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Volume formula for a Z2-symmetric spherical
tetrahedron through its edge lengths

Alexander Kolpakov, Alexander Mednykh and Marina Pashkevich

Abstract. The present paper considers volume formulæ, as well as trigonometric identities,

that hold for a tetrahedron in 3-dimensional spherical space of constant sectional curvature +1.

The tetrahedron possesses a certain symmetry: namely rotation of angle π in the middle points

of a certain pair of its skew edges.

1. Introduction

The volume calculation problem stated for a three-dimensional polyhedra is
one of the most hard and old problems in the field of geometry. The first results
belonging to the field are due to N. Fontana Tartaglia (1499–1557), who found
a formula for the volume of a Euclidean tetrahedron better know in the present
time as the Cayley–Menger determinant. Due to the paper [17] the volume of
every Euclidean polyhedron is a root of an algebraic equation depending on its
combinatorial type and metric parameters.

In case of hyperbolic and spherical spaces the task becomes harder. The for-
mulæ for volumes of orthoschemes are known since the work of N. Lobachevsky and
L. Schläfli. The volumes of hyperbolic polyhedra with at least one ideal vertex and
the hyperbolic Lambert cube are given in the papers [2], [8] and [11].

The general formula for the volume of a non-Euclidean tetrahedron were given
in [3] and [15] as a linear combination of dilogarithmic functions depending on the
dihedral angles. Afterwards, the elementary integral formula was suggested in [4].

In case the given polyhedron possesses certain symmetries, the volume formulæ
become facile. First, this fact was noted by Lobachevsky for ideal hyperbolic tetra-
hedra: the vertices of such tetrahedra belong to the ideal boundary of hyperbolic
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space and dihedral angles along every pair of skew edges are equal. Later, J. Milnor
presented the respective result in a very elegant form [12]. The general case of a
tetrahedron with the same kind of symmetry is considered in [6]. For the more com-
plicated polyhedra one also expects the use of their symmetries to be an effective
tool. The volumes of octahedra enjoying certain symmetries were computed in [1].

The volume formula for a hyperbolic tetrahedron in terms of its edge lengths
instead of dihedral angles was suggested first by [14] in view of the volume conjecture
due to R. Kashaev [7]. Further investigation on this subject was carried out in [10].

The paper [15] suggests a volume formula for a spherical tetrahedron as an
analytic continuation of the given volume function for a hyperbolic one. The cor-
responding analytical strata has to be chosen in the unique proper manner.

The present paper provides volume formula for a spherical tetrahedron that
is invariant up to isometry under rotation of angle π in the middle points of a
certain pair of its skew edges. The formula itself depends on the edge lengths of
given tetrahedra as well as on its dihedral angles and specify the actual analytic
strata of the volume function. Volumes of the spherical Lambert cube and spher-
ical octahedra with various kinds of symmetry were obtained in [1] and [5]. The
analytic formulæ for these polyhedra are of simpler form in contrast to their more
complicated combinatorial structure.

During the preparation of the present paper, the work [13] by J. Murakami
treating the volume of general spherical tetrahedron appeared. The volume formula
proposed is close in spirit to the one for hyperbolic tetrahedron from [15] and holds
modulo 2π2 because of complicated ramification locus.

The authors are grateful to the referee for valuable remarks and suggestions.
The research of the first author was supported by the Swiss National Science Foun-
dation. The second author thanks University of Fribourg and especially Professor
Ruth Kellerhals for hospitality during his visit in December 2009.

2. Preliminary results

Let R
n+1={x=(x0, ..., xn):xi ∈R, i=1, ..., n} be Euclidean space equipped with

the standard inner product 〈x, y〉=
∑n

i=0 xiyi and norm ‖x‖=
√

〈x, x〉. Let p0, ..., pn

be vectors in R
n+1. Define a cone over a collection of vectors p0, ..., pn as

cone{p0, ..., pn} =
{ n∑

i=0

λipi : λi ≥ 0, i =1, ..., n

}

.

A spherical n-simplex S is the intersection of the cone over the collection
p0, ..., pn of linearly independent unitary vectors and the n-dimensional sphere S

n=
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{v ∈R
n :〈v, v〉=1}. Thus

S =cone{p0, ..., pn} ∩S
n.

The vectors p0, ..., pn are the vertices of a simplex S . Notice that {p0, ..., pn} ⊂S
n.

A (k −1)-dimensional face of S is the intersection of the cone over a k-element
sub-collection of linearly independent vectors

{pi1 , ..., pik
} ⊂ {p0, ..., pn}

with {i1<...<ik } ⊂ {0, ..., n}, 0≤k ≤n, and the sphere S
n.

The matrix G�={ 〈pi, pj 〉}n
i,j=0 is the edge matrix of a simplex S .

Let M={mij }n
i,j=0 be a matrix. Let M(i, j) denote the matrix obtained from

M by deletion of the ith row and jth column for i, j=0, ..., n. Put

Mij =(−1)i+j det M(i, j).

The quantity Mij is the (i, j)-cofactor of M . Then, cofM={Mij }n
i,j=0 is the cofactor

matrix of the matrix M .
The unit (outer) normal vector vi, i=0, ..., n, to an (n−1)-dimensional face

Si={pi1 , ..., pin }�{pi} of the simplex S is defined as (cf. [9])

vi =

∑n
k=0,k �=i G�

ikpk
√

G�
ii det G�

.

The matrix G={〈vi, vj 〉}n
i,j=0 is the Gram matrix of the simplex S .

Given a simplex S ⊂S
n with vertices {p1, ..., pn} and unit (outer) normal vec-

tors {v1, ..., vn} define its edge lengths as cos lij =〈pi, pj 〉 and (inner) dihedral angles
as cosαij =−〈vi, vj 〉 with 0≤lij , αij ≤π, i, j=0, ..., n. Then the Gram matrix of S
is G={− cosαij }n

i,j=0 and the edge matrix of S is G�={cos lij }n
i,j=0.

The sphere S
n is endowed with the natural metric of constant sectional curva-

ture +1. Call the given metric space the spherical space S
n. The isometry group

of the spherical space S
n is the orthogonal group O(n+1). Orientation-preserving

isometries of S
n compose the subgroup of index two in O(n+1), called SO(n+1).

The following theorems tackle existence of a spherical simplex with given Gram
matrix or edge matrix [9].

Theorem 2.1. The Gram matrix { − cos αij }n
i,j=0 of a spherical n-simplex is

symmetric, positive definite with diagonal entries equal to 1. Conversely, every
positive definite symmetric matrix with diagonal entries equal to 1 is the Gram
matrix of a spherical n-simplex that is unique up to an isometry.
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Theorem 2.2. The edge matrix {cos lij }n
i,j=0 of a spherical n-simplex is sym-

metric, positive definite with diagonal entries equal to 1. Conversely, every positive
definite symmetric matrix with diagonal entries equal to 1 is the edge matrix of a
spherical n-simplex that is unique up to an isometry.

The following theorem due to Ludwig Schläfli relates the volume of a given
simplex in the spherical space S

n with volumes of its apices and dihedral angles
between its faces [12] and [18].

Theorem 2.3. (The Schläfli formula) Let a simplex S in the space S
n, n≥2,

of constant sectional curvature +1 have dihedral angles αij =∠SiSj , 0≤i<j ≤n,
formed by the (n−1)-dimensional faces Si and Sj of S which intersect in the (n−2)-
dimensional apex Sij =Si ∩ Sj .

Then the differential of the volume function Voln on the set of all simplices in
S

n satisfies the equality

(n−1) d Voln S =
n∑

i,j=0
i<j

Voln−2 Sij dαij

where Voln−1 Sij is the (n−2)-dimensional volume function on the set of all (n−2)-
dimensional apices Sij , Vol0 Sij =1, 0≤i<j ≤n, and αij is the dihedral angle between
Si and Sj along Sij .

The Schläfli formula for the spherical space S
3 can be reduced to

d Vol S =
1
2

3∑

i,j=0
i<j

lij dαij ,

where Vol=Vol3 is the volume function, lij represents the length of the ijth edge
and αij represents the dihedral angle along it. So the volume of a simplex in S

3 is
related to its edge lengths and dihedral angles.

Given a simplex S ⊂S
n with vertices {p1, ..., pn} and unit normal vectors

{v1, ..., vn} define its dual S � ⊂S
n as the simplex with vertices {v1, ..., vn} and unit

normal vectors {p1, ..., pn}.
In case of the spherical space S

3 every edge pipj , 0≤i<j ≤3, of S corresponds
to the edge v3−jv3−i of its dual S �. The theorem below was originally discovered
by the Italian mathematician Duke Gaetano Sforza and can be found in [12].

Theorem 2.4. Let S be a simplex in the spherical space S
3 and let S � be its

dual. Then
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Figure 1. A spherical tetrahedron.

Vol3 S +Vol3 S �+
1
2

∑

E⊂ S
Vol1 E Vol1 E� =π2,

where the sum is taken over all edges E of S and E� denotes the edge of S � corre-
sponding to E.

In what follows we call a 3-dimensional simplex a tetrahedron for the sake of
brevity.

3. Trigonometric identities for a spherical tetrahedron

Let T be a tetrahedron in the spherical space S
3 with vertices p0, p1, p2

and p3, dihedral angles A, B, C, D, E and F and edge lengths lA, lB , lC , lD ,
lE and lF (see Figure 1). In the sequel we have that 0≤A, B, C, D, E, F ≤π and
0≤lA, lB , lC , lD, lE , lF ≤π.

Let

G� = {g�
ij }3

i,j=0 =

⎛

⎜
⎜
⎜
⎝

1 cos lA cos lB cos lC
cos lA 1 cos lF cos lE
cos lB cos lF 1 cos lD
cos lC cos lE cos lD 1

⎞

⎟
⎟
⎟
⎠

denote the edge matrix of T and

G= {gij }3
i,j=0 =

⎛

⎜
⎜
⎜
⎝

1 − cos D − cos E − cosF

− cos D 1 − cosC − cos B

− cosE − cosC 1 − cosA

− cosF − cos B − cosA 1

⎞

⎟
⎟
⎟
⎠

denote its Gram matrix.
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Let cij and c�
ij denote the cofactors of the matrices G and G� for i, j=0, 1, 2, 3.

Further, we mention several important trigonometric relations (see, e.g. [6]) to
be used below.

Theorem 3.1. (The sine rule) Given a spherical tetrahedron T with Gram
matrix G and edge matrix G� let Δ=det G and Δ�=det G�. Let p=c00c11c22c33

and p�=c�
00c

�
11c

�
22c

�
33. Then

sin lA sin lD
sin A sin D

=
sin lB sin lE
sin B sin E

=
sin lC sin lF
sinC sin F

=
Δ

√
p

=
√

p�

Δ�
.

Theorem 3.2. (The cosine rule) For the respective pairs of skew edges of a
spherical tetrahedron T the following equalities hold :

cos lA cos lD −cos lB cos lE
cos A cosD −cos B cosE

=
cos lB cos lE −cos lC cos lF
cosB cosE −cosC cos F

=
cos lC cos lF −cos lA cos lD
cosC cosF −cosA cos D

=
Δ

√
p

=
√

p�

Δ�
.

We also need the following theorem due to Jacobi (see [16, Théorème 2.5.2]).

Theorem 3.3. Let M={mij }n
i,j=0 be a matrix, cofM={Mij }n

i,j=0 be its co-
factor matrix, 0<k<n and

σ =

(
i0 ... in

j0 ... jn

)

be an arbitrary permutation. Then

det{Mipjq }k
p,q=0 =(−1)sgn σ(det M)k det{mipjq }n

p,q=k.

4. Trigonometric identities for a Z2-symmetric spherical tetrahedron

Consider a spherical tetrahedron T which is symmetric under rotation of angle
π about the axis that passes through the middle points of the edges p0p1 and p2p3.
We call such a tetrahedron Z2-symmetric (see Figure 2). Note, that in this case
lB=lE , lC =lF , B=E and C=F .

Lemma 4.1. For a Z2-symmetric spherical tetrahedron with dihedral angles
A, B=E, C=F and D, and edge lengths lA, lB=lE , lC =lF and lD the following
statements hold :

(i) lA=lD if and only if A=D;
(ii) lA>lD if and only if A<D.
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Figure 2. Z2-symmetric spherical tetrahedron.

Proof. As applied to the edge matrix G�, Theorem 3.3 gives the equality

c�
00c

�
23 −c�

01c
�
22 =Δ�(g�

01 −g�
23).

Recall that

g01 = − cos D =
c�
01√

c�
00c

�
11

, g23 = − cosA=
c�
23√

c�
22c

�
33

,

g�
01 =cos lA, g�

23 =cos lD.

For a spherical Z2-symmetric tetrahedron we have c�
00=c�

11>0 and c�
22=c�

33>0.
Thus,

cos lA −cos lD = − c�
00c

�
22

Δ�
(cosA−cos D).

As 0≤lA, lD ≤π and 0≤A, D ≤π, the assertions of the lemma follow. �

The trigonometric identities in Theorems 3.1 and 3.2 imply the following result.

Proposition 4.2. Let T be a Z2-symmetric spherical tetrahedron with dihedral
angles A, B=E, C=F and D, and edge lengths lA, lB=lE , lC =lF and lD. Then
the following equalities hold :

u =
sin 1

2 (lA+lD)
sin 1

2 (A+D)
=

sin 1
2 (lA −lD)

sin 1
2 (D −A)

=
sin lB
sin B

=
sin lC
sinC

=
1
v
,

where

u =

√
c�
00c

�
22

Δ�
and v =

√
c00c22

Δ

are the principal and the dual parameters of the tetrahedron T.
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Proof. Recall the common property of ratios

a

b
=

c

d
=

a−c

b−d
=

a+c

b+d
.

By use of the equalities above and the trigonometric identities

cos(ϕ+ψ) = cosϕ cos ψ −sinϕ sin ψ,

cos(ϕ−ψ) = cosϕ cos ψ+sinϕ sin ψ

we deduce from Theorems 3.1 and 3.2 the relations

Δ
c00c22

=
1−cos(lA+lD)
1−cos(A+D)

=
1−cos(lA −lD)
1−cos(D −A)

=
sin2 lB

sin2 B
=

sin2 lC

sin2 C
=

c�
00c

�
22

Δ�
.

The quantities u and v are positive real numbers satisfying uv=1. Using the identity
1−cosϕ=2 sin2(ϕ/2) it follows that

u2 =
sin2 1

2 (lA+lD)
sin2 1

2 (A+D)
=

sin2 1
2 (lA −lD)

sin2 1
2 (D −A)

=
sin2 lB

sin2 B
=

sin2 lC

sin2 C
=

1
v2

.

Taking square roots in accordance with Lemma 4.1 finishes the proof. �

5. Volume formula for a Z2-symmetric spherical tetrahedron

5.1. Further trigonometric identities for a Z2-symmetric spherical tetra-
hedron

Let T be a Z2-symmetric spherical tetrahedron with dihedral angles A, B=E,
C=F and D, and edge lengths lA, lB=lE , lC =lF and lD . The following notation
will be of use below:

a+ =cos
lA+lD

2
, a− =cos

lA −lD
2

, b =cos lB and c =cos lC ,

and

A+ =cos
A+D

2
, A − =cos

D −A

2
, B =cos B and C =cos C.

The lemma below gives a useful identity that follows from the definition of the
principal parameter u for the tetrahedron T.
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Lemma 5.1. The principal parameter u of the tetrahedron T is the positive
root of the quadratic equation

u2+
4(a+a− −bc)(a+b−a−c)(a+c−a−b)

Δ�
=1,

where

Δ� =(a++a− +b+c)(a++a− −b−c)(a+ −a− −b+c)(a+ −a− +b−c).

Proof. Substitute u from Proposition 4.2, then express the product of c�
00 and

c�
22 as a polynomial in the new variables a+, a−, b and c, and proceed with straight-

forward computations. �

As for the dual parameter of T, the following lemma holds.

Lemma 5.2. The dual parameter u of the tetrahedron T is the positive root
of the quadratic equation

v2 − 4(A+A − +B C)(A+ B +A − C)(A+ C +A − B)
Δ

=1,

where

Δ=(A − − A+ − B − C)(A − − A++B +C)(A − +A+ − B +C)(A − +A++B − C).

In what follows we call a spherical tetrahedron Ts with dihedral angles α, β,
γ, δ, ε and ϕ, and edge lengths lα, lβ , lγ , lδ , lε and lϕ, symmetric if lα=lδ , lβ=lε
and lγ =lϕ, or equivalently α=δ, β=ε and δ=ϕ.

Let

ã =cos lα, b̃=cos lβ , c̃=cos lγ ,

Ã=cos α, B̃ =cos β, C̃ =cos γ.

The following trigonometric identities were proven in [6].

Proposition 5.3. Let Ts be a symmetric spherical tetrahedron with dihedral
angles α=δ, β=ε and γ=ϕ, and edge lengths lα=lδ , lβ=lε and lγ =lϕ. Then the
following equalities hold :

sin lα
sin α

=
sin lβ
sin β

=
sin lγ
sin γ

=us,
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where us is the positive root of the quadratic equation

u2
s+

4(ã−b̃c̃)(b̃−ãc̃)(c̃−ãb̃)
δ�

=1

with
δ� =(ã+b̃+c̃+1)(ã−b̃−c̃+1)(b̃−ã−c̃+1)(c̃−ã−b̃+1)

representing the principal parameter us of the tetrahedron Ts.

Meanwhile, the dual parameter of Ts is the positive root of the equation

v2
s − 4(Ã+B̃C̃)(B̃+ÃC̃)(C̃+ÃB̃)

δ
=1

with
δ =(1−Ã−B̃ −C̃)(1−Ã+B̃+C̃)(1+Ã−B̃+C̃)(1+Ã+B̃ −C̃).

The following lemma shows the correspondence between Z2-symmetric and
symmetric spherical tetrahedra.

Lemma 5.4. Let T be a Z2-symmetric spherical tetrahedron with dihedral
angles A, B=E, C=F and D, and edge lengths lA, lB=lE , lC =lF and lD. Then
there exists an associated symmetric tetrahedron Ts with Gram matrix

Gs =

⎛

⎜
⎜
⎜
⎝

1 − cos α − cosβ − cos γ

− cosα 1 − cos γ − cos β

− cosβ − cos γ 1 − cosα

− cos γ − cosβ − cosα 1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − A+

A −
− B

A −
− C

A −

− A+

A −
1 − C

A −
− B

A −

− B
A −

− C
A −

1 − A+

A −

− C
A −

− B
A −

− A+

A −
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and edge matrix

G�
s =

⎛

⎜
⎜
⎜
⎝

1 cos lα cos lβ cos lγ

cos lα 1 cos lγ cos lβ

cos lβ cos lγ 1 cos lα

cos lγ cos lβ cos lγ 1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
a+

a−

b

a−

c

a−

a+

a−
1

c

a−

b

a−

b

a−

c

a−
1

a+

a−

c

a−

b

a−

a+

a−
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Proof. Let s�
ii, i=0, 1, 2, 3, denote the principal cofactors of G�

s . To prove
existence of Ts it suffices, by Theorem 2.2, to show that det G�

s>0 and s�
ii>0,

i=0, 1, 2, 3. We have that

det G�
s =

det G�

a4
−

> 0

and

s�
00 − c�

00

a2
−

= − 2
a2

−
(a+a− −bc) sin

lA −lD
2

sin lA,

s�
00 − c�

22

a2
−

=
2
a2

−
(a+a− −bc) sin

lA −lD
2

sin lD.

From the former two equalities we deduce that depending on the sign of their right-
hand parts either s�

00 ≥c�
00/a2

− or s�
00 ≥c�

22/a2
−. As far as the tetrahedron T exists

then c�
00>0 and c�

22>0. It follows that s�
00=s�

11=s�
22=s�

33>0. Thus, the tetrahedron
Ts exists.

For the edge lengths of the symmetric spherical tetrahedron Ts one has

cos lα =
a+

a−
, cos lβ =

b

a−
and cos lγ =

c

a−
.

We need to prove that

cosα =
A+

A −
, cos β =

B
A −

and cos γ =
C

A −
.

We refer to Proposition 4.2 together with Lemma 5.1 and note that the follow-
ing relation holds between the principal parameters u and us of the tetrahedra T
and Ts, respectively:

1−u2 = a2
−(1−u2

s).

Substituting

u =
sin 1

2 (lA+lD)
sin 1

2 (A+D)

from Proposition 4.2 and

us =
sin lα
sin α

from Proposition 5.3 to the relation above one obtains

cos2 α =
cos2 1

2 (A+D)
1−(sin2 1

2 (lA −lD))/u2
=

cos2 1
2 (A+D)

cos2 1
2 (D −A)

=
A2

+

A2
−

.

Thus,

cos α = ±
cos 1

2 (A+D)
cos 1

2 (D −A)
= ± A+

A −
.
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We should choose the proper sign in the equality above. Note, that if T is sym-
metric, i.e. lA=lD , then G�

s=G�. That means that T has an isometric associated
symmetric tetrahedron Ts. Thus, the Gram matrices for the tetrahedra T and Ts

mentioned in the assertions of the lemma coincide. In order for the equality Gs=G

to hold if T is symmetric, we put

cosα =
cos 1

2 (A+D)
cos 1

2 (D −A)
=

A+

A −
.

The rest of the proof follows by analogy. �

Define the auxiliary parameters of the tetrahedron T:

t2 =1−u2 =
4(a+a− −bc)(a+b−a−c)(a+c−a−b)

Δ�

and

τ2 = v2 −1 =
4(A+A − +B C)(A+ B +A − C)(A+ C +A − B)

Δ
.

By Lemma 5.1 the quantity t could be either real or pure imaginary. We choose
t to be non-negative or to have non-negative imaginary part. Under the same rule
the quantity τ is chosen. From Proposition 4.2 it follows that τ =t/u.

The quantity t is related to the parameters a+, a−, b and c of the tetrahedron
T in the following way.

Lemma 5.5. Let T be a Z2-symmetric spherical tetrahedron with dihedral
angles A, B=E, C=F and D, and edge lengths lA, lB=lE , lC =lF and lD . Then

(i) a2
− −t2=a6

−(s�
00)

2/Δ�;
(ii) a2

+ −t2=a6
−(s�

01)
2/Δ�;

(iii) b2 −t2=a6
−(s�

02)
2/Δ�;

(iv) c2 −t2=a6
−(s�

03)
2/Δ�;

where s�
ij , i, j=0, 1, 2, 3, are the cofactors of the matrix

G�
s =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
a+

a−

b

a−

c

a−

a+

a−
1

c

a−

b

a−

b

a−

c

a−
1

a+

a−

c

a−

b

a−

a+

a−
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Proof. Substitute the expression for t2 from above and proceed with straight-
forward computations. �

The following proposition is used to determine the signs of the cofactors cij and
c�
ij for i, j=0, 1, 2, 3 of the matrices G={gij }3

i,j=0 and G�={g�
ij }3

i,j=0 depending on
the signs of their entries.

Proposition 5.6. The following inequalities hold between entries and cofac-
tors of Gram and edge matrices for a spherical tetrahedron T:

(i) gijc
�
ij ≥0;

(ii) g�
ijcij ≥0;

where i, j=0, 1, 2, 3.

Proof. By [2, Chapter 1, Section 4.2] we have

gij =
c�
ij√

c�
iic

�
jj

, g�
ij =

cij√
ciicjj

, cii > 0 and c�
ii > 0

for i, j=0, 1, 2, 3. Thus

gijc
�
ij =

(c�
ij)

2

√
c�
iic

�
jj

≥ 0 and g�
ijcij =

c2
ij√

ciicjj
≥ 0

for i, j=0, 1, 2, 3. �

The following lemma provides some useful identities that are used below.

Lemma 5.7. The following equalities hold :
(i) Re arsinh x+Re arsinh y=Re arsinh

(
x
√

y2 −1+y
√

x2 −1
)
, where

x, y ∈iR, Imx, Im y ≥0,
(ii) Re arsinh x−Re arsinh y=Re arsinh

(
−x

√
y2 −1+y

√
x2 −1

)
, where

x, y ∈iR, Imx, Im y ≥0,
(iii) Re arsinh x+Re arsinh y=Re arsinh

(
x
√

y2+1+y
√

x2+1
)
, where

x, y ∈R, x, y ≥0,
(iv) Re arsinh x−Re arsinh y=Re arsinh

(
x
√

y2+1−y
√

x2+1
)
, where

x, y ∈R, x, y ≥0.

Proof. Using the logarithmic representation for the function arsinh and prop-
erties of the complex logarithm log one derives the statement of the lemma for the
real parts of the corresponding expressions. �
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We need the relations below to derive the volume formulæ for a Z2-symmetric
spherical tetrahedron.

Proposition 5.8. Let T be a Z2-symmetric spherical tetrahedron with dihedral
angles A, B=E, C=F and D, and edge lengths lA, lB=lE , lC =lF and lD. Without
loss of generality, assume that lA ≥lD or, equivalently, D ≥A and, furthermore, that
B ≤C.

Then the following cases are possible:
(i) if A+D ≥π, B ≥π/2, C ≥π/2 and t2 ≤0, then

Re
(

arsinh
a+

t
+arsinh

b

t
+arsinh

c

t
+arsinh

a−

t

)

=0,

(ii) if A+D ≥π, B ≤π/2 and C ≥π/2, then t2 ≥0 and

Re
(

− arsinh
a+

t
+arsinh

b

t
−arsinh

c

t
−arsinh

a−

t

)

=0,

(iii) if A+D ≥π, B ≤π/2, C ≤π/2 and t2 ≤0, then

Re
(

− arsinh
a+

t
+arsinh

b

t
+arsinh

c

t
−arsinh

a−

t

)

=0,

(iv) if A+D ≤π, B ≥π/2 and C ≥π/2, then t2 ≥0 and

Re
(

arsinh
a+

t
−arsinh

b

t
−arsinh

c

t
−arsinh

a−

t

)

=0,

(v) if A+D ≤π, B ≤π/2, C ≥π/2 and t2 ≤0, then

Re
(

arsinh
a+

t
+arsinh

b

t
−arsinh

c

t
−arsinh

a−

t

)

=0.

(vi) if A+D ≤π, B ≤π/2 and C ≤π/2, then t2 ≥0 and

Re
(

arsinh
a+

t
+arsinh

b

t
+arsinh

c

t
−arsinh

a−

t

)

=0,

Proof. Consider case (i). For the edge matrix G�
s of the associated symmetric

tetrahedron we have the equality

c

a−
s�
00+

b

a−
s�
01+

a+

a−
s�
02+s�

03 =0.

Proposition 5.6 and Lemma 5.4 imply that

s�
00 ≥ 0, s�

01A+ ≤ 0, s�
02B ≤ 0 and s�

03C ≤ 0,
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where all the quantities

A+ =cos
A+D

2
, B =cos B and C =cos C

are non-positive under the assumptions of case (i).
Meanwhile A − =cos 1

2 (D −A) is non-negative. Therefore

s�
00 ≥ 0, s�

01 ≥ 0, s�
02 ≥ 0 and s�

03 ≥ 0

and, by Lemma 5.5,
√

a2
− −t2 = a3

−
s�
00√
Δ

,
√

a2
+ −t2 = a3

−
s�
01√
Δ

,

√
b2 −t2 = a3

−
s�
02√
Δ

,
√

c2 −t2 = a3
−

s�
03√
Δ

.

Hence
a+

√
b2 −t2+b

√
a2

+ −t2 = −c
√

a2
− −t2 −a−

√
c2 −t2.

Suppose that t �=0. Then an equivalent form of the equality above is

b

t

√
a2

+

t2
−1+

a+

t

√
b2

t2
−1 = − c

t

√
a2

−

t2
−1− a−

t

√
c2

t2
−1.

Applying arsinh to both sides of the equality above and making use of relation
(i) from Lemma 5.7, one obtains the equality (i) of the present proposition. If t=0,
then the statement holds in the limiting case t→0. The proof for cases (iii) and (v)
follows by analogy.

Consider now the cases (ii), (iv) and (vi). Note that a consequence of the
assumptions imposed on the parameters A, B, C and D is that the quantity τ is
purely imaginary and Im τ ≥0. Then t is also purely imaginary and Im t≥0. The
rest of the proof follows by analogy with cases (i), (iii) and (v), making use of
Lemma 5.7. �

Proposition 5.9. Let T be a Z2-symmetric spherical tetrahedron with dihedral
angles A, B=E, C=F and D, and edge lengths lA, lB=lE , lC =lF and lD. Without
loss of generality, assume that A≥D or, equivalently, lA ≤lD and, furthermore, that
lB ≥lC .

Then in the cases
(i)� A+D ≥π, B ≥π/2, C ≥π/2 and t2 ≥0;
(ii)� A+D ≥π, B ≤π/2, C ≤π/2 and t2 ≥0;
(iii)� A+D ≤π, B ≤π/2, C ≥π/2 and t2 ≥0;

Proposition 5.8 holds for the tetrahedron T� which is dual to the given one.
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Proof. By means of the equality

t2 =
4(a+a− −bc)(a+b−a−c)(a+c−a−b)

Δ
,

with a+=cos 1
2 (lA+lD), b=cos lB , c=cos lC and a− =cos 1

2 (lD −lA), the parameter
t can be real only if not all of the quantities a+, b and c are negative.

Without loss of generality, assume that the following cases are possible:
(i)�� lA+lD ≤π, lB ≤π/2 and lC ≤π/2;
(ii)�� lA+lD ≤π, lB ≥π/2 and lC ≥π/2;
(iii)�� lA+lD ≥π, lB ≥π/2 and lC ≤π/2.
Each case above implies that the dihedral angles of the dual tetrahedron T� fall

under conditions (i), (iii) or (v) of Proposition 5.8. Parameter τ� of the tetrahedron
T� computed from its dihedral angles is subject to the equality (τ�)2=−t2 ≤0. It
implies that the parameter t� for the dual tetrahedron T� computed from its edge
lengths also satisfies the condition (t�)2 ≤0.

Thus, the tetrahedron T�, which is dual to the given one, falls under one of
the cases (i), (iii) and (v) of Proposition 5.8. �

5.2. Volume of a Z2-symmetric spherical tetrahedron

Let T be a Z2-symmetric spherical tetrahedron with dihedral angles A, B=E,
C=F and D, and edge lengths lA, lB=lE , lC =lF and lD. Let

l+A =
lA+lD

2
, l−

A =
lA −lD

2
, A+ =

A+D

2
, A− =

D −A

2
,

a+ = cos l+A, a− = cos l−
A, b = cos lB , c = cos lC .

Recall that the principal parameter u of the tetrahedron T is the positive root of
the quadratic equation

u2+
4(a+a− −bc)(a+b−a−c)(a+c−a−b)

Δ�
=1,

with

Δ� =(a++a− +b+c)(a++a− −b−c)(a+ −a− −b+c)(a+ −a− +b−c).

The auxiliary parameter t from Proposition 5.8 satisfies the equality

t2 =1−u2 =
4(a+a− −bc)(a+b−a−c)(a+c−a−b)

Δ�
.

Without loss of generality, distinguish the following cases:
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(i) A+ ≥π/2, B ≥π/2, C ≥π/2 and t2 ≤0;
(i)� A+ ≥π/2, B ≥π/2, C ≥π/2 and t2 ≥0;
(ii) A+ ≥π/2, B ≤π/2 and C ≥π/2;
(iii) A+ ≥π/2, B ≤π/2, C ≤π/2 and t2 ≤0;
(iii)� A+ ≥π/2, B ≤π/2, C ≤π/2 and t2 ≥0;
(iv) A+ ≤π/2, B ≥π/2 and C ≥π/2;
(v) A+ ≤π/2, B ≤π/2, C ≥π/2 and t2 ≤0;
(v)� A+ ≤π/2, B ≤π/2, C ≥π/2 and t2 ≥0;
(vi) A+ ≤π/2, B ≤π/2 and C ≤π/2.

Define the auxiliary function

V(, u) =
1
2

∫ π/2

�

Im log
1−i

√
u2/sin2 σ −1

1+i
√

u2/sin2 σ −1
dσ

for all (, u)∈R
2. The branch cut of log runs from −∞ to 0. The detailed properties

of the function V will be specified in the next section.
Set

H =
(π

2
−A+

)
l+A+

(π

2
−B

)
lB+

(π

2
−C

)
lC −

(π

2
−A−

)
l−
A

and

I =sgn
(π

2
−A+

)
V(l+A, u)+sgn

(π

2
−B

)
V(lB , u)+sgn

(π

2
−C

)
V(lC , u)−V(l−

A, u),

where sgn denotes the sign function.
The following theorem holds.

Theorem 5.10. Let T be a Z2-symmetric spherical tetrahedron with dihedral
angles A, B=E, C=F and D, and edge lengths lA, lB=lE , lC =lF and lD. Without
loss of generality, assume that A≤D or, equivalently, lA ≥lD and, furthermore, that
B ≤C. If t2 ≤0, then

VolT= I − H.

Proof. To prove the theorem we need to show that
(a) the function VolT satisfies the Schläfli formula from Theorem 2.3;
(b) the function VolT for the tetrahedron T with edge lengths lA=lB=lC =

lD=π/2 equals π2/8.
Subject to the condition of the theorem, the possible cases from above are

(i)–(vi). Consider case (i): π/2≤A+ ≤π, π/2≤B ≤π and π/2≤C ≤π. By the as-
sumption of the theorem one has 0≤A− ≤π/2. Thus,

I = −V(l+A, u)−V(lB , u)−V(lC , u)−V(l−
A, u)
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and
H =

(π

2
−A+

)
l+A+

(π

2
−B

)
lB+

(π

2
−C

)
lC −

(π

2
−A−

)
l−
A.

Note that if u≥0 and 0≤≤π then

V(, u) =
∫ π/2

�

Re arcsin
sin σ

u
dσ+

π

2

(
− π

2

)
,

where the branch cut of arcsin is (−∞, −1)∪(1, ∞).
It follows that the considered function equals

VolT=I+H+π2,

where

I = −
∫ π/2

l+A

Re arcsin
sin σ

u
dσ −

∫ π/2

lB

Re arcsin
sin σ

u
dσ

−
∫ π/2

lC

Re arcsin
sinσ

u
dσ −

∫ π/2

l−
A

Re arcsin
sin σ

u
dσ −πl+A −πlB −πlC ,

and

H=A+l+A+BlB+ClC −A−l−
A = 1

2AlA+BlB+ClC + 1
2DlD.

Once we prove that

d I = − 1
2AdlA −B dlB −C dlC − 1

2D dlD

it follows that
d VolT= 1

2 lA dA+lB dB+lC dC+ 1
2 lD dD

and condition (a) is fulfilled.
Compute the partial derivative

∂I
∂lA

= − 1
2

arcsin
sin l+A

u
+

1
2

arcsin
sin l−

A

u
− π

2
+

1
u

∂u

∂lA
F(l+A, lB , lC , l−

A, u),

where

F(l+A, lB , lC , l−
A, u) = Re

(

arsinh
cos l+A√
1−u2

+arsinh
cos lB√
1−u2

+arsinh
cos lC√
1−u2

+arsinh
cos l−

A√
1−u2

)

.
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Proposition 5.8 implies that F(l+A, lB , lC , l−
A, u)=0. Then, by Proposition 4.2, the

following equality hold:

∂I
∂lA

= − 1
2

arcsin
sin l+A

u
+

1
2

arcsin
sin l−

A

u
− π

2

=
1
2

arcsin sin A++
1
2

arcsin sinA− − π

2

=
1
2

(

π − A+D

2

)

+
1
2

D −A

2
− π

2
= − A

2
,

taking into account that

arcsin sinx=

{
x, if 0≤x≤π/2,

π −x, if π/2≤x≤π.

Analogously,
∂I
∂lB

= −B,
∂I
∂lC

= −C and
∂I
∂lD

= − D

2
.

Thus, condition (a) is satisfied.
Compute the function VolT with l+A=lB=lC =π/2, l−

A=0, A+=B=C=π/2
and A− =0, setting u=1 as follows from Proposition 4.2. Then one has VolT=π2/8
and condition (b) holds. Thus the theorem has been proven for case (i).

The proof for cases (ii), (iii), (iv), (v) and (vi) follows by analogy. �

In the cases (i)�, (iii)� and (v)� the following theorem holds.

Theorem 5.11. Let T be a spherical Z2-symmetric tetrahedron with dihedral
angles A, B=E, C=F and D, and edge lengths lA, lB=lE , lC =lF and lD. Without
loss of generality, assume that A≥D or, equivalently, lA ≤lD and, furthermore, that
lB ≥lC . Then, in case the tetrahedron T satisfies the condition t2 ≥0, the statement
of Theorem 5.10 holds for the tetrahedron T� which is dual to the given one.

Proof. The proof follows by analogy with Theorem 5.10 using Proposition 5.9
instead of Proposition 5.8. �

To find the volume of a tetrahedron T that respects the conditions of Theo-
rem 5.11 one may apply Theorem 5.10 to the dual tetrahedron T� and then make
use of the Sforza formula from Theorem 2.4.
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5.3. Computation of certain volumes

It follows from Lemma 5.14 of the next section that in case u=1 the function
V(, u) has a rather elementary form. Thus, the volume of a tetrahedron with
the principal parameter u=1 can be represented by the elementary functions. The
equality u=1 means the same as t=0, because of the relation t2=u2 −1 and the
non-negativity of u.

Consider the associated symmetric tetrahedron Ts with its auxiliary parameter
ts=0 because of the relation t=a−ts between t and ts from the proof of Lemma 5.4.

By Lemma 5.4 one has

ts =
4(ã−b̃c̃)(b̃−ãc̃)(c̃−ãb̃)

Δ�
,

where Δ�=det G�
s is the determinant of the edge matrix G�

s of the tetrahedron Ts.
Also the following equalities hold:

ã=cos lα =
a+

a−
, b̃ =cos lβ =

b

a−
and c̃ =cos lγ =

c

a−
.

The equality ts=0 gives three cases: ã−b̃c̃=0, or b̃−ãc̃=0, or c̃−ãb̃=0. To-
gether, these equalities imply either ã=b̃=c̃=±1 in which case the tetrahedron is
T degenerate, or ã=b̃=c̃=0 in which case both tetrahedra T and Ts are isometric
to an equilateral tetrahedron with edge length π/2.

Without loss of generality, suppose that only two of the equalities above hold:
b̃−ãc̃=0 and c̃−ãb̃=0. If the tetrahedron Ts is not degenerate, then one obtains
b̃=c̃=0. Therefore, the tetrahedra Ts provide a one-parametric family of tetrahedra
with 0<lα<π and lβ=lγ =π/2. The associated tetrahedron T has edge lengths
0<lA, lD<π and lB=lC =π/2.

Suppose now that only one equality, namely ã−b̃c̃=0, holds. By Lemma 5.4
and formulæ of spherical geometry from [2, Chapter 1, Section 4.2] one obtains

cos α = −ã, cos β = b̃ and cos γ = c̃.

Thus, for T the following inequalities hold:

cos l+A cosA+ ≤ 0, cos lB cos B ≥ 0 and cos lC cosC ≥ 0.

Apply Theorem 4.2 to the tetrahedron T with principal parameter u=1 and
obtain that

sin l+A =sin A+, sin lB =sin B, sin lC =sin C and sin l−
A =sin A−.
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From the above one derives the equalities

A+ =π −l+A, B = lB , C = lC and A− = l−
A

or, equivalently,

A=π −lA, B = lB , C = lC and D =π −lD.

The cases of equalities b̃−ãc̃=0 and c̃−ãb̃=0 are analogous. Moreover, they
are the same up to a permutation of the parameters lB and lC of the tetrahedron T.

Thus, the other possible equalities are

A= lD, B =π −lB , C = lC and D = lA

or
A= lD, B = lB , C =π −lC and D = lA.

Note, that the last three considered cases cover all the occasions mentioned
above, namely an equilateral tetrahedron with edge length π/2 or a family of tetra-
hedra with edge lengths 0<lA, lD<π and lB=lC =π/2.

The following statement holds.

Proposition 5.12. Let T be a Z2-symmetric spherical tetrahedron. Suppose
either

cos l+A cos l−
A −cos lB cos lC =0,

or
cos lB cos l−

A −cos l+A cos lC =0,

or
cos lC cos l−

A −cos l+A cos lB =0.

Then the volume of T is given by the corresponding formula: either

VolT=
1
2

(

− l2A
2

+l2B+l2C − l2D
2

)

,

or

VolT=
lAlD −l2B+l2C

2
,

or

VolT=
lAlD+l2B −l2C

2
.
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Proof. Let us consider the case cos l+A cos l−
A −cos lB cos lC =0. From the con-

sideration above one obtains that A=π −lA, B=lB , C=lC and D=π −lD . The
principal parameter u of T satisfies the equality u=1. Apply Theorem 5.10 and
Lemma 5.14 to compute the volume of T using elementary functions. Simplifying
the corresponding equation one arrives at the statement of the proposition. The
proof for the other cases follows by analogy. �

Note that the claims of Proposition 5.12 on the tetrahedron T imply that its
associated symmetric tetrahedron Ts has at least one face which is a right triangle.
The tetrahedron T itself might not have such a one.

5.4. Properties of the auxiliary function V(�, u)

The list of basic properties which the function

V(, u) =
1
2

∫ π/2

�

Im log
1−i

√
u2/sin2 σ −1

1+i
√

u2/sin2 σ −1
dσ

with (, u)∈R
2 enjoys is given below.

Lemma 5.13. The function V defined above satisfies the following properties,
for all (, u)∈R

2:
(i) V is continuous and a.e. differentiable in R

2;
(ii) V(, u)=V(, −u);
(iii) V(π −, u)=−V(, u);
(iv) V(, u)+V(−, u)=2V(0, u);
(v) V(+kπ, u)=V(, u)−2kV(0, u) for all k ∈Z, i.e. V(, u) is linear periodic

with respect to .

Proof. The properties (i)–(iii) follow immediately from the definition of the
function V.

To prove (iv) notice that the equality holds if =0. In accordance with the
definition of V, the derivatives of both sides of (iv) with respect to  vanish. Thus,
the equality holds.

The derivatives of both sides of (v) with respect to  are equal. Verification of
the equality for =0 results in the complete proof of (v). Indeed, by (iii) and (iv)
it follows that

V(π+kπ, u) = −V(−kπ, u) and −V(−kπ, u)=V(kπ, u)−2V(0, u),
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with k ∈Z. Hence

V(π+kπ, u)=V(kπ, u)−2V(0, u) = ... =V(0, u)−2(k+1)V(0, u)

and equality (v) holds. �

For the special value of u=1 the function V(, 1) can be expressed by elemen-
tary functions.

Lemma 5.14. The function V(, u) with u=1, 0≤≤π, can be expressed as

V(, 1) =
1
2

(
− π

2

)∣
∣
∣− π

2

∣
∣
∣.

Proof. Notice, that if u≥0 and 0≤≤π then

V(, u) =
∫ π/2

�

Re arcsin
sinσ

u
dσ+

π

2

(
− π

2

)
.

Put u=1 and use the equality

arcsin sinx=

{
x, if 0≤x≤π/2,

π −x, if π/2≤x≤π.

It follows that

V(, 1) =

⎧
⎪⎨

⎪⎩

− 1
2

(
− π

2

)2

, if 0 ≤  ≤ π/2,

1
2

(
− π

2

)2

, if π/2 ≤  ≤ π.

�

If u≥1 then we have the following result.

Lemma 5.15. The function V(, u) with u≥1 has the series representation

V(, u) =
π

2

(
− π

2

)
+

∞∑

k=0

pk
u−2k−1

(2k+1)2

with pk=1−B
(
sin ; k+1, 1

2

)
/B

(
k+1, 1

2

)
, where B( · , · ) is the beta-function and

B( · ; · , · ) is the incomplete beta-function.
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Proof. Use the following series representation of the integrand in the expression
for V(, u) with respect to the variable u at the point u=∞:

1
2 Im log

1−i
√

u2/sin2 σ −1

1+i
√

u2/sin2 σ −1
=

π

2
+

∞∑

k=0

(2k+1)!!
k!2k(2k+1)2

( sin σ

u

)2k+1

.

The representation above holds for all u∈[1, ∞) and σ ∈R. Integrating the series
above with respect to σ from  to π/2 with ∈[0, π] finishes the proof. �

If u≤1 then the function V(, u) has discontinuous second partial derivatives.
Their points of discontinuity in the set [0, π]×(0, 1) are (π/2±(π/2−arcsinu), u).
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