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Perturbation theorems for Hele-Shaw flows and
their applications

Yu-Lin Lin

Abstract. In this work, we give a perturbation theorem for strong polynomial solutions

to the zero surface tension Hele-Shaw equation driven by injection or suction, the so called

Polubarinova–Galin equation. This theorem enables us to explore properties of solutions with

initial functions close to polynomials. Applications of this theorem are given in the suction and

injection cases. In the former case, we show that if the initial domain is close to a disk, most of

the fluid will be sucked before the strong solution blows up. In the latter case, we obtain precise

large-time rescaling behaviors for large data to Hele-Shaw flows in terms of invariant Richardson

complex moments. This rescaling behavior result generalizes a recent result regarding large-time

rescaling behavior for small data in terms of moments. As a byproduct of a theorem in this paper,

a short proof of existence and uniqueness of strong solutions to the Polubarinova–Galin equation

is given.

1. Introduction

This paper deals with classical zero surface tension Hele-Shaw flows. The
driving mechanism, injection or suction with a constant rate 2π or −2π at the
origin, produces a family of domains {Ω(t)}t≥0. In two dimensions, Galin and
Polubarinova-Kochina reformulated the planar model of Hele-Shaw flows by de-
scribing the domains {Ω(t)}t≥0 by a family of conformal mappings {f(ζ, t)}t≥0,
where f(ζ, t) : D→Ω(t), f(0, t)=0 and f ′(0, t)>0. Here we set

ft(ζ, t) =
∂

∂t
f(ζ, t), f ′(ζ, t) =

∂

∂ζ
f(ζ, t), D = D1(0) and Dr = Dr(0),

where Dr(z0)={x∈R
2 | |x−z0|<r}. Equations for f(ζ, t), the so called Polubari-

nova–Galin equations, are derived under this reformulation and they are expressed
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in the case of injection and suction as

(1) Re[ft(ζ, t)f ′(ζ, t)ζ] = 1, ζ ∈ ∂D,

and

(2) Re[ft(ζ, t)f ′(ζ, t)ζ] = −1, ζ ∈ ∂D,

respectively. A solution to (1) or (2) is said to be a strong solution for t∈[0, b) if
f(ζ, t) is univalent and analytic in a neighborhood of D, f(0, t)=0, f ′(0, t)>0 and
f(ζ, t) is continuously differentiable in t∈[0, b).

For any set E which contains the origin, we define

H(E) = {f | f is analytic in a neighborhood of E};

O0(E) = {f ∈ H(E) | f ′ �=0, f(0) = 0 and f ′(0) > 0};

O(E) = {f ∈ O0(E) | f is univalent in a neighborhood of E}.

The short-time well-posedness of (1) has been thoroughly explored. In Reissig–
von Wolfersdorf [7], the authors prove the existence and uniqueness of a short-time
strong solution in O(D) if the initial function is in O(D). In Gustafsson [1], the
author proves that a strong solution to (1) is a family of polynomials of degree k0

if its initial function in O(D) is also a polynomial of degree k0. These results can
all be applied to (2) as well even though the authors do not comment on that.

In this paper, we first prove a perturbation theorem for the strong polynomial
solutions to the Polubarinova–Galin equations (1) and (2). Many properties for
strong polynomial solutions are thoroughly known. This theorem enables us to ex-
plore the properties of evolution of perturbed polynomials which are nonpolynomial.
We obtain two applications of this theorem in the suction and injection cases.

We first state this perturbation theorem. We define the following norms to
describe the evolution of solutions

∣
∣
∣
∣

∞∑

j=0

ajζ
j

∣
∣
∣
∣
M

=
∞∑

j=0

|aj | and
∣
∣
∣
∣

∞∑

j=0

ajζ
j

∣
∣
∣
∣
M(r)

=
∞∑

j=0

|ajr
j |.

Also, we define the following norm to describe the small perturbation

‖v‖ρ,m =
∞∑

j=1

|vj |ρjj1/2+m, v =
∞∑

j=1

vjζ
j .

The perturbation theorem, Theorem 1.1, describes the evolution of small perturba-
tion of polynomials and is stated as follows.
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Theorem 1.1. Given a strong degree-k0 polynomial solution fk0(ζ, t) to (1)
(or (2)) such that for some T0>0 and r>1, fk0(ζ, t)∈ O(Dr) for all t∈[0, T0]. Then
for ε>0, m∈N and 1<r′ <r, there are δ(fk0 , T0, ε, m, r′)>0 and ρ(fk0 , T0, ε, m, r′)>1
such that if ‖f( · , 0)−fk0( · , 0)‖ρ,m<δ, where f(0, 0)=0 and f ′(0, 0)>0, then the
strong solution to (1) (or (2)) f(ζ, t) satisfies

f(ζ, t) ∈ C1([0, T0], O(Dr′ )∩ H(Dr)),

and for 0≤l≤m and 0≤t≤T0,
∣
∣f

(l)
k0

( · , t)−f (l)( · , t)
∣
∣
M(r)

<ε.

The applications of this theorem and related past results are stated briefly
in Sections 1.1 and 1.2 below.

1.1. Here we assume that the driving mechanism is suction. It has been known
that strong solutions to (2) must blow up before the fluid is sucked out except for
the degree-1 polynomial solutions. However, by taking k0=1 in Theorem 1.1, we
prove that if the initial domain is close to a disk, most of the fluid is sucked before
the strong solution to (2) blows up.

1.2. Now we assume that the driving mechanism is injection. In Sakai [10] and
Gustafsson–Sakai [3], the authors consider solutions of weak formulations and inves-
tigate the radius and curvature of two-dimensional moving domains, respectively.
For an arbitrary initial shape of the moving domain its asymptote is an expand-
ing disk. Recently, progress regarding this asymptotic behavior has been made
by investigating it in terms of conserved quantities, so called Richardson complex
moments; see Richardson [8]. In Vondenhoff [11], by restricting multi-dimensional
initial domains to be close to balls, the author gives a rescaling behavior of the mov-
ing boundaries in terms of conserved moments. In this paper, we aim at generalizing
the former result in two-dimensions by assuming a larger set of initial domains.

It is known that there is a general class of polynomials which can give
rise to global strong polynomial solutions to (1) and the corresponding initial
domains can be quite different from disks; for example, starlike polynomials (e.g.,
ζ+ 2

5ζ2 and ζ/1.1− 15
14 (ζ/1.1)2+ 4

7 (ζ/1.1)3 − 1
7 (ζ/1.1)4); see Gustafsson–Prokhorov–

Vasil′ev [2]. An arbitrary global strong degree-k0 polynomial solution to (1), called
fk0(ζ, t), can have its rescaling behavior precisely described in terms of moments;
see Lin [5]. In this paper, as an application of Theorem 1.1, we show that a small
perturbation of fk0(ζ, 0), called f(ζ, 0), can give rise to a global strong solution
f(ζ, t), and a rescaling behavior of the corresponding moving domains, similar to
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that stated in Vondenhoff [11], is given in terms of moments as well. We can deduce
the case when the initial domain is a small perturbation of a disk from this result
by letting k0=1. Therefore, this result generalizes the result in Vondenhoff [11].
Lin [5], Vondenhoff [11] and this paper consider different sets of initial data and the
rescaling behavior in Lin [5] is different from that in Vondenhoff [11] and this paper.
However, geometrically, these rescaling behaviors in the three works all imply that
by rescaling the corresponding moving domain Ω(t), t≥0, to be a domain Ω′(t) with
area π, the radius and curvature of ∂Ω′(t) decay to 1 algebraically and the decay
is faster if lower moments vanish.

A sketch of the proof of this result is as follows: We first apply Theorem 1.1
and prove the existence of a locally-in-time strong solution {f(ζ, t)}0≤t≤T0 where
f(ζ, T0) is strongly starlike and f(D, T0) is a small perturbation of a disk, even
though f(ζ, 0) can be nonstarlike and f(D, 0) is far from a disk. Since starlikeness
is a sufficient condition for an initial function to give rise to a global strong solu-
tion as shown in Gustafsson–Prokhorov–Vasil′ev [2], and since large-time rescaling
behavior for evolution of perturbed disks is shown in Vondenhoff [11] in terms of
moments, the solution f(ζ, t) must be global and a rescaling behavior is given in
terms of moments as well.

The structure of this paper is as follows. In Section 2, we prove Theorem 1.1. In
Section 3, the application of Theorem 1.1 in the suction case is given. In Section 4,
the application of Theorem 1.1 in the injection case is given. As a byproduct of
Theorem 2.5, a short proof of existence and uniqueness of strong solutions to (1) is
given in Section 5.

2. Proof of Theorem 1.1

The proof of the perturbation theorem in the suction case is almost the same
as the proof in the injection case. Therefore, we will just provide the proof of the
theorem in the case of injection (1).

As in Gustafsson [1], a reformulation of the Polubarinova–Galin equation (1)
is expressed as

(3) ft = ζf ′P

[
1

| f ′ |2

]

, ζ ∈ D,

where P denotes the Poisson integral which defines the analytic function in the unit
disk

(4) P [g](ζ) =
1

2πi

∫

∂D

g(z)
z+ζ

z −ζ

dz

z
, ζ ∈ D,
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from boundary data g on ∂D of its real part. In the mathematical treatment of (3)
it makes no difference if f(ζ, t) is univalent in D or merely locally univalent in D; see
Gustafsson [1]. To make a distinction, we define a solution to be a strong* solution
to (3) as follows.

Definition 2.1. A solution f(ζ, t)∈ O0(D) is a strong* solution to (3) for 0≤t<b

if f(ζ, t) is continuously differentiable with respect to t∈[0, b) and satisfies (3).

A univalent strong* solution f(ζ, t) to (3) must be a strong solution to the
Polubarinova–Galin equation (1).

In Section 2.1, we aim to prove a perturbation theorem for strong* polynomial
solutions to (3), Theorem 2.5. In Section 2.2, we show that Theorem 1.1 follows
directly from Theorem 2.5.

2.1. A perturbation theorem for strong* polynomial solutions

We start with some lemmas before proving the perturbation theorem for strong*poly-
nomial solutions to (3).

Lemma 2.2. For 1<p<∞, there exists Cp>0 such that

‖P [g]‖Lp([0,2π]) ≤ Cp‖g‖Lp([0,2π])

for any real-valued function g ∈Lp([0, 2π]).

Proof. There exists u which is harmonic in D, continuous in D, and satisfies
u=g on ∂D. Therefore, by Theorem 17.26 in Rudin [9], it is shown that for 1<p<∞,
there exists Cp>0 such that

‖P [u]‖Lp([0,2π]) ≤ Cp‖u‖Lp([0,2π]),

which means that
‖P [g]‖Lp([0,2π]) ≤ Cp‖g‖Lp([0,2π]). �

In the proof of the perturbation theorem for strong* polynomial solutions, we
use an iterative method. In each iteration, we need to calculate the difference
of two polynomial univalent functions h1 and h2 which satisfy the assumption of
Lemma 2.3. Inequality (7) enables us to estimate ‖h′

1 −h′
2‖L2([0,2π]) locally in time

when h1 and h2 are both polynomial as shown in the proof of Theorem 2.5.
In the rest of this section, for any function F (ζ), we define

F ∗(ζ) =F (ζ∗), where ζ∗ =
1
ζ̄
.
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Lemma 2.3. Let g(ζ, t)∈ C1([0, t1], O0(Dr)) be a strong* solution to (3) and
0<�<1. There is C(g, t1, r, �)>0 such that, if h1(z, t), h2(z, t)∈ C1([0, th], O0(Dr))
are two strong* solutions to (3), where 0<th ≤t1, and

(5) max
[0,th]

|h′
j( · , t)−g′( · , t)|M(r) ≤ � min

Dr ×[0,t1]
|g′ |, j =1, 2,

then we have

(6)
∥
∥
∥
∥

∂

∂t
[h1 −h2]

∥
∥
∥
∥

L2([0,2π])

≤ C‖h′
1 −h′

2‖L2([0,2π]), 0 ≤ t ≤ th.

Furthermore, if h1 and h2 are both polynomials of degree ≤n, then for 0≤t≤th,

(7) ‖h′
1( · , t)−h′

2( · , t)‖2
L2([0,2π]) ≤ e2nCt‖h′

1( · , 0)−h′
2( · , 0)‖2

L2([0,2π]).

Proof. (a)

(8)
∂

∂t
[h1 −h2] = ζ

[

[h′
1 −h′

2]P
[

1
|h′

2|2

]

+h′
1P

[
1

|h′
1|2 − 1

|h′
2|2

]]

.

Here, by Lemma 2.2,

(9)
∥
∥
∥
∥
P

[
1

|h′
1|2 − 1

|h′
2|2

]∥
∥
∥
∥

L2([0,2π])

≤ C2

∥
∥
∥
∥

1
|h′

1|2 − 1
|h′

2|2

∥
∥
∥
∥

L2([0,2π])

.

By taking the L2 norms of the right-hand and left-hand sides of (8) and then using
(9) and Hölder’s inequality, we obtain that

∥
∥
∥
∥

∂

∂t
[h1 −h2]

∥
∥
∥
∥

L2([0,2π])

≤ ‖h′
1 −h′

2‖L2([0,2π]) max
∂D

∣
∣
∣
∣
P

[
1

|h′
2|2

]∣
∣
∣
∣

(10)

+C2‖h′
1‖L∞([0,2π])

∥
∥
∥
∥

1
|h′

1|2 − 1
|h′

2|2

∥
∥
∥
∥

L2([0,2π])

≤
[

max
∂D

∣
∣
∣
∣
P

[
1

|h′
2|2

]∣
∣
∣
∣

+C2 max
∂D

|h′
1| max

∂D

|h′
1|+|h′

2|
|h′

1|2|h′
2|2

]

‖h′
1 −h′

2‖L2([0,2π]).

Below we want to bound

max
∂D

|h′
1| max

∂D

|h′
1|+|h′

2|
|h′

1|2|h′
2|2 and max

∂D

∣
∣
∣
∣
P

[
1

|h′
2|2

]∣
∣
∣
∣

in (a1) and (a2), respectively, in terms of g and hereby determine the constant C.
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(a1) By assumption (5), for (z, t)∈∂D×[0, th],

|h′
j(z, t)| ≥ |g′(z, t)| − |h′

j(z, t)−g′(z, t)| ≥ (1−�)|g′(z, t)|, j =1, 2,(11)

|h′
j(z, t)| ≤ |g′(z, t)|+|h′

j(z, t)−g′(z, t)| ≤ (1+�)|g′(z, t)|, j =1, 2.(12)

Therefore, by (11) and (12), for 0≤t≤th,

(13) max
∂D

|h′
1| max

∂D

|h′
1|+|h′

2|
|h′

1|2|h′
2|2 ≤ 2

(1+�)
(1−�)3

max
∂D×[0,t1]

|g′ | max
∂D×[0,t1]

1
|g′ |3 .

(a2) We start with finding the upper bound of P [1/|h′
2|2 −1/|g′ |2] in terms of

g and hereby obtain the upper bound for P [1/|h′
2|2] in terms of g.

In Gustafsson [1], it is shown that for any h∈ O0(Dr),

(14) P

[
1

|h′ |2

]

=
1

2πi

∫

∂Dr

1
h′(z, t)(h′)∗(z, t)

z+ζ

z −ζ

dz

z
, ζ ∈ D.

By (14), we have for ζ ∈D,

(15) P

[
1

|h′
2|2 − 1

|g′ |2

]

=
1

2πi

∫

∂Dr

(
1

h′
2(z, t)(h′

2)∗(z, t)
− 1

g′(z, t)(g′)∗(z, t)

)
z+ζ

z −ζ

dz

z
.

Therefore,

max
∂D

∣
∣
∣
∣
P

[
1

|h′
2|2 − 1

|g′ |2

]∣
∣
∣
∣

≤ max
∂Dr

∣
∣
∣
∣

1
h′

2(z, t)(h′
2)∗(z, t)

− 1
g′(z, t)(g′)∗(z, t)

∣
∣
∣
∣

r+1
r −1

=max
∂Dr

∣
∣
∣
∣

h′
2(z, t)−g′(z, t)

g′(z, t)(g′)∗(z, t)h′
2(z, t)

+
(h′

2)
∗(z, t)−(g′)∗(z, t)

h′
2(z, t)(h′

2)∗(z, t)(g′)∗(z, t)

∣
∣
∣
∣

r+1
r −1

.(16)

By assumption (5), for (z, t)∈∂Dr ×[0, th],

|(h′
2)

∗(z, t)−(g′)∗(z, t)| ≤ �|(g′)∗(z, t)|,(17)

|(h′
2)

∗(z, t)| ≥ (1−�)|(g′)∗(z, t)|,(18)

|h′
2(z, t)−g′(z, t)| ≤ �|g′(z, t)|,(19)

|h′
2(z, t)| ≥ (1−�)|g′(z, t)|.(20)

By (17)–(20),

max
∂Dr ×[0,th]

∣
∣
∣
∣

h′
2(z, t)−g′(z, t)

g′(z, t)(g′)∗(z, t)h′
2(z, t)

+
(h′

2)
∗(z, t)−(g′)∗(z, t)

h′
2(z, t)(h′

2)∗(z, t)(g′)∗(z, t)

∣
∣
∣
∣

r+1
r −1

≤ 2�

[

max
∂Dr ×[0,t1]

∣
∣
∣
∣

1
|g′(z, t)| |(g′)∗(z, t)|(1−�)2

∣
∣
∣
∣

]
r+1
r −1

.
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Therefore, by the above inequality and (16), for 0≤t≤th,

max
∂D

∣
∣
∣
∣
ζP

[
1

|h′
2|2 − 1

|g′ |2

]∣
∣
∣
∣

≤ 2�

[

max
∂Dr ×[0,t1]

∣
∣
∣
∣

1
|g′(z, t)| |(g′)∗(z, t)|(1−�)2

∣
∣
∣
∣

]
r+1
r −1

.

Hence, for 0≤t≤th, we have that

max
∂D

∣
∣
∣
∣
ζP

[
1

|h′
2|2

]∣
∣
∣
∣

≤ max
∂D

∣
∣
∣
∣
ζP

[
1

|h′
2|2 − 1

|g′ |2

]∣
∣
∣
∣
+max

∂D

∣
∣
∣
∣
ζP

[
1

|g′ |2

]∣
∣
∣
∣

≤ 2�

[

max
∂Dr ×[0,t1]

∣
∣
∣
∣

1
|g′(z, t)| |(g′)∗(z, t)|(1−�)2

∣
∣
∣
∣

]
r+1
r −1

+ max
∂D×[0,t1]

∣
∣
∣
∣
ζP

[
1

|g′ |2

]∣
∣
∣
∣
.

From (a1) and (a2), we prove (6) by choosing C to be

C = max
∂D×[0,t1]

∣
∣
∣
∣
ζP

[
1

|g′ |2

]∣
∣
∣
∣
+2�

[

max
∂Dr ×[0,t1]

∣
∣
∣
∣

1
|g′(z, t)| |(g′)∗(z, t)|(1−�)2

∣
∣
∣
∣

]
r+1
r −1

+C2

[

2
(1+�)
(1−�)3

max
∂D×[0,t1]

|g′ | max
∂D×[0,t1]

1
|g′ |3

]

.

(b) Now we assume that h1 and h2 are both polynomials of degree ≤n. Let
h1=

∑n
j=1 αj(t)ζj , h2=

∑n
j=1 βj(t)ζj and

D(t) = ‖h′
1 −h′

2‖2
L2([0,2π]) =2π

n∑

j=1

[|αj(t)−βj(t)|]2j2.

Then

D′(t) = 2π ·2
n∑

j=1

Re[(αj −βj)(αj −βj)t]j
2

≤ 2π ·2n

n∑

j=1

|(αj −βj)| |(αj −βj)t|j

≤ 2π ·2n

( n∑

j=1

|(αj −βj)|2j2

)1/2( n∑

j=1

|(αj −βj)t|2
)1/2

=2n‖[h′
1 −h′

2]‖L2([0,2π])

∥
∥
∥
∥

∂

∂t
[h1 −h2]

∥
∥
∥
∥

L2([0,2π])

.

By applying (6) to the above inequality, we conclude that for 0≤t≤th,

(21) D′(t) ≤ 2nC‖[h′
1 −h′

2]‖2
L2([0,2π]) =2nCD(t),
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and therefore

(22) D(t) ≤ D(0)e2nCt,

which proves (7). �

The following lemma helps us control the blow-up time of strong* polynomial
solutions to (3).

Lemma 2.4. Given a polynomial mapping f(ζ, 0)∈ O0(Dr0) for some r0>1,
there exists a unique strong* polynomial solution f(ζ, t)∈ O0(Dr0) to (3) at least for
a short time. Furthermore, if the strong* polynomial solution ceases to exist at t=b,
then for any r>1,

(23) lim inf
t→b

(

min
Dr

|f ′(ζ, t)|
)

=0.

Proof. The first part follows from Gustafsson [1].
For the second part, assume that (23) does not hold. Then there exists r>1

such that
lim inf

t→b

(

min
Dr

|f ′(ζ, t)|
)

> 0.

This implies that there exist C>0 and 1<r′ ≤r such that

min
Dr′

|f ′(ζ, t)| >C, t ∈ [0, b).

Since each coefficient of f(ζ, t) is bounded for t∈[0, b), there exists M>0 such that

sup
t∈[0,b)

max
Dr′

|f ′(ζ, t)ζ| ≤ M.

For ζ ∈D,

sup
t∈[0,b)

∣
∣
∣
∣
f ′(ζ, t)ζP

[
1

|f ′ |2

]∣
∣
∣
∣

≤ sup
t∈[0,b)

∣
∣
∣
∣

f ′(ζ, t)ζ
2πi

∫

∂Dr′

1
f ′(z, t)(f ′)∗(z, t)

z+ζ

z −ζ

dz

z

∣
∣
∣
∣

≤ sup
t∈[0,b)

(

max
D

|f ′(ζ, t)ζ| ·max
∂Dr′

∣
∣
∣
∣

1
f ′(z, t)(f ′)∗(z, t)

∣
∣
∣
∣

r′ +1
r′ −1

)

≤ M

C2

r′ +1
r′ −1

.

Hence, for 0≤t2<t1<b and ζ ∈D,

|f(ζ, t1)−f(ζ, t2)| =
∣
∣
∣
∣

∫ t1

t2

f ′(ζ, t)ζP

[
1

|f ′ |2

]

dt

∣
∣
∣
∣

≤ |t1 −t2| M

C2

r′ +1
r′ −1

.
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Therefore limt→b f(ζ, t) exists and we define it as f(ζ, b). Note that f(ζ, b) satisfies
min

Dr′ |f ′(ζ, b)| ≥C. Let f(ζ, t+b) be the strong* solution to (3) with the initial
value f(ζ, b) for t∈[0, ε). Then f(ζ, t) is continuous with respect to t for t∈[0, b+ε)
and

f(ζ, t)−f(ζ, 0) =
∫ t

0

f ′(ζ, s)ζP

[
1

|f ′( · , s)|2

]

ds.

This implies that f(ζ, t)∈ O0(D) is continuously differentiable with respect to t for
t∈[0, b+ε) and satisfies (3). Hence it is impossible that f(ζ, t) ceases to exist at
t=b and therefore for any r>1,

lim inf
t→b

(

min
Dr

|f ′(ζ, t)|
)

=0. �

Theorem 2.5. Assume that fk0(ζ, t)∈ C1([0, t1], O0(Dr)) is a strong* degree-k0

polynomial solution to (3) for some t1>0 and r>1 and that ρ>r and �<1. If f(ζ, 0)
satisfies the assumption

‖f(ζ, 0)−fk0(ζ, 0)‖ρ,1 ≤ �√
k0

min
Dr ×[0,t1]

|f ′
k0

|,

where f ′(0, 0)∈R and f(0, 0)=0, then the following are true:
(a) There exists C(fk0 , t1, r, �)>0 such that the strong* solution f(ζ, t) to (3)

satisfies
f(ζ, t) ∈ C1([0, t0], O0(Dr)∩ C(Dr)),

where t0=min{(1/Ck0) log(ρ/r)t1}. Moreover,

max
[0,t0]

|f ′ −f ′
k0

|M(r) ≤ � min
Dr ×[0,t1]

|f ′
k0

|;

(b) Furthermore, if there exist δ>0 and l∈N such that

‖f( · , 0)−fk0( · , 0)‖ρ,l ≤ δ,

then there exists c(l, k0)>0 such that

max
[0,t0]

|f (l) −f
(l)
k0

|M(r) ≤ c(l, k0)δ.

Remark 2.6. The strong* solution f(ζ, t) is obtained as a limit of polynomial
strong* solutions to (3).

Proof. (a) We take the constant C(fk0 , t1, r, �) in (a) to be the same as the one
defined in Lemma 2.3. We want to prove (a) by showing that there exists a strong*
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solution f(ζ, t)∈ O0(Dr) to (3) for 0≤t≤t0, where f(ζ, 0)=fk0(ζ, 0)+
∑∞

j=1 bj(0)ζj

and

(24)
∞∑

k=1

|bk(0)|ρkk3/2 ≤ �√
k0

min
Dr ×[0,t1]

|f ′
k0

|.

Denote the strong* polynomial solution to (3) with the initial value fk0(ζ, 0)+
∑k

j=1 bj(0)ζj by gk(ζ, t). The proof for (a) is split into (a1) and (a2). In (a1),
we prove that gk(ζ, t), k ≥1 exists for t∈[0, t0]. In (a2), we prove that gk(ζ, t) con-
verges to the strong* solution f(ζ, t), as k→∞, and that f(ζ, t) exists for t∈[0, t0].

(a1) By (24), there exists a nonnegative sequence {dk }k≥0 such that
∑∞

k=0 dk=1
and |bj(0)| ≤Mjρ

−j for j ≥1, where

Mk+1 ≤ �√
k0

dk

(k+1)3/2
min

Dr ×[0,t1]
|f ′

k0
|, k ≥ 0.

Claim. Prove that for k ≥0, gk(ζ, t)∈ C1([0, t0], O0(Dr)) and

max
[0,t0]

|g′
k −g′

k+1|M(r) ≤ �dk min
Dr ×[0,t1]

|g′
0|.

Proof. We prove the claim by induction as follows.
(i) Assume for 0≤k ≤n−1, that

max
[0,t0]

|g′
k −g′

k+1|M(r) ≤ �dk min
Dr ×[0,t1]

|g′
0|.

(ii) Let us prove that for t∈[0, t0],

(25) |g′
n −g′

n+1|M(r) ≤ �dn min
Dr ×[0,t1]

|g′
0|.

Let
sn =sup{T ≤ t0 | gn+1(ζ, t) satisfies (25) for t∈[0, T ]}.

Then |g′
n+1| ≥(1−�)|g′

0| for t∈[0, sn). Therefore, by Lemma 2.4,

sn =max{T ≤ t0 | gn+1(ζ, t) satisfies (25) for t∈[0, T ]}.

For 0<t≤sn,

(26) max
[0,t]

|g′
n+1 −g′

0|M(r) ≤
n∑

k=0

�dk min
Dr ×[0,t1]

|g′
0| ≤ � min

Dr ×[0,t1]
|g′

0|.
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Also by the assumption in (i), we have that

(27) max
[0,t0]

|g′
n −g′

0|M(r) ≤
n−1∑

k=0

�dk min
Dr ×[0,t1]

|g′
0| ≤ � min

Dr ×[0,t1]
|g′

0|.

From (26) and (27), g0, gn and gn+1 satisfy the assumptions on g, h1 and h2 in
Lemma 2.3, respectively. Let D(t)=‖g′

n+1 −g′
n‖2

L2([0,2π]). From Lemma 2.3, we
obtain that for 0≤t≤sn,

(28) D(t) ≤ e2(n+1)k0CtD(0).

We need to show that sn=t0. Note that if sn<t0, then the following must hold:

(29) |g′
n −g′

n+1|M(r) = dn min
Dr ×[0,t1]

|g′
0|� at time t = sn.

Assume now that sn<t0. Then for 0≤t≤sn,

|g′
n −g′

n+1|M(r) ≤
√

D(t)(n+1)k0r
n

≤
√

(n+1)k0D(0)e2Ctk0(n+1)r2n

≤
√

(n+1)k0D(0)e2Csnk0(n+1)r2n

<
√

(n+1)k0D(0)e2Ct0k0(n+1)r2n.

Since
D(0)(n+1)k0 ≤ ρ−2(n+1)d2

n min
Dr ×[0,t1]

|g′
0|2�2,

we have that

max
[0,sn]

|g′
n −g′

n+1|M(r) ≤
√

(n+1)k0D(0)e2Ct0k0(n+1)r2n <dn min
Dr ×[0,t1]

|g′
0|�,

which contradicts (29). Therefore, sn=t0. �

(a2) By (a1), for k ≥1,

max
[0,t0]

|g′
k −g′

0|M(r) ≤ �

∞∑

n=0

dn min
Dr ×[0,t1]

|g′
0| ≤ � min

Dr ×[0,t1]
|g′

0|.

There exists f(ζ, t)∈ C([0, t0], O0(Dr)∩ C(Dr)) such that |g′
k −f ′ |M(r)→0, as k→∞.

Furthermore,
max
[0,t0]

|f ′ −g′
0|M(r) ≤ � min

Dr ×[0,t1]
|g′

0|.
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Still, we have to show that f(ζ, t) satisfies (3). Fix 1<r′ <r. Then for ζ ∈Dr′ and
0≤t≤t0,

(30)
∂

∂t
gk(ζ, t) =

g′
k(ζ, t)ζ
2πi

∫

∂Dr′

1
g′

k(z, t)(g′
k)∗(z, t)

z+ζ

z −ζ

dz

z
.

By integrating (30) with respect to t, we have that for ζ ∈Dr′ and 0≤t≤t0,

gk(ζ, t)−gk(ζ, 0) =
∫ t

0

g′
k(ζ, s)ζ
2πi

∫

∂Dr′

1
g′

k(z, s)(g′
k)∗(z, s)

z+ζ

z −ζ

dz

z
ds.

Letting k→∞, we get for ζ in any compact subset of Dr′ ,

(31) f(ζ, t)−f(ζ, 0) =
∫ t

0

f ′(ζ, s)ζ
2πi

∫

∂Dr′

1
f ′(z, s)(f ′)∗(z, s)

z+ζ

z −ζ

dz

z
ds

for some f(ζ, t)∈ C([0, t0], O0(Dr)∩ C(Dr)). Furthermore, the identity (31) shows
that f(ζ, t)∈ C1([0, t0], H(Dr)∩ C(Dr)).

(b) Now consider (b). In this case

|bj(0)| ≤ Mjρ
−j , j ≥ 1,

where
Mk+1 ≤ 1

(k+1)1/2+l
dkδ, k ≥ 0.

First we look at the case l=2. Under the assumption in (b), we have that for n≥0,

max
[0,t0]

|g′ ′
n −g′ ′

n+1|M(r) ≤
√

(n+2)3(k0+1)3 1
3D(0)e2Ct0k0(n+1)rn−1

=
(

n+2
n+1

)3/2 1√
3
(k0+1)3/2

√

D(0)(n+1)3e2ct0k0(n+1)rn−1

≤
(

n+2
n+1

)3/2 1√
3
(k0+1)3/2dnδ.

Therefore, we have for n≥1 that

max
[0,t0]

|g′ ′
0 −g′ ′

n|M(r) ≤ 1√
3
23/2(k0+1)3/2δ.

Similarly, for l∈N, under the assumption in (b), there exists c(l, k0)>0 such that

max
[0,t0]

|g(l)
n −g

(l)
n+1|M(r) ≤ c(l, k0)

√

(n+1)2l−1D(0)e2Ct0k0(n+1) ≤ c(l, k0)dnδ.
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Therefore, we have that

max
[0,t0]

|g(l)
0 −g(l)

n |M(r) ≤ c(l, k0)δ.

Letting n→∞ shows that

max
[0,t0]

|g(l)
0 −f (l)|M(r) ≤ c(l, k0)δ. �

2.2. A perturbation theorem for strong polynomial solutions

In the former subsection, the solutions we considered were locally univalent
in D. However, the solutions which have physical meaning are required to be uni-
valent in D. The following lemma states that these locally univalent solutions are
univalent if they are close to a univalent solution.

Lemma 2.7. Given a function g(ζ, t)∈ C1([0, T0], O(Dr)) and 1<r′ <r, there
exists η(g, T0, r

′)>0 such that if

max
[0,T0]

|f ′( · , t)−g′( · , t)|M(r) ≤ η,

where f(ζ, t)∈ C([0, T0], H(Dr)∩ C(Dr)), then for 0≤t≤T0,

f(ζ, t) ∈ O(Dr′ ).

Proof. The proof is separated into two parts (a) and (b).
(a) First assume that

(32) max
[0,T0]

|f ′( · , t)−g′( · , t)|M(r) ≤ 1
2

min
Dr ×[0,T0]

|g′(z, t)|.

We want to show that there exists r0>0 such that for any fixed z0 ∈Dr′ ,

f( · , t) : Dr0(z0)→ f(Dr0(z0))

is univalent. It is sufficient to prove that

Re
f ′(z, t)(z −z0)
f(z, t)−f(z0, t)

≥ 1
2
, z ∈ Dr0(z0),

which means that the function is injective on ∂Dr0(z0) and therefore is injective for
z ∈Dr0(z0).
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Now fix z0 ∈Dr′ . Since f(z, t) is analytic in Dr,

f(z, t) = f(z0, t)+
∞∑

n=1

f (n)(z0, t)
n!

(z −z0)n, z ∈ Dr.

Let

l =min{r′, r −r′ }, M =
3
2

max
Dr ×[0,T0]

|g′ | and m=
1
2

min
Dr ×[0,T0]

|g′ |.

By (32), we get that

max
Dr ×[0,T0]

|f(z, t)| ≤ M and min
Dr ×[0,T0]

|f ′(z, t)| ≥ m.

Note that
∣
∣
∣
∣

f (n)(z0, t)
n!

∣
∣
∣
∣

≤ Ml−n, n ≥ 1.

Pick 0<r0<l such that
∑∞

n=2 Ml−nrn−1
0 (n−1)≤m/4. For |z −z0|<r0, we have

∣
∣
∣
∣

f ′(z, t)(z −z0)
f(z, t)−f(z0, t)

−1
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∑∞
n=1 f (n)(z0, t)(z −z0)n−1n/n!

∑∞
n=1 f (n)(z0, t)(z −z0)n−1/n!

−1

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑∞
n=2 f (n)(z0, t)(z −z0)n−1(n−1)/n!

f ′(z0, t)+
∑∞

n=2 f (n)(z0, t)(z −z0)n−1/n!

∣
∣
∣
∣
∣

≤
∑∞

n=2 Ml−n|z −z0|n−1(n−1)
m−

∑∞
n=2 Ml−n|z −z0|n−1

≤ 1
2
.

It follows from the above inequality that

Re
f ′(z, t)(z −z0)
f(z, t)−f(z0, t)

≥ 1
2
, z ∈ Dr0(z0).

(b) Assume that there does not exist η>0 such that the lemma holds. Then
there exist ηk, fk(ζ, t)∈ C1([0, T0], H(Dr)∩ C(Dr)) and ζ1

k , ζ2
k ∈Dr′ where ζ1

k �=ζ2
k , such

that
(b1) ηk→0, as k→∞;
(b2) fk(ζ1

k , tk)=fk(ζ2
k , tk);

(b3) |fk(ζ1
k , tk)−g(ζ1

k , tk)| ≤ηk and |fk(ζ2
k , tk)−g(ζ2

k , tk)| ≤ηk.
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Without loss of generality, assume that tk→t0, ζ1
k→ζ1 and ζ2

k→ζ2. Note that
|ζ1 −ζ2 | ≥r0. This implies that

g(ζ1, t0) = g(ζ2, t0).

This contradicts the assumption that g(ζ, t0) is univalent in Dr. Therefore, there
exists η>0 such that the lemma holds. �

Proof of Theorem 1.1. (a) By Lemma 2.7, there exists η(fk0 , T0, r
′)>0 such

that if

f(ζ, t) ∈ C1([0, T0], H(Dr)) and max
[0,T0]

|f ′
k0

( · , t)−f ′( · , t)|M(r) ≤ η,

then f(ζ, t)∈ O(Dr′ ) for t∈[0, T0].
(b) We apply Theorem 2.5 letting t1=T0, �= 1

2 and δ be so small that

δ < min
1≤l≤m

ε

c(l, k0)
, δ <

�√
k0

min
Dr ×[0,T0]

|f ′
k0

(ζ, t)| and δ < min
1≤l≤m

η

c(l, k0)
,

and ρ>1 be so large that (log ρ−log r)/Ck0 ≥T0. We get that for 0≤l≤m and
0≤t≤T0, the strong* solution f(ζ, t) to (3) satisfies

|f (l)
k0

( · , t)−f (l)( · , t)|M(r) <min{ε, η}.

Therefore f(ζ, t)∈ O(Dr′ ) and hence is a strong solution to (1). �

3. Application: evolution of perturbed disks in the suction case

In this section, we aim at characterizing the evolution of perturbed disks in the
suction case.

Lemma 3.1. Given fk0(ζ, 0)∈ O(D) which is a polynomial of degree k0. Let
fk0(ζ, t) be the strong solution to (2) and assume that the strong solution ceases to
exist as t=b. Then given 0<T0<b, there exist ρ>1 and δ>0 such that, if

‖f(ζ, 0)−fk0(ζ, 0)‖ρ,1 <δ,

then the solution f(ζ, t) to (2) exists for 0≤t≤T0.

Proof. (a) There exists r>1 such that fk0(ζ, t)∈ O(Dr) for all 0<t<T0.
(b) By Theorem 1.1, the proof is complete. �
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Theorem 3.2. If the initial domain is close to a disk, then most of the fluid
is sucked before the corresponding strong solution to (2) blows up.

Proof. Assume that the disk has area π and therefore the conformal mapping
is f1(ζ, 0)=ζ . The strong solution to (2) is f1(ζ, t)=

√
1−2tζ and the fluid is sucked

out as t=b= 1
2 .

For T0<b, we apply Lemma 3.1 and obtain that there exist ρ>1 and δ>0 such
that, if ‖f(ζ, 0)−f1(ζ, 0)‖ρ,1<δ, then the solution f(ζ, t) to (2) exists for 0<t<T0.
If b−T0 is small, the results show that most of the fluid will be sucked before the
strong solution f(ζ, t) blows up. �

4. Application: large-time rescaling behavior for large data and
moments in the injection case

In Richardson [8], given Ω(t) which solves the Hele-Shaw problem with injec-
tion, the Richardson complex moments {Mk(t)}k≥0 are defined by

Mk(t) =
1
π

∫

Ω(t)

zk dx dy, z =x+iy.

The quantity M0(t)π=
√

2t+M0(0)π is the area of Ω(t) and Mk(t), k ≥1, are con-
served. Let Ω′(t)=

{

x/
√

2t+M0(0)
∣
∣x∈Ω(t)

}

which always has area π.
Recall the definition of a strongly starlike function as in Gustafsson–Prokhorov–

Vasil′ev [2] and Pommerenke [6]. A function f ∈ O(D) is said to be strongly starlike
if there exists α∈(0, 1] such that

∣
∣
∣
∣
arg

ζf ′(ζ)
f(ζ)

∣
∣
∣
∣
<α

π

2
, ζ ∈ D.

Such a function is also called a strongly starlike function of order α.
In the case when Ω(t)=f(D, t), where f(ζ, t) is a global strong solution which

is strongly starlike for t≥T0, ∂Ω′(t), t≥T0, can be expressed by a polar coordi-
nate equation (1+r̄f (t, θ), θ) for some r̄f (t, · ) : S

1→[−1, ∞). The function r̄f (t, θ)
satisfies

r̄f (t, θ) =
|f(ζ, t)|

√

2t+M0(0)
−1, t ≥ T0,

where θ=arg(f(ζ, t)/|f(ζ, t)|) for ζ on ∂D. The value r̄f (t, θ) is well-defined if the
function f(ζ, t) is strongly starlike.

Define Mk(f), k ≥1, to be the moments corresponding to the moving domain
Ω(t)=f(D, t), where f(ζ, t) is a strong solution to (1). In this section, we aim at
proving the following theorem.
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Theorem 4.1. Given a global strong degree-k0 polynomial solution

{fk0(ζ, t)}t≥0

to (1). Then the following holds:
(a) There exist ρ(fk0)>1, δ(fk0)>0 and T0(fk0)>0 such that if

‖f( · , 0)−fk0( · , 0)‖ρ,3 <δ,

then the strong solution f(ζ, t) to (1) is global and is a family of strongly starlike
functions of order less than 1 for t≥T0.

(b) If n0=min{k ≥1|Mk(f) �=0}, then

lim
t→∞

‖r̄f (t, · )‖C2,α(S1)(t)λ =0, λ ∈
(

0, 1+
n0

2

)

,

where r̄f (t, θ)=|f(ζ, t)|/
√

2t+M0(0)−1 and θ=arg f(ζ, t), which are well-defined
for t≥T0.

The proof of Theorem 4.1 is given in Section 4.1. A geometric characterization
of the results in Theorem 4.1 is given in Section 4.2.

4.1. Proof of Theorem 4.1

We start with some lemmas before the proof of Theorem 4.1.

Lemma 4.2. Given a global strong solution f(ζ, t) which is strongly starlike
of order less than 1. There exists δ′ >0, such that if ‖r̄f (0, · )‖C2,α(S1)<δ′, then

lim sup
t→∞

‖r̄f (t, · )‖C2,α(S1)(2t)λ =0, λ ∈
(

0, 1+
n0

2

)

,

where n0=min{k ≥1|Mk(f) �=0}.

Proof. Let g(ζ, τ)=f(ζ, t)/
√

M0(0), where τ =2πt/M0(0). Then

Re[gτg′ζ] =
1
2π

, ζ ∈ D, and |g(D, 0)| =π.

Since the boundary of g(D, τ) is analytic, r̄g(τ, · )∈h2,α(S1), where h2,α(S1) is the
little Hölder space as defined in Vondenhoff [11]. Then by Theorems 3.3 and 4.3 in
Vondenhoff [11], we obtain that there exists δ′ >0 such that if ‖r̄g(0, · )‖C2,α(S1)<δ′,
then

lim sup
τ→∞

‖r̄g(τ, · )‖C2,α(S1)(2τ)λ =0, λ ∈
(

0, 1+
n0

2

)

,
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where n0=min{k ≥1|Mk(f) �=0}=min{k ≥1|Mk(g) �=0}. Here ‖r̄f (t, · )‖C2,α(S1)=
‖r̄g(τ, · )‖C2,α(S1). Therefore, we conclude that if ‖r̄f (0, · )‖C2,α(S1)<δ′, then

lim sup
t→∞

‖r̄f (t, · )‖C2,α(S1)(2t)λ =0, λ ∈
(

0, 1+
n0

2

)

,

where n0=min{k ≥1|Mk(f) �=0}. �

Lemma 4.3. Given a global strong degree-k0 polynomial solution fk0(ζ, t)
to (1), there exists r>1 such that for t≥0,

fk0(ζ, t) ∈ O(Dr).

Also given ε>0, T0>0, m∈N and 1<r′ <r, there exist δ(fk0 , T0, ε, m, r′)>0 and
ρ(fk0 , T0, ε, m, r′)>1 such that if ‖f( · , 0)−fk0( · , 0)‖ρ,m<δ, where f(0, 0)=0 and
f ′(0, 0)>0, then the strong solution f(ζ, t) to (1) satisfies

f(ζ, t) ∈ C1([0, T0], O(Dr′ )∩ H(Dr)),

and for 0≤l≤m and 0≤t≤T0,

|f (l)
k0

( · , t)−f (l)( · , t)|M(r) <ε.

Proof. (a) There exists r>1 such that fk0(ζ, t)∈ O(Dr) for all t>0.
(b) By Theorem 1.1, the proof is complete. �

Lemma 4.4. Let M0π be the area of f(D) for some f(ζ)=
∑∞

j=1 ajζ
j in O(D).

Given δ′ >0, there exists ε′ >0 such that if |f (l)/a1|M <ε′ for 2≤l≤3, then f(ζ)
is strongly starlike of order less than 1 and ‖r̄f ‖ C2,α(S1)<δ′, where the function
r̄f (θ)=|f(ζ)|/

√
M0 −1 and θ=arg f(ζ).

Proof. If ε′ <1, then |f ′ ′/a1|M <1. This implies that
∑∞

j=2 j|aj |<|a1| which is a
sufficient condition for coefficients of strongly starlike functions; see Pommerenke [6].

Now we treat the quantity ‖r̄f ‖ C2,α(S1) by calculating maxθ∈S1 |∂l
θ r̄f |, 0≤l≤3.

Note that M0=a2
1+

∑∞
j=2 j|aj |2. The function r̄f satisfies

max
θ∈S1

|r̄f | ≤
∣
∣
∣
∣

a1√
M0

−1
∣
∣
∣
∣
+

∞∑

j=2

∣
∣
∣
∣

aj√
M0

∣
∣
∣
∣

which tends to 0, as ε′→0. The function ∂θ r̄f satisfies

max
θ∈S1

|∂θ r̄f | = max
ζ∈∂D

∣
∣
∣
∣

1
Re[f ′ζ/f ]

Im[ζf ′f̄ ]
|f |

√
M0

∣
∣
∣
∣
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which tends to 0 as ε′→0. Similarly, maxθ∈S1 |∂2
θ r̄f | and maxθ∈S1 |∂3

θ r̄f | tend to 0,
as ε′→0. We conclude that ‖rf ‖ C2,α(S1)→0, as ε′→0.

Finally, there exists 0<ε′ <1 such that the theorem holds. �

Proof of Theorem 4.1. (a) Let

f(ζ, t) =
∞∑

j=1

bj(t)ζj and fk0(ζ, t) =
k0∑

j=1

aj(t)ζj .

Note that b2
1(t)≥b2

1(0)+2t and a2
1(t)≥a2

1(0)+2t as shown in Kuznetsova [4]. We
separate the proof for (a) into (a1)–(a5) as follows.

(a1) There exists δ′ >0 as stated in Lemma 4.2.
(a2) For such δ′, we can find ε′ >0 as stated in Lemma 4.4.
(a3) Given ε′ >0, there exists T0> 1

2 such that for t≥T0,

(33)
∣
∣
∣
∣

f
(2)
k0

( · , t)
a1(t)

∣
∣
∣
∣
M

<
1
8
ε′ and

∣
∣
∣
∣

f
(3)
k0

( · , t)
a1(t)

∣
∣
∣
∣
M

<
1
8
ε′

since the coefficients {aj(t)}j≥2 are bounded and a1(t)≥
√

2t+a2
1(0) as shown in

Kuznetsova [4].
(a4) By Lemma 4.3, for such T0 and ε′, there exist ρ>1 and δ>0 such that if

‖f( · , 0)−fk0( · , 0)‖ρ,3<δ, then the strong solution f(ζ, t) to (1) exists for t∈[0, T0],
and for 0≤t≤T0, 1≤l≤3,

(34) |f (l)
k0

( · , t)−f (l)( · , t)|M <min
{

1
2a1(T0), 1

8ε′}.

From (34) and the fact that T0 ≥1, we also obtain that b1(T0)≥max
{

1, 1
2a1(T0)

}

.
Therefore, by (33), (34) and the fact that b1(T0)≥max

{

1, 1
2a1(T0)

}

, we have that
∣
∣
∣
∣

f (l)( · , T0)
b1(T0)

∣
∣
∣
∣
M

≤ 1
2
ε′, 2 ≤ l ≤ 3.

Due to the fact in (2), f(ζ, T0) is strongly starlike of order less than 1 and

‖r̄f (T0, · )‖C2,α(S1) <δ′,

where r̄f (t, θ)=|f(ζ, t)|/
√

M0(t)−1 and θ=arg f(ζ, t).
(a5) By (a1)–(a4), we conclude that there exist T0>0, ρ>1 and δ>0 such that

if ‖f( · , 0)−fk0( · , 0)‖ρ,3<δ, then the strong solution f(ζ, t) exists for t∈[0, T0],
f(ζ, T0)∈ O(D) is a strongly starlike function of order less than 1, and

‖r̄f (T0, · )‖C2,α(S1) <δ′.
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By Theorem 2.1 in Gustafsson–Prokhorov–Vasil′ev [2], the solution f(ζ, t) must
be global and f(ζ, t), t≥T0, has strictly decreasing strongly starlike order α(t) since
f(ζ, T0)∈ O(D) and it is a strongly starlike function. This also implies that r̄f (t, · )
is well defined for t≥T0.

(b) By (a5), the assumptions in Lemma 4.2 are satisfied and we obtain that

lim sup
t→∞

‖r̄f (t, · )‖C2,α(S1)(2t)λ =0, λ ∈
(

0, 1+
n0

2

)

. �

4.2. Geometric meaning of the rescaling behavior in Theorem 4.1

The initial domains we consider in this section are

{fk0(D, 0) | fk0(ζ, t) is a global strong polynomial solution of degree k0 ∈N}

and small perturbations of them. Theorem 4.1 demonstrates that starting with an
initial domain Ω(0) as above, we can obtain a global solution Ω(t) which is simply
connected, has a real-analytic boundary, and a rescaling behavior given in terms
of moments. Here we aim at giving a geometric characterization for this rescaling
behavior by carrying out an explicit calculation.

Theorem 4.5. Given a global strong solution f(ζ, t), where f(ζ, 0) satisfies
the assumption of Theorem 4.1 and Ω(t)=f(D, t), we show that the rescaled domain
Ω′(t)={x|x

√

|Ω(t)|/π ∈Ω(t)} has radius satisfying

max
z∈∂Ω′(t)

∣
∣|z| −1

∣
∣ = o

(
1
t

)λ

, λ ∈
(

0, 1+
n0

2

)

and curvature ˇ(t, z), z ∈Ω′(t), satisfying

max
z∈Ω′(t)

|ˇ(t, z)−1| = o

(
1
t

)λ

, λ ∈
(

0, 1+
n0

2

)

,

where n0=min{k ≥1|Mk(f) �=0}.

Proof. Let f(ζ, t) be a global strong solution satisfying Theorem 4.1. There
exists T0>0 such that r̄f (t, θ), t≥T0, is well defined. The value |ˇ(t, z)−1| satisfies

(35) |ˇ−1| =
∣
∣
∣
∣

(1+r̄f )2+2(r̄′
f )2 −r̄′ ′

f (1+r̄f )
[(1+r̄f )2+(r̄′

f )2]3/2
−1

∣
∣
∣
∣
=O(‖r̄f ‖ C2(S1)),
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as ‖r̄f ‖ C2(S1)→0. Since ‖r̄f ‖ C2,α(S1)=o(1/t)λ, λ∈(0, 1+n0/2), by the results in
Theorem 4.1, we obtain from (35) that

max
z∈Ω′(t)

|ˇ(t, z)−1| = o

(
1
t

)λ

, λ ∈
(

0, 1+
n0

2

)

.

Similarly, since ‖r̄f ‖ C2,α(S1)=o(1/t)λ, λ∈(0, 1+n0/2), by the results in Theorem 4.1,
we obtain that the radius satisfies

max
z∈∂Ω′(t)

∣
∣|z| −1

∣
∣= o

(
1
t

)λ

, λ ∈
(

0, 1+
n0

2

)

. �

5. Existence and uniqueness for the Polubarinova–Galin equation

In this section, we assume the short-time well-posedness of strong* polynomial
solutions as shown in Gustafsson [1] and we give a shorter proof of short-time well-
posedness for strong solutions in the injection case. In particular, the proof of
short-time existence of strong solutions is an application of Theorem 2.5 and this
proof implies that every strong solution can be approximated by strong* polynomial
solutions locally in time. The uniqueness proof is given separately.

5.1. Existence

Theorem 5.1. Given a function f(ζ, 0)∈ O0(Dr)∩ H(Dρ0), where ρ0>r>1,
there exist t0>0 and a strong* solution f(ζ, t)∈ C1([0, t0], O0(Dr)) to (3) with initial
value f(ζ, 0).

Proof. (a) For f(ζ, 0)=
∑∞

j=1 aj(0)ζj ∈ H(Dρ0), there exists M>0 such that

| aj(0) | ≤ Mρ−j
0 .

Define fn(ζ, 0)=
∑n

j=1 aj(0)ζj . Then

∣
∣
∣min

Dr

|f ′( · , 0)| −min
Dr

|f ′
n( · , 0)|

∣
∣
∣ ≤

∞∑

j=n+1

j|aj(0)|rj ≤
∞∑

j=n+1

jM
(ρ0

r

)−j

,

where
∑∞

j=n+1 jM(ρ0/r)−j→0, as n→∞. Therefore there exists n0 ∈N such that

1
2

min
Dr

|f ′( · , 0)| ≤ min
Dr

|f ′
n( · , 0)|, n ≥ n0,
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and fn(ζ, 0)∈ O0(Dr). By Gustafsson [1], there exists a strong* polynomial solution
fn(ζ, t)∈ O0(Dr) at least for a short time.

(b) Given 1<r0<ρ0/r, there exists k0 ≥n0 such that

(36)
∞∑

k=k0+1

|ak(0)|
(

ρ0

r0

)k

k3/2 ≤ 1√
k0

1
8

min
Dr

|f ′( · , 0)|.

(c) There exists t1>0 such that the strong* solution fk0(ζ, t) to (3) exists for
0≤t≤t1 and

min
Dr ×[0,t1]

|f ′
k0

| ≥ 1
4

min
Dr

|f ′( · , 0)|.

By the above, (36) implies that

(37)
∞∑

k=k0+1

|ak(0)|
(

ρ0

r0

)k

k3/2 ≤ 1
2

√
k0

min
Dr ×[0,t1]

|f ′
k0

|.

The inequality (37) implies that

‖f( · , 0)−fk0( · , 0)‖ρ0/r0,1 ≤ 1
2

√
k0

min
Dr ×[0,t1]

|f ′
k0

|.

(d) By letting ρ=ρ0/r0 and �= 1
2 , we can see that the assumption in Theo-

rem 2.5 is satisfied by (c). By applying Theorem 2.5, the short-time existence is
proven. �

Remark 5.2. The proof can also be applied to the suction case.

If we assume that f(ζ, 0) is univalent, then f(ζ, t) obtained in Theorem 5.1 is
also univalent for a short time. Therefore, we obtain the following results.

Theorem 5.3. Given f(ζ, 0)∈ O(Dr)∩ H(Dρ0), where ρ0>r>1, for 1<r′ <r,
there exists b>0 and a strong solution f(ζ, t)∈ C1([0, b], O(Dr′ )) to (1) with initial
value f(ζ, 0).

As for a given f(ζ, 0)∈ O(D), there is 1<r<ρ0 so that f(ζ, 0)∈ H(Dρ0)∩ O(Dr),
Theorem 5.3 implies the following directly.

Theorem 5.4. Given f(ζ, 0)∈ O(D), there exists a strong solution f(ζ, t) to (1)
locally in time.
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5.2. Uniqueness

Theorem 5.5. Strong solutions to (1) are unique.

Proof. (a) Let f(ζ, 0)∈ O(D). Assume that there are two strong solutions f1

and f2 with the same initial value f(ζ, 0). There exist r′ >1 and b>0 such that
f1(ζ, t), f2(ζ, t)∈ C([0, b], O(Dr′ )). Let

M2 = max
j=1,2

max
t∈[0,b]

∫

∂Dr′

|f ′
j |2 dθ.

Then
|αj(t)| ≤ M

j
(r′)−j and |βj(t)| ≤ M

j
(r′)−j

if we write f1(ζ, t)=
∑∞

j=1 αj(t)ζj and f2(ζ, t)=
∑∞

j=1 βj(t)ζj .
(b) By (10),

∥
∥
∥
∥

d

dt
[f1 −f2]

∥
∥
∥
∥

L2([0,2π])

≤
[

max
∂D

∣
∣
∣
∣
P

[
1

|f ′
2|2

]∣
∣
∣
∣
+C2 max

∂D

|f ′
1| max

∂D

|f ′
1|+|f ′

2|
|f ′

1|2|f ′
2|2

]

× ‖f ′
1 −f ′

2‖L2([0,2π]).

(38)

Therefore, by (38), there exists C>0 such that, for t∈[0, b],
∞∑

j=1

|(αj −βj)t|2 ≤ C

∞∑

j=1

[|(αj −βj)|j]2

≤ C

k∑

j=1

[|(αj −βj)|j]2+
∞∑

j=k+1

(2M)2(r′)−2j

≤ C

k∑

j=1

[| (αj −βj)|j]2+4M2

(
(r′)−2(k+1)

1−(r′)−2

)

.

(c) Let Dk(t)=
∑k

j=1[|(αj −βj)|j]2. Then

D′
k(t) =

k∑

j=1

2 Re[(αj −βj)(αj −βj)t]j
2

≤ 2k

[ k∑

j=1

[|(αj −βj)|j]2
]1/2[ k∑

j=1

|(αj −βj)t|2
]1/2

≤ 2kCD
1/2
k (t)

[

Dk(t)+4M2

(
(r′)−2(k+1)

1−(r′)−2

)]1/2
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≤ 2kCD
1/2
k (t)

[

D
1/2
k (t)+2M

(
(r′)−(k+1)

(1−(r′)−2)1/2

)]

≤ 2kCDk(t)+4kMCD
1/2
k (t)

(
(r′)−(k+1)

(1−(r′)−2)1/2

)

.

Note that |Ω(t)|=π
∑∞

j=1 j |αj(t)|2=π
∑∞

j=1 j |βj(t)|2≤ |Ω(0)|+2πb, where |Ω(t)| is
the area of the moving domain at time t. So we have that

Dk(t) ≤ 4k
|Ω(t)|

π
≤ 4k

|Ω(0)|+2πb

π
=2kA

for some A>0. Therefore

D′
k(t) ≤ 2kCDk(t)+4MC(2A)1/2k3/2 (r′)−(k+1)

(1−(r′)−2)1/2
.

Let C0=(2A)1/2(4MC)/(1−(r′)−2)1/2. Then

D′
k(t) ≤ 2kCDk(t)+C0(r′)−(k+1)k3/2,

(Dk(t)e−2kCt)′ ≤ e−2kCtC0(r′)−(k+1)k3/2,

Dk(t)e−2Ckt ≤ 1−e−2kCt

2kC
C0(r′)−(k+1)k3/2

and

(39) Dk(t) ≤ 1
2kC

e2kCtC0(r′)−(k+1)k3/2 =
1

2r′C
(e2Ct(r′)−1)kk1/2C0.

For 0≤t<(1/2C) log r′, in (39) we let k→∞, then Dk(t)→0 since

1
2C

(e2Ct(r′)−1)kk1/2C0 → 0.

Therefore f1(ζ, t)=f2(ζ, t) for t∈[0, T ), where T =min{(1/2C) log r′, b}.
(d) Hence, the short-time uniqueness is proven. �
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