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Area-preserving isotopies of self-transverse
immersions of S1 in R

2

Cecilia Karlsson

Abstract. Let C and C′ be two smooth self-transverse immersions of S1 into R
2. Both C

and C′ subdivide the plane into a number of disks and one unbounded component. An isotopy of

the plane which takes C to C′ induces a one-to-one correspondence between the disks of C and C′.

An obvious necessary condition for there to exist an area-preserving isotopy of the plane taking

C to C′ is that there exists an isotopy for which the area of every disk of C equals that of the

corresponding disk of C′. In this paper we show that this is also a sufficient condition.

1. Introduction

Let C be a smooth self-transverse immersion of S1 into the plane R
2 (by Sard’s

theorem any immersion is self-transverse after an arbitrarily small perturbation).
Then C subdivides the plane into a number of bounded connected components and
one unbounded component. The bounded components are topological disks and we
call them the disks of C. Let C ′ be another self-transverse immersion of S1 into
R

2 such that there exists an isotopy of the plane taking C to C ′. Then the isotopy
induces a one-to-one correspondence between the disks of C and the disks of C ′.

In this paper we study the existence of area-preserving isotopies of the plane
taking C to C ′, where, if dx∧dy denotes the standard area form on R

2, we say
that an isotopy φτ : R

2→R
2, 0≤τ ≤1, is area-preserving if φ∗

τ (dx∧dy)=dx∧dy for
every τ ∈[0, 1]. Since φτ being area-preserving implies that area(φτ (U))=area(U)
for any measurable U ⊂R

2, an obvious necessary condition for the existence of an
area-preserving isotopy φτ taking C to C ′ is that the area of any disk D of C

satisfies
(1) area(D) = area(D′),

where D′ is the disk of C ′ which corresponds to D under φτ . We call an isotopy
which satisfies (1) disk-area-preserving. The main result of the paper shows that
this is also a sufficient condition. More precisely, we have the following result.
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Theorem 1.1. Let C and C ′ be two self-transverse immersions of S1 into R
2

and assume that there is a disk-area-preserving isotopy ψτ , 0≤τ ≤1, of R
2 taking

C to C ′ (i.e., ψ0=id, ψ1(C)=C ′, and area(ψ1(D))=area(D) for every disk D of
C). Then there exists an area-preserving isotopy φτ , 0≤τ ≤1, of R

2 with φ0=id
and φ1(C)=C ′.

Theorem 1.1 is proved in Section 5. Problems related to the existence of a
topological isotopy (without area condition) taking C to C ′ were studied by many
authors, see e.g. [2], [6] and [7].

From the point of view of symplectic geometry, C is an immersed Lagrangian
submanifold, and on the plane area-preserving isotopies are Hamiltonian isotopies.
For related questions in higher dimensions see e.g. [3], [4] and [5].

In short outline, our proof of Theorem 1.1 is as follows. First, we construct
an isotopy χτ which takes C to C ′ and such that for every disk D of C we have
area(χτ (D))=area(D) for all τ . We call such an isotopy semi-area-preserving. The
semi-area-preserving isotopy is constructed from the disk-area-preserving isotopy
ψτ by first composing it with a time-dependent scaling so that the resulting isotopy
γτ shrinks the area of each disk of C for all times. The isotopy γτ is then modified:
we introduce a time-dependent area form ωτ such that the area of every disk of
C is constant under γτ with respect to ωτ and then we use Moser’s trick to find
an isotopy φτ such that φ∗

τ dx∧dy=ωτ , and hence the isotopy φτ ◦γτ is semi-area-
preserving, see Section 3. Second, we subdivide the semi-area-preserving isotopy
into small time steps and use a cohomological argument to show the existence of
an area-preserving isotopy, see Section 4.

For simpler notation below, we assume that all maps are smooth and that all
immersions are self-transverse.

Acknowledgements. I would like to thank Tobias Ekholm for helpful discus-
sions and for supervising the master thesis on which this paper is based. I would
also like to thank Georgios Dimitroglou Rizell for the central ideas of the proof of
Lemmas 3.1 and 3.2.

2. Background

In this section we introduce notation and discuss standard background material
on Hamiltonian vector fields on surfaces.

Let M be a surface and let v : M→TM be a vector field with compact support.
We write Φt

v : M→M for the time-t flow of v.
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Let ω be a symplectic form on M and write I : T ∗M→TM for the isomorphism
defined through the equation

α(η) =ω(η, I(α)) for all α ∈ T ∗M and η ∈ TxM.

Let H : M→R be a smooth function with compact support. The vector field XH =
I(dH) is the Hamiltonian vector field of H and its flow is area-preserving.

Let C be an immersion of S1 into the plane and let ϕ : S1→R
2 be a parameter-

ization of C. Write e(s) for the unit vector field along C such that (dϕ/ds(s), e(s))
is a positively oriented basis of R

2 for all s∈S1. Then for all sufficiently small ε>0
the map Φ: S1 ×(−ε, ε)→R

2, given by

(2) Φ(s, t) =ϕ(s)+te(s),

parameterizes a neighborhood Cε of C. Notice that if C has double points then
this parameterization is not one-to-one.

Let dx∧dy be the standard symplectic form on R
2 and consider coordinates

(s, t) on S1 ×R=(R/2πZ)×R with the corresponding symplectic form ds∧dt. The
following lemma is a special case of Moser’s lemma, see e.g. [1] for a proof.

Lemma 2.1. Let C be an immersion of S1 in R
2 and let Φ be as in (2). Then

there exists a δ>0 and a diffeomorphism ϑ : S1 ×R→S1 ×R with ϑ(s, 0)=(s, 0) such
that

(Φ◦ϑ)∗ dx∧dy = ds∧dt

for all |t|<δ.

Below we will often combine Lemma 2.1 with a Hamiltonian isotopy of S1 ×R.
In the following lemma we use this argument to construct area-preserving isotopies
between nearby curves C and C ′ which agree near double points. We will use the
following terminology: For an immersed circle C ⊂R

2, we call an arc A⊂C maximal
smooth of C if A∩ {xi}n

i=1={xi, xj }=∂A, where {xi}n
i=1 ⊂C are the double points

of C.

Lemma 2.2. Let C be an immersion of S1 into R
2 and let ξ : S1 ×(−ε, ε)→R

2

be an area-preserving parameterization of a neighborhood Cε of C as in Lemma 2.1.
Assume that C ′ is an immersion of S1 into R

2 which coincides with C in a neighbor-
hood Ux of every double point x of C and such that there is a function g : S1→(−ε, ε)
with C ′ =ξ(Γ), where Γ is the graph of g. If there exists a disk-area-preserving iso-
topy taking C to C ′ then there exists an area-preserving isotopy of the plane taking
C ′ to C.
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Proof. Shrink Cε so that we still have C ∪C ′ ⊂Cε, but so that the parameter-
ization is one-to-one outside

⋃
Ux, where the union is taken over all double points

of C. In other words, we let Cε be so small so that Cε −
⋃

Ux consists of a number of
simply connected components VA, where each component corresponds to a maximal
smooth arc A of C. Let W be an open neighborhood of C ∪C ′ so that W ⊂Cε and
so that VA ∩W and Ux ∩W are simply connected for all VA and Ux. Let G : S1→R

be defined by G(s)=
∫ s

0
g(s′) ds′, and let G̃ : R

2→R be a function satisfying

G̃(x) =

⎧
⎪⎪⎨

⎪⎪⎩

G((ξ−1)1(x)) for x∈W ∩VA,

G((ξ−1)1(x′)) for x∈W ∩Ux′ ,

0 for x /∈Cε,

where ξ−1=((ξ−1)1, (ξ−1)2). Then G̃ is a well-defined function: Suppose that
ξ(s1, t1)=ξ(s2, t2) for s1 	=s2. Then ξ(s1, t1)⊂Ux for some x, and since G̃ is constant
in Ux ∩W we can assume that ξ(s1, t1)=x. But clearly ξ((s1, s2)× {0}) is a 1-chain,
so it bounds a number of disks of C. Since every disk of C ′ has the same area as
the corresponding disk of C we thus have

∫ s2

s1
g(s) ds=0, so G(s1)=G(s2).

The Hamiltonian vector field of G̃ in the parameterization of Cε is X
eG=

−g(s)∂/∂t for (s, t)∈W ∩VA and X
eG=0 in Ux ∩W . Hence its time-1 flow takes

(s, g(s)) to (s, 0) for all s and we get an area-preserving isotopy of the plane taking
C ′ to C. �

3. Construction of semi-area-preserving isotopies

In this section we construct a semi-area-preserving isotopy from a disk-area-
preserving isotopy.

Let C and C ′ be two immersions of S1 into R
2 such that there exists a disk-

area-preserving isotopy φt taking C to C ′. Without loss of generality we can assume
that φt has support in some Br, where Br denotes the open disk of radius r centered
at 0. Let γt : R

2→R
2, t∈[0, 1], γ0=id, be an isotopy of the plane with support in

Br+1, acting as follows: First let γt shrink Br to some Bεr radially, where ε is small
and depends on the area of the disks of C. Next we let γt take the shrunken curve
C to the shrunken curve C ′ by using εφt(εx), and then finally we let γt enlarge Bεr

to Br again, so that we get γ1(C)=C ′. By choosing ε small enough we thus get
an isotopy γt of the plane taking C to C ′ such that area(γt(D))<area(D) for every
disk D of C, and for all t∈(0, 1).

Next we use Moser’s trick to find an isotopy ψt : R
2→R

2, t∈[0, 1], ψ0=id, such
that χt=ψt ◦γt is semi-area-preserving with respect to C. So if we then can take
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ψ1γ1(C) to C ′ with a semi-area-preserving isotopy we get a semi-area-preserving
isotopy taking C completely to C ′. We start with the following lemma.

Lemma 3.1. Let γt, C and C ′ be as above. Then there is an isotopy ψt :
R

2→R
2, t∈[0, 1], ψ0=id, such that

∫
ψtγt(D)

dx∧dy=
∫

D
dx∧dy for every disk D

of C. Moreover, ψt can be chosen so that ψ∗
1 dx∧dy=dx∧dy.

Proof. Let D1, D2, ..., Dn be the disks of C. For each Di choose a point ξi ∈Di,
and let ri(t) : [0, 1]→(0, ∞) be such that Bri(t),γt(ξi) ⊂γt(Di) for all 0≤t≤1, where
Bρ,p is the open disk of radius ρ centered at p.

For each disk Di let σi
t : [0, ∞)→(0, ∞) be a smooth one-parameter family of

functions such that for each t∈[0, 1] we have, if (ρ, θ) are polar coordinates centered
at γt(ξi)=(xi(t), yi(t)), that ωi

t=d
(

1
2σi

t(ρ
2) dθ

)
is nondegenerate and satisfies

(3)
∫

γt(Di)

ωi
t =

∫

Di

dx∧dy − n−1
n

∫

γt(Di)

dx∧dy.

Also choose σi
t so that

ωi
t =

1
n

dx∧dy in Br \Bri(t),γt(ξi),(4)

ωi
0 =

1
n

dx∧dy =ωi
1(5)

and so that σi
t(s)=s/n outside some Br′ , where r′ >r is chosen big enough to be

independent of t and Di.
We can find such a σi

t due to the fact that we want ωi
t to satisfy

∫

γt(Di)

ωi
t >

1
n

∫

γt(Di)

dx∧dy.

So even if the disk Bri(t),γt(ξi) is small we can let dσi
t(s)/ds be large in this disk

to obtain (3), which need not have been the case if the area of γt(Di) was greater
than the area of Di for some t. We use the space between Br and Br′ to decrease
dσi

t(s)/ds>0 so that we get σi
t(s)=s/n outside Br′ .

Now let ωt=
∑n

i=1 ωi
t. Then by (3) and (4) we have

∫

γt(Di)

ωt =
∫

γt(Di)

ωi
t+

n∑

j=1
j �=i

∫

γt(Di)

ωj
t

=
∫

Di

dx∧dy − n−1
n

∫

γt(Di)

dx∧dy+
n−1

n

∫

γt(Di)

dx∧dy

=
∫

Di

dx∧dy.
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So if we can find an isotopy ψt satisfying ωt=ψ∗
t ω0 for all t then ψt ◦γt will be

semi-area-preserving with respect to C.
To do this we use Moser’s trick. Namely, for each disk Di and for each t let μi

t

be the 1-form

μi
t =

d

dt

(
1
2
σi

t(ρ
2) dθ

)

,

and let vt be the vector field defined by ιvt(ωt)+
∑n

i=1 μi
t=0, where ιvt(ωt) is the

1-form satisfying ιvt(ωt)(η)=ωt(vt, η) for all η ∈TxR
2. Then we get that

vt =
n∑

i=1

dxi

dt

∂

∂x
− dyi

dt

∂

∂y

outside Br′ , since here we have that

σi
t(ρ

2) dθ =
1
n

ρ2 dθ =
1
n

((x−xi(t)) dy −(y −yi(t)) dx)

so

ωi
t =

1
n

dx∧dy

and

μi
t =

1
n

(
dyi

dt
dx− dxi

dt
dy

)

here. Thus vt satisfies a Lipschitz condition with the same Lipschitz constant L for
all x∈R

2 and for all t∈[0, 1], and hence we can find an isotopy χt : R
2→R

2, 0≤t≤1,
such that χ0=id and dχt/dt=vtχt. Now we get

d

dt
(χ∗

t ωt) =χ∗
t

(

dιvt(ωt)+
n∑

i=1

dμi
t

)

=0,

so χ∗
t ωt=χ∗

0ω0=dx∧dy for all t∈[0, 1]. Letting ψt be the inverse of χt for each
0≤t≤1 we get that ωt=ψ∗

t dx∧dy and hence that ψt ◦γt is a semi-area-preserving
isotopy with respect to C, and by (5) we have ψ∗

1 dx∧dy=dx∧dy. �

Now by finding an area-preserving isotopy taking ψ1γ1(C) to γ1(C)=C ′ we
can prove the main lemma of this section.

Lemma 3.2. If C and C ′ are immersions of S1 into R
2 such that there exists a

disk-area-preserving isotopy taking C to C ′, then there exists a semi-area-preserving
isotopy taking C to C ′.
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Proof. Let γt and ψt be constructed as above, and let Ft : R
2→R

2, t∈[0, 1], be
defined as

Ft(x) =

⎧
⎨

⎩

ψ1(tx)
t

, t 	=0,

dψ1(0)x, t=0.

Then dFt(x)=dψ1(tx) for all t and since ψ∗
1 dx∧dy=dx∧dy we get that F1−t,

t∈[0, 1], is an area-preserving isotopy taking ψ1γ1(C) to dψ1(0)(γ1(C)). More-
over, since det(dψ1(0))=1 there is a one-parameter family of linear diffeomor-
phisms At ∈SO(2) such that A0=dψ1(0) and A1=id, and hence we can find an
area-preserving isotopy of the plane taking ψ1γ1(C) to γ1(C)=C ′. Since ψt ◦γt is
semi-area-preserving with respect to C we thus get a semi-area-preserving isotopy
of the plane taking C to C ′. �

4. Area-preserving isotopies between nearby curves

In this section we show that if C and C ′ are two immersed circles in the plane
such that there exists a disk-area-preserving isotopy taking C to C ′, and if C ′ lies
sufficiently close to C, then there exists an area-preserving isotopy taking C to C ′.
This implies that if we have two immersions C and C ′, not necessary close to each
other, and a semi-area-preserving isotopy ψτ taking C to C ′, then we can find
an area-preserving isotopy taking C to ψτ0(C) for τ0 sufficiently small. Thus, by
compactness arguments, we can find an area-preserving isotopy taking C completely
to C ′.

We begin by finding a suitable parameterization of a neighborhood of C, and
then we define what we mean by C ′ being “sufficiently close” to C.

So given C, let ν>0 be so small that Bν,x1 ∩Bν,x2 =∅ for any double points
x1 	=x2 of C. Let ξ : S1 ×(−ε, ε)→R

2 be an area-preserving parameterization of
a neighborhood Cε of C as in Lemma 2.1. Then at each double point x of C

we get a double point of ξ, i.e. a subset Ux ⊂Cε where Cε overlaps itself. Let
ε be so small that Ux is a disk contained in Bν,x and so that C ∩Ux consists of
two smooth arcs Ls and Lt intersecting at x. Suppose that x=ξ(0, 0) and that
Ls=ξ([−s1, s1]× {0}). Since Ls intersects Lt transversely at x there is a t1>0 so
that Lt ∩((−s1, s1)×(−t1, t1)) coincides with the graph of a function g :(−t1, t1)→
(−s1, s1) over the t-axis in the parameterization of Cε. Let S=(−s1, s1)×(−t1, t1)
and let ϑ : S→R

2 be defined by

ϑ(s, t)= (s−g(t), t)= (μ(s, t), η(s, t)).
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Figure 1. An example of a regular neighborhood.

Then ϑ∗ dμ∧dη=ds∧dt, and ϑ maps Ls ∩S to the μ-axis and Lt ∩S to the η-axis.
Let

Dx = ξϑ−1((−s̃1, s̃1)×(−t̃1, t̃1)),

where s̃1, t̃1>0 are so small that ϑ−1((−s̃1, s̃1)×(−t̃1, t̃1))⊂S.

Definition 1. We call the data {Cε, Dx} a regular neighborhood of C.

This means that a regular neighborhood of C consists of an immersed annulus
Cε=ξ(S1 ×(−ε, ε)), and also a parameterization of a neighborhood of each double
point of C, so that in this parameterization C coincides with the coordinate axes
of R

2, see Figure 1.
Now let C ′ ⊂Cε be an immersion such that there exists a disk-area-preserving

isotopy taking C to C ′. Let Qr,p be the open square with sides of length 2r centered
at p and Qr=Qr,0. Let δ>0 be so small that for every double point x∈C the square
Qδ,x is contained in the parameterization of Dx. Further, for each double point
x∈C, let x′ be the corresponding double point of C ′, and let L′

s, L
′
t ⊂C ′ be the
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arcs corresponding to Ls respectively Lt in C. Assume that C ′ ∩Dx ⊂L′
s ∪L′

t and
that x′ ∈Qδ,x in the parameterization of Dx. Also assume that L′

s ∩Dx, respectively
L′

t ∩Dx, is a graph of a function gμ, respectively gη , over the μ-axis, respectively
η-axis, in the parameterization of Dx, satisfying |gμ|, |gη |, |dgμ/dμ|, |dgη/dη|<δ. If
this holds for all double points of C, and if C ′ is a graph of a function g : S1→(−δ, δ)
in the parameterization of Cε satisfying |dg/ds|<δ, we say that C ′ is δ-close to C

in {Cε, Dx}.
The following result shows that if C ′ is sufficiently close to C in the above

sense, then there is an area-preserving isotopy taking C ′ to C.

Lemma 4.1. Let C be an immersion of S1 in R
2 and let {Cε, Dx} be a regular

neighborhood of C. Then there exists a δ>0 such that for every immersion C ′ which
is δ-close to C in {Cε, Dx} there is an area-preserving isotopy taking C ′ to C.

Proof. Let σ>0 be so small so that in each parameterized disk Dx we can find
a square Qσ=Qσ,x, where x corresponds to (0, 0) in the parameterization. Let δ>0
be sufficiently small so that σ>δ1/2 and let ψ : R→R be a smooth cut-off function
satisfying

ψ(y) =

⎧
⎨

⎩

1 for y ∈(−δ, δ),

0 for y /∈(−σ, σ)

with

|ψ| ≤ 1,

∣
∣
∣
∣
dψ

dy

∣
∣
∣
∣ <

a

δ1/2 −δ
and

∣
∣
∣
∣
d2ψ

dy2

∣
∣
∣
∣ <

b

(δ1/2 −δ)2

for some constants a and b, i.e.

dψ

dy
=O(δ−1/2) and

d2ψ

dy2
=O(δ−1)

as δ→0.
Now let C ′ be an immersion which is δ-close to C in {Cε, Dx}, and let x∈C

be a double point. We start with showing that if δ is sufficiently small then there
is a neighborhood U of x and an area-preserving isotopy φτ , 0≤τ ≤1, with support
in Dx so that φ1(C ′)∩U coincides with C ∩U and so that φ1(C ′) is a graph over
S1 in Cε. By finding one such isotopy for each double point of C and then use
Lemma 2.2 we get an area-preserving isotopy taking C ′ completely to C.

So given a double point x∈C, first consider the arc L′
s ⊂C ′, defined as above.

Since C ′ is δ-close to C in {Cε, Dx} we see that L′
s coincides with the graph of a

function gμ : (−σ, σ)→(−δ, δ) in Qσ . Let δ be so small that we can find an exact
function g̃ : R→(−δ, δ) with support in (−δ1/2, δ1/2) whose graph coincides with L′

s
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in Qδ and which satisfies |dg̃/dμ|=O(δ1/2). Let G(μ)=
∫ μ

−σ
g̃(μ′) dμ′, and consider

the Hamiltonian H(μ, η)=−G(μ)ψ(η) with corresponding vector field

XH =G(μ)
dψ

dη
(η)

∂

∂μ
−g̃(μ)ψ(η)

∂

∂η
.

Then the Hamiltonian isotopy Φτ
XH

=(χ1
τ , χ2

τ )=χτ , 0≤τ ≤1, takes L′
s to the μ-axis

in Qδ , and has support in Qσ .
Next we want to take χ1(L′

t) to the η-axis in a neighborhood of 0 in such a
way that the image of χ1(L′

s) still coincides with the μ-axis here. But first, to make
sure that χ1(C ′) is still a graph over S1 in the parameterization of Cε we find an
estimate for the derivative dχ1 of χ1. Divide [0, 1] into N intervals of length 1/N .
By Taylor expansion we have, for τ ≤1/N , that

∂χ1
τ

∂μ
=

∂χ1
0

∂μ
+τ

d

dτ

∂χ1
0

∂μ
+O(τ2)= 1+τ

∂

∂μ

(

G(μ)
dψ

dη
(η)

)

+O(τ2)

= 1+τ g̃(μ)
dψ

dη
(η)+O

(
1

N2

)

and

∂χ1
1/N+τ

∂μ
=

∂χ1
1/N

∂μ
+τ

d

dτ

∂χ1
1/N

∂μ
+O(τ2)

=
(

1+
1
N

g̃(μ)
dψ

dη
(η)+O

(
1

N2

))

+τ g̃(μ)
dψ

dη
(η)+O

(
1

N2

)

.

If we continue like this we get

∂χ1
1

∂μ
=1+

N −1∑

n=0

1
N

g̃
(
μ
( n

N

))dψ

dη

(
η
( n

N

))
+NO

(
1

N2

)

=1+O(δ1/2)+O

(
1
N

)

since |g̃|<δ and |dψ/dη|=O(δ−1/2). Hence for N big enough, depending on C ′,
we get ∂χ1

1/∂μ=1+O(δ1/2), where the O(δ1/2)-term depends on C, Cε and Dx.
Similarly we have

∂χ1
1

∂η
=0+

N −1∑

n=0

1
N

G
(
μ
( n

N

))d2ψ

dη2

(
η
( n

N

))
+O

(
1
N

)

=O(δ1/2)
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since |G|<δ1/2δ, |d2ψ/dη2|=O(δ−1), and

∂χ2
1

∂μ
=0−

N −1∑

n=0

1
N

dg̃

dμ

(
μ
( n

N

))
ψ

(
η
( n

N

))
+O

(
1
N

)

=O(δ1/2),

∂χ2
1

∂η
=1−

N −1∑

n=0

1
N

g̃
(
μ
( n

N

))dψ

dη

(
η
( n

N

))
+O

(
1
N

)

=1+O(δ1/2).

Thus we get that

(6) dχ1 =E+O(δ1/2),

where E is the 2×2 unit matrix and O(δ1/2) denotes a 2×2 matrix with entries of
size O(δ1/2).

Let next ϑ=(ϑ1, ϑ2) : Dx→Dx be a change of coordinates from (μ, η) to
(s, t)⊂Cε. In (s, t)-coordinates by assumption we have that L′

s ∩Dx={(s, g(s))} for
s∈(σ1, σ2), say, and g satisfies |g|, |dg/ds|<δ. By (6) we have

d

ds
ϑ1(χ1ϑ

−1(s, g(s))) = 1+O(δ1/2)

for all s∈(σ1, σ2), so χ1(L′
s) is a graph of a function α : S1→R in the parameter-

ization of Cε if we let δ be small enough. Furthermore, for the slope of α we get
that

∣
∣
∣
∣
dα

ds

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣

d

ds
ϑ2(χ1ϑ

−1(s, g(s)))

d

ds
ϑ1(χ1ϑ

−1(s, g(s)))

∣
∣
∣
∣
∣
∣
∣

=
O(δ1/2)

1+O(δ1/2)
=O(δ1/2).

Similar calculations show that χ1(L′
t) is a subset of both a graph over S1 in

the parameterization of Cε and a graph over the η-axis in the parameterization of
Dx for δ sufficiently small. Moreover, the slope of these graphs are of order δ1/2.

Now we find an isotopy χ̃τ , 0≤τ ≤1, taking χ1(L′
t) to Lt in a neighborhood

of x, and so that χ̃1(χ1(L′
s)) still coincides with Ls here. Since by assumption

we had x′ ∈Qδ ⊂Dx, where x′ ∈C ′ is the double point corresponding to x, we have
χ1(x′)∈(−δ, δ)× {0}. Hence we can find a 0<δ′ <δ so that χ1(L′

t) coincides with
the graph of an exact function f : R→(−δ, δ) in (−δ, δ)×(−δ′, δ′), that is,

χ1(L′
t)∩((−δ, δ)×(−δ′, δ′)) = {(f(η), η)}.

In addition we can choose f so that |df/dη|=O(δ1/2) for all η ∈R and so that
f(η)=0 for |η|>δ1/2. Let F (η)=

∫ η

−σ
f(η′) dη′. Then the isotopy Φτ

XH
=χ̃τ , 0≤τ ≤1,

obtained from the Hamiltonian H(μ, η)=ψ(μ)F (η) takes χ1(L′
t) to the η-axis in
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(−δ, δ)×(−δ′, δ′), and we have that χ̃1χ1(L′
s) still coincides with the μ-axis in a

neighborhood of (0, 0)=χ̃1χ1(x′).
As before we get that

dχ̃1 =E+

⎛

⎜
⎜
⎝

dψ

dμ
f ψ

df

dη

d2ψ

dμ2
F

dψ

dμ
f

⎞

⎟
⎟
⎠+O

(
1
N

)

=E+O(δ1/2)

for N large. So for χ̃1χ1(L′
s) in Cε ∩Dx we have, with χ1(L′

s)={(s, α(s))}, that

d

ds
ϑχ̃1ϑ

−1(s, α(s)) =

⎛

⎝
1 0

0
dα

ds

⎞

⎠+O(δ1/2).

Hence χ̃1χ1(L′
s) will be a subset of a graph over S1 for δ small enough, and similarly

we get that χ̃1χ1(L′
t) is a subset of a graph over S1 in the parameterization of Cε

too.
By doing the same thing at all double points of C we get an area-preserving

isotopy taking C ′ to C in a neighborhood of every double point of C, and so that
the time-1 image of C ′ is still a graph over S1 in Cε. So by Lemma 2.2 there is an
area-preserving isotopy taking C ′ completely to C. �

5. Proof of Theorem 1.1

Now if we combine Lemma 3.2 with Lemma 4.1 we can prove our theorem.

Proof of Theorem 1.1. By Lemma 3.2 there is a semi-area-preserving isotopy
φτ , 0≤τ ≤1, with respect to C taking C to C ′. Let Cτ =φτ (C) for τ ∈[0, 1], and
for each τ0 ∈[0, 1] let {Cε

τ0
, Dτ0

x } be a regular neighborhood of Cτ0 . By Lemma 4.1
we can find a δτ0 >0 so that for every Cτ which is δτ0 -close to Cτ0 there exists an
area-preserving isotopy taking Cτ to Cτ0 , and by the continuity of φτ there is a
ντ0 >0 so that Cτ is δτ0 -close to Cτ0 for all 0≤τ −τ0<ντ0 .

Let ν=minτ0∈Iντ0 and let

0 = τ1 < ... < τn =1

be a partition of [0, 1] so that τi+1 −τi<ν for 1≤i<n. Then by Lemma 4.1 there
is an area-preserving isotopy taking Cτi+1 to Cτi for i=1, ..., n−1. Composing the
inverses of these isotopies we thus get an area-preserving isotopy taking C to C ′. �
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