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Persistence of freeness for Lie pseudogroup
actions

Peter J. Olver and Juha Pohjanpelto

Abstract. The action of a Lie pseudogroup G on a smooth manifold M induces a prolonged

pseudogroup action on the jet spaces Jn of submanifolds of M . We prove in this paper that both

the local and global freeness of the action of G on Jn persist under prolongation in the jet order n.

Our results underlie the construction of complete moving frames and, indirectly, their applications

in the identification and analysis of the various invariant objects for the prolonged pseudogroup

actions.

1. Introduction

The results in this paper are motivated by recent developments in the study
of pseudogroups, their moving frames and invariants, and a range of applications,
[4], [26], [27], and [28]. The classical treatments [1], [7], [8], and [11] of moving
frames are primarily concerned with equivalence, symmetry and rigidity properties
of submanifolds S ⊂G/H of homogeneous spaces under the natural action of G.
Moving frames in these time-honored problems may in effect be identified as suitably
normalized equivariant local sections on S of the bundle G→G/H , or as lifts to G

of maps into G/H by means of such sections. A more general point of view is
adopted in [6], where an alternative description of a moving frame is put forth as
an equivariant section of the action groupoid M ×G→M associated with the Lie
group action on a manifold M . This reformulation served to open a wide range
of applications reaching well beyond those afforded by the classical approach to
moving frames. See [23] for a recent survey of activity in this area.

Given an infinite-dimensional pseudogroup G acting on M , our main focus
lies on its induced action on submanifolds S ⊂M . In this framework the princi-
pal protagonists are the jet spaces G(n) of pseudogroup transformations and Jn of
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submanifolds of M , each endowed with the natural action of G. For pseudogroups,
which are characterized via their action on a manifold, the proper analogue of the
finite-dimensional action groupoid is furnished by the bundles E (n)→Jn composed
of pairs (z(n), g(n)) of jets z(n) ∈Jn and g(n) ∈ G(n) with the same base point in M .
Moving frames can then be conceived as local sections of E (n) equivariant under the
joint action of G on the constituent spaces, and are, in conformity with the finite-
dimensional situation, ordinarily constructed via a normalization process based on
a choice of a cross section to the pseudogroup orbits in Jn, cf. [26].

In concrete applications one frequently deals with moving frames of increas-
ingly high order that are mutually compatible under the natural projections π̃n+k

n :
Jn+k→Jn. These, by the way of projective limits, collectively form a so-called
complete moving frame on J ∞. As expounded in [26] and [27], complete moving
frames, when combined with Gröbner basis techniques, can be effectively used to
identify differential invariants, invariant differential forms, operators of invariant
differentiation, and so on, for the prolonged action of Lie pseudogroups on J ∞,
and to uncover the algebraic structure of the invariants and of the invariant varia-
tional bicomplex, [13]. We refer to [3], [4], [19], [28], and [29] for recent applications
involving the method of moving frames for infinite-dimensional pseudogroups.

In the finite-dimensional situation of a Lie group action, the existence of a
moving frame requires that the action be locally free, [6]. However, as bona fide
infinite-dimensional groups cannot have trivial isotropy, one is lead to define (local)
freeness of the action in terms of the jets of group transformations fixing a point
in Jn, [26]. The adapted definition relying on jets constrains the dimensions of
the jet spaces G(n), and provide a simpler alternative to the Spencer cohomological
growth conditions imposed by Kumpera [14] in his analysis of differential invariants.
Our notion of freeness, when applied to finite-dimensional group actions, proves to
be slightly broader than the classical concept, and, as we will elaborate in Sec-
tion 4, ensures the existence of local moving frames for pseudogroup actions on Jn.
By contrast, extending the moving frame method and results to non-free actions
remains an open problem.

Since freeness is the essential attribute in our constructions, our first order
of business is to establish its persistence under prolongations. Specifically, as the
main contributions of the present paper, we prove in Theorems 4 and 5 that if a
pseudogroup acts (locally) freely at z(n) ∈Jn, then it also acts (locally) freely at any
z(n+k) ∈Jn+k, k ≥0, with π̃n+k

n (z(n+k))=z(n). These results, notably, are the key
ingredients to the construction of complete moving frames and, indirectly, underlie
the various applications requiring invariant quantities for pseudogroup actions and
the analysis of their algebraic structure. The local result, Theorem 4, appeared
in its original form in [27], with a proof resting on techniques from commutative
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algebra. Here we give an alternative, direct proof of Theorem 4 requiring only
basic linear algebra. The global result of Theorem 5 is new and highlights the
differences between the classical finite-dimensional theory of group actions, [22],
and the infinite-dimensional theory as developed in [26].

Our paper is organized as follows. We start in Section 2 with an overview
of the nuts and bolts of continuous pseudogroups, which is followed by an outline
of prolonged pseudogroup actions on submanifold jet bundles in Section 3. Then,
in Section 4, we review the method of moving frames for pseudogroup actions on
submanifold jet bundles Jn. These appear in two guises—as locally and globally
equivariant sections of the bundle E (n)→Jn associated with the prolonged action—
and we discuss conditions guaranteeing the existence of each type. The definitions
and results of this section unify and make rigorous the present authors’ earlier
attempts in characterizing moving frames. Finally, in Section 5, we establish the
main results of this paper, namely, the persistence of both local and global freeness
of pseudogroup actions under prolongation in the jet order.

2. Lie pseudogroups

Let M be a smooth m-dimensional manifold. Denote by D =D(M) the pseu-
dogroup of all local diffeomorphisms ϕ of M with an open domain dom ϕ⊂M ,
and, for 0≤n≤ ∞, the bundle of their nth order jets g(n)=jn

z ϕ, z∈dom ϕ, by
D(n)=D(n)(M). Write

(2.1) πk
n : D(k) −→ D(n), 0 ≤ n ≤ k,

for the canonical projections. The source map σ(n) : D(n)→M and target map
τ (n) : D(n)→M are given by

(2.2) σ(n)(jn
z ϕ) = z, and τ (n)(jn

z ϕ) =ϕ(z),

respectively. Let D(n)|z=(σ(n))−1(z) stand for the source fiber and

D(n)
z =(σ(n))−1(z)∩(τ (n))−1(z)

for the Lie group of isotropy jets at z, the latter being isomorphic with the nth
order prolonged general linear group, that is, the Lie group of n-jets of local diffeo-
morphisms of R

m fixing the origin; see [20] and [31].
The bundle D(n) possesses a Lie groupoid structure, [18], with the partial

multiplication induced by composition of mappings,

(2.3) jn
ϕ(z)ψ ·jn

z ϕ= jn
z (ψ ¨ϕ), ϕ(z) ∈ dom ψ.
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The operation (2.3) also defines the actions

(2.4) Lϕg(n) = jn
τ (n)(g(n))

ϕ·g(n) and Rϕg(n) = g(n)·jn
ϕ−1(σ(n)(g(n)))ϕ,

of D on D(n) by left and right multiplication in an obvious fashion.
Given local coordinates z=(z1, ..., zm), Z =(Z 1, ..., Zm) on M about z and

Z=ϕ(z), respectively, the induced local coordinates of g(n)=jn
z ϕ∈ D(n) are given by

(z, Z(n)), where the components

(2.5) Za
b1...bk

=
∂kϕa

∂zb1 ...∂zbk
(z), 1≤a≤m and 0≤k ≤n,

of Z(n) represent the partial derivatives of the coordinate expression ϕa=Za
¨ϕ

evaluated at the source point z=σ(n)(g(n)). Following Cartan, we will use lower case
letters, z, x, u, ... for the source coordinates and the corresponding upper case letters
Z(n), X(n), U (n), ... for the derivative target coordinates of the diffeomorphism jet
g(n).

Let X (M) denote the sheaf of locally defined smooth vector fields on M , and
write JnTM for the space of their nth order jets. Given local coordinates z=
(z1, ..., zm) on M , a vector field is written in component form as

(2.6) v =
m

∑

a=1

ζa(z)
∂

∂za
,

and the coordinates on JnTM induced by (2.6) are designated by

(2.7) (z, ζ(n))= (za, ζb, ζb
c1

, ..., ζb
c1...cn

),

where the subscripts are symmetric under permutation of the indices, with b and
the ci’s all ranging from 1 to m

A vector field v∈ X (M) lifts to a right-invariant vector field

(2.8) λ(n)(v) ∈ X (D(n))

defined on (τ (n))−1(domv)⊂ D(n) as the infinitesimal generator of the left action
of its flow map Φv

t on D(n), cf. [25]. The lift λ(n)(v) is vertical, that is, tangent to
the source fibers D(n)|z and has the expression

(2.9) λ(n)(v) =
m

∑

a=1

n
∑

k=0

Dzb1 ...Dzbk ζa(Z )
∂

∂Za
b1...bk

in the local coordinates (2.5), where

(2.10) Dzb =
∂

∂zb
+Za

b

∂

∂Za
+Za

bc1

∂

∂Za
c1

+Za
bc1c2

∂

∂Za
c1c2

+...
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denotes the standard coordinate total derivative operators on D(∞). The lift map
λ(n) is easily seen to respect the Lie brackets of vector fields.

As is well known, the space Jn
0,zTM of n-jets at z of vector fields vanishing at

z becomes a Lie algebra when equipped with the bilinear operation induced by the
usual Lie bracket of vector fields. With this operation, the lift map (2.11) can be
seen to restrict to an isomorphism

(2.11) λ(n)
z : Jn

0,zTM −→ XR(D(n)
z ), z ∈ M,

between Jn
0,zTM and the Lie algebra of right-invariant vector fields on the isotropy

subgroup D(n)
z .

Recall that an (n+1)-jet jn+1
z σ defines a linear map

�Ljn+1
z σ : TzM −→ Tjn

z σ D(n) by �Ljn+1
z σv =(jnσ)∗v.

Now the prolongation pr(1) R ⊂ D(n+1) of a submanifold R ⊂ D(n) consists of the
(n+1)-jets jn+1

z σ with the property that the image of the associated linear map is
tangent to R, that is, �Ljn+1

z σ(TzM)⊂Tjn
z σ R.

While it is customary to call a pseudogroup G ⊂ D Lie if transformations ϕ∈ G
satisfy the condition, originally introduced by Lie [17], that they form the complete
solution to a system of partial differential equations, several variants of the precise
technical definition of a Lie pseudogroup existing in the literature, see e.g. [2], [9],
[12], [14], [15], and [30]. For the purposes of this paper the following will suffice.

Definition 1. A subset G ⊂ D is a Lie pseudogroup if, whenever ϕ, ψ ∈ G, then
also ϕ ¨ψ−1 ∈ G, where defined, and in addition there is an integer n∗ ≥1 so that for
all n≥n∗,

(1) the corresponding subgroupoid G(n) ⊂ D(n) forms a smooth, embedded sub-
bundle;

(2) every smooth function ϕ∈ D satisfying jn
z ϕ∈ G(n), z∈domϕ, belongs to G;

(3) G(n)=pr(n−n∗) G(n∗), n≥n∗, agrees with the repeated prolongation of G(n∗).

Thus on account of condition (1), for n≥n∗, the pseudogroup subbundles G(n) ⊂
D(n) are defined in local coordinates by formally integrable systems of nth order
partial differential equations

(2.12) F (n)(z, Z(n))= 0,

the (local) determining equations for the pseudogroup, whose local solutions Z=
ϕ(z), by condition (2), are exactly the pseudogroup transformations. Moreover, by
condition (3), the determining equations of order n>n∗ can be obtained from those
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of order n∗ by a repeated application of the total derivative operators Dza defined
in (2.10).

Remark. In [10], it is shown that, in the analytic category, the regularity con-
dition (1) and Lie condition (2) imply the integrability condition (3).

Note that the customary requirements that a pseudogroup be closed under
restriction of domains and concatenation of compatible local diffeomorphisms are
built into condition (2). Thus our Lie pseudogroups are always complete in the sense
of [16]. The assumptions also imply, as per the classical result of É. Cartan [32],
that the isotropy jets

(2.13) G(n)
z = {g(n) ∈ G(n) | σ(n)(g(n)) = τ (n)(g(n)) = z} ⊂ D(n)

z

form a finite-dimensional Lie group for all z∈M and n≥n∗.
Given a Lie pseudogroup G, let g⊂ X (M) denote the set of its infinitesimal

generators, or G vector fields for short. Thus g consists of the locally defined smooth
vector fields v on M with the property that the flow maps Φv

t , for all fixed t, belong
to G. As a consequence of the group property in Definition 1, the Lie bracket of
two G vector fields, where defined, is again a G vector field.

Let Jng denote the space of n-jets of G vector fields. In local coordinates (2.7),
the subspace Jng⊂JnTM is specified by a linear system of partial differential equa-
tions

(2.14) L(n)(z, ζ(n))= 0, n ≥ n∗,

for the component functions ζa=ζa(z) of a vector field obtained by linearizing the
determining equations (2.12) at the n-jet I

(n)
z =jn

z id of the identity transformation.
Equations (2.14) are called the linearized or infinitesimal determining equations for
the pseudogroup. As a consequence of Definition 1, conversely, any vector field
v satisfying the infinitesimal determining equations (2.14) can be shown to be an
infinitesimal generator for G, cf. [24]. Furthermore, as with the determining equa-
tions (2.12) for pseudogroup transformations, the infinitesimal determining equa-
tions (2.14) of order n≥n∗ can be obtained from those of order n∗ by repeated
differentiation.

While, by construction, the determining equations (2.12) for a pseudogroup are
locally solvable, that is, any (z, Z(n))∈ G(n) is the jet of some ψ ∈ G, it is not known
to us if, in the C∞ category, the same holds true for the linearized version (2.14)
of the equations. We will therefore make the additional blanket assumption that
every n-jet v(n) ∈JnTM satisfying (2.14) can be realized as the n-jet of some G
vector field, that is, G is tame in the terminology of [24]. In this situation, the lift
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map λ(n)
z , as given in (2.11), restricts to an isomorphism between the Lie algebra

Jn
0,z g of n-jets of G vector fields vanishing at z and the Lie algebra of the isotropy

subgroup G(n)
z .

In the case of a symmetry group of a system of differential equations, the
linearized determining equations (2.14) are the completion of the usual determining
equations for the infinitesimal symmetries obtained via Lie’s algorithm [21].

3. Jet bundles

For 0≤n≤ ∞, let Jn=Jn(M, p) denote the nth order (extended) jet bundle
consisting of equivalence classes of p-dimensional submanifolds S ⊂M under the
equivalence relation of nth order contact, cf. [5] and [21]. We use the standard local
coordinates

(3.1) z(n) =(x, u(n))= (xi, uα, uα
j1 , ..., u

α
j1...jn

)

on Jn induced by a splitting of the local coordinates z=(x, u)=(x1, ..., xp, u1, ..., uq)
on M=J0 into p independent and q=m−p dependent variables. Let

π̃k
n : Jk −→Jn, 0 ≤ n ≤ k,

denote the canonical projections.
Local diffeomorphisms ϕ∈ D preserve the nth order contact between submani-

folds, and thus give rise to an action

(3.2) ˜Lϕ(z(n)) =ϕ·z(n), where z(n) ∈ (π̃n
0 )−1(dom ϕ) ⊂ Jn,

the so-called nth prolonged action of D on the jet bundle Jn. By the chain rule,
the action (3.2) induces a well-defined action

(3.3) ˜Lg(n)(z(n)) = g(n)·z(n), where σ(n)(g(n))=π̃n
0 (z(n)),

of the diffeomorphism jet groupoid D(n) on Jn.
It will be useful to combine the two bundles D(n) and Jn into a new bundle

E (n)→Jn by pulling back σ(n) : D(n)→M via the standard projection π̃n
0 : Jn→M .

Thus E (n) consists of pairs of jets,

(z(n), g(n)) ∈ Jn × D(n),

with z(n) ∈Jn and g(n) ∈ G(n) based at the same point z=π̃n
0 (z(n))=σ(n)(g(n))∈M .

Technically, the bundle E (n)→Jn is the action groupoid associated with the action
of D(n) on π̃n

0 : Jn→M , [18].
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Local coordinates on E (n) are written as

(3.4) Z(n) =(z(n), Z(n)),

where z(n)=(x, u(n))=(xi, uα, uα
j1

, ..., uα
j1...jn

) indicate submanifold jet coordinates,
while

Z(n) = (Za, Za
b1 , ..., Z

a
b1...bn

)= (X(n), U (n))

= (Xi, Uα, Xi
b1 , U

α
b1 , ..., X

i
b1...bn

, Uα
b1...bn

)

indicate the target derivative coordinates of a diffeomorphism. The source map
σ̂(n) : E (n)→Jn and target map τ̂ (n) : E (n)→Jn on E (n) are respectively defined by

(3.5) σ̂(n)(z(n), g(n)) = z(n), and τ̂ (n)(z(n), g(n)) = g(n) ·z(n).

Thus the latter simply represents the action of D(n) on Jn.
A local diffeomorphism ϕ∈ D acts on the set

{(z(n), g(n)) ∈ E (n) | π̃n
0 (z(n)) ∈ dom ϕ} ⊂ E (n)

by

(3.6) ̂Lϕ ·(z(n), g(n))= (jn
z ϕ·z(n), g(n)·jn

ϕ(z)ϕ
−1),

where π̃n
0 (z(n))=z. The action (3.6) obviously factors into an action of D(n) on E (n),

which we will again designate by the symbol ̂L. Note that the target map τ̂ (n) is
manifestly invariant under the action (3.6) of the diffeomorphism pseudogroup,

(3.7) τ̂ (n)( ̂Lϕ ·(z(n), g(n))) = τ̂ (n)(z(n), g(n)).

In local coordinates, the standard lifted total derivative operators on E (∞) are
given by

(3.8) Dxj = Dxj +
q

∑

α=1

uα
j Duα +

∑

k≥1

uα
jj1...jk

∂

∂uα
j1...jk

,

where Dxj and Duα are the total derivative operators (2.10) on D(∞). The lifted
invariant total derivative operators on E (∞) are, in turn, defined by

(3.9) DXj =
p

∑

k=1

W k
j Dxk , where W k

j =(DxkXj)−1

indicates the entries in the inverse of the total Jacobian matrix, cf. [26]. Then,
by virtue of the chain rule, the expressions for the higher-order prolonged action
of D(n) on Jn, that is, the coordinates ˜Uα

J of the target map τ̂ (n) : E (n)→Jn,
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are obtained by successively applying the derivative operators (3.9) to the target
dependent variables Uα,

(3.10) ˜Uα
j1...jk

=DXj1 ...DXjk Uα.

Note that we employ hats in (3.10) to distinguish between the target jet coordinates
of submanifolds and those of diffeomorphisms.

Let v⊂ X (M) be a smooth vector field with the flow map Φv
t . By definition,

the prolongation pr(n)v of v is the infinitesimal generator of the prolonged action
of Φv

t on (π̃n
0 )−1(domv)⊂Jn. Write

v =
p

∑

i=1

ξi ∂

∂xi
+

q
∑

α=1

φα ∂

∂uα

in the coordinates (3.1). Then the components φ̂α
j1...jk

of

(3.11) pr(n)v =
p

∑

i=1

ξi ∂

∂xi
+

q
∑

α=1

∑

k≤n

φ̂α
j1...jk

∂

∂uα
j1...jk

are given by the standard prolongation formula, cf. [21] and [22],

(3.12) φ̂α
j1...jk

=Dxj1 ...Dxjk Qα+
p

∑

i=1

ξiuα
ij1...jk

,

where

(3.13) Qα =φα −ξiuα
i , α =1, ..., q,

denote the components of the characteristic of v and Dxj stands for the total deriva-
tive operator (3.8) restricted to J ∞, identified as the image of the identity section

E (∞)|I(∞) = {(z(∞), I(∞)
z ) | z(∞) ∈ J ∞ and z = π̃∞

0 (z(∞))}

in E (∞).
Finally, in view of (3.12), the prolongation pr(n)v|z(n) of a vector field at

z(n) ∈Jn depends only on the n-jet jn
z v of v at z=π̃n

0 (z(n)) and, consequently, the
prolongation process induces well-defined linear mappings

(3.14) prz(n) : Jn
z TM −→ Tz(n)Jn, z = π̃n

0 (z(n)).
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4. Moving frames

Given a Lie pseudogroup G ⊂ D, we let H(n) ⊂ E (n) denote the subbundle corre-
sponding to the jets of transformations belonging to G. Specifically,

(4.1) H(n) = {(z(n), g(n)) ∈ E (n) | g(n) ∈ G(n)}.

We will furthermore designate the restrictions of the source and target maps (3.5)
to H(n) by σ̂

(n)
H and τ̂

(n)
H . Let U ⊂Jn be open and connected. Then a local moving

frame ρ(n) on U for the action of G on Jn is a section of

σ̂
(n)
H : H(n)| U −→ U

that is locally equivariant, that is, there is an open set

(4.2) W ⊂ (σ̂(n)
H )−1(U )∩(τ̂ (n)

H )−1(U )

containing the image of the identity section {(z(n), I
(n)
z )|z(n) ∈ U } ⊂ W so that

(4.3) ρ(n)(g(n)·z(n)) = ̂Lg(n)ρ(n)(z(n)) for all (z(n), g(n))∈ W .

Note that if (4.3) holds in the open sets W1, W2 ⊂ H(n), then it also holds in the
union W1 ∪ W2, so that one can always assume that W is the maximal set with the
required properties.

A section of H(n)| U →U is called a global moving frame, or simply a moving
frame, if U is stable under the action of G(n), that is, U is the union of the orbits
of the G(n) action on Jn, and if W in the equivariance condition (4.3) can be
chosen to be the entire set W =H(n)| U . We call a local moving frame ρ(n) : U →H(n)

normalized if ρ(n)(z(n))=(z(n), I
(n)
z ) for some z(n) ∈ U .

Moving frames ρ
(n)
1 : U (n)→H(n) and ρ

(k)
2 : U (k)→H(k), k>n, are said to be

compatible if π̃k
n(U (k))=U (n) and

(4.4) ρ
(n)
1

¨ π̃k
n(z(k)) = π̂k

n ¨ρ
(k)
2 (z(k))

for all z(k) ∈ U (k), where π̂k
n : H(k)→H(n) stands for the canonical projection. A com-

plete moving frame is provided by the projective limit of a mutually compatible
collection ρ(k) : U (k)→H(k) of moving frames of all orders k ≥n for some n. As
expounded in [26], complete moving frames can be effectively used to construct
complete sets of differential invariants, invariant total derivative operators, invari-
ant coframes, and so on, and to analyze the structure of the algebra of differential
invariants for the action of pseudogroups on extended jet bundles.

As for Lie transformation groups [6], the existence of a moving frame hinges
on a suitable notion of freeness of the pseudogroup action on the jet bundle Jn.
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However, in contrast with the finite-dimensional case, bona fide infinite-dimensional
transformation groups cannot have trivial isotropy, and, as a result, we are lead to
define freeness of the action in terms of jets of local diffeomorphisms stabilizing a
given submanifold jet.

Recall that as a consequence of Definition 1, the isotropy subgroup

G(n)

z(n) = {g(n) ∈ G(n)
z | g(n)·z(n) = z(n)}

of a point z(n) ∈Jn, as a closed subgroup, forms a Lie subgroup of G(n)
z , where

z=π̃n
0 (z(n)). In addition, one can show that the Lie algebra of G(n)

z(n) can be identified
with the kernel of the restriction of the prolongation map prz(n) in (3.14) to Jn

0,z g;
see [27] for details.

Definition 2. A pseudogroup G acts freely at z
(n)
0 ∈ Jn if its isotropy subgroup

is trivial, G(n)

z
(n)
0

={I
(n)
z0 }, and locally freely if G(n)

z
(n)
0

is discrete.

Thus the pseudogroup G acts locally freely at z
(n)
0 precisely when the pro-

longation map pr
z
(n)
0

: Jn
z0 g→T

z
(n)
0

Jn is injective. In this situation the mappings

prz(n) : Jn
z g→Tz(n)Jn have maximal rank for all z(n) contained in some neighbor-

hood ˜V ⊂Jn of z
(n)
0 and thus their images define an involutive distribution on ˜V

whose integral submanifolds are the intersections of G-orbits on Jn with ˜V . A cross
section, or transversal, K(n) to the orbits of G through z

(n)
0 is an embedded sub-

manifold of Jn containing z
(n)
0 so that

(4.5) Tz(n)Jn =Tz(n)K(n) ⊕imprz(n) for all z(n) ∈K(n).

Note that the existence of cross sections for locally free actions is a simple conse-
quence of the classical Frobenius theorem, [21].

Theorem 3. Suppose G acts locally freely at z
(n)
0 ∈Jn. Then G admits a nor-

malized local moving frame on some neighborhood U ⊂Jn of z
(n)
0 . Suppose further-

more that one can choose a cross section K(n) through z
(n)
0 so that G(n) acts freely

at each k(n) ∈K(n) and that any G-orbit intersects K(n) in at most one point. Then
G admits a global moving frame in some open set U ⊂Jn containing z

(n)
0 .

Proof. By assumption, the mappings prz(n) : Jn
z g→Tz(n)Jn have maximal rank

for all z(n) contained in some neighborhood ˜V ⊂Jn of z
(n)
0 . Let K(n) ⊂ ˜V be a cross

section to the orbits through z
(n)
0 and write H(n)|K(n) =(σ̂(n)

H )−1(K(n)). Let

(4.6) μ(n) = τ̂
(n)
H | H(n)|

K(n)
: H(n)|K(n) −→ Jn
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denote the target map restricted to H(n)|K(n) . By (4.5), the Jacobian of μ(n) is
non-singular at (z(n)

0 , I(n)
z0 ), and so, by the inverse function theorem, μ(n) restricts

to a diffeomorphism from a neighborhood V ⊂ H(n)|K(n) of (z(n)
0 , I(n)

z0 ) onto a neigh-
borhood U ⊂Jn of z

(n)
0 . Write η(n)=(ι(n), γ(n)) : U →V for the inverse function and

define a section ρ(n) : U →H(n) by

ρ(n)(z(n))= (z(n), γ(n)(z(n))−1),

where the exponent indicates the groupoid inverse on G(n). A direct computation
shows that for z(n)=μ(n)(k(n), h(n)), where (k(n), h(n))∈ V , the equivariance condi-
tion

(4.7) ρ(n)(g(n)·z(n)) = ̂Lg(n)ρ(z(n))

is satisfied provided that (k(n), g(n)·h(n))∈ V . But it is easy to see that the pairs
(z(n), g(n)) fulfilling this condition form an open set W ⊂ H(n)| U containing the image
of the identity section, and, consequently, ρ(n) provides a normalized local moving
frame in the neighborhood U of z

(n)
0 .

Next assume that K(n) is a cross section through z
(n)
0 so that G(n) acts freely

at every k(n) ∈K(n) and that each G(n) orbit intersects K(n) in at most one point.
These conditions are equivalent to the mapping μ(n) defined in (4.6) being one-to-
one, and so the steps used above to construct a local moving frame will also prove
the existence of the global counterpart provided that the rank of μ(n) is maximal
at every point.

To compute the rank of μ(n) at (k(n)
0 , h

(n)
0 )∈ H(n)|K(n) , write h

(n)
0 =jn

z0ϕ, ϕ∈ G,
and consider the mapping

Mϕ : (π̃n
0 ¨μ(n))−1(domϕ) ⊂ H(n)|K(n) −→ H(n)

|K(n) ;

Mϕ(k(n), h(n))= (k(n), jn
τ (n)(h(n))

ϕ·h(n)).(4.8)

Then obviously

μ(n)
¨ Mϕ = ˜Lϕ ¨μ(n),

so

μ
(n)
∗ |

(k
(n)
0 ,h

(n)
0 )

¨ Mϕ∗ |
(k

(n)
0 ,I

(n)
z0 )

=( ˜Lϕ)∗ |
k
(n)
0

¨μ
(n)
∗ |

(k
(n)
0 ,I

(n)
z0 )

.

By assumption, the ranks of the differentials on the right-hand side of the equation
are maximal, so μ(n) must indeed have maximal rank at (k(n)

0 , h
(n)
0 )∈ H(n)|K(n) . This

completes the proof of the theorem. �
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5. Persistence of freeness

In this final section we state and prove the main results of the paper estab-
lishing the persistence of both local and global freeness under prolongation of the
pseudogroup action.

Theorem 4. Suppose G acts locally freely at z
(n)
0 ∈ Jn, where n≥n∗. Then it

acts locally freely at any z
(n+k)
0 ∈ Jn+k with π̃n+k

n (z(n+k)
0 ) = z

(n)
0 .

Proof. It suffices to consider the case k=1 only. Let us work at a fixed subman-
ifold jet z

(n+1)
0 ∈ Jn+1 with π̃n+1

n (z(n+1)
0 ) = z

(n)
0 . Recall that G acts locally freely at

z
(n+1)
0 ∈ Jn+1 if and only if the restriction of the prolongation map

pr
z
(n+1)
0

: Jn+1
z0 g −→ T

z
(n+1)
0

Jn+1

is injective, that is,

(5.1) Jn+1
z0 g∩kerpr

z
(n+1)
0

= {0}.

Let v
(n+1)
0 ∈ Jn+1

z0 g∩kerpr
z
(n+1)
0

. Then obviously the projection v
(n)
0 of v

(n+1)
0

into JnTM satisfies
v
(n)
0 ∈ Jn

z0 g∩kerpr
z
(n)
0

,

so, by assumption, v
(n)
0 must vanish. Thus in local coordinates,

(5.2) v
(n+1)
0 =(za

0 , 0, ..., 0, ζb
0,c1...cn+1

),

where the components ζb
0,c1...cn+1

are determined by the requirements that the jet

v
(n+1)
0 satisfy the infinitesimal determining equations (2.14) of order n+1 and be

contained in the kernel kerpr
z
(n+1)
0

of the prolongation map.
Recall that the infinitesimal determining equations of order n+1 can be ob-

tained from those of order n by differentiation. Thus an equation
∑

0≤k≤n

Lc1...ck

A,b (za)ζb
c1...ck

=0

of order n yields the equations

(5.3) Lc1...cn

A,b (za
0 )ζb

0,c1...cncn+1
=0, cn+1 =1, ..., m,

for the coordinates ζb
0,c1...cn+1

, and v
(n+1)
0 ∈ Jn+1

g precisely when all the derived
equations of this form are satisfied. Here and in the sequel we sum over repeated
indices.
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Divide, as usual, the local coordinates (za)=(xi, uα) of M into independent
and dependent variables, and denote the induced coordinates on JnTM by

(ζa
c1...ck

)= (ξi
c1...ck

, φα
c1...ck

), 0 ≤ k ≤ n.

Next define the differential operators

(5.4) di = Dxi +uα
0,iDuα

on J ∞TM , where Dxi and Duα denote the standard total derivative operators on
J ∞TM and uα

0,i is the (constant) first order derivative coordinate of the jet z
(n+1)
0 .

Then, due to (5.2), the components of the derivative variables in the prolon-
gation pr

z
(n+1)
0

v
(n+1)
0 of order k ≤n vanish, while the vanishing of the uα

i1...in+1
-

component φ̂α
0,i1...in+1

of pr
z
(n+1)
0

v
(n+1)
0 , cf. (3.12), yields the equations

(5.5) φ̂α
0,i1...in+1

= di1 ...din+1(φ
α −uα

0,jξ
j)= 0

for the coordinates ζb
0,c1...cn+1

of v
(n+1)
0 .

Fix 1≤i≤p, and let w
(n)
i ∈Jn

z0TM denote the jet with coordinates

(5.6) w
(n)
i =(za

0 , 0, ..., 0, ζb
c1...cn

= ζb
0,ic1...cn

+uβ
0,iζ

b
0,βc1...cn

).

Then, on account of equations (5.3) and (5.5), we have that

w
(n)
i ∈ Jn

z0 g ∩ kerpr
z
(n)
0

= {0},

and so, by the assumptions,

(5.7) ζb
0,ic1...cn

+uβ
0,iζ

b
0,βc1...cn

=0, i =1, ..., p.

Finally, let ŵ(n)
e ∈Jn

z0TM , 1≤e≤m, be the jet with coordinates

(5.8) ŵ(n)
e =(za

0 , 0, ..., 0, ζb
0,c1...cne).

Then, by virtue of (5.3) and (5.7), we have that

ŵ(n)
e ∈ Jn

z0 g ∩ kerpr
z
(n)
0

= {0}.

Consequently, ζb
0,c1...cne=0, which concludes the proof of the theorem. �

Next, we will employ our local persistence of freeness result to establish a global
counterpart.
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Theorem 5. Suppose G acts freely at z
(n)
0 ∈ Jn, where n≥n∗ +1. Then it acts

freely at any z
(n+k)
0 ∈ Jn+k with π̃n+k

n (z(n+k)
0 ) = z

(n)
0 .

Proof. It suffices to prove that G acts freely at any submanifold jet z
(n+1)
0 ∈

Jn+1 with π̃n+1
n (z(n+1)

0 ) = z
(n)
0 . Let g

(n+1)
0 ∈ G(n+1)

z
(n+1)
0

.

Then obviously πn+1
n (g(n+1)

0 ) ∈ G(n)

z
(n)
0

, so by assumption, g
(n+1)
0 agrees with the

jet of the identity transformation up to order n, that is, πn+1
n (g(n+1)

0 ) = I
(n)
z0 . Thus

in local coordinates,

g
(n+1)
0 =(za = za

0 , Za = za
0 , Za

b = δa
b , Za

b1b2 =0, ..., Za
b1...bn

=0, Za
b1...bn+1

=Za
0,b1...bn+1

)

(5.9)

for some Za
0,b1...bn+1

. These coordinates are determined by two sets of equations,

the first one specifying that g
(n+1)
0 belongs to G(n+1) and the second one imposing

the condition that the transformation on the fiber J |(n+1)
z0 induced by g

(n+1)
0 fixes

z
(n+1)
0 .

We start with the first set of conditions. Since n≥n∗ +1, we can, on account
of Definition 1, prolong the determining equations for G of order n−1 to conclude
that there is a neighborhood V ⊂ D(n) of I

(n)
z0 so that G(n) ∩ V is the solution set of

a system of equations of the form

F b1...bn
α,a (z, Z(n−1))Za

b1...bn
+Gα(z, Z(n−1)) = 0,

(5.10)
Hβ(z, Z(n−1)) = 0.

Furthermore, condition 3 of Definition 1 stipulates that, in addition to system (5.10),
pseudogroup jets g(n+1) ∈ G(n+1) are determined by the equations

F b1...bn
α,a (z, Z(n−1))Za

b1...bne+(DeF
b1...bn
α,a )(z, Z(n))Za

b1...bn

+(DeGα)(z, Z(n))= 0, e =1, ..., m,(5.11)

in the entire cylinder V 1=(πn+1
n )−1(V ).

Now evaluate equations (5.11) at g
(n+1)
0 as given in (5.9) to see that

F b1...bn
α,a (zc

0, z
c
0, δ

c
d, 0, ..., 0)Za

0,b1...bne

+
∂Gα

∂ze
(zc

0, z
c
0, δ

c
d, 0, ..., 0)+

∂Gα

∂Ze
(zc

0, z
c
0, δ

c
d, 0, ..., 0) =0.(5.12)

On the other hand, equation (5.10), when evaluated at the identity jet I
(n)
z becomes

(5.13) Gα(zc, zc, δc
d, 0, ..., 0) =0,
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which, after differentiation with respect to ze, shows that (5.12) reduces to a system
of linear, homogeneous equations

(5.14) F b1...bn
α,a (zc

0, z
c
0, δ

c
d, 0, ..., 0)Za

0,b1...bne =0, e =1, ..., m,

for the coordinates Za
0,b1...bn+1

.

Next we use formulas (3.10) to compute the action of g
(n+1)
0 at z

(n+1)
0 . The

components of interest are those of order n+1, and these are given by

(5.15) ˜Uα
j1...jn+1

=DXj1 ...DXjn+1 Uα =(W k1
j1

Dxk1 )...(W kn+1
jn+1

Dxkn+1 )Uα.

On account of (5.9), the only non-zero terms in (5.15) arise from

W k1
j1

...W
kn+1
jn+1

Dxk1 ...Dxkn+1 Uα and
(5.16)

W k1
j1

...W kn
jn

(Dxk1 ...Dxkn W
kn+1
jn+1

)(Dxkn+1 Uα).

After some manipulations we see that

˜Uα
j1...jn+1

=uα
0,j1...jn+1

+(Dxj1 +uγ1
0,j1

Duγ1 )...(Dxjn+1 +u
γn+1
0,jn+1

Duγn+1 )Uα

−uα
0,kn+1

(Dxj1 +uγ1
0,j1

Duγ1 )...(Dxjn+1 +u
γn+1
0,jn+1

Duγn+1 )Xkn+1 ,(5.17)

where uα
0,j1...jk

denote the coordinates of z
(n+1)
0 . Hence the conditions ˜Uα

j1...jn+1
=

uα
0,j1...jn+1

lead to another system of linear, homogeneous equations for the coordi-
nates Za

0,b1...bn+1
in addition to (5.14).

Since G acts freely at z
(n)
0 , it also acts locally freely at z

(n)
0 , and, consequently,

also at z
(n+1)
0 by Theorem 4. This implies that the solution set to the homo-

geneous linear system obtained by combining (5.14) and the equations resulting
from (5.17) must be discrete. Consequently, it must be trivial, and hence G acts
freely at z

(n+1)
0 . �
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