

see that

(4.31) 0 = 〈ψ, Sφ〉 =
∫

Ω−

∇Sψ · ∇Sφ dX whenever φ ∈ Bp′,β
∗ (∂Ω).

Also using Lemma 4.1 and arguing as in (4.22)–(4.24) we obtain, for some
φ∈Bp′,β

∗ (∂Ω) and c depending only on the data, that

(4.32)
∫

Ω−

| ∇ Sψ|p dX ≤ c

∫

Ω−

∇Sψ · ∇Sφ dX.

Equations (4.31) and (4.32) yield first that
∫
Ω−

| ∇ Sψ|p dX=0 and then from (3.16)
that Sψ=0 on Ω−. Using Assumption A2 we conclude that Sψ=0 which in view
of Theorem 1.1 is a contradiction to our assumption that ψ 
≡0. �

5. Proof of Theorem 1.3

Recall from Section 1, as well as Theorem 1.1, that if ψ ∈Bp,α
∗ (∂Ω) and

φ∈Bp′,β
∗ (∂Ω), then

(5.1) 〈T ∗
−ψ, Sφ〉 = 〈ψ, T−(Sφ)〉

and that B̂p,α
∗ (∂Ω)={ψ ∈Bp,α

∗ (∂Ω):〈ψ, 1〉=0}. We first claim that

(5.2) T ∗
− is a bounded linear operator from B̂p,α

∗ (∂Ω) into B̂p,α
∗ (∂Ω).
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To prove claim (5.2) given f ∈Bp,α(∂Ω) choose φ∈Bp′,β
∗ (∂Ω) with Sφ=f . Existence

of φ follows from Theorem 1.1. If f=1, then from Lemma 2.3 we may approximate
σSφ (σ as in (3.14)) arbitrarily closely in the norm of W 1,p by C∞

0 (Rn) functions
which are 1 in a neighborhood of ∂Ω. Using this fact, (5.1), (4.5) and Lemma 3.1,
we find that

(5.3) 〈T ∗
−ψ, Sφ〉 =

∫

Ω+

∇Sφ· ∇Sψ dX =0,

whenever ψ ∈B̂p,α
∗ (∂Ω). From (5.3) we conclude that T ∗

− maps B̂p,α
∗ (∂Ω) into

B̂p,α
∗ (∂Ω). Boundedness of T ∗

− follows from (5.1) and (4.4). Thus claim (5.2) is
true.

We follow the same proof scheme as in Theorem 1.2.

Lemma 5.1. There are δ>0 and c≥1, depending only on the data, such
that if |p−2| ≤δ the following statement is true. Given v ∈W 1,p(Ω+), there exists
ũ∈C∞

0 (Rn) with ū=ũ|Ω+ ,
∥
∥| ∇ū|

∥
∥

Lp′ (Ω+)
≤c and

∥
∥| ∇v|

∥
∥

Lp(Ω+)
≤

∫

Ω+

∇ū· ∇v dX.

Proof. To prove Lemma 5.1 for 2−δ ≤p≤2, we simply copy the proof of Lem-
ma 4.1 with Ω− replaced by Ω+. To prove this lemma for 2<p≤2+δ we introduce
for 2−σ0 ≤q ≤2+σ0 the space U1,q(Ω+) of integrable functions v on Ω+ with distri-
butional gradient ∇v satisfying

| ∇v| ∈ Lq(Ω+) and
∫

Ω+

v dX =0.

Given v ∈U1,q(Ω+), let v̂ denote the extension of v to Rn provided for in Assump-
tion A3. From (4.7) and Poincaré’s inequality we see that

|v̂B(0,R0)|q = |v̂B(0,R0) −vΩ+ |q ≤ c

Hn(Ω+)

∫

Ω+

|v(Y )−vB(0,R0)|q dY(5.4)

≤ c

Hn(Ω+)
Rq

0

∫

B(0,R0)

| ∇v̂|q dX ≤ c′
∫

Ω+

| ∇v|q dX.

Using (5.4), Poincaré’s inequality and (4.7) we deduce that U1,q is a reflexive Banach
space with norm ‖v‖U1,q(Ω+)=‖ ∇v‖Lq(Ω+). In fact,

1
c

‖v‖U1,q(Ω+) ≤ ‖v‖W 1,q(Ω+) ≤ c‖v‖U1,q(Ω+).
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Let U1,q
∗ (Ω+) denote bounded linear functionals on U1,q(Ω+). If 2<p≤2+δ we let

Γ̃⊂U1,p
∗ (Ω+) denote all linear functionals ψ which can be written in the form

〈ψ, v〉 =
∫

Ω+

∇u· ∇v dX, v ∈ U1,p(Ω+), where u∈U1,p′
(Ω+).

We claim that

(5.5) Γ̃=U1,p
∗ (Ω+).

Once (5.5) is proved we can argue as in the discussion after (4.16) to get Lemma 5.1.
Thus we shall only prove (5.5). To do this we argue by contradiction. Repeating
the argument after (4.16) we find that if (5.5) is false, then there exists v ∈U1,p(Ω+),
v 
≡0, with

(5.6)
∫

Ω+

∇u· ∇v dX =0 for all u ∈ U1,p′
(Ω+).

Choosing u=v in (5.6) it follows that
∫

Ω+

| ∇v|2 dX =0

so that v is constant in Ω+. Finally v ≡0 in Ω+ since vΩ+ =0. From this contradiction
we conclude Lemma 5.1 when 2<p≤2+δ. �

We continue the proof of Theorem 1.3 with the following lemma.

Lemma 5.2. There exists δ>0 such that if |p−2| ≤δ and ψ ∈B̂p,α
∗ (∂Ω) with

T ∗
−ψ=0 then ψ=0.

Proof. Given f ∈Bp,α(∂Ω) choose φ∈Bp′,β
∗ (∂Ω) with f=Sφ. From (4.5), (5.1)

and Theorem 1.1 we see that

(5.7) 0 = 〈T ∗
−ψ, f 〉 =

∫

Ω+

∇Sψ · ∇Sφ dX whenever φ∈Bp′,β
∗ (∂Ω).

Now from Lemma 5.1 with p and p′ interchanged and Lemma 3.1, there exists
ũ∈C∞

0 (Rn) with ū=ũ|Ω+ ,
∥
∥| ∇ū|

∥
∥

Lp(Ω+)
≤c, and

(5.8)
∥
∥| ∇ Sψ|

∥
∥

Lp′ (Ω+)
≤

∫

Ω+

∇Sψ · ∇ū dX.



Boundary integral operators and boundary value problems for Laplace’s equation 269

Choose φ as above so that ũ|∂Ω=Sφ. Then from Lemma 2.3 we conclude that

(5.9)
∫

Ω+

∇Sψ ·(∇ū− ∇Sφ) dX =0.

Equations (5.7)–(5.9) imply that ∇Sψ ≡0 in Ω+. Thus Sψ=a=constant in Ω+ so
by Assumption A2, Sψ=a. If 2−δ ≤p≤2, it follows from (3.41) and (3.35) with p

and p′ interchanged that

(5.10) 0 = 〈ψ, Sψ〉 =
∫

Rn

| ∇ Sψ|2 dX,

so from (3.16), Sψ ≡0. In view of Theorem 1.1 we have ψ ≡0. If 2<p≤2+δ we ob-
serve from Theorem 1.1 that there exists ψ̃ ∈Bp′,α

∗ (∂Ω) with Sψ̃=a. From unique-
ness in Theorem 1.1 and (3.35) it follows that ψ̃|Bp,α(∂Ω)=ψ. Moreover, Sψ=Sψ̃

so (5.10) is also valid when 2<p≤2+δ and once again, ψ ≡0. �

To continue the proof of Theorem 1.3 we have the following result.

Lemma 5.3. There exists δ>0 such that if |p−2| ≤δ then T ∗
−(B̂p,α

∗ (∂Ω)) is
closed.

Proof. As earlier it is easily seen that Lemma 5.3 follows once we show the
existence of η>0 so that

(5.11) ‖T ∗
−ψ‖Bp,α

∗ (∂Ω) ≥ η‖ψ‖Bp,α
∗ (∂Ω).

To prove (5.11) we again argue by contradiction. Otherwise there exist functions
ψm ∈B̂p,α

∗ (∂Ω), m=1, 2, ..., with

(5.12) ‖ψm‖Bp,α
∗ (∂Ω) =1 and ‖T ∗

−ψm‖Bp,α
∗ (∂Ω) → 0, as m→ ∞.

Using (5.12), Lemma 5.1, Theorem 1.1, (4.5) and (5.1), as in Lemma 5.2, we
find that ∫

Ω+

| ∇ Sψm|p
′
dX → 0 as m→∞.

From (4.7) it follows that
∫

Rn

| ∇Ŝψm|p
′
dX → 0 as m→∞,

where Ŝψm denotes the extension of Sψm|Ω+ in Assumption A3. From Proposi-
tion 2.2 and Assumption A2 applied to Sψm − Ŝψm in Ω+, it follows that
‖Sψm‖Bp′ ,β(∂Ω)→0 as m→∞. Since from Theorem 1.1,

‖ψm‖Bp,α
∗ (∂Ω) ≤ c‖Sψm‖Bp′ ,β(∂Ω),
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we have reached a contradiction to (5.12). Thus Lemma 5.3 is true. �

To complete the proof of Theorem 1.3 we prove the following lemma.

Lemma 5.4. If |p−2| ≤δ and δ>0 is small enough, depending only on the
data, then T ∗

− maps B̂p,α
∗ (∂Ω) onto B̂p,α

∗ (∂Ω).

Proof. The proof of Lemma 5.4 is once again by contradiction. Otherwise it
follows from the Hahn–Banach theorem and reflexivity of Bp,α(∂Ω) that there exists
f ∈Bp,α(∂Ω), f 
≡constant, with

(5.13) 〈T ∗
−τ, f 〉 = 〈τ, T−f 〉 =0 for all τ ∈B̂p,α

∗ (∂Ω).

Choose θ ∈Bp,α
∗ (∂Ω) so that Sθ=1. From Theorem 1.1 and a uniqueness argument,

as in Lemma 5.2, we see that Sθ ∈R1,2 and

(5.14) 〈θ, 1〉 = 〈θ, Sθ〉 =
∫

Rn

| ∇ Sθ|2 dX 
=0.

Also from Lemma 2.3 we see that
∫

Ω+

| ∇ Sθ|2 dX =0,

so Sθ ≡1 in Ω+. It follows from this fact and (4.5) that if f=Sφ, φ∈Bp′,β
∗ (∂Ω),

then

(5.15) 〈T ∗
−θ, f 〉 = 〈θ, T−f 〉 =

∫

Ω+

∇Sθ · ∇Sφ dX =0.

Finally we note from (5.14) that if ψ ∈Bp,α
∗ (∂Ω), then

(5.16) ψ = τ +
〈ψ, 1〉

〈θ, 1〉 θ,

where τ ∈B̂p,α
∗ (∂Ω). Using (5.13), (5.15), (5.16) and (4.5) we see that

(5.17) 0 = 〈T ∗
−ψ, f 〉 = 〈ψ, T−f 〉 =

∫

Ω+

∇Sψ · ∇Sφ dX =0 for all ψ ∈Bp,α
∗ (∂Ω).

Due to (5.17) we can now apply the same argument as in Lemma 5.2 with ψ and φ

interchanged. Doing this, we conclude that f=Sφ≡constant. From this contradic-
tion we get first Lemma 5.4 and then Theorem 1.3. �
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Remark 5.5. Given p, 1<p<∞, let u be harmonic in Ω with | ∇u| ∈Lp′
(Ω).

Define a linear functional ∂u/∂n on Bp,α(∂Ω) by

〈
∂u

∂n
, f

〉

=
∫

Ω

∇u· ∇F dX,

where f ∈Bp,α(∂Ω) and F ∈W 1,p is the extension of f in Proposition 2.1. Using
Hölder’s inequality and Proposition 2.1 we see that

∥
∥
∥
∥

∂u

∂n

∥
∥
∥
∥

Bp,α
∗ (∂Ω)

≤ c
∥
∥| ∇u|

∥
∥

Lp′ (Ω)
.

If u=Sψ|Ω, then from (4.5) and (5.1) we see that ∂u/∂n=T ∗
−ψ.

6. Domains which satisfy Assumptions A1–A3

In this section we discuss Assumptions A1–A3. We begin with a class of do-
mains first considered in [8].

A connected open set G is said to be an (A, r0) uniform domain if given
X1, X2 ∈G with |X1 −X2|<r0, there is a rectifiable curve γ : [0, 1]→G with γ(0)=
X1, γ(1)=X2, and

(6.1)
(a) H1(γ)≤A|X1 −X2|,

(b) min{H1(γ([0, t])), H1(γ([t, 1]))} ≤Ad(γ(t), ∂Ω) for t∈[0, 1].

We remark that our definition of an (A, r0) uniform domain is slightly different but
equivalent to the (1/A, r0) uniform domain defined in [8] (see [6]). For short we say
that G is a uniform domain if (6.1) holds for some (A, r0). We first prove the next
lemma.

Lemma 6.1. Let Ω be a bounded domain satisfying Assumption A1 and let
p>n−min{di :1≤i≤N }. If either G=Ω or G=Rn \¯Ω is a uniform domain, then
Assumption A2 holds for G.

Proof. In this section we let c denote a positive constant which may depend on
r0, A, n and Ω, not necessarily the same at each occurrence. We first prove Assump-
tion A2 when Ω is a uniform domain. Suppose v ∈W 1,p and v=a=constant on Ω.
Let X ∈∂Ω and 0<r< 1

2 min{r0, diam Ω}. Then it is easily seen that (6.1) and con-
nectivity of Ω imply the existence of W =W (X, r) and c≥4 with W ∈Ω∩B(X, r/2)
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and d(W, ∂Ω)≥r/c. Using this fact and integrating v=F in (2.2) over Y ∈B(W, r/c)
we deduce that

|a−vB(X,r)| ≤ cr| ∇v|B(X,r) ≤ cr(| ∇v|pB(X,r))
1/p

or equivalently,

(6.2) rn−p|a−vB(X,r)|p ≤ c

∫

B(X,r)

| ∇v|p dX.

Given ε>0 let K(ε)⊂∂Ω be the set of points X ∈∂Ω where

lim sup
r→0

|a−vB(X,r)| >ε.

Using a well-known covering theorem, (6.2), and the definition of Hausdorff measure
it is easily seen that

Hn−p(K(ε)) ≤ cε−p

∫

Rn

| ∇v|p dX.

From this inequality and p>n−min{di :1≤i≤N } we conclude that if K=
⋃

ε>0K(ε),
then Hdi(K ∩Ei)=0 whenever 1≤i≤N . Thus Assumption A2 holds with G=Ω
when Ω is an (A, r0) uniform domain. To prove (6.1) when Rn \¯Ω is a uniform
domain observe that our definition of uniform requires Rn \¯Ω to be connected.
Thus ∂Ω=∂(Rn \¯Ω). With this observation the proof is essentially unchanged. We
omit the details. �

We also prove the following result.

Lemma 6.2. Let Ω be a bounded domain. If G=Ω or G=Rn \¯Ω is a uniform
domain, then Assumption A3 holds for G.

Proof. Again we shall just prove Lemma 6.2 when G=Ω. We assume as we may
that 0∈Ω and R0 is the smallest positive number for which Ω⊂B(0, R0). We note
that since Ω is bounded, connected, and satisfies (6.1) for some (A, r0) it follows
from a compactness argument that in fact Ω is a (b, ∞) uniform domain (see [6]),
where b now depends on A, n and Ω. Following Jones [8] we let {Qj =Qj(Xj , rj)}∞

j=1

be a Whitney decomposition of Rn \∂Ω into open cubes with center at Xj and side
length rj satisfying

(6.3)

(α)
⋃

j

˙Qj =Rn \∂Ω;

(β) Qj ∩Qi = ∅ when i 
= j;

(γ) 10−2nd(Qj , ∂Ω) ≤ rj ≤ 10−nd(Qj , ∂Ω).
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Let L1={Qj :˙Qj ⊂Ω} and L2={Qj :˙Qj ⊂Rn \¯Ω}. The same argument as in Lem-
ma 6.1 shows that if Qi=Qi(Xi, ri)∈L2 and 0<ri<2R0, then we can choose Q′

i=
Qj(Xj , rj)∈L1 with

(6.4) max{ri, rj , |Xi −Xj | } ≤ c min{ri, rj , |Xi −Xj | }.

We call Q′
i the reflection of Qi in ∂Ω. If ri ≥2R0 we set Q′

i=Q̃, where Q̃ is a fixed
cube in L1 with side length ≥R0/c. Next given Qi ∈L2 let Λ(i)={j :Qj ∩ ˙Qi 
=∅}
and let Ki be the interior of

⋃
j∈Λ(i)

˙Qj . Let {φi} ∞
i=1 be a partition of unity for

Rn \¯Ω, with φi adapted to Qi ∈L2. That is,

(6.5)

(i) 0 ≤ φi ∈ C∞
0 (Ki) with | ∇φi| ≤ c/ri;

(ii) φi =constant ≥ 1
c

on Qi;

(iii)
∞∑

i=1

φi(X) = 1 whenever X ∈ Rn \¯Ω.

Let f ∈W 1,1(Ω). Define f̂ on Rn \∂Ω by f̂=f on Ω and

f̂(X) =
∞∑

i=1

φi(X)fQ′
i

when X ∈ Rn \¯Ω.

In this display Q′
i is the reflection of Qi ∈L2 in ∂Ω and fQ′

i
denotes the average of

f on Q′
i. From (6.3) and (6.5), we see there exists ĉ≥1 such that

(6.6) f̂ ≡ fQ̃ in Rn \B(0, ĉR0).

In [8] it is shown that Hn(∂Ω)=0 and that f̂ ∈W 1,1(B(0, ρ)) for each ρ>0. It
remains to prove the inequality involving A2 weights in Assumption A3. To do
this, we observe as in [8], Lemma 2.8, that if Qi ∈L2 and j ∈Λ(i), then it follows
from the uniform condition in (6.1) that there is a chain of cubes Q∗

1, Q
∗
2, ..., Q

∗
m in

L1 with m≤c such that Q∗
1=Q′

i, Q∗
m=Q′

j and Q∗
k ∩Q∗

k+1 
=∅ for 1≤k ≤m−1. Using
(2.2) in balls containing successive cubes, (6.4), and the triangle inequality we find
that

(6.7) |fQ′
i

−fQ′
j

| ≤ cr1−n
i

∫

Oi,j

| ∇f | dX,

where Oi,j is an open set with Q′
i, Q

′
j ⊂Oi,j and the property that

(6.8)
1
c
ri ≤ min{diam Oi,j , d(Oi,j , ∂Ω)} ≤ max{diam Oi,j , d(Oi,j , ∂Ω)} ≤ cri.
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Let Oi=
⋃

j∈Λ(i) Oi,j and let Θ be the set of all Oi ⊂Ω corresponding to a Qi ∈L2

with Qi ∩B(0, 2ĉR0) 
=∅. From (6.3) and (6.8) we see for X ∈Ω that

(6.9)
∑

Oi ∈Θ

χOi(X) ≤ c,

where χOi is the characteristic function of Oi. Finally we note from (6.5), (6.7) and
the definition of f̂ that for X ∈Qi ∈L2, Qi ∩B(0, 2ĉR0) 
=∅, we have

(6.10)
1
c

| ∇f̂(X)| ≤ 1
ri

∑

j∈Λ(i)

|fQ′
i

−fQ′
j

| ≤ c

rn
i

∫

Oi

| ∇f | dX

while ∇f̂=0 in Rn \B(0, ĉR0) due to (6.6). Now suppose that ω is an A2 weight
on Rn. Then from (6.8)–(6.10), and Hölder’s inequality we conclude that

∫

Rn \˙Ω
ω| ∇f̂ |2 dX =

∑

Qi ∈L2

∫

Qi

ω| ∇f̂ |2 dX(6.11)

≤ c
∑

Qi ∈L2

ω(Qi)
(

1
rn
i

∫

Oi

| ∇f | dX

)2

≤ c2‖ω‖̂
∑

Qi ∈L2

∫

Oi

| ∇f |2ω dX

≤ c3‖ω‖̂
∫

Ω

| ∇f |2ω dX.

In (6.11) we have used the doubling property of ω. From (6.11) we conclude the
validity of Lemma 6.2 when Ω is a uniform domain. �

Lemmas 6.1 and 6.2 are easily used to identify bounded domains Ω⊂R3 satisfy-
ing the hypotheses of Theorems 1.1–1.3. These domains can have fractal boundaries
of Hausdorff dimension larger than n−1. For example Wolff snowflakes constructed
in [19] have this property and satisfy the hypotheses of Theorems 1.1–1.3, as we see
from Lemmas 6.1 and 6.2.

Concluding remarks We remark that Assumption A2 is a stability property
of Sobolev functions defined in [1], Definition 11.1.7. Sufficient conditions for this
stability property to hold are also given in [1], Theorem 11.4.1. Based on these
conditions our intuition is that Lemma 6.1 remains valid for Ω without any uniform
assumption. Also we believe that Lemma 6.1 is valid for Rn \¯Ω, without any uniform
assumption, provided this set is connected. However, we have not been able to
justify our intuition.
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Assumption A3 implies a similar condition for Ap weights, 1<p<∞, as can
be deduced from Proposition 2.17 in [7]. The authors consider it an interesting
question whether Theorems 1.2 and 1.3 remain valid under more general conditions
than the uniform assumption in Lemmas 6.1 and 6.2. For example can this uniform
condition be replaced by a local John-type condition as in Definition 3.4 of [7] or
more generally by the visual John boundary condition in Condition 4.1 of [12].
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