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Morrey spaces in harmonic analysis
David R. Adams and Jie Xiao

Abstract. Through a geometric capacitary analysis based on space dualities, this paper

addresses several fundamental aspects of functional analysis and potential theory for the Morrey

spaces in harmonic analysis over the Euclidean spaces.

1. Introduction

Let us start with the motivation and the structure of this paper.

1.1. Motivation

A real-valued function f is said to belong to the Morrey space Lp,λ on the
N -dimensional Euclidean space R

N provided the following norm is finite:

‖f ‖Lp,λ =
(

sup
(x,r)∈RN ×R+

rλ−N

∫
B(x,r)

|f(y)|p dy

)1/p

.

Here 1≤p<∞, 0<λ≤N , R+=(0, ∞), and B(x, r) is a ball in R centered at x of
radius r. This class of functions was first used in a 1938 paper by C. B. Morrey [26]
to show that certain systems of partial differential equations (PDEs) had Hölder
continuous solutions. Though Morrey worked mainly in two dimensions for his
results, the concept of the integral average over a ball having a certain growth has
found many applications over the years; see e.g. [7], [10], [36], and [38]. In fact, the
main fame that rests with Morrey spaces is the following celebrated lemma.

Morrey’s lemma. Let the function u satisfy | ∇u| ∈Lp,λ (even locally) with
λ<p. Then u is Hölder continuous of exponent α=1−λ/p.
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Then, in the early 1960s, to handle appropriately the cases λ≥p, S. Cam-
panato [13] defined a scale of spaces Lp,λ that included the distinguished quartet:

Lp −Lp,λ −BMO −Cα.

His definition uses the modified mean oscillation: f ∈ Lp,λ if and only if(
sup

(x,r)∈RN ×R+

rλ−N

∫
B(x,r)

|f(y)−fr(x)|p dy

)1/p

< ∞,

where fr(x) denotes the integral mean of f over the ball B(x, r), and 1≤p<∞,
−p<λ≤N . As a matter of fact, we have the following:

(i) when λ=N , Lp,λ coincides with Lp;
(ii) when 0<λ<N , Lp,λ equals Lp,λ;
(iii) when λ=0, Lp,λ is precisely BMO (the John–Nirenberg space of functions

with bounded mean oscillation [19]);
(iv) when −p<λ<0, Lp,λ becomes Cα—the class of all Hölder continuous func-

tions with exponent α=−λ/p.
These results are nicely summarized in J. Peetre’s 1969 survey paper [28]. Fur-

thermore, these spaces gained some popularity in the late 1960s and early 1970s,
especially because of the inclusion of the space BMO. And, this was greatly en-
hanced by the discovery, in the early 1970s, of the predual to BMO by C. Fefferman
and E. M. Stein [20], namely, the real Hardy space H1; see the excellent treatises [34]
and [37] that summarize this theory.

But in recent years, the excitement over the Morrey spaces has diminished—
save for many attempts to generalize the growth of the integral mean (or other
averages in other norms). The reason for this seems to be that either the predual
to Lp,λ was unknown or there was no version that really fit in well with the the-
ory of function spaces of harmonic analysis, as defined by [37] and [34]. Indeed,
early versions of the predual were given as early as 1986; see [3], [40], [23], [11],
and [6]. Here we announce a new formulation of the predual that seems to be more
in the main stream of harmonic analysis (as well as PDEs). It uses the original
construction of [23], which comes from PDEs, though the weight functions here are
different. Our space Hp,λ is a modification of that given in [6]. Here we make use
of Ap-weights of harmonic analysis:

Hp,λ =
{

f ∈ Lp
loc : ‖f ‖Hp,λ = inf

w

(∫
RN

|f(y)|pw(y)1−p dy

)1/p

< ∞
}

,

where Lp
loc means the class of all p-locally integrable functions on R

N and the
infimum is over all non-negative weights w that belong to the class A1 and satisfy∫

RN

w dΛ(∞)
N −λ =

∫ ∞

0

Λ(∞)
N −λ({x ∈ R

N : w(x) >t}) dt ≤ 1.
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Here and henceforth, for 0<λ<N the symbol Λ(∞)
N −λ stands for the Hausdorff ca-

pacity with order N −λ, as a set function on R
N . By the theory of A1-weights (see

also [34] or [37]):

w ∈ A1 =⇒ w1−p ∈ Ap, where 1 <p< ∞.

With the previous definition we have the following duality formula:

(Hp′,λ)∗ =Lp,λ, where p′ =
p

p−1
.

Further history of the Morrey spaces has included the proof of boundedness
of the classical operators of harmonic analysis on these spaces: Calderón–Zygmund
singular integral operators, maximal operators—especially the Hardy–Littlewood
maximal operator, and the potential operators; see [28], [3], [15], and others in-
cluding e.g. [17] and [25]. However, with the predual given above, these results
are mere corollaries to the Ap-weight theory of harmonic analysis. Here it should
be also mentioned that we can now develop the interpolation theory of operators
of G. Stampacchia (cf. [32]) to include the case where Zorko’s subspaces (arising
from [40]) of the Morrey spaces can lie in the domains of the operator. Previ-
ously, interpolation only worked when the operator had some Lp-space as domain
and a Morrey space as range, but there were negative results when an Lp,λ acts
as a domain space—see Stein–Zygmund [35] (for −p<λ<0), Ruiz–Vega [29] (for
0<λ≤1/p, N>1), and Blasco–Ruiz–Vega [11] (for 0<λ≤1/p, N=1).

1.2. The rest of the paper

The follow-up of this introductory section comprises five sections where the
analytic and geometric essentials of an associated capacity play an important role.
Section 2 reviews some fundamental properties of the Hausdorff capacity, its in-
duced Choquet integrals and the Ap-weights, but also deals with the Sobolev-type
imbeddings via the (α, p)-Riesz kernels/potentials. As the central issue of this arti-
cle, Section 3 investigates the dual theory for the spaces Hp,λ, Lp,λ and the Zorko
spaces Lp,λ

0 (just like D. Sarason’s space of functions with vanishing mean oscillation
(VMO) [31])—giving such a duality triplet:

Lp,λ
0 −Hp′,λ −Lp,λ in analogy to VMO −H1 −BMO .

Two natural and interesting applications of this new duality relation are included
respectively in: Section 4 handling the continuity of the fractional order maximal op-
erators and Riesz potential operators on the dual pairs (Lp,λ, Hp′,λ); and Section 5
treating the interpolation of operators with the Zorko spaces as the interpolation
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domains. Finally, Section 6 is concerned with the Morrey–Sobolev capacities as
a continuation of both Section 4 and the results presented earlier in [6], but also
includes size estimates for the Riesz potential operators in terms of the Wolff-type
potentials.

Notation. Throughout this article, in most cases we use U�V , U�V , and
U ∼V to denote that there is a constant c>0 such that U ≤cV , U ≥cV , and c−1V ≤
U ≤cV , respectively.

2. Background material

The main new development in the theory of Morrey spaces is an effective use
of the Hausdorff capacity and its induced Choquet integrals, the Ap-weights, and
the Sobolev imbeddings via Riesz potentials.

2.1. Hausdorff capacity and its Choquet integrals

Given 0<α<N , the αth order Hausdorff capacity at the level ε∈(0, ∞] of a
subset E of R

N is determined by:

Λ(ε)
α (E)= inf

{ ∞∑
j=1

rα
j : E ⊆

∞⋃
j=1

B(xj , rj) and rj ≤ ε, j =1, 2, ...

}
.

Recall that Λ(ε)
α ( · ) has the same null sets as its more well-known cousin—the

α-order Hausdorff measure (see e.g. [18] and [14]):

Λ(0)
α (E) = lim

ε→0
Λ(ε)

α (E).

However, Λ(∞)
α is finite on all bounded sets, and yet Λ(0)

α is only finite on special
α-dimensional sets although it is a metric outer measure there.

Also, given 1≤p<∞, we define∫
RN

|f |p dΛ(∞)
α =

∫ ∞

0

Λ(∞)
α ({x ∈ R

N : |f(x)| >t}) dtp

as the Choquet p-integral with respect to Λ(∞)
α of f in C0 (the class of continuous

functions with compact support in R
N ). The class Lp(Λ(∞)

α ) is the closure of C0 in
the quasi-norm

‖ · ‖
Lp(Λ

(∞)
α )

=
(∫

RN

| · |p dΛ(∞)
α

)1/p

.
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Thus f ∈Lp(Λ(∞)
α ) is automatically Λ(∞)

α -quasi-continuous, i.e., given ε>0 there is
a set E with Λ(∞)

α (E)<ε and the restriction of f to R
N \E is continuous there.

Λ(∞)
α ( · ) is only a capacity in the sense of N.G. Meyers, i.e., it satisfies
(i) Λ(∞)

α (∅)=0—zero property;
(ii) E1 ⊆E2 ⇒Λ(∞)

α (E1)≤Λ(∞)
α (E2)—monotonicity;

(iii) Λ(∞)
α

(⋃∞
j=1 Ej

)
≤

∑∞
j=1 Λ(∞)

α (Ej)—countable subadditivity.

In particular, Λ(∞)
α is not an additive measure. Therefore, we must be careful

when working with the Choquet integral against this capacity. Nevertheless, we
have Choquet’s main result regarding this extension of the standard integral.

Theorem 1. (Choquet) If C( · ) is a capacity in the sense of Meyers, then the
Choquet integral

∫
RN f dC of f ≥0 with respect to C( · ) is sublinear if and only if

C( · ) is strongly subadditive.

For a proof of this assertion see [16] and [4] as well as [8]. Here, the capacity
C( · ) is strongly subadditive if for any two sets E1, E2 ⊆R

N it follows that

C(E1 ∪E2)+C(E1 ∩E2) ≤ C(E1)+C(E2).

Moreover, the Choquet integral
∫

RN f dC of f ≥0 is sublinear when and only when

∫
RN

(f1+f2) dC ≤
∫

RN

f1 dC+
∫

RN

f2 dC for f1, f2 ≥ 0.

Now it is well known that Λ(∞)
α is not, in general, strongly subadditive, but an

equivalent version is the dyadic Hausdorff capacity Λ̃(∞)
α which is defined in the

following manner. If {Qj } ∞
j=1 denotes a family of dyadic cubes in R

N , i.e., those
cubes congruent to

[0, 1)N = [0, 1)×...×[0, 1)︸ ︷︷ ︸
N copies

and whose vertices lie on the lattice Z
n dilated by a factor 2−k where k ∈Z, then

Λ̃(∞)
α (E)= inf

∞∑
j=1

�(Qj)α,

where �(Qj) is the side length of each Qj and E ⊆Int
( ⋃∞

j=1 Qj

)
, where the infimum

is taken over all such families of dyadic cubes. From [21] and most recently [39] we
read off the following result.
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Theorem 2. (Yang–Yuan) If 0<α<N , then Λ̃(∞)
α ( · ) is strongly subadditive

and there exists a constant c>0 depending only on α and N such that

1
c
Λ̃(∞)

α ≤ Λ(∞)
α ≤ cΛ̃(∞)

α .

Hence by this result we have that if (α, p)∈(0, N)×(1, ∞), then the quasi-
sublinearity and the quasi-Hölder inequality for the Choquet integrals of two real-
valued functions f1 and f2 on R

N :∫
RN

|f1+f2| dΛ(∞)
α �

∫
RN

|f1| dΛ(∞)
α +

∫
RN

|f2| dΛ(∞)
α

and ∫
RN

|f1f2| dΛ(∞)
α �

(∫
RN

|f1|p dΛ(∞)
α

)1/p(∫
RN

|f2|p
′
dΛ(∞)

α

)1/p′

,

respectively, hold—they are the main estimates required in the subsequent sections.

2.2. Weight functions

Also, we need a review of the so-called Ap-weights, 1≤p<∞. A non-negative
function w is an A1-weight if for all coordinate cubes Q⊆R

N one has

�(Q)−N

∫
Q

w dy ≤ c1 inf
Q

w

for some constant c1>0. An equivalent version is

M0w ≤ c2w a.e. on R
N

for some constant c2>0. Here M0w is the Hardy–Littlewood maximal function of
w, i.e.,

M0w(x) = sup
r∈R+

r−N

∫
B(x,r)

|w(y)| dy.

Next, for p∈(1, ∞), we say that a non-negative function w is an Ap-weight provided
there is a constant cp,N >0 depending on p and N such that for all coordinate cubes
Q, (

�(Q)−N

∫
Q

w(y) dy

) (
�(Q)−N

∫
Q

w(y)1/(1−p) dy

)p−1

≤ cp,N .

A remarkable fact is the following implication (cf. [34] or [37]):

w ∈ A1 =⇒ w ∈ Ap.
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Now, an important result in our characterization of the predual space Hp′,λ is
the following assertion (due to Adams [3] when p=1 and Orobitg–Verdera [27] for
p<1; and the cases p>1 being well known—see for instance [34] or [37]).

Theorem 3. (Adams–Orobitg–Verdera) Let 0<α<N and (N −α)/N<p<∞.
Then there is a constant cα,p,N >0 depending only on α, p and N such that

∫
RN

(M0f)p dΛ(∞)
N −α ≤ cα,p,N

∫
RN

|f |p dΛ(∞)
N −α

holds for all real-valued functions f with the right-hand-integral being finite.

2.3. Sobolev-type imbeddings

For α∈(0, N), the local integrability of |x| −α generates a Riesz operator or a
negative power of the Laplace operator, denoted by Iα or (−Δ)−α/2, via the Fourier
transform (cf. [5] or [33]):

Îαf = ̂(−Δ)−α/2f = |x| −αf̂

for any f ∈ S (the Schwartz class of rapidly decreasing C∞ functions on R
N ). If

Iα(x) =
Γ
(

1
2 (N −α)

)
πN/22αΓ

(
1
2α

) |x|α−N ,

denotes the αth order Riesz kernel, then any f ∈ S can be represented as a Riesz
potential:

f(x) = Iα(−Δ)α/2f(x) =
∫

RN

(−Δ)α/2f(y)Iα(x−y) dy.

In other words, if g=(−Δ)α/2f , then

u(x) =
∫

RN

Iα(x−y)g(y) dy

solves the 1
2αth order Laplace equation

(−Δ)α/2u = g,

and hence Iα(x, y)=Iα(|x−y|) can be treated as the Green function for this gener-
alized Laplace equation on R

N . Here and henceforth, the symbol (−Δ)α/2 stands
for the 1

2αth order Laplacian defined by

̂(−Δ)α/2f = |x|αf̂ , f ∈ S.
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For its applications to a singular obstacle problem [12], this operator can be evalu-
ated via

lim
r↓0

∫
RN \B(x,r)

f(x)−f(y)
|x−y|N+α

dy.

Next, for α∈(0, N) and 1<p<∞ denote by

L̇α,p =
{
f : f = Iαg and g ∈ Lp

}

the Sobolev space of all (α, p)-potentials on R
N , where Lp stands for the Lebesgue

space of all p-integrable functions on R
N . Then L̇α,p induces the following (α, p)-

Riesz capacity

Cα(E; Lp)= inf
{∫

RN

g(y)p dy : 1E ≤ Iαg ∈ L̇α,p and g ≥ 0
}

of a set E ⊆R
N , where 1E is the characteristic function of E.

The following Sobolev-type imbedding is a new variant of [5, Theorem 7.2.2].

Theorem 4. Given 1<p<q<∞ and 0<αp<N , let μ be a non-negative Borel
measure on R

N and Lq(μ) be the Lebesgue space of all q-integrable functions on
R

N with respect to μ. Then the following properties are mutually equivalent :
(i) Iα is a continuous operator from Lp into Lq(μ);
(ii) The global Riesz’s kernel decay inequality

μ({y ∈ R
N : Iα(x, y) >t}) � t−q(N −αp)/p(N −α)

holds for all t∈R+;
(iii) The isocapacitary-type inequality

μ(K) �Cα(K; Lp)q/p

holds for all compact sets K ⊆R
N ;

(iv) The Faber–Krahn type inequality

μ(Ω)p/q−1 �λα,p,μ(Ω)

holds for all bounded open sets Ω⊆R
N , where

λα,p,μ(Ω) = inf
{∫

Ω
|f(y)|p dy∫

Ω
| Iαf |p dμ

: f ∈ C∞
0 (Ω) and f ≡ 0 on Ω

}

and C∞
0 (Ω) stands for the class of all C∞ functions with compact support in Ω.



Morrey spaces in harmonic analysis 209

Proof. Note that (i) ⇔ (ii) ⇔ (iii) is a consequence of Theorems 7.2.1–7.2.2
and Proposition 5.1.2 of [5]. So, it remains to verify (i) ⇔ (iv).

Suppose (i) is valid. Using this assumption and Hölder’s inequality we obtain
that for f ∈C∞

0 (Ω) with f ≡0 on any bounded open set Ω,
∫

Ω

| Iαf |p dμ ≤
(∫

Ω

| Iαf |q dμ

)p/q

μ(Ω)1−p/q

�
(∫

RN

|f(y)|p dy

)
μ(Ω)1−p/q

�
(∫

Ω

|f(y)|p dy

)
μ(Ω)1−p/q,

whence getting
λα,p,μ(Ω)−1 �μ(Ω)1−p/q,

i.e., (iv) is true. Conversely, suppose (iv) is valid. Then, for any f ∈C∞
0 (Ω) with

f ≡0 and Ω being a bounded open set, we have

λα,p,μ(Ω) ≤
∫
Ω

|f(y)|p dy∫
Ω

| Iαf(y)|p dμ(y)
≤

∫
RN |f(y)|p dy

μ(Ω)

provided that Iαf ≥1 on Ω. This, in turn, shows that

λα,p,μ(Ω) ≤ Cα(Ω; Lp)
μ(Ω)

.

Now, an application of the assumption (iv) gives

μ(Ω) �Cα(Ω; Lp)q/p.

Consequently, (i) is true, due to (iii) ⇔ (i). �

Remark 5. Here it is worth making two comments on Theorem 4.
(i) If dμ(y)=|f(y)|r dy and γ=N −q(N −αp)/p>0 then condition (ii) of The-

orem 4 says that f belongs to Lr,γ . In other words, this Morrey space describes the
corresponding Sobolev imbedding.

(ii) λα,p,μ(Ω)1/p is a variant of the first eigenvalue of (−Δ)α/2—in particular,
when p=2, q=2N/(N −2), α=1 and dμ(y)=dy in Theorem 4, one has

λα,p,μ(Ω)1/p �μ(Ω)−1/N .

Corresponding to this, the first eigenvalue β1(Ω) of the 1
2 th order Laplacian (−Δ)1/2

on Ω (a special case of the Klein–Gordon operator) enjoys (cf. [22])

β1(Ω) �μ(Ω)−1/N .
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3. Preduals and Zorko spaces

This section treats the matter of the predual space of a Morrey space, and
introduces the Zorko space whose dual is identical to the predual.

3.1. Predual spaces

To prove that Hp′,λ introduced in Section 1 is the predual of Lp,λ, let us first
set

A
(N −λ)
1 =

{
w ∈ A1 :

∫
RN

w dΛ(∞)
N −λ ≤ 1

}
.

Note that A
(N −λ)
1 ⊆L1(Λ(∞)

N −λ), the quasi-continuity being immediate by Theorem 3.
Also, we need the following preliminary result from [6, Theorem 2.3].

Theorem 6. (Adams–Xiao) For

1 <p< ∞, p′ =
p

p−1
, and 0 <λ<N,

the space

H̃p′,λ =
{

g ∈ Lp′

loc : ‖g‖
eHp′ ,λ = inf

w

( ∫
RN

|g(y)|p
′
w(y)1−p′

dy

)1/p′

< ∞
}

is the predual of Lp,λ, where w satisfies:

w ∈ L1(Λ(∞)
N −α) such that

∫
RN

w dΛ(∞)
N −α ≤ 1.

In particular,

‖f ‖Lp,λ =sup
g

∣∣∣∣
∫

RN

f(y)g(y) dy

∣∣∣∣ for f ∈ Lp,λ,

where the supremum is over all g ∈H̃p′,λ such that ‖g‖
eHp′ ,λ ≤1.

The above consideration leads to the following equivalence.

Theorem 7. Let 1<p<∞, p′ =p/(p−1), and 0<λ<N . Then the space H̃p′,λ

is equivalent to the space Hp′,λ.

Proof. Clearly, ‖f ‖Hp′ ,λ ≥ ‖f ‖
eHp′ ,λ since we are taking the infimum over a

larger set on the right-hand side of this inequality. For the reverse inequality, given
a weight w used to define H̃p′,λ, we construct a weight in A1:

wθ =(M0w
1/θ)θ, 0 <θ < 1.
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On the one hand, there is a constant c0>0 such that∫
RN

wθ dΛ(∞)
N −λ ≤ c0

∫
RN

w dΛ(∞)
N −λ ≤ c0 for

λ

N
<θ,

by Theorem 3. On the other hand, for any θ ∈(0, 1) we have wθ ∈A1 by the classical
construction of Coifman–Rochberg; see [37] or [34]. So, wθ/c0 belongs to A

(N −λ)
1 .

Since wθ�w holds almost everywhere, we conclude that

‖f ‖p′

Hp′ ,λ ≤
∫

RN

|f(y)|p
′
wθ(y)1−p′

dy �
∫

RN

|f(y)|p
′
w1−p′

(y) dy

thereby reaching ‖f ‖Hp′ ,λ �‖f ‖
eHp′ ,λ . Therefore we have in the notation of func-

tional analysis
(Hp,λ)∗ =Lp,λ. �

3.2. Zorko spaces

Now as pointed out in [40], C0, is not dense in Lp,λ. So, Zorko defined a
subspace of Lp,λ using

lim
y→0

‖f(y+ · )−f( · )‖Lp,λ =0 for f ∈ Lp,λ.

This method appeared also in [31] to characterize VMO. For the purpose of this
paper, we write Lp,λ

0 for the Zorko space that is now defined as the closure of C0 in
the Lp,λ-norm. It then follows from∣∣∣∣

∫
RN

f(y)g(y) dy

∣∣∣∣ ≤ ‖f ‖Lp,λ ‖g‖Hp′ ,λ

that Lp,λ
0 is the predual to Hp′,λ. Hence in particular the three spaces

Lp,λ
0 −Hp′,λ −Lp,λ

have a relationship akin to
VMO −H1 −BMO

in harmonic analysis; see [34] or [37].
The following tells us more about the foregoing new triplet.

Theorem 8. Let (λ, p)∈(0, N)×(1, ∞) and λp/(p−1)<N . Then

IN −λ : Hp,λ →Lp,λ
0

is continuous.
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Proof. If f ≥0, (x, r)∈R
N ×R+, and w ≥0, we estimate∫

B(x,r)

(IN −λf(y))p dy

�
∫

B(x,r)

(∫
RN

|y −z| −λf(z) dz

)p

dy

�
∫

B(x,r)

(∫
RN

|y −z| −λp/(p−1)w(z) dz

)p−1(∫
RN

|f(z)|pw(z)1−p dz

)
dy

�
(∫

RN

|f(z)|pw(z)1−p dz

) ∫
B(x,r)

(IN −λp/(p−1)w(y))p−1 dy.

But, from [27] and [4] it follows that

∫
RN

w(y)N/(N −λ) dy �
(∫

RN

w dΛ(∞)
N −λ

)N/(N −λ)

.

Hence by Theorem 4 with

dμ(y) = dy, p=
N

N −λ
, q =

pN

N −αp
, and α =N − λp

p−1
,

we see that
w ∈ LN/(N −λ) =⇒ IN −λp/(p−1)w ∈ L(p−1)N/λ.

Consequently, if ∫
RN

w dΛ(∞)
N −λ ≤ 1

then
∫

B(x,r)

(IN −λp/(p−1)w)p−1 dy � rN −λ

(∫
B(x,r)

(IN −λp/(p−1)w)N(p−1)/λ dy

)λ/N

� rN −λ

(∫
RN

w(y)N/(N −λ) dy

)(N −λ)/N

� rN −λ,

which, along with Theorem 6 or 7, completes the estimate

‖ IN −λf ‖Lp,λ � ‖f ‖Hp,λ .
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The fact that IN −λ maps Hp,λ into Lp,λ
0 is a consequence of this last a priori

estimate since C0 is dense in Hp,λ. �

Remark 9. Let 1<p<∞ and λ/p<α≤N/p. Then in view of Morrey’s lemma
recalled in Section 1, Iα :Lp,λ→Cα−λ/p is continuous. This result can be established
via [24, Lemma 1.34]. Therefore, we may view the Morrey space Lp,λ as a “Morrey-
bridge” from Hp,λ to the Hölder continuous functions via

Hp,λ
IN −λ−−−→Lp,λ Iα−−→Cα−λ/p,

where λ/p<α<λ<N(p−1)/p.

4. Maximal and potential operators

In this section, we consider the general order maximal and potential operators
acting on the Morrey spaces and their preduals through Section 3.

4.1. Hardy–Littlewood maximal operators

First of all, we note that the Hardy–Littlewood maximal operator M0 is bound-
ed on the Lp,λ spaces, a fact already recorded in [15], but now we use the duality
theory established in Section 3 to obtain it. The following appeared first in [6,
Theorem 2.2].

Theorem 10. (Adams–Xiao) For 1<p<∞ and 0<λ<N let f ∈Lp,λ. Then

sup
w

∫
RN

|f(y)|pw(y) dy = ‖f ‖p
Lp,λ ,

where the supremum is taken over all non-negative w ∈B
(N −λ)
1 , i.e.,

0 ≤ w ∈ L1(Λ(∞)
N −λ) such that

∫
RN

w dΛ(∞)
N −λ ≤ 1.

This result is used to prove the following lemma.

Lemma 11. For 1<p<∞ and 0<λ<N let f ∈Lp,λ. Then

‖f ‖p
Lp,λ =sup

w

∫
RN

|f(y)|pw(y) dy,
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where the supremum is taken over all w ∈A
(N −λ)
1 , i.e.,

w ∈ A1 such that
∫

RN

w dΛ(∞)
N −λ ≤ 1.

Proof. Clearly, the class A
(N −λ)
1 is smaller than B

(N −λ)
1 . Hence

sup
w∈AN −λ

1

∫
RN

|f(y)|pw(y) dy ≤ ‖f ‖p
Lp,λ .

Once again, constructing the weight

wθ =(M0w
1/θ)θ,

N −λ

N
<θ < 1,

we have by Theorem 3 that∫
RN

wθ dΛ(∞)
N −λ ≤ c0

∫
RN

w dΛ(∞)
N −λ ≤ c0

holds for some constant c0>0, and so that wθ/c0 ∈A
(N −λ)
1 . Accordingly,

1
c0

∫
RN

|f(y)|pw(y) dy ≤ sup
ω∈A

(N −λ)
1

∫
RN

|f(y)|pω(y) dy.

This shows that

sup
w∈AN −λ

1

∫
RN

|f(y)|pw(y) dy ≥ ‖f ‖p
Lp,λ . �

The last lemma yields the following boundedness of M0 acting on the dual pair
(Hp′,λ, Lp,λ).

Theorem 12. Let p∈(1, ∞), p′ =p/(p−1), and λ∈(0, N). Then
(i) M0 is bounded on Lp,λ;
(ii) M0 is bounded on Hp′,λ.

Proof. (i) Because w ∈A
(N −λ)
1 yields w1−p ∈Ap, we find that∫

RN

(M0f(y))pw(y) dy �
∫

RN

|f(y)|pw(y) dy

and use Lemma 11 to derive the boundedness of M0 on Lp,λ.
(ii) Since w ∈A1 implies w1−p′ ∈Ap′ , we conclude that∫

RN

(M0f(y))p′
w(y)1−p′

dy �
∫

RN

|f(y)|p
′
w(y)1−p′

dy,
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whence getting (ii) via the definition of Hp′,λ and Muckenhoupt’s original argument
for boundedness of M0 on a weighted Lebesgue space. �

The previous idea leads to the following more general result.

Theorem 13. Let λ∈(0, N) and let p∈(1, ∞). If T is a classical Calderón–
Zygmund operator, then T is bounded on Lp,λ and Hp′,λ.

Proof. Suppose T ∗ is the adjoint of T . Then for f ∈Lp,λ and g ∈Hp′,λ one has

∣∣∣∣
∫

RN

(Tf)(y)g(y) dy

∣∣∣∣ =
∣∣∣∣
∫

RN

f(y)(T ∗g)(y) dy

∣∣∣∣
≤ ‖f ‖Lp,λ ‖T ∗g‖Hp′ ,λ

� ‖f ‖Lp,λ ‖g‖Hp′ ,λ .

The last inequality follows from (ii) above and the well-known Ap-weight estimates
arising from

w ∈ A1 =⇒ w ∈ Ap′ =⇒ w1−p ∈ Ap.

Thus, T is bounded on Lp,λ, and similarly on Hp′,λ. �

4.2. αth maximal and potential operators

For α∈(0, N), let μ be a non-negative Borel measure on R
N , and denote by

Iαμ(x) =
Γ
(

1
2 (N −α)

)
πN/22αΓ

(
1
2α

)
∫

RN

|x−y|α−N dμ(y), x ∈ R
N

and

Mαμ(x) = sup
r∈R+

rα−Nμ(B(x, r))

its αth order Riesz potential and αth order fractional maximal function, respec-
tively.

Theorem 14. With λ∈(0, N), p∈(1, ∞), Mαμ, and Iαμ as above, we have
(i) ‖Iαμ‖Lp,λ �‖Mαμ‖Lp,λ ;
(ii) ‖Iαμ‖Hp,λ �‖Mαμ‖Hp,λ .
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Proof. We begin the proof of (i) by slightly modifying the Stein duality in-
equality (see [34, pp. 146–148]): for f ∈Lp1 +Lp2 , where 1<p1<p2<∞, and g ∈Lp,
where p>1, one has ∣∣∣∣

∫
RN

f(y)g(y) dy

∣∣∣∣ �
∫

RN

f#(y)M0g(y) dy.

Here and henceforth, f# is the standard Fefferman–Stein sharp function

f#(x)= sup
r>0

r−N

∫
B(x,r)

|f(y)−fr(x)| dy,

and f ∈Lp1 +Lp2 means that f can be written as a sum f=f1+f2, where fj ∈Lpj ,
j=1, 2. For us in this proof, we take f=Iαμ, μ with compact support and 1<p1<

N/(N −α)<p2<∞, and g will be a non-negative function with compact support.
It then follows from the last duality inequality involving # and M0 that∫

RN

Iαμ(y)g(y) dy �
∫

RN

(Iαμ)#(y)M0g(y) dy

�
∫

RN

Mαμ(y)M0g(y) dy

� ‖Mαμ‖Lp,λ ‖M0g‖Hp′ ,λ

� ‖Mαμ‖Lp,λ ‖g‖Hp′ ,λ .

Here we have used the equivalent estimate in [1]:

(Iαμ)# ∼ Mαμ,

but also Theorem 12(ii). The final result of (i) follows from the monotone conver-
gence theorem and the Hp′,λ −Lp,λ duality.

For (ii), we proceed as above, but now we choose a suitable f ∈Lp,λ
0 and we

invoke the Lp,λ
0 −Hp′,λ duality. �

Remark 15. Here, it is appropriate to point out that Theorem 14(i) appeared
first in [6] but its proof contained an incomplete inequality (4.8) whose accurate
form is ∫

Q

|Iαμ(y)−(Iαμ)Q|p dy �
∫

Q

((Iαμ)#(y))p dy,

which implies Theorem 14(i) right away, where

(Iαμ)Q =
1

|Q|

∫
Q

Iαμ(y) dy
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and |E| is the Lebesgue measure of a set E ⊆R
N . To see the last inequality, we

need a simple revision of [6, Lemma 4.1(ii)] and its proof. In fact, given a cube Q

we may assume (Iαμ)Q=0, otherwise Iαμ is replaced by Iαμ−(Iαμ)Q. According
to the Calderón–Zygmund decomposition for Q, t>0, and Iαμ, described in the
argument for [6, Lemma 4.1(ii)], we have

Q =P t ∪Qt and Qt =
∞⋃

k=1

Qt
k.

Over there, redefining M(t) as
∑∞

k=1 |Qt
k | and setting Q̃t

k=2Qt
k (the cube with

twice the side length and the same center as Qt
k), we find that x /∈

⋃∞
k=1 Q̃t

k implies
Iαμ(x)≤5N t and hence

| {x ∈ Q : | Iαμ(x)| > 5N t} | ≤
∣∣∣∣

∞⋃
k=1

Q̃t
k

∣∣∣∣ =2NM(t);

see also [30, p. 217]. Note that [6, (4.5)] is still valid for the above redefined M(t).
So, the correct estimate in the statement of [6, Lemma 4.1(ii)] is

M(t) ≤
∣∣{x ∈ Q : (Iαμ)#(x) > 1

2εt
}∣∣+εM(2−N −1t).

Choosing ε=2−1−p(N+1) in the above yields
∫ ∞

0

M(t) dtp ≤ 21+p(2+p(N+1))

∫
Q

((Iαμ)#(x))p dx.

Consequently, the final group of inequalities on [6, p. 1641] is rewritten as
∫

Q

| Iαμ(y)|p dy = 5pN

∫ ∞

0

| {x ∈ Q : | Iαμ(x)| > 5N t}| dtp

≤ 2N5pN

∫ ∞

0

M(t) dtp

≤ 5pN2N+1+p(2+p(N+1))

∫
Q

(Iαμ)#(x)p dx,

reaching the desired inequality.

Now, we turn to the action of the Riesz potential operator Iα on both Lp,λ

and Hp,λ. The first part of the following result is known (see for instance [1]), but
we give a proof following our ideas above.
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Theorem 16. Let α∈(0, N) and 1<p<min{λ/α, (p−1)λ/α}. Then
(i)

Iα : Lp,λ −→Lλp/(λ−αp),λ ∩Lp,λ−αp

is continuous;
(ii)

Iα : Hp,λ −→Hλp/(λ−αp),λ ∩Hp,λ−αp/(p−1)

is continuous.

Proof. For (i), we use the following fundamental inequality for any f ≥0,

Iαf(x) � (Mλ/pf(x))αp/λ(M0f(x))1−αp/λ,

which was proved in [1] and [2].
To get the boundedness of

Iα : Lp,λ −→Lλp/(λ−αp),λ

we use the last estimate to obtain∫
B(x,r)

(Iαf(y))λp/(λ−αp) dy � ‖f ‖αp/λ

Lp,λ

∫
B(x,r)

(M0f(y))p dy

whence getting the result via Theorem 12(i).
In order to derive the boundedness of

Iα : Lp,λ −→Lp,λ−αp

we once again use the fundamental estimate to obtain∫
B(x,r)

(Iαf(y))p dy � ‖f ‖αp2/λ

Lp,λ

∫
B(x,r)

(M0f(y))p(λ−αp)/λ dy,

whence deriving the result via Hölder’s inequality and Theorem 12(i).
For (ii), we just use the duality (Hp′,λ)∗ =Lp,λ, (i), and the following estimate∣∣∣∣

∫
RN

Iαf(y)g(y) dy

∣∣∣∣ =
∣∣∣∣
∫

RN

f(y)Iαg(y) dy

∣∣∣∣ � ‖f ‖Hp,λ ‖Iαg‖Lp′ ,λ .

There are two cases handled as follows.
Case 1. Choosing p̃=pλ/(pα+(p−1)λ), we use the first imbedding of (i) to

obtain
‖ Iαg‖Lp′ ,λ � ‖g‖Lp̃,λ , g ∈ Lp̃,λ

0 ,

whence getting via duality of the Morrey spaces,

‖ Iαf ‖Hλ/p(λ−αp),λ � ‖f ‖Hp,λ , f ∈ Hp,λ.
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Case 2. Choosing λ̃=λ−pα/(p−1), we use the second imbedding of (i) to
derive

‖ Iαg‖Lp′ ,λ � ‖g‖Lp′ ,λ̃ , g ∈ Lp′,λ̃
0 ,

whence finding via duality of the Morrey spaces,

‖ Iαf ‖Hp,λ−α/p(p−1) � ‖f ‖Hp,λ , f ∈ Hp,λ. �

5. Interpolation of operators

In this section, we work on the interpolation theory of operators on the Morrey
spaces, now with the Lp,λ

0 spaces in the domain rather than the range.

5.1. Atomic decomposition for L1(Λ(∞)
α )

We need the following atomic decomposition of this Choquet space (provided
in [6, Remark 3.4]), which differs from Zorko’s (p′, N −λ)-atomic decomposition of
the predual of a Morrey space.

Lemma 17. (Adams–Xiao) Let α∈(0, N). Then w ∈L1(Λ(∞)
α ) if and only

if w=
∑∞

k=1 bkak, where {bk } ∞
k=1 ∈l1 and the ak are (∞, α)-atoms, i.e., for each

natural number k there is a cube Qk such that

supp ak ⊆ Qk with ‖ak ‖L∞(Qk) ≤ �(Qk)−α.

Also, the infimum inf
∑∞

k=1 |bk | over all possible such {bk } ∞
k=1 is comparable to the

norm of L1(Λ(∞)
α ), i.e.,

∫
RN

|w| dΛ(∞)
α ∼ inf

∞∑
k=1

|bk |.

5.2. Interpolation for (Lp,λ
0 , Lq)

As noticed in Section 1, there are λ and T such that T maps Lpi,λ into Lqi

but T does not send Lpθ,λ into Lqθ , where pθ and qθ are the standard intermediate
values for pi and qi. Therefore, the following result appears very natural.

Theorem 18. Let T be a linear operator with boundedness of

T : Lpi,λi

0 −→Lqi , where 1 <pi, qi < ∞, i =0, 1,
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i.e., there are two positive constants c1 and c2 such that

(∫
RN

|Tf(y)|qi dy

)1/qi

≤ ci sup
(x,r)∈RN ×R+

(
rλi −N

∫
B(x,r)

|f(y)|pi dy

)1/pi

for all functions f ∈C0, then T : Lpθ,λθ →Lqθ is bounded, where

λθ

pθ
=(1−θ)

λ0

p0
+θ

λ1

p1
,

1
pθ

=
1−θ

p0
+

θ

p1
and

1
qθ

=
1−θ

q0
+

θ

q1
.

Proof. Our hypothesis implies that the duality operator T ∗ of T enjoys

T ∗ : Lq′
i −→Hp′

i,λi ,

where
1 <p′

i =
pi

pi −1
, and q′

i =
qi

qi −1
< ∞, i =0, 1,

i.e., duality gives

T : Lq −→Lp,λ ⇐⇒ T ∗ : Hp′,λ −→Lq′

but

T ∗ : Lq′
−→Hp′,λ =⇒ T : Lp,λ −→Lq,

and

T : Lp,λ
0 −→Lq =⇒ T ∗ : Lq′

−→Hp′,λ.

G. Stampacchia [32] obtained the case

T : Lqi −→Lpi,λi , i =0, 1,

and then concluded that
T : Lqθ −→Lpθ,λθ .

There, the proof was easy:

sup
(x,r)∈RN ×R+

(
rλi −N

∫
B(x,r)

|f(y)|pi dy

)1/pi

≤ τi

(∫
RN

|f(y)|qi dy

)1/qi

, i =0, 1,

implies ∫
B(x,r)

|f(y)|pi dy ≤ τpi

i rN −λi

∫
RN

|f(y)|qi dy,
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where τ1 and τ2 are positive constants. Consequently, by the standard interpolation
theory, the norm Mθ for Lpθ (B(x, r)) (the Lebesgue pθ-space over B(x, r)) satisfies

Mθ ≤ M1−θ
0 Mθ

1,

where
Mi = τir

(N −λi)/pi , i =0, 1.

So, the result follows.
This approach does not work if a Morrey space is in the domain of T . Never-

theless, for this case, we use duality to get

T ∗ : Lq′
i −→Hp′

i,λi , i =0, 1.

Then for each i there is a wi ∈A
(N −λi)
1 such that

(∫
RN

|T ∗f(y)|p
′
iwi(y)1−p′

i dy

)1/p′
i

≤ τi

(∫
RN

|f(y)|q
′
i dy

)1/q′
i

.

So, if we apply Stein’s interpolation theorem (with change of measure, see [9]), we
get

(∫
RN

|T ∗f(y)|p
′
θ (u0(y)1−θu1(y)θ)p′

θ dy

)1/p′
θ

≤ τθ

(∫
RN

|f(y)|q
′
θ dy

)1/q′
θ

,

where τθ>0 is a constant,

u0 =w
−1/p0
0 , and u1 =w

−1/p1
1 .

If
Θ=

pθ

p1
θ,

then
pθ

p0
(1−θ)= 1−Θ and λθ =(1−Θ)λ0+Θλ1,

and hence
(
u1−θ

0 uθ
1)

−pθ =w
(1−θ)pθ/p0
0 w

θpθ/p1
1 =w1−Θ

0 wΘ
1 .

So the desired result

‖T ∗f ‖
Hp′

θ
,λθ

≤ τθ ‖f ‖
Lq′

θ
, 0 ≤ θ ≤ 1,

or
T : Lpθ,λθ −→Lqθ .
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follows from the inequality∫
RN

w1−Θ
0 wΘ

1 dΛ(∞)
(N −λ0)(1−Θ)+(N −λ1)Θ

�
(∫

RN

w0 dΛ(∞)
N −λ0

)1−Θ (∫
RN

w1 dΛ(∞)
N −λ1

)Θ

.

To see the last inequality, we use Lemma 17 with

wi =
∞∑

k=1

b
(i)
k a

(i)
k ∈ L1(Λ(∞)

N −λi
)

to get two positive constants c1 and c2 such that

1
ci

inf
∞∑

k=1

|b(i)
k | ≤

∫
RN

wi dΛ(∞)
N −λi

≤ ci inf
∞∑

k=1

|b(i)
k |, i =0, 1.

Then, setting
bk = |b(0)

k |1−Θ|b(1)
k |Θ,

we have {bk } ∞
k=1 ∈l1 and

∞∑
k=1

bk ≤
( ∞∑

k=1

|b(0)
k |

)1−Θ( ∞∑
k=1

|b(1)
k |

)Θ

≤ c1−Θ
0 cΘ

1

(∫
RN

w0 dΛ(∞)
N −λ0

)1−Θ (∫
RN

w1 dΛ(∞)
N −λ1

)Θ

≤ c1−Θ
0 cΘ

1 ,

since each wi is chosen for each Hpi,λi . And if

ak = |a(0)
k |1−Θ|a(1)

k |Θ,

then we easily see that ak is an (∞, N −λθ)-atom, and∫
RN

ak dΛ(∞)
N −λθ

≤ 1.

Hence by the quasi-Hölder inequality and the quasi-sublinearity for the integral∫
RN w dΛ(∞)

N −λ, we get
∫

RN

w1−Θ
0 wΘ

1 dΛ(∞)
N −λθ

�
∫

RN

∞∑
k=1

(b(0)
k a

(0)
k )1−Θ(b(1)

k a
(1)
k )Θ dΛ(∞)

N −λθ

�
(∫

RN

w0 dΛ(∞)
N −λ0

)1−Θ(∫
RN

w1 dΛ(∞)
N −λ1

)Θ

,

as desired. �
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Remark 19. In a manner similar to the above, we get that

T : Hp′
i,λi −→Hq′

i,μi , i =0, 1,

implies

T : Hp′
θ,λθ −→Hq′

θ,μθ , 0 <θ < 1,

where in addition to the formulas on pθ and λθ we assume

μθ

qθ
=(1−θ)

μ0

q0
+θ

μ1

q1
.

In fact, since any w with

0 ≤ w ∈ L1(Λ(∞)
dθ

), where dθ =(1−θ)d0+θd1,

can be written as

w =
∞∑

k=1

bkak ≤
( ∞∑

k=1

bkak,0

)1−θ( ∞∑
k=1

bkak,1

)θ

,

where ak is a (∞, dθ)-atom and ak,i is a (∞, di)-atom. Hence

w ≤ w1−θ
0 wθ

1 with 0 ≤ wi ∈ L1(Λ(∞)
di

), i =0, 1.

As a result, we have

∫
RN

|f(y)|p
′
θ (w1−θ

0 (y)wθ
1(y))1−p′

θ dy ≤
∫

RN

|f(y)|p
′
θw(y)1−p′

θ dy.

Here we have once again used Stein’s interpolation with change of measure (cf. [10,
p. 213, Theorem 3.6]).

6. Morrey–Sobolev capacities and Wolff-type potentials

In [6], we introduced two versions of a (Morrey–Sobolev) capacity associated
with potentials of functions in Hp,λ—type I capacities—and with potentials of func-
tions in Lp,λ—type II capacities. Based on the previous discussions, we develop
some further results here complimenting those of [6].
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6.1. Local estimates for capacities

Like the (α, p)-Riesz capacity reviewed in Section 2, if X is either Lp,λ
0 or Hp,λ,

we set
Cα(E; X)= inf { ‖f ‖p

X : Iαf ≥ 1 on E} ,

where E ⊆R
N . The min-max theorem gives an equivalent version

Capα(E; X)= sup {‖μ‖1 : supp μ ⊆ E and ‖Iαμ‖X∗ ≤ 1} .

Here X∗ is the dual of X . It is not hard to see that

Cα(E; Lp,λ) ∼ Cα(E; Lp,λ
0 )

holds because if f ∈Lp,λ, then φε ∗f is continuous for φε—an approximation of the
identity—and

Iα(φε ∗f) = Iαφε ∗f → Iαf a.e.

which follows from
|φε ∗f | �M0f, ε> 0.

In fact, the min-max theorem gives

Cα(E; X)=Capα(E; X∗)p.

Theorem 20. Let (α, p)∈(0, N)×(1, ∞), αp<λ<N , (x, r)∈R
N ×R+, and let

E ⊆R
N be compact. Then
(i)

Capα(E ∩B(x, r); Lp′,λ) � rN −λCapα(E ∩B(x, r); Hp′,λ),

that is, type II capacities are stronger than type I capacities.
(ii)

Cα(E ∩B(x, r); Hp,λ)
r(N −λ−α)p+λ

� Cα(E ∩B(x, r); Lp)
rN −αp

� Cα(E ∩B(x, r); Lp,λ)
rλ−αp

.

Proof. (i) If
Capα(E ∩B(x, r); Lp′,λ) > 0,

then there is a non-negative Borel measure μ supported on E ∩B(x, r) such that
∫

B(x,r)

(Iαμ(y))p′
dy ≤ rN −λ.
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Thus, setting

ν = rλ−Nμ and w = rλ−N1B(x,r),

we get ∫
RN

(Iαν(y))p′
w(y)−1/(p−1) dy ≤ 1.

This in turn yields

rλ−NCapα(E ∩B(x, r); Lp′,λ) �Capα(E ∩B(x, r); Hp′,λ).

(ii) A similar argument gives

Cα(E ∩B(x, r); Lp) � rN −λCα(E ∩B(x, r); Lp,λ)

and

Cα(E ∩B(x, r); Hp,λ) � r(N −λ)(p−1)Cα(E ∩B(x, r); Lp).

Consequently, the desired estimate follows. �

6.2. Wolff-type potentials

Note that the estimates in Theorem 20 are precisely the type of estimate that
one needs to compare a reasonable notion of “thinness” associated with each of these
capacities—for the concept of thinness for the capacity Cα( · ; Lp) see [5]. We will
postpone a complete discussion of thinness to the capacities Cα( · ; Lp,λ) to another
time. But we think it is appropriate here to record the Wolff potentials associated
with each of these Morrey–Sobolev capacities. Actually, the Wolff potential for the
type I case was already given in [6]. Both of these depend on the results of Section 4
regarding

‖ Iαμ‖Lp′ ,λ and ‖ Iαμ‖Hp′ ,λ .

Theorem 21. Let (α, λ, p)∈(0, N)×(0, N)×(1, ∞), αp<N , p′ =p/(p−1), and
let μ be a non-negative Borel measure on R

N . Then
(i)

‖ Iαμ‖p′

Lp′ ,λ ∼
∫

RN

Wμ
α,p,λ(y) dμ(y);

(ii)

‖ Iαμ‖p′

Hp′ ,λ ∼ inf
w∈A

(N −λ)
1

∫
RN

Wμ,w
α,p,λ(y) dμ(y).
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Here

Wμ
α,p,λ(y) =

∫ ∞

0

(
μ(B(y, r))

rλ+p(N −λ−α)

)p′ −1
dr

r

and

Wμ,w
α,p,λ(y) =

∫ ∞

0

(
rαpμ(B(y, r))∫
B(y,r)

w(z) dz

)p′ −1
dr

r
for w ∈ A

(N −λ)
1 .

Proof. We first find upper bounds. Taking a close look at Theorem 14, where
‖Iαμ‖X∗ is measured in terms of ‖Mαμ‖X∗ , we can focus on ‖Mαμ‖p′

Lp′ ,λ . Note
that

Mαμ(x) ≤
(∫ ∞

0

(tα−Nμ(B(x, t)))p′ dt

t

)1/p′

.

So, if we set

I(x, r, t) =
∫

B(x,r)

μ(B(y, t))p′
dy,

then we have

‖Mαμ‖p′

Lp′ ,λ ≤ sup
(x,r)∈RN ×R+

rλ−N

∫ ∞

0

tp
′(α−N)I(x, r, t)

dt

t

and

I(x, r, t) =
∫

B(x,r)

(μ(B(y, t)))p′ −1

(∫
B(x,t)

dμ(y)
)

dy

≤
∫

RN

(μ(B(y, t)))p′ −1|B(x, r)∩B(y, t)| dμ(y).

Rewriting

‖Mαμ‖p′

Lp′ ,λ ≤ sup
(x,r)∈RN ×R+

rλ−N

(∫ r

0

+
∫ ∞

r

)
tp

′(α−N)I(x, r, t)
dt

t
,

we control the two integrals on the right-hand side separately.
For the first integral, we have

sup
(x,r)∈RN ×R+

rλ−N

∫ r

0

( ... ) �
∫ ∞

0

(
tN+p′(α−N)tλ−N

∫
RN

μ(B(y, 2t))p′ −1 dμ(y)
)

dt

t

�
∫

RN

Wμ
α,p,λ dμ.
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For the second integral, we have

sup
(x,r)∈RN ×R+

rλ−N

∫ ∞

r

( ... ) �
∫ ∞

0

(
tp

′(α−N)+λ

∫
RN

μ(B(y, 2t))p′ −1 dμ(y)
)

dt

t

�
∫

RN

Wμ
α,p,λ dμ.

A combined use of the last three estimates yields the required upper bound of
‖Mαμ‖p′

Lp′ ,λ .
Meanwhile, we look for an upper bound for

‖Mαμ‖p′

Hp′ ,λ ≤ inf
w∈A

(N −λ)
1

∫
RN

(∫ ∞

0

(tα−Nμ(B(x, t)))p′ dt

t

)
w(x)1−p′

dx.

Now, setting

J(t) =
∫

RN

μ(B(x, t))p′
w(x)1−p′

dx,

we estimate

J(t) ≤
∫

RN

(
μ(B(x, t))p′ −1w(x)1−p′

∫
B(x,r)

dμ

)
dx

=
∫

RN

(∫
B(y,t)

μ(B(x, t))p′ −1w(x)1−p′
dx

)
dμ(y)

� μ(B(y, 2t))p′ −1tN
∫

B(y,t)

w(x)−1/(p−1) dx.

Since w ∈A1 and hence w ∈Ap, we get

J(t) �μ(B(y, 2t))p′ −1tN
(

t−N

∫
B(y,t)

w(x) dx

)1−p′

,

whence obtaining the result.
On the other hand, we need to look for the corresponding lower bounds. This

is easy. In fact,

‖Iαμ‖p′

Lp′ ,λ � sup
(x,r)∈RN ×R+

rλ−N

∫
B(x,r)

(∫ ∞

0

(
tα−Nμ(B(z, t))

dt

t

)p′ )
dz

� sup
x∈RN

∫ ∞

0

rα+λ−2N

(∫
B(x,r)

(
μ(B(z, 2r))

rN −α

)p′ −1

μ(B(z, r)) dz

)
dr

r
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�
∫ ∞

0

rλ−NrNr(α−N)p′
(∫

RN

μ(B(y, r))p′ −1 dμ(y)
)

dr

r

�
∫

RN

Wμ
α,p,λ dμ.

And for the other, we have

‖Iαμ‖p′

Hp′ ,λ � inf
w∈A

(N −λ)
1

∫
RN

(∫ ∞

0

tα−Nμ(B(x, t))
dt

t

)p′

w(x)1−p′
dx

� inf
w∈A

(N −λ)
1

∫ ∞

0

r(α−N)(1+p′)

∫
RN

∫
B(z,r)

w(x)1−p′
dx(∫

B(z,3r)
dμ(y)

)1−p′ dμ(z)
dr

r

� inf
w∈A

(N −λ)
1

∫
RN

∫ ∞

0

r(α−N)p′

μ(B(z, r))1−p′

(∫
B(z,r)

w(x)1−p′
dx

)
dr

r
dμ(z)

� inf
w∈A

(N −λ)
1

∫
RN

∫ ∞

0

(
r(αp−N)/(p−1)

μ(B(z, r))1/(1−p)

)
(
r−N

∫
B(z,r)

w(y) dy
)1/(p−1)

dr

r
dμ(z)

� inf
w∈A

(N −λ)
1

∫
RN

Wμ,w
α,p,λ dμ.

In the last two estimates we again invoke the Ap condition for w. �

Remark 22. Recall from [5, Theorem 4.5.4] that if

Ẇμ
α,p(y) =

∫ ∞

0

(
μ
(
B(y, r)

)
rN −αp

)1/(p−1)
dr

r

is the so-called Wolff potential, then

‖ Iαμ‖p′

Lp′ ∼
∫

RN

Ẇμ
α,p(y) dμ(y).

This type of estimate may be regarded as a special case λ=N of Theorem 21.
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