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Infima of superharmonic functions

Mohammad Alakhrass and Wolfhard Hansen

Abstract. Let Ω be a Greenian domain in R
d, d≥2, or—more generally—let Ω be a con-

nected P-Brelot space satisfying axiom D, and let u be a numerical function on Ω, u �≡ ∞, which

is locally bounded from below. A short proof yields the following result: The function u is the

infimum of its superharmonic majorants if and only if each set {x:u(x)>t}, t∈R, differs from an

analytic set only by a polar set and
R

u dμV
x ≤u(x), whenever V is a relatively compact open set

in Ω and x∈V .

The purpose of this paper is to provide a short proof for a full characterization
of infima of superharmonic functions in terms of mean-value inequalities and a weak
measurability property (Theorem 2). Its background is the publication [7], where
the main results Theorem 1.1 and Theorem 1.5 can be stated as follows.

Theorem. Let Ω be a Greenian domain in R
d, d≥2, and u : Ω→(−∞, ∞],

u �≡ ∞, be such that u is locally bounded from below and, for every t∈R, the set
{x:u(x)>t} is analytic. Then the following statements are equivalent :

(i) the greatest lower semicontinuous minorant û of u is superharmonic, and
the set {x:û(x)<u(x)} is polar ;

(ii) u is the infimum of its superharmonic majorants;
(iii) for all x∈Ω and Jensen measures μ for x,

∫
u dμ≤u(x).

Let us recall that a Jensen measure for x with respect to Ω is a (Radon) mea-
sure μ, supported on a compact set in Ω, such that every superharmonic function u

on Ω satisfies
∫

u dμ≤u(x). In particular, for every relatively compact open V in Ω
and every x∈V , the harmonic measure μV

x is a Jensen measure for x. The proof of
[8, Theorem 1.4] shows that (i) already follows, if (iii) is replaced by

(iv) for all relatively compact regular sets V in Ω and all x∈V ,
∫

u dμV
x ≤u(x).
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For a recent discussion of the relation between Jensen measures and harmonic mea-
sures see [10].

The proof for (i) ⇒ (ii) is short and straightforward (it can be reduced to four
lines; see the proof of Theorem 2) and the implication (ii) ⇒ (iii) is almost triv-
ial. However, the proof for the implication (iii) ⇒ (i) given in [7] (or the proof for
(iv) ⇒ (i) in [8]) is quite involved and uses a duality theorem for Jensen measures
which is based on an abstract duality theorem by D. A. Edwards.

Clearly, (iii) implies that u is nearly hyperharmonic and hence û is superhar-
monic (see [3] and [5]). Moreover, it is well known that (ii) implies the polarity of
the set {x:û(x)<u(x)} (see [6] or, for example, [2, Theorem 5.7.1]). So the (only)
interesting part in the theorem above is the fact that already (iii) implies that the
set {x:û(x)<u(x)} is polar.

We shall present a short proof for this implication (using harmonic measures
only so that we might dispense with general Jensen measures; see also [1]) and,
at the same time, remove the a priori measurability assumption on u. The latter
is possible, since both (i) and (ii) already provide some regularity of the function u

(it differs from a lower semicontinuous function only on a polar set, and it is finely
upper semicontinuous, respectively).

In the sequel let Ω be as in the theorem above or, more generally, let Ω be
a connected (metrizable) P -Brelot space satisfying the axiom of domination. We
introduce the following (weak) measurability property for numerical functions u

on Ω.
(QA) For every t∈R, the set E :={x:u(x)>t} is quasi-analytic, that is, there

exists an analytic set A in Ω such that the symmetric difference E 	A is polar.
If u is a numerical function on Ω having property (QA) and μ is a Jensen

measure for x∈Ω, then u is μ-measurable, since μ does not charge polar sets in
Ω\ {x}.

Lemma 1. If u and v are numerical functions on Ω such that u=v quasi-
everywhere and v is finely lower or finely upper semicontinuous, then u satisfies
(QA) (even with Gδσ-sets A).

Proof. Obviously, it suffices to show that v satisfies (QA). We first suppose that
v is finely lower semicontinuous, and fix t∈R. Then V :={x:v(x)>t} is finely open.
Hence the quasi-Lindelöf property implies that there exists a countable union A of
compact sets and a polar set P such that V =A∪P (see [9, Section 1.XI.11] and
[4, II.4.1, VI.5.14]).

Next, let us assume that v is finely upper semicontinuous, and hence −v is
finely lower semicontinuous. So, for each n∈N, there exists a countable union An
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of compact sets and a polar set Pn such that {x:−v(x)>−t−1/n}=An ∪Pn. Then
A:=

⋃∞
n=1 Ac

n is a Gδσ-set and {x:v(x)>t}=
⋃∞

n=1(An ∪Pn)c ⊂A. Therefore, the set
A\ {x:v(x)>t} is polar, since it is contained in the polar set

⋃∞
n=1 Pn. �

Theorem 2. Let u : Ω→(−∞, ∞] be such that u �≡ ∞ and u is locally lower
bounded. Then the following statements are equivalent :

(1) û is superharmonic and û=u quasi-everywhere;
(2) u is the infimum of its superharmonic majorants;
(3) (QA) holds and

∫
u dμ≤u(x) for all x∈Ω and Jensen measures μ for x;

(4) (QA) holds and
∫

u dμV
x ≤u(x) for all relatively compact open V ⊂Ω and

all x∈V .

Proof. (1)⇒(2) Let x∈Ω be such that u(x)<∞, and let ε>0. There exists a su-
perharmonic function w on Ω such that w ≥0, w(x)=u(x)−û(x)+ε, and w(y)=∞
whenever y ∈Ω, y �=x and û(y)<u(y). Let v=û+w. Then v is superharmonic on Ω,
v ≥u and v(x)=u(x)+ε.

(2)⇒(3) Clearly, u is finely upper semicontinuous. So the assumption (QA)
holds, by Lemma 1. Let μ be a Jensen measure for x∈Ω. Then

∫
u dμ≤

∫
v dμ≤v(x)

whenever v is a superharmonic majorant of u. Thus
∫

u dμ≤u(x).
(3)⇒(4) This is trivial.
(4)⇒(1) Let w0 be a continuous superharmonic function on Ω, 0<w0<∞. Let

us suppose first that u≤Mw0 for some M>0. Then û is superharmonic, since the
function u is nearly hyperharmonic.

The set {x:û(x)<u(x)} is the union of the sets {x:û(x)≤s} ∩ {x:s<u(x)}, s ra-
tional, where the sets {x:û(x)≤s} are closed and the sets {x:s<u(x)} are quasi-
analytic. Hence there exists an analytic set A and a polar set P in Ω such that

{x : û(x) <u(x)} =A	P.

To prove that û=u quasi-everywhere, it clearly suffices to show that all compact
subsets of A are polar.

So let us fix a compact subset K of A. Let U be a relatively compact open
neighborhood of K in Ω and set V :=U \K. The functions g : x →

∫
û dμV

x and
h : x →

∫
u dμV

x are harmonic on V , and g ≤h. Moreover, h≤u, by assumption,
and hence h≤û, by the continuity of h. By the axiom of domination, g is the
greatest harmonic minorant of û on V . So g=h. Fixing x∈V , we conclude that
μV

x (K \P )=0, since û≤u on Ω and û<u on K \P . Knowing that μV
x does not

charge polar sets, we see that μV
x (K)=0, and hence

inf{s(x) : s is superharmonic on U and s ≥ 1Kw0} =: URK
w0

(x) =
∫

K

w0 dμV
x =0
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(see, for example, [4, VI.2.9]). So the lower semicontinuous regularization w of URK
w0

is a positive superharmonic function on U which vanishes on U \K. By ellipticity,
w=0 on U . Thus K is polar.

In the general case, we apply the preceding result to um :=min{u, mw0}, m∈N.
For every m∈N, the function um satisfies (4), and ûm=min{û, mw0}. In particular,
ûm↑û and {x:ûm(x)<um(x)}↑{x:û(x)<u(x)} as m→∞. Thus (1) holds. �

Remark 3. (a) If there exists a nonpolar set A in Ω which is inner polar and
measurable with respect to all harmonic measures, then the assumption (QA) in (4)
cannot be omitted. To see this it suffices to consider the function u:=1A. Indeed,
such a set A has no interior points. Hence û=0, and the set {x:û(x)<u(x)}=A is
nonpolar. But, for all relatively compact open sets V in Ω and x∈V ,

∫
u dμV

x =μV
x (A)= sup{μV

x (K) : K compact in A} =0 ≤ u(x).

(b) It is easily seen (directly or noting that (1) is a local statement) that we
may replace (4) by

(4′) (QA) holds and there exists a covering of Ω by open sets Ωi, i∈I , such
that

∫
u dμV

x ≤u(x) for all relatively compact open V ⊂V ⊂Ωi for some i∈I , and all
x∈V .

However, it is certainly not sufficient to consider sets V from an arbitrary
base V of open sets in Ω. Indeed, let Ω:=R

d, d≥3. For 1≤j ≤d, let Aj be the
set of all x=(x1, ..., xd) such that xj is rational, and let A:=

⋃d
j=1 Aj , u:=1Ac and

V :=
{∏d

j=1(αj , βj):αj and βj are rational
}
. For every V ∈ V , u=0 on the boundary

of V , and hence
∫

u dμV
x =0≤u(x), x∈V . Of course, û=0 and {x:û(x)=u(x)} is

the Lebesgue null set A so that {x:û(x)<u(x)}=Ac is far from being polar.
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