Area-preserving isotopies of self-transverse immersions of S^1 in \mathbb{R}^2

Cecilia Karlsson

Abstract. Let C and C' be two smooth self-transverse immersions of S^1 into \mathbb{R}^2 . Both C and C' subdivide the plane into a number of disks and one unbounded component. An isotopy of the plane which takes C to C' induces a one-to-one correspondence between the disks of C and C'. An obvious necessary condition for there to exist an area-preserving isotopy of the plane taking C to C' is that there exists an isotopy for which the area of every disk of C equals that of the corresponding disk of C'. In this paper we show that this is also a sufficient condition.

1. Introduction

Let C be a smooth self-transverse immersion of S^1 into the plane \mathbb{R}^2 (by Sard's theorem any immersion is self-transverse after an arbitrarily small perturbation). Then C subdivides the plane into a number of bounded connected components and one unbounded component. The bounded components are topological disks and we call them the *disks of* C. Let C' be another self-transverse immersion of S^1 into \mathbb{R}^2 such that there exists an isotopy of the plane taking C to C'. Then the isotopy induces a one-to-one correspondence between the disks of C and the disks of C'.

In this paper we study the existence of area-preserving isotopies of the plane taking C to C', where, if $dx \wedge dy$ denotes the standard area form on \mathbb{R}^2 , we say that an isotopy $\phi_{\tau} \colon \mathbb{R}^2 \to \mathbb{R}^2$, $0 \leq \tau \leq 1$, is *area-preserving* if $\phi_{\tau}^*(dx \wedge dy) = dx \wedge dy$ for every $\tau \in [0, 1]$. Since ϕ_{τ} being area-preserving implies that $\operatorname{area}(\phi_{\tau}(U)) = \operatorname{area}(U)$ for any measurable $U \subset \mathbb{R}^2$, an obvious necessary condition for the existence of an area-preserving isotopy ϕ_{τ} taking C to C' is that the area of any disk D of Csatisfies

(1)
$$\operatorname{area}(D) = \operatorname{area}(D'),$$

where D' is the disk of C' which corresponds to D under ϕ_{τ} . We call an isotopy which satisfies (1) disk-area-preserving. The main result of the paper shows that this is also a sufficient condition. More precisely, we have the following result.

Theorem 1.1. Let C and C' be two self-transverse immersions of S^1 into \mathbb{R}^2 and assume that there is a disk-area-preserving isotopy ψ_{τ} , $0 \le \tau \le 1$, of \mathbb{R}^2 taking C to C' (i.e., $\psi_0 = \mathrm{id}$, $\psi_1(C) = C'$, and $\operatorname{area}(\psi_1(D)) = \operatorname{area}(D)$ for every disk D of C). Then there exists an area-preserving isotopy ϕ_{τ} , $0 \le \tau \le 1$, of \mathbb{R}^2 with $\phi_0 = \mathrm{id}$ and $\phi_1(C) = C'$.

Theorem 1.1 is proved in Section 5. Problems related to the existence of a topological isotopy (without area condition) taking C to C' were studied by many authors, see e.g. [2], [6] and [7].

From the point of view of symplectic geometry, C is an immersed Lagrangian submanifold, and on the plane area-preserving isotopies are Hamiltonian isotopies. For related questions in higher dimensions see e.g. [3], [4] and [5].

In short outline, our proof of Theorem 1.1 is as follows. First, we construct an isotopy χ_{τ} which takes C to C' and such that for every disk D of C we have $\operatorname{area}(\chi_{\tau}(D)) = \operatorname{area}(D)$ for all τ . We call such an isotopy *semi-area-preserving*. The semi-area-preserving isotopy is constructed from the disk-area-preserving isotopy ψ_{τ} by first composing it with a time-dependent scaling so that the resulting isotopy γ_{τ} shrinks the area of each disk of C for all times. The isotopy γ_{τ} is then modified: we introduce a time-dependent area form ω_{τ} such that the area of every disk of C is constant under γ_{τ} with respect to ω_{τ} and then we use Moser's trick to find an isotopy ϕ_{τ} such that $\phi_{\tau}^* dx \wedge dy = \omega_{\tau}$, and hence the isotopy $\phi_{\tau} \circ \gamma_{\tau}$ is semi-areapreserving, see Section 3. Second, we subdivide the semi-area-preserving isotopy into small time steps and use a cohomological argument to show the existence of an area-preserving isotopy, see Section 4.

For simpler notation below, we assume that all maps are smooth and that all immersions are self-transverse.

Acknowledgements. I would like to thank Tobias Ekholm for helpful discussions and for supervising the master thesis on which this paper is based. I would also like to thank Georgios Dimitroglou Rizell for the central ideas of the proof of Lemmas 3.1 and 3.2.

2. Background

In this section we introduce notation and discuss standard background material on Hamiltonian vector fields on surfaces.

Let M be a surface and let $v: M \to TM$ be a vector field with compact support. We write $\Phi_v^t: M \to M$ for the time-t flow of v. Let ω be a symplectic form on M and write $I: T^*M \to TM$ for the isomorphism defined through the equation

$$\alpha(\eta) = \omega(\eta, I(\alpha))$$
 for all $\alpha \in T^*M$ and $\eta \in T_xM$.

Let $H: M \to \mathbb{R}$ be a smooth function with compact support. The vector field $X_H = I(dH)$ is the Hamiltonian vector field of H and its flow is area-preserving.

Let C be an immersion of S^1 into the plane and let $\varphi: S^1 \to \mathbb{R}^2$ be a parameterization of C. Write e(s) for the unit vector field along C such that $(d\varphi/ds(s), e(s))$ is a positively oriented basis of \mathbb{R}^2 for all $s \in S^1$. Then for all sufficiently small $\varepsilon > 0$ the map $\Phi: S^1 \times (-\varepsilon, \varepsilon) \to \mathbb{R}^2$, given by

(2)
$$\Phi(s,t) = \varphi(s) + te(s),$$

parameterizes a neighborhood C^{ε} of C. Notice that if C has double points then this parameterization is not one-to-one.

Let $dx \wedge dy$ be the standard symplectic form on \mathbb{R}^2 and consider coordinates (s,t) on $S^1 \times \mathbb{R} = (\mathbb{R}/2\pi\mathbb{Z}) \times \mathbb{R}$ with the corresponding symplectic form $ds \wedge dt$. The following lemma is a special case of Moser's lemma, see e.g. [1] for a proof.

Lemma 2.1. Let C be an immersion of S^1 in \mathbb{R}^2 and let Φ be as in (2). Then there exists a $\delta > 0$ and a diffeomorphism $\vartheta \colon S^1 \times \mathbb{R} \to S^1 \times \mathbb{R}$ with $\vartheta(s, 0) = (s, 0)$ such that

$$(\Phi \circ \vartheta)^* \, dx \wedge dy = ds \wedge dt$$

for all $|t| < \delta$.

Below we will often combine Lemma 2.1 with a Hamiltonian isotopy of $S^1 \times \mathbb{R}$. In the following lemma we use this argument to construct area-preserving isotopies between nearby curves C and C' which agree near double points. We will use the following terminology: For an immersed circle $C \subset \mathbb{R}^2$, we call an arc $A \subset C$ maximal smooth of C if $A \cap \{x_i\}_{i=1}^n = \{x_i, x_j\} = \partial A$, where $\{x_i\}_{i=1}^n \subset C$ are the double points of C.

Lemma 2.2. Let C be an immersion of S^1 into \mathbb{R}^2 and let $\xi \colon S^1 \times (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ be an area-preserving parameterization of a neighborhood C^{ε} of C as in Lemma 2.1. Assume that C' is an immersion of S^1 into \mathbb{R}^2 which coincides with C in a neighborhood U_x of every double point x of C and such that there is a function $g \colon S^1 \to (-\varepsilon, \varepsilon)$ with $C' = \xi(\Gamma)$, where Γ is the graph of g. If there exists a disk-area-preserving isotopy taking C to C' then there exists an area-preserving isotopy of the plane taking C' to C.

Proof. Shrink C^{ε} so that we still have $C \cup C' \subset C^{\varepsilon}$, but so that the parameterization is one-to-one outside $\bigcup U_x$, where the union is taken over all double points of C. In other words, we let C^{ε} be so small so that $\overline{C^{\varepsilon}} - \bigcup U_x$ consists of a number of simply connected components V_A , where each component corresponds to a maximal smooth arc A of C. Let W be an open neighborhood of $C \cup C'$ so that $\overline{W} \subset C^{\varepsilon}$ and so that $V_A \cap W$ and $U_x \cap W$ are simply connected for all V_A and U_x . Let $G: S^1 \to \mathbb{R}$ be defined by $G(s) = \int_0^s g(s') ds'$, and let $\widetilde{G}: \mathbb{R}^2 \to \mathbb{R}$ be a function satisfying

$$\widetilde{G}(x) = \begin{cases} G((\xi^{-1})^1(x)) & \text{for } x \in W \cap V_A, \\ G((\xi^{-1})^1(x')) & \text{for } x \in W \cap U_{x'}, \\ 0 & \text{for } x \notin C^{\varepsilon}, \end{cases}$$

where $\xi^{-1} = ((\xi^{-1})^1, (\xi^{-1})^2)$. Then \widetilde{G} is a well-defined function: Suppose that $\xi(s_1, t_1) = \xi(s_2, t_2)$ for $s_1 \neq s_2$. Then $\xi(s_1, t_1) \subset U_x$ for some x, and since \widetilde{G} is constant in $U_x \cap W$ we can assume that $\xi(s_1, t_1) = x$. But clearly $\xi((s_1, s_2) \times \{0\})$ is a 1-chain, so it bounds a number of disks of C. Since every disk of C' has the same area as the corresponding disk of C we thus have $\int_{s_1}^{s_2} g(s) ds = 0$, so $G(s_1) = G(s_2)$.

The Hamiltonian vector field of \widetilde{G} in the parameterization of C^{ε} is $X_{\widetilde{G}} = -g(s)\partial/\partial t$ for $(s,t) \in W \cap V_A$ and $X_{\widetilde{G}} = 0$ in $U_x \cap W$. Hence its time-1 flow takes (s,g(s)) to (s,0) for all s and we get an area-preserving isotopy of the plane taking C' to C. \Box

3. Construction of semi-area-preserving isotopies

In this section we construct a semi-area-preserving isotopy from a disk-areapreserving isotopy.

Let C and C' be two immersions of S^1 into \mathbb{R}^2 such that there exists a diskarea-preserving isotopy ϕ_t taking C to C'. Without loss of generality we can assume that ϕ_t has support in some B_r , where B_r denotes the open disk of radius r centered at 0. Let $\gamma_t : \mathbb{R}^2 \to \mathbb{R}^2$, $t \in [0, 1]$, $\gamma_0 = \mathrm{id}$, be an isotopy of the plane with support in B_{r+1} , acting as follows: First let γ_t shrink B_r to some $B_{\varepsilon r}$ radially, where ε is small and depends on the area of the disks of C. Next we let γ_t take the shrunken curve C to the shrunken curve C' by using $\varepsilon \phi_t(\varepsilon x)$, and then finally we let γ_t enlarge $B_{\varepsilon r}$ to B_r again, so that we get $\gamma_1(C) = C'$. By choosing ε small enough we thus get an isotopy γ_t of the plane taking C to C' such that $\operatorname{area}(\gamma_t(D)) < \operatorname{area}(D)$ for every disk D of C, and for all $t \in (0, 1)$.

Next we use Moser's trick to find an isotopy $\psi_t \colon \mathbb{R}^2 \to \mathbb{R}^2$, $t \in [0, 1]$, $\psi_0 = id$, such that $\chi_t = \psi_t \circ \gamma_t$ is semi-area-preserving with respect to C. So if we then can take

 $\psi_1\gamma_1(C)$ to C' with a semi-area-preserving isotopy we get a semi-area-preserving isotopy taking C completely to C'. We start with the following lemma.

Lemma 3.1. Let γ_t , C and C' be as above. Then there is an isotopy ψ_t : $\mathbb{R}^2 \to \mathbb{R}^2$, $t \in [0, 1]$, $\psi_0 = \text{id}$, such that $\int_{\psi_t \gamma_t(D)} dx \wedge dy = \int_D dx \wedge dy$ for every disk D of C. Moreover, ψ_t can be chosen so that $\psi_1^* dx \wedge dy = dx \wedge dy$.

Proof. Let $D_1, D_2, ..., D_n$ be the disks of C. For each D_i choose a point $\xi_i \in D_i$, and let $r_i(t): [0,1] \to (0,\infty)$ be such that $B_{r_i(t),\gamma_t(\xi_i)} \subset \gamma_t(D_i)$ for all $0 \le t \le 1$, where $B_{\rho,p}$ is the open disk of radius ρ centered at p.

For each disk D_i let $\sigma_t^i : [0, \infty) \to (0, \infty)$ be a smooth one-parameter family of functions such that for each $t \in [0, 1]$ we have, if (ρ, θ) are polar coordinates centered at $\gamma_t(\xi_i) = (x_i(t), y_i(t))$, that $\omega_t^i = d(\frac{1}{2}\sigma_t^i(\rho^2) d\theta)$ is nondegenerate and satisfies

(3)
$$\int_{\gamma_t(D_i)} \omega_t^i = \int_{D_i} dx \wedge dy - \frac{n-1}{n} \int_{\gamma_t(D_i)} dx \wedge dy.$$

Also choose σ_t^i so that

(4)
$$\omega_t^i = \frac{1}{n} \, dx \wedge dy \qquad \text{in } B_r \setminus B_{r_i(t), \gamma_t(\xi_i)},$$

(5)
$$\omega_0^i = \frac{1}{n} \, dx \wedge dy = \omega_1^i$$

and so that $\sigma_t^i(s) = s/n$ outside some $B_{r'}$, where r' > r is chosen big enough to be independent of t and D_i .

We can find such a σ_t^i due to the fact that we want ω_t^i to satisfy

$$\int_{\gamma_t(D_i)} \omega_t^i > \frac{1}{n} \int_{\gamma_t(D_i)} dx \wedge dy.$$

So even if the disk $B_{r_i(t),\gamma_t(\xi_i)}$ is small we can let $d\sigma_t^i(s)/ds$ be large in this disk to obtain (3), which need not have been the case if the area of $\gamma_t(D_i)$ was greater than the area of D_i for some t. We use the space between B_r and $B_{r'}$ to decrease $d\sigma_t^i(s)/ds > 0$ so that we get $\sigma_t^i(s) = s/n$ outside $B_{r'}$.

Now let $\omega_t = \sum_{i=1}^n \omega_t^i$. Then by (3) and (4) we have

$$\begin{split} \int_{\gamma_t(D_i)} \omega_t &= \int_{\gamma_t(D_i)} \omega_t^i + \sum_{\substack{j=1\\ j \neq i}}^n \int_{\gamma_t(D_i)} \omega_t^j \\ &= \int_{D_i} dx \wedge dy - \frac{n-1}{n} \int_{\gamma_t(D_i)} dx \wedge dy + \frac{n-1}{n} \int_{\gamma_t(D_i)} dx \wedge dy \\ &= \int_{D_i} dx \wedge dy. \end{split}$$

So if we can find an isotopy ψ_t satisfying $\omega_t = \psi_t^* \omega_0$ for all t then $\psi_t \circ \gamma_t$ will be semi-area-preserving with respect to C.

To do this we use Moser's trick. Namely, for each disk D_i and for each t let μ_t^i be the 1-form

$$\mu_t^i = \frac{d}{dt} \left(\frac{1}{2} \sigma_t^i(\rho^2) \, d\theta \right),$$

and let v_t be the vector field defined by $\iota_{v_t}(\omega_t) + \sum_{i=1}^n \mu_t^i = 0$, where $\iota_{v_t}(\omega_t)$ is the 1-form satisfying $\iota_{v_t}(\omega_t)(\eta) = \omega_t(v_t, \eta)$ for all $\eta \in T_x \mathbb{R}^2$. Then we get that

$$v_t = \sum_{i=1}^n \frac{dx_i}{dt} \frac{\partial}{\partial x} - \frac{dy_i}{dt} \frac{\partial}{\partial y}$$

outside $B_{r'}$, since here we have that

$$\sigma_t^i(\rho^2) \, d\theta = \frac{1}{n} \rho^2 \, d\theta = \frac{1}{n} ((x - x_i(t)) \, dy - (y - y_i(t)) \, dx)$$

 \mathbf{SO}

$$\omega_t^i = \frac{1}{n} \, dx \wedge dy$$

and

$$\mu_t^i = \frac{1}{n} \left(\frac{dy_i}{dt} \, dx - \frac{dx_i}{dt} \, dy \right)$$

here. Thus v_t satisfies a Lipschitz condition with the same Lipschitz constant L for all $x \in \mathbb{R}^2$ and for all $t \in [0, 1]$, and hence we can find an isotopy $\chi_t : \mathbb{R}^2 \to \mathbb{R}^2, 0 \le t \le 1$, such that $\chi_0 = \text{id}$ and $d\chi_t/dt = v_t\chi_t$. Now we get

$$\frac{d}{dt}(\chi_t^*\omega_t) = \chi_t^*\left(d\iota_{v_t}(\omega_t) + \sum_{i=1}^n d\mu_t^i\right) = 0,$$

so $\chi_t^* \omega_t = \chi_0^* \omega_0 = dx \wedge dy$ for all $t \in [0, 1]$. Letting ψ_t be the inverse of χ_t for each $0 \le t \le 1$ we get that $\omega_t = \psi_t^* dx \wedge dy$ and hence that $\psi_t \circ \gamma_t$ is a semi-area-preserving isotopy with respect to C, and by (5) we have $\psi_1^* dx \wedge dy = dx \wedge dy$. \Box

Now by finding an area-preserving isotopy taking $\psi_1\gamma_1(C)$ to $\gamma_1(C)=C'$ we can prove the main lemma of this section.

Lemma 3.2. If C and C' are immersions of S^1 into \mathbb{R}^2 such that there exists a disk-area-preserving isotopy taking C to C', then there exists a semi-area-preserving isotopy taking C to C'.

Proof. Let γ_t and ψ_t be constructed as above, and let $F_t \colon \mathbb{R}^2 \to \mathbb{R}^2, t \in [0, 1]$, be defined as

$$F_t(x) = \begin{cases} \frac{\psi_1(tx)}{t}, & t \neq 0, \\ d\psi_1(0)x, & t = 0. \end{cases}$$

Then $dF_t(x) = d\psi_1(tx)$ for all t and since $\psi_1^* dx \wedge dy = dx \wedge dy$ we get that F_{1-t} , $t \in [0, 1]$, is an area-preserving isotopy taking $\psi_1 \gamma_1(C)$ to $d\psi_1(0)(\gamma_1(C))$. Moreover, since $\det(d\psi_1(0))=1$ there is a one-parameter family of linear diffeomorphisms $A_t \in SO(2)$ such that $A_0 = d\psi_1(0)$ and $A_1 = id$, and hence we can find an area-preserving isotopy of the plane taking $\psi_1 \gamma_1(C)$ to $\gamma_1(C) = C'$. Since $\psi_t \circ \gamma_t$ is semi-area-preserving with respect to C we thus get a semi-area-preserving isotopy of the plane taking C to C'. \Box

4. Area-preserving isotopies between nearby curves

In this section we show that if C and C' are two immersed circles in the plane such that there exists a disk-area-preserving isotopy taking C to C', and if C' lies sufficiently close to C, then there exists an area-preserving isotopy taking C to C'. This implies that if we have two immersions C and C', not necessary close to each other, and a semi-area-preserving isotopy ψ_{τ} taking C to C', then we can find an area-preserving isotopy taking C to $\psi_{\tau_0}(C)$ for τ_0 sufficiently small. Thus, by compactness arguments, we can find an area-preserving isotopy taking C completely to C'.

We begin by finding a suitable parameterization of a neighborhood of C, and then we define what we mean by C' being "sufficiently close" to C.

So given C, let $\nu > 0$ be so small that $\overline{B}_{\nu,x_1} \cap \overline{B}_{\nu,x_2} = \emptyset$ for any double points $x_1 \neq x_2$ of C. Let $\xi \colon S^1 \times (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ be an area-preserving parameterization of a neighborhood C^{ε} of C as in Lemma 2.1. Then at each double point x of C we get a double point of ξ , i.e. a subset $U_x \subset C^{\varepsilon}$ where C^{ε} overlaps itself. Let ε be so small that U_x is a disk contained in $B_{\nu,x}$ and so that $\overline{C \cap U_x}$ consists of two smooth arcs L_s and L_t intersecting at x. Suppose that $x = \xi(0,0)$ and that $L_s = \xi([-s_1,s_1] \times \{0\})$. Since L_s intersects L_t transversely at x there is a $t_1 > 0$ so that $L_t \cap ((-s_1,s_1) \times (-t_1,t_1))$ coincides with the graph of a function $g:(-t_1,t_1) \to (-s_1,s_1)$ over the t-axis in the parameterization of C^{ε} . Let $S = (-s_1,s_1) \times (-t_1,t_1)$ and let $\vartheta: S \to \mathbb{R}^2$ be defined by

$$\vartheta(s,t) = (s - g(t), t) = (\mu(s,t), \eta(s,t)).$$

Figure 1. An example of a regular neighborhood.

Then $\vartheta^* d\mu \wedge d\eta = ds \wedge dt$, and ϑ maps $L_s \cap S$ to the μ -axis and $L_t \cap S$ to the η -axis. Let

$$D_x = \xi \vartheta^{-1}((-\tilde{s}_1, \tilde{s}_1) \times (-\tilde{t}_1, \tilde{t}_1)),$$

where $\tilde{s}_1, \tilde{t}_1 > 0$ are so small that $\overline{\vartheta^{-1}((-\tilde{s}_1, \tilde{s}_1) \times (-\tilde{t}_1, \tilde{t}_1))} \subset S$.

Definition 1. We call the data $\{C^{\varepsilon}, D_x\}$ a regular neighborhood of C.

This means that a regular neighborhood of C consists of an immersed annulus $C^{\varepsilon} = \xi(S^1 \times (-\varepsilon, \varepsilon))$, and also a parameterization of a neighborhood of each double point of C, so that in this parameterization C coincides with the coordinate axes of \mathbb{R}^2 , see Figure 1.

Now let $C' \subset C^{\varepsilon}$ be an immersion such that there exists a disk-area-preserving isotopy taking C to C'. Let $Q_{r,p}$ be the open square with sides of length 2r centered at p and $Q_r = Q_{r,0}$. Let $\delta > 0$ be so small that for every double point $x \in C$ the square $Q_{\delta,x}$ is contained in the parameterization of D_x . Further, for each double point $x \in C$, let x' be the corresponding double point of C', and let $L'_s, L'_t \subset C'$ be the arcs corresponding to L_s respectively L_t in C. Assume that $C' \cap D_x \subset L'_s \cup L'_t$ and that $x' \in Q_{\delta,x}$ in the parameterization of D_x . Also assume that $L'_s \cap D_x$, respectively $L'_t \cap D_x$, is a graph of a function g_{μ} , respectively g_{η} , over the μ -axis, respectively η -axis, in the parameterization of D_x , satisfying $|g_{\mu}|, |g_{\eta}|, |dg_{\mu}/d\mu|, |dg_{\eta}/d\eta| < \delta$. If this holds for all double points of C, and if C' is a graph of a function $g: S^1 \to (-\delta, \delta)$ in the parameterization of C^{ε} satisfying $|dg/ds| < \delta$, we say that C' is δ -close to Cin $\{C^{\varepsilon}, D_x\}$.

The following result shows that if C' is sufficiently close to C in the above sense, then there is an area-preserving isotopy taking C' to C.

Lemma 4.1. Let C be an immersion of S^1 in \mathbb{R}^2 and let $\{C^{\varepsilon}, D_x\}$ be a regular neighborhood of C. Then there exists a $\delta > 0$ such that for every immersion C' which is δ -close to C in $\{C^{\varepsilon}, D_x\}$ there is an area-preserving isotopy taking C' to C.

Proof. Let $\sigma > 0$ be so small so that in each parameterized disk D_x we can find a square $Q_{\sigma} = Q_{\sigma,x}$, where x corresponds to (0,0) in the parameterization. Let $\delta > 0$ be sufficiently small so that $\sigma > \delta^{1/2}$ and let $\psi \colon \mathbb{R} \to \mathbb{R}$ be a smooth cut-off function satisfying

$$\psi(y) = \begin{cases} 1 & \text{for } y \in (-\delta, \delta), \\ 0 & \text{for } y \notin (-\sigma, \sigma) \end{cases}$$

with

$$|\psi| \le 1, \quad \left| \frac{d\psi}{dy} \right| < \frac{a}{\delta^{1/2} - \delta} \quad \text{and} \quad \left| \frac{d^2\psi}{dy^2} \right| < \frac{b}{(\delta^{1/2} - \delta)^2}$$

for some constants a and b, i.e.

$$\frac{d\psi}{dy} = O(\delta^{-1/2})$$
 and $\frac{d^2\psi}{dy^2} = O(\delta^{-1})$

as $\delta \rightarrow 0$.

Now let C' be an immersion which is δ -close to C in $\{C^{\varepsilon}, D_x\}$, and let $x \in C$ be a double point. We start with showing that if δ is sufficiently small then there is a neighborhood U of x and an area-preserving isotopy $\phi_{\tau}, 0 \leq \tau \leq 1$, with support in D_x so that $\phi_1(C') \cap U$ coincides with $C \cap U$ and so that $\phi_1(C')$ is a graph over S^1 in C^{ε} . By finding one such isotopy for each double point of C and then use Lemma 2.2 we get an area-preserving isotopy taking C' completely to C.

So given a double point $x \in C$, first consider the arc $L'_s \subset C'$, defined as above. Since C' is δ -close to C in $\{C^{\varepsilon}, D_x\}$ we see that L'_s coincides with the graph of a function $g_{\mu}: (-\sigma, \sigma) \to (-\delta, \delta)$ in Q_{σ} . Let δ be so small that we can find an exact function $\tilde{g}: \mathbb{R} \to (-\delta, \delta)$ with support in $(-\delta^{1/2}, \delta^{1/2})$ whose graph coincides with L'_s

in Q_{δ} and which satisfies $|d\tilde{g}/d\mu| = O(\delta^{1/2})$. Let $G(\mu) = \int_{-\sigma}^{\mu} \tilde{g}(\mu') d\mu'$, and consider the Hamiltonian $H(\mu, \eta) = -G(\mu)\psi(\eta)$ with corresponding vector field

$$X_H = G(\mu) \frac{d\psi}{d\eta}(\eta) \frac{\partial}{\partial \mu} - \tilde{g}(\mu)\psi(\eta) \frac{\partial}{\partial \eta}$$

Then the Hamiltonian isotopy $\Phi_{X_H}^{\tau} = (\chi_{\tau}^1, \chi_{\tau}^2) = \chi_{\tau}, 0 \le \tau \le 1$, takes L'_s to the μ -axis in Q_{δ} , and has support in Q_{σ} .

Next we want to take $\chi_1(L'_t)$ to the η -axis in a neighborhood of 0 in such a way that the image of $\chi_1(L'_s)$ still coincides with the μ -axis here. But first, to make sure that $\chi_1(C')$ is still a graph over S^1 in the parameterization of C^{ε} we find an estimate for the derivative $d\chi_1$ of χ_1 . Divide [0, 1] into N intervals of length 1/N. By Taylor expansion we have, for $\tau \leq 1/N$, that

$$\begin{split} \frac{\partial \chi_{\tau}^{1}}{\partial \mu} &= \frac{\partial \chi_{0}^{1}}{\partial \mu} + \tau \frac{d}{d\tau} \frac{\partial \chi_{0}^{1}}{\partial \mu} + O(\tau^{2}) = 1 + \tau \frac{\partial}{\partial \mu} \left(G(\mu) \frac{d\psi}{d\eta}(\eta) \right) + O(\tau^{2}) \\ &= 1 + \tau \tilde{g}(\mu) \frac{d\psi}{d\eta}(\eta) + O\left(\frac{1}{N^{2}}\right) \end{split}$$

and

$$\begin{aligned} \frac{\partial \chi_{1/N+\tau}^1}{\partial \mu} &= \frac{\partial \chi_{1/N}^1}{\partial \mu} + \tau \frac{d}{d\tau} \frac{\partial \chi_{1/N}^1}{\partial \mu} + O(\tau^2) \\ &= \left(1 + \frac{1}{N} \tilde{g}(\mu) \frac{d\psi}{d\eta}(\eta) + O\left(\frac{1}{N^2}\right)\right) + \tau \tilde{g}(\mu) \frac{d\psi}{d\eta}(\eta) + O\left(\frac{1}{N^2}\right). \end{aligned}$$

If we continue like this we get

$$\begin{split} \frac{\partial \chi_1^1}{\partial \mu} &= 1 + \sum_{n=0}^{N-1} \frac{1}{N} \tilde{g} \left(\mu \left(\frac{n}{N} \right) \right) \frac{d\psi}{d\eta} \left(\eta \left(\frac{n}{N} \right) \right) + NO\left(\frac{1}{N^2} \right) \\ &= 1 + O(\delta^{1/2}) + O\left(\frac{1}{N} \right) \end{split}$$

since $|\tilde{g}| < \delta$ and $|d\psi/d\eta| = O(\delta^{-1/2})$. Hence for N big enough, depending on C', we get $\partial \chi_1^1 / \partial \mu = 1 + O(\delta^{1/2})$, where the $O(\delta^{1/2})$ -term depends on C, C^{ε} and D_x . Similarly we have

$$\frac{\partial \chi_1^1}{\partial \eta} = 0 + \sum_{n=0}^{N-1} \frac{1}{N} G\left(\mu\left(\frac{n}{N}\right)\right) \frac{d^2 \psi}{d\eta^2} \left(\eta\left(\frac{n}{N}\right)\right) + O\left(\frac{1}{N}\right) = O(\delta^{1/2})$$

since $|G| < \delta^{1/2} \delta$, $|d^2 \psi / d\eta^2| = O(\delta^{-1})$, and

$$\begin{split} &\frac{\partial\chi_1^2}{\partial\mu} = 0 - \sum_{n=0}^{N-1} \frac{1}{N} \frac{d\tilde{g}}{d\mu} \Big(\mu\Big(\frac{n}{N}\Big) \Big) \psi\Big(\eta\Big(\frac{n}{N}\Big) \Big) + O\bigg(\frac{1}{N}\bigg) = O(\delta^{1/2}), \\ &\frac{\partial\chi_1^2}{\partial\eta} = 1 - \sum_{n=0}^{N-1} \frac{1}{N} \tilde{g}\Big(\mu\Big(\frac{n}{N}\Big) \Big) \frac{d\psi}{d\eta} \Big(\eta\Big(\frac{n}{N}\Big) \Big) + O\bigg(\frac{1}{N}\bigg) = 1 + O(\delta^{1/2}) \end{split}$$

Thus we get that

(6)
$$d\chi_1 = E + O(\delta^{1/2}),$$

where E is the 2×2 unit matrix and $O(\delta^{1/2})$ denotes a 2×2 matrix with entries of size $O(\delta^{1/2})$.

Let next $\vartheta = (\vartheta^1, \vartheta^2) \colon D_x \to D_x$ be a change of coordinates from (μ, η) to $(s,t) \subset C^{\varepsilon}$. In (s,t)-coordinates by assumption we have that $L'_s \cap D_x = \{(s,g(s))\}$ for $s \in (\sigma_1, \sigma_2)$, say, and g satisfies $|g|, |dg/ds| < \delta$. By (6) we have

$$\frac{d}{ds}\vartheta^1(\chi_1\vartheta^{-1}(s,g(s))) = 1 + O(\delta^{1/2})$$

for all $s \in (\sigma_1, \sigma_2)$, so $\chi_1(L'_s)$ is a graph of a function $\alpha \colon S^1 \to \mathbb{R}$ in the parameterization of C^{ε} if we let δ be small enough. Furthermore, for the slope of α we get that

$$\left|\frac{d\alpha}{ds}\right| = \left|\frac{\frac{d}{ds}\vartheta^2(\chi_1\vartheta^{-1}(s,g(s)))}{\frac{d}{ds}\vartheta^1(\chi_1\vartheta^{-1}(s,g(s)))}\right| = \frac{O(\delta^{1/2})}{1+O(\delta^{1/2})} = O(\delta^{1/2}).$$

Similar calculations show that $\chi_1(L'_t)$ is a subset of both a graph over S^1 in the parameterization of C^{ε} and a graph over the η -axis in the parameterization of D_x for δ sufficiently small. Moreover, the slope of these graphs are of order $\delta^{1/2}$.

Now we find an isotopy $\tilde{\chi}_{\tau}$, $0 \leq \tau \leq 1$, taking $\chi_1(L'_t)$ to L_t in a neighborhood of x, and so that $\tilde{\chi}_1(\chi_1(L'_s))$ still coincides with L_s here. Since by assumption we had $x' \in Q_{\delta} \subset D_x$, where $x' \in C'$ is the double point corresponding to x, we have $\chi_1(x') \in (-\delta, \delta) \times \{0\}$. Hence we can find a $0 < \delta' < \delta$ so that $\chi_1(L'_t)$ coincides with the graph of an exact function $f \colon \mathbb{R} \to (-\delta, \delta)$ in $(-\delta, \delta) \times (-\delta', \delta')$, that is,

$$\chi_1(L'_t) \cap ((-\delta, \delta) \times (-\delta', \delta')) = \{(f(\eta), \eta)\}.$$

In addition we can choose f so that $|df/d\eta| = O(\delta^{1/2})$ for all $\eta \in \mathbb{R}$ and so that $f(\eta) = 0$ for $|\eta| > \delta^{1/2}$. Let $F(\eta) = \int_{-\sigma}^{\eta} f(\eta') d\eta'$. Then the isotopy $\Phi_{X_H}^{\tau} = \tilde{\chi}_{\tau}, 0 \le \tau \le 1$, obtained from the Hamiltonian $H(\mu, \eta) = \psi(\mu)F(\eta)$ takes $\chi_1(L'_t)$ to the η -axis in

 $(-\delta, \delta) \times (-\delta', \delta')$, and we have that $\tilde{\chi}_1 \chi_1(L'_s)$ still coincides with the μ -axis in a neighborhood of $(0, 0) = \tilde{\chi}_1 \chi_1(x')$.

As before we get that

$$d\widetilde{\chi}_1 = E + \begin{pmatrix} \frac{d\psi}{d\mu}f & \psi\frac{df}{d\eta} \\ \frac{d^2\psi}{d\mu^2}F & \frac{d\psi}{d\mu}f \end{pmatrix} + O\left(\frac{1}{N}\right) = E + O(\delta^{1/2})$$

for N large. So for $\tilde{\chi}_1\chi_1(L'_s)$ in $C^{\varepsilon} \cap D_x$ we have, with $\chi_1(L'_s) = \{(s, \alpha(s))\}$, that

$$\frac{d}{ds}\vartheta\widetilde{\chi}_1\vartheta^{-1}(s,\alpha(s)) = \begin{pmatrix} 1 & 0\\ 0 & \frac{d\alpha}{ds} \end{pmatrix} + O(\delta^{1/2}).$$

Hence $\tilde{\chi}_1\chi_1(L'_s)$ will be a subset of a graph over S^1 for δ small enough, and similarly we get that $\tilde{\chi}_1\chi_1(L'_t)$ is a subset of a graph over S^1 in the parameterization of C^{ε} too.

By doing the same thing at all double points of C we get an area-preserving isotopy taking C' to C in a neighborhood of every double point of C, and so that the time-1 image of C' is still a graph over S^1 in C^{ε} . So by Lemma 2.2 there is an area-preserving isotopy taking C' completely to C. \Box

5. Proof of Theorem 1.1

Now if we combine Lemma 3.2 with Lemma 4.1 we can prove our theorem.

Proof of Theorem 1.1. By Lemma 3.2 there is a semi-area-preserving isotopy ϕ_{τ} , $0 \leq \tau \leq 1$, with respect to C taking C to C'. Let $C_{\tau} = \phi_{\tau}(C)$ for $\tau \in [0, 1]$, and for each $\tau_0 \in [0, 1]$ let $\{C_{\tau_0}^{\varepsilon}, D_x^{\tau_0}\}$ be a regular neighborhood of C_{τ_0} . By Lemma 4.1 we can find a $\delta_{\tau_0} > 0$ so that for every C_{τ} which is δ_{τ_0} -close to C_{τ_0} there exists an area-preserving isotopy taking C_{τ} to C_{τ_0} , and by the continuity of ϕ_{τ} there is a $\nu_{\tau_0} > 0$ so that C_{τ} is δ_{τ_0} -close to C_{τ_0} for all $0 \leq \tau - \tau_0 < \nu_{\tau_0}$.

Let $\nu = \min_{\tau_0 \in I} \nu_{\tau_0}$ and let

$$0 = \tau_1 < \ldots < \tau_n = 1$$

be a partition of [0,1] so that $\tau_{i+1} - \tau_i < \nu$ for $1 \le i < n$. Then by Lemma 4.1 there is an area-preserving isotopy taking $C_{\tau_{i+1}}$ to C_{τ_i} for i=1,...,n-1. Composing the inverses of these isotopies we thus get an area-preserving isotopy taking C to C'. \Box

References

- 1. AUDIN, M., CANNAS DA SILVA, A. and LERMAN, E., Symplectic Geometry of Integrable Hamiltonian Systems, Birkhäuser, Basel, 2003.
- CARTER, J. S., Classifying immersed curves, Proc. Amer. Math. Soc. 111 (1991), 281– 287.
- DIMITROGLOU RIZELL, G., Knotted Legendrian surfaces with few Reeb chords, Algebr. Geom. Topol. 11 (2011), 2903–2936.
- 4. HIND, R., Lagrangian spheres in $S^2 \times S^2$, Geom. Funct. Anal. 14 (2004), 303–318.
- 5. HIND, R. and IVRII, A., Ruled 4-manifolds and isotopies of symplectic surfaces, *Math. Z.* **265** (2010), 639–652.
- MERKOV, A. B., Segment-arrow diagrams and invariants of ornaments, *Mat. Sb.* 191:11 (2000), 47–78 (Russian). English transl.: *Sb. Math.* 191 (2000), 1635–1666.
- VASSILIEV, V. A., Invariants of ornaments, in *Singularities and Bifurcations*, Amer. Math. Soc., Providence, RI, 1994.

Cecilia Karlsson Department of Mathematics Uppsala University P.O. Box 480 SE-751 06 Uppsala Sweden ceka@math.uu.se

Received March 11, 2011 in revised form January 20, 2012 published online April 5, 2012