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Proper holomorphic embeddings of finitely
connected planar domains into C

n

Irena Majcen

Abstract. In this paper we consider proper holomorphic embeddings of finitely connected

planar domains into Cn that approximate given proper embeddings on smooth curves. As a side

result we obtain a tool for approximating a C ∞ diffeomorphism on a polynomially convex set in

Cn by an automorphism of Cn that satisfies some additional properties along a real embedded

curve.

1. Introduction

Let D be an open Riemann surface. Recall that a map f : D→C
2 is said to be

a proper holomorphic embedding if it is a one-to-one holomorphic immersion such
that the preimage of every compact set is compact. It is an open question whether
every open Riemann surface embeds properly into C

2.
In 1995 Globevnik and Stensønes [8] proved that any bounded finitely con-

nected planar domain without isolated boundary points embeds properly into C2.
Wold [16] improved their result to all finitely connected domains as well as to some
infinitely connected domains in C. (For further results see also [17], [7] and [11].)

In this paper we consider proper holomorphic embeddings of finitely connected
planar domains into C

n satisfying additional requirements. This problem is re-
lated to the following extension of the Carleman theorem, proven by Buzzard and
Forstnerič in [3]: Let n>1 and r ≥0 be integers. Given a proper Cr embedding λ of
R into Cn and a continuous positive function η : R→(0, ∞), there exists a proper
holomorphic embedding f : C→C

n such that

|f (s)(t)−λ(s)(t)| <η(t) for all t ∈ R and 0 ≤ s ≤ r.

We generalize their result by replacing R by a union of curves and also allowing
C to be replaced with a finitely connected planar domain D.
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Figure 1. Planar domain D and smooth curves �i as in Theorem 1.1.

Theorem 1.1. Let N ≥2 and r ≥1 be integers and D be a finitely connected
planar domain. Let

�i = {γi(t) : t ∈ [0, 1]}, i =1, 2, ..., k,

be smooth embedded curves in C such that γi((0, 1))⊂D and

�i ∩�j ∩D = ∅ for all 1 ≤ i < j ≤ k.

Let � denote the curves
⋃k

i=1 �i\∂D. Given a proper Cr embedding λ : �↪→CN and
a positive continuous function η : �→(0, ∞) there exists a proper holomorphic em-
bedding f : D↪→C

N such that

|f ◦γ
(s)
i (t)−λ◦γ

(s)
i (t)| <η ◦γi(t) for all t ∈ (0, 1), 1 ≤ i ≤ k and 0 ≤ s ≤ r.

While proving this theorem we formulate an additional tool related to holomor-
phic automorphisms of C

n that might be of independent interest. A holomorphic
map φ : Cn→Cn with a holomorphic inverse φ−1 : Cn→Cn is called a holomorphic
automorphism of C

n. We denote the group of all holomorphic automorphisms of
C

n by Aut(Cn).

Definition 1.2. (Definition 2.1 in [9]) A family � of finitely many disjoint em-
bedded smooth real curves

�i = {γi(t) : t ∈ [0, ∞) or t ∈ (−∞, ∞)}, i =1, 2, ..., m,

in Cn has a nice projection property if there is a holomorphic automorphism
α∈Aut(Cn) such that, if π1 is the projection to the first coordinate, γ̃i(t)=α(γi(t))
and �̃=α(�), then the following hold:
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(1) lim|t|→∞ |π1(γ̃i(t))|=∞ for i=1, 2, ..., m,
(2) there is a number s∈R such that C\(π1(�̃)∪Dr) does not contain any rel-

atively compact connected components for all r ≥s.
We call any number r ≥s as in (2) a nice projection radius. If α=id, we say that
� has an immediate nice projection property.

The results we also obtain in this paper are the following.

Theorem 1.3. Let K be a compact, polynomially convex set in C
n, n≥2,

and let �={γ(t) : t∈[0, ∞)} be a C ∞ embedded real curve in Cn with a nice pro-
jection property. Set C=γ([0, 1]) and assume that K ∩�={γ(0)}. Given a C ∞

diffeomorphism F : C→C ′ ⊂C
n such that F |C∩U =id for some neighborhood U of

K, a compact, polynomially convex set A⊂C
n with F (γ(1)) /∈A, a number ε>0 and

a non-negative integer r, there exists a neighborhood V of K and an automorphism
Φ∈Aut(Cn) satisfying

‖Φ−id‖ Cr(V ) <ε, ‖Φ−F ‖ Cr(C) <ε and Φ(�\C)∩A= ∅.

Corollary 1.4. Let K be a compact, polynomially convex set in C
n, n≥2, and

let �={γ(t) : t∈[0, ∞) or t∈(−∞, ∞)} be a C ∞ embedded real curve in Cn with a
nice projection property. Assume that K ∩�=∅. Given a compact set A⊂C

n, a
number ε>0 and a non-negative integer r, there exists a neighborhood V of K and
an automorphism Φ∈Aut(Cn) satisfying

‖Φ−id‖ Cr(V ) <ε and Φ(�)∩A= ∅.

These results hold also if C=
⋃k

i=1 Ci, resp. �=
⋃k

i=1 �i, is a union of pairwise
disjoint arcs, resp. curves, with the same properties.

2. Preliminaries

In the proof of Theorem 1.1 we achieve properness by using a sequence of holo-
morphic automorphisms with certain properties. Determining convergence of such
a sequence has been examined by Forstnerič in [4]. In our setting Proposition 5.1
in [4] can be stated as follows.

Proposition 2.1. Suppose that for each j=1, 2, 3, ..., φj is a holomorphic au-
tomorphism of Cn satisfying

|φj(z)−z| <
1
2j

, z ∈ Bj .
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Figure 2. Moving an arc as in Proposition 2.2.

Set Φm=φm ◦φm−1 ◦...◦φ1. Then there is an open set Ω⊂C
n such that limm→∞ Φm

=Φ exists on Ω (uniformly on compact sets), and Φ is a biholomorphic map of Ω
onto C

n. In fact, Ω=
⋃∞

j=1 Φ−1
j (Bj).

A powerful tool for obtaining automorphisms of C
n is Theorem 2.1 in [6]. In

relations with curves, this result has been developed even further, for example in [5].

Proposition 2.2. Let K ⊂Cn, n≥2, be a compact, polynomially convex set,
and let C ⊂C

n be an embedded arc of class C ∞ which is attached to K in a single
point of K. Given a C ∞ diffeomorphism F : C→C ′ ⊂C

n such that F is the identity
on C ∩U for some open neighborhood U of K (see Figure 2), and given numbers r ≥0
and ε>0, there exists a neighborhood W of K and an automorphism Φ∈Aut(Cn)
satisfying

‖Φ−id‖Cr(W ) <ε and ‖Φ−F ‖ Cr(C) <ε.

Note that the same holds with any finite number of disjoint arcs attached to
K. To avoid lengthier formulations we only state the results for a single arc C or
curve � while keeping in mind that the same is true if C=

⋃k
i=1 Ci, resp. �=

⋃k
i=1 �i,

is a finite union of pairwise disjoint arcs resp. curves with the same properties. The
proofs are the same in both cases, to get a proof for the latter just add indices to
the existing proofs.

Let K and C be as in the proposition and assume that �={γ(t) : t∈[0, ∞)}
is an embedded smooth curve in Cn with C=γ([0, 1]) and K ∩�=γ(0). Using the
proposition we get automorphisms of C

n approximating movements of C while
remaining close to the identity on K (see Figure 3). The obtained automorphism
might map some part of �\C really close to K, which is what we want to avoid in
proving Theorem 1.1.

Tackling a problem of this kind, Buzzard and Forstnerič in [3] found an elegant
solution. The automorphism of Cn that approximately maps C to C ′ while staying
close to identity on K, and does not map any part of �\C close to K, was in their
case an automorphism of C

n, provided by Proposition 2.2, precomposed with an
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Figure 3. Moving an arc which is a part of a curve �.

automorphism (called shear) of the form

z �−→ z+f(z1)�e2, where z1 =π1(z) and �e2 =(0, 1, 0, ..., 0).

Although they worked with � being a real line R× {0}n−1, their idea can be carried
over to a more general setting. For example, in [16] Wold used it for curves � having
a nice projection property.

An important property of sets on which we want to approximate by holo-
morphic automorphisms of C

n is polynomial convexity. By Theorem C in [15] a
union K ∪C of a polynomially convex set K and pairwise disjoint embedded curves
C=

⋃k
i=1 Ci is polynomially convex, if C is simply connected and each Ci meets K

in at most one point. When dealing with a union of slightly more general sets, we
will use the following proposition, which is essentially the content of the proof of
Proposition 1 in [17].

Proposition 2.3. Let M be a bordered complex, one-dimensional submanifold
of C

n, n≥2, whose boundary is a set of smooth curves that are all unbounded.
Assume that K is a polynomially convex compact set in Cn, Ki is a holomorphically
convex compact set in M , and K ∩M ⊂Ki. Then K ∪Ki is polynomially convex.

3. Controlling unbounded arcs

Proving Theorem 1.3 we will follow the idea of Buzzard and Forstnerič [3],
namely applying Proposition 2.2 and precomposing with a shear. We first explain
the construction of the shear (see also the related results [3, Lemma 3.2] and [16,
Lemma 1]).

Lemma 3.1. Let A and K be compact, polynomially convex sets in Cn, and

� = {γ(t) : t ∈ [0, ∞)}
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Figure 4. Properties of A, K, � and C in Lemma 3.1.

be an embedded C ∞ real curve in C
n that has an immediate nice projection property.

Take a nice projection radius R with π1(K)⊂DR, set C=γ([0, 1]), and assume that
π1(�)∩DR=π1(C) and γ(1) /∈A (see Figure 4). Given ε>0 and an integer r ≥0,
there exists an automorphism ϕ(z)=z+g(z1)�e2 of C

n such that

(1) ‖ϕ−id‖Cr(π−1
1 (DR)) <ε, ‖ϕ−id‖Cr(C) <ε,

and

(2) ϕ(�\C) ⊂ C
n\A.

Proof. Since γ(1) /∈A, there is s>0 such that γ(t) /∈A for all t∈[1, 1+s]. Set
R′ =|π1(γ(1+s))|. Choose S>R′ such that A⊂BS . Let

P = {γ(1+s)+ζ �e2 : ζ ∈ C}

and E=A∩P . Since A is polynomially convex, so is E, which implies that P \E is
connected. As γ(1+s) /∈A, we may choose a smooth curve λ : [0, 1]→C with λ(0)=0,

γ(1+s)+λ(t)�e2 ∈ P \E for t ∈ [0, 1] and |λ(1)+π2(γ(1+s))| >S+1

(see Figure 5). Define �̃S =DS ∩π1(�) and let S −R′ >δ>0 be such that

γ(1+s)+λ([0, 1])�e2+B3δ ⊂ C
n\A and π1(γ([1+s, 1+s+δ])) ⊂ DS .
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Figure 5. Choosing the curve λ as in the proof of Lemma 3.1.

Define a function h : DR′ ∪�̃S→C by

h(ζ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, ζ ∈DR′ ,

λ

(
t−1−s

δ

)

, if ζ=π1(γ(t)) for t∈(1+s, 1+s+δ),

λ(1), if ζ=π1(γ(t)) for t≥1+s+δ.

Since λ(0)=0, h is continuous. Clearly h is holomorphic in DR′ , and thus for any
given η>0 Mergelyan’s theorem provides an entire function g such that

|g(ζ)−h(ζ)| <η for ζ ∈ DR′ ∪�̃S .

A shear ϕ(z)=z+g(z1)�e2 satisfies conditions (1) by Cauchy’s estimates if we take
η< 1

2 min{ε, R′ε, ..., (R′)rε/r!}.
For z ∈� with π1(z) /∈�̃S , |π1(ϕ(z))|>S holds. Since A⊂BS , this implies that

ϕ(z) /∈A. If z ∈�\C is such that π1(z)∈�̃S , then ϕ(z) /∈A by the choice of λ and h.
This implies (2). �

Proof of Theorem 1.3. The automorphism Φ satisfying the conclusions of the
theorem will be a composition of three automorphisms, Φ=φ2 ◦φ1 ◦φ0. First, we
get φ1 by applying Proposition 2.2. The aim of φ0 is gaining control over �\C, for
which Lemma 3.1 is used. The automorphism φ2 is constructed before φ0 (using
Proposition 2.2 again) to meet the conditions of Lemma 3.1.
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Proposition 2.2 provides an automorphism φ1 and a neighborhood V of K such
that

‖φ1 −id‖ Cr(V ) <
ε

2
and ‖φ1 −F ‖ Cr(C) <

ε

2
.

We may assume ε to be small enough so that the second condition also implies
φ1(γ(1)) /∈A.

Let α∈Aut(Cn) be as in the definition of the nice projection property of �.
Choose R to be a nice projection property radius with π1(α(K)∪α(C))⊂DR. Let
c=�∩α−1(π−1

1 (DR)). Let G be a diffeomorphism defined on φ1(c) which is an
identity on φ1(C) and such that G(φ1(c)\φ1(C))∩A=∅. Applying Proposition 2.2
(for the polynomially convex set φ1(K), arc φ1(c) and the diffeomorphism G) we
get for any δ>0 an automorphism φ2 and a neighborhood W of φ1(K) such that

‖φ2 −id‖ Cr(W ) <δ and ‖φ2 −G‖ Cr(φ1(c)) <δ.

If necessary, we take δ even smaller so that the last condition also implies that

φ2 ◦φ1(c\C)∩A= ∅.

By the product and chain rules we get for all δ small enough that

‖φ2 ◦φ1 −id‖ Cr(V ) <
ε

2
and ‖φ2 ◦φ1 −F ‖ Cr(C) <

ε

2
.

The final diffeomorphism φ0 will be of the form φ0=α−1 ◦ϕ◦α. Let Ã denote
the set α◦(φ2 ◦φ1)−1(A). We have that α(�) is a curve with an immediate projection
property and α(c) is an initial part of this curve with one endpoint attached to
α(K) and the other endpoint outside Ã. By the choice of R and c it follows that
the hypotheses of Lemma 3.1 are satisfied with α(K) in place of K, Ã in place of
A, and α(�) and α(c) in place of � and C. For any μ>0 the lemma gives a shear
ϕ(z)=z+g(z1)�e2 such that

‖ϕ−id‖Cr(π−1
1 (DR)) <μ, ‖ϕ−id‖Cr(α(c)) <μ and ϕ(α(�)\α(c)) ⊂ C

n\Ã.

The last condition gives φ2 ◦φ1 ◦φ0(�\c)∩A=∅. Taking μ small enough the chain
and product rules imply that

‖φ2 ◦φ1 ◦φ0 −id‖ Cr(V ) <ε, ‖φ2 ◦φ1 ◦φ0 −F ‖ Cr(C) <ε

and
|φ2 ◦φ1 ◦φ0(t)−G◦φ1(t)| <ε for t ∈ c.

This gives the required estimates for Φ=φ2 ◦φ1 ◦φ0 and yields Φ(�\C)∩A=∅. �
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Proof of Corollary 1.4. Since A is compact and � has a nice projection property,
there exist positive numbers s and t1<t2, such that A⊂Bs and γ([t1, t2])∩Bs=∅.
By Theorem C in [15] the set L:=K ∪γ([t1, t2]) is polynomially convex. Choose
0<t0<t1 and t3>t2 such that the arcs C1 :=γ([t0, t1]) and C2 :=γ([t2, t3]) do not
intersect Bs. Let

F : C1 ∪C2 −→C1 ∪C2

be the identity map. Set

�1 = {γ(t) : t ∈ (−∞, t1] or t ∈ [0, t1]} and �2 = {γ(t) : t ∈ [t2, ∞)}.

If �1 is a finite arc, extend F to a smooth diffeomorphism

F̃ : �1 ∪C2 −→ �′
1 ∪C2 ⊂ C

n,

such that �′
1=F̃ (�1) does not intersect Bs. Now apply Proposition 2.2 (with L∪C2 in

place of K, and �1 and �′
1 in place of C and C ′) to approximate F̃ by an automor-

phism Φ1. Then use Theorem 1.3 (with C=Φ1(C2), �=Φ1(�2) and Φ1(L∪�1) in
place of K, Bs in place of A, and the identity map in place of F ) to get Φ2. Take
Φ=Φ2 ◦Φ1.

If �1 is unbounded, the result immediately follows from Theorem 1.3 with L in
place of K, Bs in place of A and the two pairs of curves (C1, �1) and (C2, �2). �

4. Proper embeddings with approximation

In this section we prove Theorem 1.1. We first embed D into C
N using a ratio-

nal shear map g in such a way that g(D) has only unbounded boundary components,
and that g|� is proper. We show that under a suitable choice of g, the boundary
∂g(D) has a nice projection property. Automorphisms of C

N are then used to push
the rest of the boundary to infinity. The approximation of λ is achieved with the
help of Theorem 1.3.

Proof of Theorem 1.1. Every finitely connected domain on the Riemann sphere
is conformally equivalent to a domain bounded by smooth Jordan curves and iso-
lated points. Thus we may assume ∂D to be smooth.

By approximation we may assume that λ : Γ→C
N is a proper C ∞ embedding

and η is small enough so that if μ : Γ→C
N satisfies the inequalities |μ(t)−λ(t)|<η(t)

and |μ′(t)−λ′(t)|<η(t), then μ is a proper embedding (see [13, Proposition 2.15.4]).
Let K1 be a holomorphically convex, compact set in D with

k⋃

i=1

(γi(0)∪γi(1))∩D ⊂ K1,
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Figure 6. Choosing K1 and a1, a2, ..., aM .

which also satisfies the following property: if �i ⊂D for some i, then �i ⊂K1 (see
Figure 6).

Choose finitely many points a1, a2, ..., aM in ∂D, at least one in each component
of ∂D, so that �̄ meets ∂D in a subset of {a1, a2, ..., aM } (see Figure 6). Set

Γ := (∂D\ {a1, ..., aM })∪(�\K1) .

Let g : C\{a1, ..., aM }→C
N be defined by

g(z) =
(

z,

M∑

i=1

ci

z −ai
, 0, ..., 0

)

.

Clearly g embeds D into C
N .

Claim. The numbers c1, ..., cM can be chosen in such a way that the family of
curves g(Γ) has a nice projection property.

Proof. Let α(t) and β(t) for t∈[0, 1] be the parameterizations of two curves
in Γ with α(0)=ai and β(0)=aj . If i �=j, it follows by [16, Proposition 3.2] that for
some positive number R and all positive t close to 0, the estimates

∣
∣
∣
∣π2 ◦g ◦α(t)− ci

(π2 ◦g ◦α)′(0)t

∣
∣
∣
∣ <R and

∣
∣
∣
∣π2 ◦g ◦β(t)− cj

(π2 ◦g ◦β)′(0)t

∣
∣
∣
∣ <R

hold. If ci and cj are non-zero and

(3)
ci

(π2 ◦g ◦α)′(0)
�= cj

(π2 ◦g ◦β)′(0)
,

the estimates imply that π2 ◦g ◦α(t) and π2 ◦g ◦β(s) do not intersect for positive t

and s close to 0.
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Choose numbers c1, c2, ..., cM in such a way that (3) holds for all pairs (i, j),
1≤i<j ≤k, and all possible pairs of curves (α, β) in Γ with endpoints α(0)=ai and
β(0)=aj .

It remains to consider pairs of curves in Γ with a common endpoint. Denote
the parameterizations again by α(t) and β(t) for t∈[0, 1] and assume that α(0)=
ai=β(0). Choose a number C>0 such that for positive t and s close to 0 we have

∣
∣
∣
∣
∣

M∑

j=1

j �=i

cj

(α(t)−aj)(β(s)−aj)

∣
∣
∣
∣
∣
<C.

Clearly, if the positive numbers t and s are small enough, the estimate

|(α(t)−ai)(β(s)−ai)| <
|ci|
2C

holds. For such t and s this gives that

|π2 ◦g ◦α(t)−π2 ◦g ◦β(s)|

=
∣
∣
∣
∣

M∑

j=1

cj

(
1

α(t)−aj
− 1

β(s)−aj

)∣
∣
∣
∣

= |α(t)−β(s)|
∣
∣
∣
∣

ci

(α(t)−ai)(β(s)−ai)
+

∑

j �=i

cj

(α(t)−aj)(β(s)−aj)

∣
∣
∣
∣

> |α(t)−β(s)|(2C −C)

= |α(t)−β(s)|C.

The number |α(t)−β(s)|C is positive, since α and β do not intersect in D. This
means that for small positive t and s, the curves π2 ◦g ◦α and π2 ◦g ◦β do not
intersect, which yields a nice projection property of g(Γ). �

We inductively construct a sequence Φn of holomorphic automorphisms of C
n,

converging to a map Φ: Ω→C
n. Besides establishing convergence and insuring

g(D)⊂Ω and g(∂D\ {a1, ..., aM })⊂∂Ω, additional requirements arise from demand-
ing that f=Φ◦g satisfies

|f ◦γ
(s)
i (t)−λ◦γ

(s)
i (t)| <η ◦γi(t) for all t ∈ (0, 1), 1 ≤ i ≤ k and 0 ≤ s ≤ r.

It will be clear from the inductive construction that there is no loss of generality
in assuming that � consists of a single curve γ([0, 1)) (that means that γ(0)∈D and
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γ(1)∈∂D). Choose constants 0<c1<c2<... converging to 1, such that γ([0, c1])
contains �∩K1 and

λ(γ([cj , 1]))∩Bj+2 = ∅.

Set

Lj =
{

z ∈ D : dist(z, ∂D ∪γ([cj , 1])) ≥ 1
2j

}

.

Clearly
⋃∞

j=1 Lj =D.
Choose smooth functions χj : �→R with χj(t)=1 if t∈γ([0, cj ]) and χj(t)=0 if

t∈γ([cj+1, 1)). Let Cj be constants such that

‖χjh‖ Cr(�) ≤ Cj ‖h‖Cr(�) for all h ∈ Cr(�).

We proceed by induction. The assumptions for the nth step are that we have
– holomorphically convex sets K1�K2�...�Kn in D, such that Lj ⊂Kj for

j=1, ..., n;
– a number 0<δn<1/Cn inf{η(t) : t∈γ([0, cn+1])};
– automorphisms Φn=φn ◦φn−1 ◦...◦φ1 of CN ;

such that
(1n) |φn(x)−x|<1/2n+1 for x∈Bn−1 ∪Φn−1 ◦g(Kn);
(2n) |Φn ◦g(x)|>n for x∈∂D;
(3n) |Φn ◦g ◦γ(s)(t)−λ◦γ(s)(t)|< 1

2η ◦γ(t) for t∈[0, cn] and 0≤s≤r;
(4n) |Φn ◦g ◦γ(s)(t)−λ◦γ(s)(t)|<δn for t∈[cn, cn+1] and 0≤s≤r.

We will show how to obtain these hypotheses at step n+1. Step 1 is achieved using
the same construction.

Condition (2n) implies that Φn ◦g(∂D)∩Bn=∅, and thus L:=Φn ◦g(D)∩Bn is
a compact set in D. Let Kn+1 be a holomorphically convex compact set in D such
that

Kn ∪L∪Ln+1 ⊂ Kn+1 and �∩Kn+1 ⊂ γ([0, cn+1]).

For t∈� define

λn(t) :=Φn ◦g(t)χn(t)+λ(t)(1−χn(t)).

If t∈[0, cn], (3n) yields

|λn ◦γ(s)(t)−λ◦γ(s)(t)| = |Φn ◦g ◦γ(s)(t)−λ◦γ(s)(t)| < 1
2η ◦γ(t), 0 ≤ s ≤ r.

If t∈[cn+1, 1), then λn(γ(t))−λ(γ(t))=0. It follows from (4n) and the choice of δn

that
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‖λn −λ‖ Cr(γ([cn,cn+1])) = ‖(Φn ◦g −λ)χn(t)‖Cr(γ([cn,cn+1]))

≤ Cn‖Φn ◦g −λ‖ Cr(γ([cn,cn+1]))

< inf{η(t) : t ∈ γ([0, cn−1])},

which gives that

|λn ◦γ(s)(t)−λ◦γ(s)(t)| <η(γ(t)) for all t ∈ [cn, cn+1] and 0 ≤ s ≤ r.

By the assumptions we posed on λ and η, these estimates imply that λn is an
embedding.

Set

K =Φn ◦g(Kn+1)∪Bn.

Since Bn ∩Φn ◦g(D)⊂Φn ◦g(Kn+1), it follows by Proposition 2.3 that K is polyno-
mially convex. Set

C =Φn ◦g(γ([0, cn+1]))\Φn ◦g(
◦

Kn+1), �′ =Φn ◦g(�)\Φn ◦g(
◦

Kn+1)

and A=Bn+1. Define F : C→C ′ by F (z)=λn ◦(Φn ◦g)−1(z). Let

δn+1 =
1

2Cn+1
inf{η(t) : t ∈ γ([0, cn+2])} and ε=min

{
1

2n+1
, δn+1, Cn+1δn+1

}

.

Applying Theorem 1.3 we get an automorphism φn+1 and a neighborhood V of K

such that

‖φn+1 −id‖ Cr(V ) <ε, ‖φn+1 −F ‖ Cr(C) <ε and φn+1(�′ \C)∩A= ∅.

In particular these three conditions imply (1n+1), (2n+1), (3n+1) and (4n+1), and
this concludes induction step n+1.

By (1n) the map

Φ = lim
n→∞

Φn : Ω −→C
2

converges (Theorem 2.1) and satisfies g(D)⊂Ω. Condition (2n) yields that g(∂D)⊂
∂Ω, and thus the composition f=Φ◦g : D→C

2 is a proper holomorphic embedding
and (3n) and (4n) give that

|f ◦γ(s)(t)−λ◦γ(s)(t)| <η(γ(t)) for all t ∈ [0, 1) and 0 ≤ s ≤ r. �



342 Irena Majcen

5. Remark

Theorem 1.1 gives a generalization of a result by Buzzard and Forstnerič [3],
which they named the Carleman-type theorem for proper holomorphic embeddings.
In the complex plane, Arakelian’s theorem [1] (see also [14]) generalizes Carleman’s
theorem. An Arakelian set is a closed subset E in C such that C\E has no bounded
components and for every closed disc D ⊂C, the union of all bounded components
of C\(E ∪D) is a bounded set. Arakelian’s theorem states: Given an Arakelian
set E, ε>0 and a continuous function λ on E that is holomorphic in the interior
of E, there is a holomorphic function f : C→C that satisfies

|f(t)−λ(t)| <ε

for every t∈E.
Consider the following Arakelian type problem for proper holomorphic em-

beddings: Assume we are given a proper embedding λ : E→C
n, n>1, which is

holomorphic in
◦

E . Given ε>0, does there exist a proper holomorphic embedding
f : C→C

n, such that |f(t)−λ(t)|<ε for all t∈E?
In general, the answer is negative. By Proposition 4.5 in [2] there exists a

discrete set of discs in C2 for which one cannot find a proper holomorphic embedding
of C into C

2 containing small perturbations of the given discs.
We would also like to note that there are some other recent results related to

Carleman’s theorem. Løw and Wold [10] gave new results regarding polynomial
convexity of closed, totally real (non-compact) submanifolds M of C

n, which en-
abled Manne, Øvrelid and Wold [12] to generalize the Carleman theorem to Stein
manifolds. For the exact statement, see [12].
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