Infima of superharmonic functions

Mohammad Alakhrass and Wolfhard Hansen

Abstract. Let Ω be a Greenian domain in \mathbb{R}^d , $d \ge 2$, or—more generally—let Ω be a connected \mathcal{P} -Brelot space satisfying axiom D, and let u be a numerical function on Ω , $u \not\equiv \infty$, which is locally bounded from below. A short proof yields the following result: The function u is the infimum of its superharmonic majorants if and only if each set $\{x:u(x)>t\}, t\in\mathbb{R}$, differs from an analytic set only by a polar set and $\int u \, d\mu_x^V \le u(x)$, whenever V is a relatively compact open set in Ω and $x \in V$.

The purpose of this paper is to provide a *short* proof for a *full* characterization of infima of superharmonic functions in terms of mean-value inequalities and a weak measurability property (Theorem 2). Its background is the publication [7], where the main results Theorem 1.1 and Theorem 1.5 can be stated as follows.

Theorem. Let Ω be a Greenian domain in \mathbb{R}^d , $d \ge 2$, and $u: \Omega \to (-\infty, \infty]$, $u \not\equiv \infty$, be such that u is locally bounded from below and, for every $t \in \mathbb{R}$, the set $\{x:u(x)>t\}$ is analytic. Then the following statements are equivalent:

(i) the greatest lower semicontinuous minorant \hat{u} of u is superharmonic, and the set $\{x:\hat{u}(x) < u(x)\}$ is polar;

- (ii) *u* is the infimum of its superharmonic majorants;
- (iii) for all $x \in \Omega$ and Jensen measures μ for x, $\int u d\mu \leq u(x)$.

Let us recall that a Jensen measure for x with respect to Ω is a (Radon) measure μ , supported on a compact set in Ω , such that every superharmonic function u on Ω satisfies $\int u \, d\mu \leq u(x)$. In particular, for every relatively compact open V in Ω and every $x \in V$, the harmonic measure μ_x^V is a Jensen measure for x. The proof of [8, Theorem 1.4] shows that (i) already follows, if (iii) is replaced by

(iv) for all relatively compact regular sets V in Ω and all $x \in V$, $\int u \, d\mu_x^V \leq u(x)$.

For a recent discussion of the relation between Jensen measures and harmonic measures see [10].

The proof for (i) \Rightarrow (ii) is short and straightforward (it can be reduced to four lines; see the proof of Theorem 2) and the implication (ii) \Rightarrow (iii) is almost trivial. However, the proof for the implication (iii) \Rightarrow (i) given in [7] (or the proof for (iv) \Rightarrow (i) in [8]) is quite involved and uses a duality theorem for Jensen measures which is based on an abstract duality theorem by D. A. Edwards.

Clearly, (iii) implies that u is nearly hyperharmonic and hence \hat{u} is superharmonic (see [3] and [5]). Moreover, it is well known that (ii) implies the polarity of the set $\{x:\hat{u}(x) < u(x)\}$ (see [6] or, for example, [2, Theorem 5.7.1]). So the (only) interesting part in the theorem above is the fact that already (iii) implies that the set $\{x:\hat{u}(x) < u(x)\}$ is polar.

We shall present a short proof for this implication (using harmonic measures only so that we might dispense with general Jensen measures; see also [1]) and, at the same time, remove the a priori measurability assumption on u. The latter is possible, since both (i) and (ii) already provide some regularity of the function u(it differs from a lower semicontinuous function only on a polar set, and it is finely upper semicontinuous, respectively).

In the sequel let Ω be as in the theorem above or, more generally, let Ω be a connected (metrizable) \mathcal{P} -Brelot space satisfying the axiom of domination. We introduce the following (weak) measurability property for numerical functions uon Ω .

(QA) For every $t \in \mathbb{R}$, the set $E := \{x: u(x) > t\}$ is quasi-analytic, that is, there exists an analytic set A in Ω such that the symmetric difference $E \triangle A$ is polar.

If u is a numerical function on Ω having property (QA) and μ is a Jensen measure for $x \in \Omega$, then u is μ -measurable, since μ does not charge polar sets in $\Omega \setminus \{x\}$.

Lemma 1. If u and v are numerical functions on Ω such that u=v quasieverywhere and v is finely lower or finely upper semicontinuous, then u satisfies (QA) (even with $G_{\delta\sigma}$ -sets A).

Proof. Obviously, it suffices to show that v satisfies (QA). We first suppose that v is finely lower semicontinuous, and fix $t \in \mathbb{R}$. Then $V := \{x: v(x) > t\}$ is finely open. Hence the quasi-Lindelöf property implies that there exists a countable union A of compact sets and a polar set P such that $V = A \cup P$ (see [9, Section 1.XI.11] and [4, II.4.1, VI.5.14]).

Next, let us assume that v is finely upper semicontinuous, and hence -v is finely lower semicontinuous. So, for each $n \in \mathbb{N}$, there exists a countable union A_n

of compact sets and a polar set P_n such that $\{x:-v(x)>-t-1/n\}=A_n\cup P_n$. Then $A:=\bigcup_{n=1}^{\infty}A_n^c$ is a $G_{\delta\sigma}$ -set and $\{x:v(x)>t\}=\bigcup_{n=1}^{\infty}(A_n\cup P_n)^c\subset A$. Therefore, the set $A\setminus\{x:v(x)>t\}$ is polar, since it is contained in the polar set $\bigcup_{n=1}^{\infty}P_n$. \Box

Theorem 2. Let $u: \Omega \rightarrow (-\infty, \infty]$ be such that $u \not\equiv \infty$ and u is locally lower bounded. Then the following statements are equivalent:

(1) \hat{u} is superharmonic and $\hat{u}=u$ quasi-everywhere;

(2) u is the infimum of its superharmonic majorants;

(3) (QA) holds and $\int u \, d\mu \leq u(x)$ for all $x \in \Omega$ and Jensen measures μ for x;

(4) (QA) holds and $\int u \, d\mu_x^V \leq u(x)$ for all relatively compact open $V \subset \Omega$ and all $x \in V$.

Proof. $(1) \Rightarrow (2)$ Let $x \in \Omega$ be such that $u(x) < \infty$, and let $\varepsilon > 0$. There exists a superharmonic function w on Ω such that $w \ge 0$, $w(x) = u(x) - \hat{u}(x) + \varepsilon$, and $w(y) = \infty$ whenever $y \in \Omega$, $y \neq x$ and $\hat{u}(y) < u(y)$. Let $v = \hat{u} + w$. Then v is superharmonic on Ω , $v \ge u$ and $v(x) = u(x) + \varepsilon$.

(2) \Rightarrow (3) Clearly, *u* is finely upper semicontinuous. So the assumption (QA) holds, by Lemma 1. Let μ be a Jensen measure for $x \in \Omega$. Then $\int u \, d\mu \leq \int v \, d\mu \leq v(x)$ whenever *v* is a superharmonic majorant of *u*. Thus $\int u \, d\mu \leq u(x)$.

 $(3) \Rightarrow (4)$ This is trivial.

 $(4) \Rightarrow (1)$ Let w_0 be a continuous superharmonic function on Ω , $0 < w_0 < \infty$. Let us suppose first that $u \le M w_0$ for some M > 0. Then \hat{u} is superharmonic, since the function u is nearly hyperharmonic.

The set $\{x:\hat{u}(x) < u(x)\}$ is the union of the sets $\{x:\hat{u}(x) \leq s\} \cap \{x:s < u(x)\}$, s rational, where the sets $\{x:\hat{u}(x) \leq s\}$ are closed and the sets $\{x:s < u(x)\}$ are quasianalytic. Hence there exists an analytic set A and a polar set P in Ω such that

$$\{x: \hat{u}(x) < u(x)\} = A \triangle P.$$

To prove that $\hat{u}=u$ quasi-everywhere, it clearly suffices to show that all compact subsets of A are polar.

So let us fix a compact subset K of A. Let U be a relatively compact open neighborhood of K in Ω and set $V:=U\backslash K$. The functions $g: x\mapsto \int \hat{u} d\mu_x^V$ and $h: x\mapsto \int u d\mu_x^V$ are harmonic on V, and $g \leq h$. Moreover, $h \leq u$, by assumption, and hence $h \leq \hat{u}$, by the continuity of h. By the axiom of domination, g is the greatest harmonic minorant of \hat{u} on V. So g=h. Fixing $x \in V$, we conclude that $\mu_x^V(K\backslash P)=0$, since $\hat{u} \leq u$ on Ω and $\hat{u} < u$ on $K\backslash P$. Knowing that μ_x^V does not charge polar sets, we see that $\mu_x^V(K)=0$, and hence

 $\inf\{s(x):s \text{ is superharmonic on } U \text{ and } s \ge 1_K w_0\} =: {}^U\!R_{w_0}^K(x) = \int_K w_0 \, d\mu_x^V = 0$

(see, for example, [4, VI.2.9]). So the lower semicontinuous regularization w of ${}^{U}R_{w_0}^{K}$ is a positive superharmonic function on U which vanishes on $U \setminus K$. By ellipticity, w=0 on U. Thus K is polar.

In the general case, we apply the preceding result to $u_m := \min\{u, mw_0\}, m \in \mathbb{N}$. For every $m \in \mathbb{N}$, the function u_m satisfies (4), and $\hat{u}_m = \min\{\hat{u}, mw_0\}$. In particular, $\hat{u}_m \uparrow \hat{u}$ and $\{x: \hat{u}_m(x) < u_m(x)\} \uparrow \{x: \hat{u}(x) < u(x)\}$ as $m \to \infty$. Thus (1) holds. \Box

Remark 3. (a) If there exists a nonpolar set A in Ω which is inner polar and measurable with respect to all harmonic measures, then the assumption (QA) in (4) cannot be omitted. To see this it suffices to consider the function $u:=1_A$. Indeed, such a set A has no interior points. Hence $\hat{u}=0$, and the set $\{x:\hat{u}(x) < u(x)\}=A$ is nonpolar. But, for all relatively compact open sets V in Ω and $x \in V$,

$$\int u \, d\mu_x^V = \mu_x^V(A) = \sup\{\mu_x^V(K) : K \text{ compact in } A\} = 0 \le u(x).$$

(b) It is easily seen (directly or noting that (1) is a local statement) that we may replace (4) by

(4') (QA) holds and there exists a covering of Ω by open sets Ω_i , $i \in I$, such that $\int u \, d\mu_x^V \leq u(x)$ for all relatively compact open $V \subset \overline{V} \subset \Omega_i$ for some $i \in I$, and all $x \in V$.

However, it is certainly not sufficient to consider sets V from an arbitrary base \mathcal{V} of open sets in Ω . Indeed, let $\Omega:=\mathbb{R}^d$, $d\geq 3$. For $1\leq j\leq d$, let A_j be the set of all $x=(x_1,...,x_d)$ such that x_j is rational, and let $A:=\bigcup_{j=1}^d A_j$, $u:=1_{A^c}$ and $\mathcal{V}:=\{\prod_{j=1}^d (\alpha_j,\beta_j):\alpha_j \text{ and } \beta_j \text{ are rational}\}$. For every $V\in\mathcal{V}$, u=0 on the boundary of V, and hence $\int u d\mu_x^V = 0 \leq u(x), x \in V$. Of course, $\hat{u}=0$ and $\{x:\hat{u}(x)=u(x)\}$ is the Lebesgue null set A so that $\{x:\hat{u}(x)<u(x)\}=A^c$ is far from being polar.

References

- ALAKHRASS, M., Superharmonic and Multiply Superharmonic Functions and Jensen Measures in Axiomatic Brelot Spaces, Ph.D. Thesis, McGill University, Montreal, QC, 2009.
- ARMITAGE, D. H. and GARDINER, S. J., *Classical Potential Theory*, Springer Monographs in Mathematics, Springer, London, 2001.
- 3. BAUER, H., Harmonische Räume und ihre Potentialtheorie, Springer, Berlin, 1966.
- 4. BLIEDTNER, J. and HANSEN, W., *Potential Theory—An Analytic and Probabilistic Approach to Balayage*, Universitext, Springer, Berlin, 1986.
- BRELOT, M., Lectures on Potential Theory (Notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy), Lectures on Mathematics 19, Tata Institute of Fundamental Research, Bombay, 1967.

- CARTAN, H., Théorie du potentiel newtonien: énergie, capacité, suites de potentiels, Bull. Soc. Math. France 73 (1945), 74–106.
- COLE, B. J. and RANSFORD, T. J., Subharmonicity without semicontinuity, J. Funct. Anal. 147 (1997), 420–442.
- COLE, B. J. and RANSFORD, T. J., Jensen measures and harmonic measures, J. Reine Angew. Math. 541 (2001), 29–53.
- DOOB, J. L., Classical Potential Theory and Its Probabilistic Counterpart, Springer, New York, 1984.
- HANSEN, W. and NETUKA, I., Jensen measures in potential theory, to appear in *Potential Anal.*, doi:10.1007/s11118-011-9247-8.

Mohammad Alakhrass Department of Mathematics and Statistics McGill University Burnside Hall, Room 805 Sherbrooke W. Montreal, QC H3A 2K6 Canada Mohammad.alakhrass@mail.mcgill.ca

Received June 30, 2010 in revised form December 13, 2010 published online November 25, 2011 Wolfhard Hansen Fakultät für Mathematik Universität Bielefeld Postfach 100 131 DE-33501 Bielefeld Germany hansen@math.uni-bielefeld.de