Proper holomorphic embeddings of finitely connected planar domains into \mathbb{C}^n

Irena Majcen

Abstract. In this paper we consider proper holomorphic embeddings of finitely connected planar domains into \mathbb{C}^n that approximate given proper embeddings on smooth curves. As a side result we obtain a tool for approximating a \mathcal{C}^{∞} diffeomorphism on a polynomially convex set in \mathbb{C}^n by an automorphism of \mathbb{C}^n that satisfies some additional properties along a real embedded curve.

1. Introduction

Let D be an open Riemann surface. Recall that a map $f: D \to \mathbb{C}^2$ is said to be a *proper holomorphic embedding* if it is a one-to-one holomorphic immersion such that the preimage of every compact set is compact. It is an open question whether every open Riemann surface embeds properly into \mathbb{C}^2 .

In 1995 Globevnik and Stensønes [8] proved that any bounded finitely connected planar domain without isolated boundary points embeds properly into \mathbb{C}^2 . Wold [16] improved their result to all finitely connected domains as well as to some infinitely connected domains in \mathbb{C} . (For further results see also [17], [7] and [11].)

In this paper we consider proper holomorphic embeddings of finitely connected planar domains into \mathbb{C}^n satisfying additional requirements. This problem is related to the following extension of the Carleman theorem, proven by Buzzard and Forstnerič in [3]: Let n>1 and $r\geq 0$ be integers. Given a proper \mathcal{C}^r embedding λ of \mathbb{R} into \mathbb{C}^n and a continuous positive function $\eta: \mathbb{R} \to (0, \infty)$, there exists a proper holomorphic embedding $f: \mathbb{C} \to \mathbb{C}^n$ such that

 $|f^{(s)}(t) - \lambda^{(s)}(t)| < \eta(t) \quad for \ all \ t \in \mathbb{R} \ and \ 0 \le s \le r.$

We generalize their result by replacing \mathbb{R} by a union of curves and also allowing \mathbb{C} to be replaced with a finitely connected planar domain D.

Figure 1. Planar domain D and smooth curves ℓ_i as in Theorem 1.1.

Theorem 1.1. Let $N \ge 2$ and $r \ge 1$ be integers and D be a finitely connected planar domain. Let

$$\ell_i = \{\gamma_i(t) : t \in [0, 1]\}, \quad i = 1, 2, \dots, k,$$

be smooth embedded curves in \mathbb{C} such that $\gamma_i((0,1)) \subset D$ and

$$\ell_i \cap \ell_j \cap D = \emptyset$$
 for all $1 \le i < j \le k$.

Let ℓ denote the curves $\bigcup_{i=1}^{k} \ell_i \setminus \partial D$. Given a proper \mathcal{C}^r embedding $\lambda \colon \ell \hookrightarrow \mathbb{C}^N$ and a positive continuous function $\eta \colon \ell \to (0, \infty)$ there exists a proper holomorphic embedding $f \colon D \hookrightarrow \mathbb{C}^N$ such that

$$|f \circ \gamma_i^{(s)}(t) - \lambda \circ \gamma_i^{(s)}(t)| < \eta \circ \gamma_i(t) \quad for \ all \ t \in (0,1), \ 1 \le i \le k \ and \ 0 \le s \le r.$$

While proving this theorem we formulate an additional tool related to holomorphic automorphisms of \mathbb{C}^n that might be of independent interest. A holomorphic map $\phi : \mathbb{C}^n \to \mathbb{C}^n$ with a holomorphic inverse $\phi^{-1} : \mathbb{C}^n \to \mathbb{C}^n$ is called a *holomorphic automorphism* of \mathbb{C}^n . We denote the group of all holomorphic automorphisms of \mathbb{C}^n by $\operatorname{Aut}(\mathbb{C}^n)$.

Definition 1.2. (Definition 2.1 in [9]) A family ℓ of finitely many disjoint embedded smooth real curves

$$\ell_i = \{\gamma_i(t) : t \in [0, \infty) \text{ or } t \in (-\infty, \infty)\}, \quad i = 1, 2, ..., m,$$

in \mathbb{C}^n has a nice projection property if there is a holomorphic automorphism $\alpha \in \operatorname{Aut}(\mathbb{C}^n)$ such that, if π_1 is the projection to the first coordinate, $\tilde{\gamma}_i(t) = \alpha(\gamma_i(t))$ and $\tilde{\ell} = \alpha(\ell)$, then the following hold:

(1) $\lim_{|t|\to\infty} |\pi_1(\tilde{\gamma}_i(t))| = \infty$ for i=1, 2, ..., m,

(2) there is a number $s \in \mathbb{R}$ such that $\mathbb{C} \setminus (\pi_1(\tilde{\ell}) \cup \overline{\mathbb{D}}_r)$ does not contain any relatively compact connected components for all $r \geq s$.

We call any number $r \ge s$ as in (2) a nice projection radius. If $\alpha = id$, we say that ℓ has an immediate nice projection property.

The results we also obtain in this paper are the following.

Theorem 1.3. Let K be a compact, polynomially convex set in \mathbb{C}^n , $n \ge 2$, and let $\ell = \{\gamma(t) : t \in [0, \infty)\}$ be a \mathcal{C}^{∞} embedded real curve in \mathbb{C}^n with a nice projection property. Set $C = \gamma([0, 1])$ and assume that $K \cap \ell = \{\gamma(0)\}$. Given a \mathcal{C}^{∞} diffeomorphism $F : C \to C' \subset \mathbb{C}^n$ such that $F|_{C \cap U} = \text{id}$ for some neighborhood U of K, a compact, polynomially convex set $A \subset \mathbb{C}^n$ with $F(\gamma(1)) \notin A$, a number $\varepsilon > 0$ and a non-negative integer r, there exists a neighborhood V of K and an automorphism $\Phi \in \operatorname{Aut}(\mathbb{C}^n)$ satisfying

 $\|\Phi - \mathrm{id}\|_{\mathcal{C}^r(V)} < \varepsilon, \quad \|\Phi - F\|_{\mathcal{C}^r(C)} < \varepsilon \quad and \quad \Phi(\ell \backslash C) \cap A = \varnothing.$

Corollary 1.4. Let K be a compact, polynomially convex set in \mathbb{C}^n , $n \ge 2$, and let $\ell = \{\gamma(t) : t \in [0, \infty) \text{ or } t \in (-\infty, \infty)\}$ be a \mathcal{C}^{∞} embedded real curve in \mathbb{C}^n with a nice projection property. Assume that $K \cap \ell = \emptyset$. Given a compact set $A \subset \mathbb{C}^n$, a number $\varepsilon > 0$ and a non-negative integer r, there exists a neighborhood V of K and an automorphism $\Phi \in \operatorname{Aut}(\mathbb{C}^n)$ satisfying

$$\|\Phi\!-\!\mathrm{id}\|_{\mathcal{C}^r(V)}\!<\!\varepsilon\quad and\quad \Phi(\ell)\!\cap\!A\!=\!\varnothing.$$

These results hold also if $C = \bigcup_{i=1}^{k} C_i$, resp. $\ell = \bigcup_{i=1}^{k} \ell_i$, is a union of pairwise disjoint arcs, resp. curves, with the same properties.

2. Preliminaries

In the proof of Theorem 1.1 we achieve properness by using a sequence of holomorphic automorphisms with certain properties. Determining convergence of such a sequence has been examined by Forstnerič in [4]. In our setting Proposition 5.1 in [4] can be stated as follows.

Proposition 2.1. Suppose that for each $j=1,2,3,..., \phi_j$ is a holomorphic automorphism of \mathbb{C}^n satisfying

$$|\phi_j(z) - z| < \frac{1}{2^j}, \quad z \in \overline{\mathbb{B}}_j.$$

Figure 2. Moving an arc as in Proposition 2.2.

Set $\Phi_m = \phi_m \circ \phi_{m-1} \circ \ldots \circ \phi_1$. Then there is an open set $\Omega \subset \mathbb{C}^n$ such that $\lim_{m \to \infty} \Phi_m = \Phi$ exists on Ω (uniformly on compact sets), and Φ is a biholomorphic map of Ω onto \mathbb{C}^n . In fact, $\Omega = \bigcup_{i=1}^{\infty} \Phi_i^{-1}(\overline{\mathbb{B}}_i)$.

A powerful tool for obtaining automorphisms of \mathbb{C}^n is Theorem 2.1 in [6]. In relations with curves, this result has been developed even further, for example in [5].

Proposition 2.2. Let $K \subset \mathbb{C}^n$, $n \geq 2$, be a compact, polynomially convex set, and let $C \subset \mathbb{C}^n$ be an embedded arc of class \mathcal{C}^{∞} which is attached to K in a single point of K. Given a \mathcal{C}^{∞} diffeomorphism $F \colon C \to C' \subset \mathbb{C}^n$ such that F is the identity on $C \cap U$ for some open neighborhood U of K (see Figure 2), and given numbers $r \geq 0$ and $\varepsilon > 0$, there exists a neighborhood W of K and an automorphism $\Phi \in \operatorname{Aut}(\mathbb{C}^n)$ satisfying

$$\|\Phi\!-\!\mathrm{id}\|_{\mathcal{C}^r(W)}\!<\!\varepsilon\quad and\quad \|\Phi\!-\!F\|_{\mathcal{C}^r(C)}\!<\!\varepsilon.$$

Note that the same holds with any finite number of disjoint arcs attached to K. To avoid lengthier formulations we only state the results for a single arc C or curve ℓ while keeping in mind that the same is true if $C = \bigcup_{i=1}^{k} C_i$, resp. $\ell = \bigcup_{i=1}^{k} \ell_i$, is a finite union of pairwise disjoint arcs resp. curves with the same properties. The proofs are the same in both cases, to get a proof for the latter just add indices to the existing proofs.

Let K and C be as in the proposition and assume that $\ell = \{\gamma(t) : t \in [0, \infty)\}$ is an embedded smooth curve in \mathbb{C}^n with $C = \gamma([0, 1])$ and $K \cap \ell = \gamma(0)$. Using the proposition we get automorphisms of \mathbb{C}^n approximating movements of C while remaining close to the identity on K (see Figure 3). The obtained automorphism might map some part of $\ell \setminus C$ really close to K, which is what we want to avoid in proving Theorem 1.1.

Tackling a problem of this kind, Buzzard and Forstnerič in [3] found an elegant solution. The automorphism of \mathbb{C}^n that approximately maps C to C' while staying close to identity on K, and does not map any part of $\ell \setminus C$ close to K, was in their case an automorphism of \mathbb{C}^n , provided by Proposition 2.2, precomposed with an

Figure 3. Moving an arc which is a part of a curve ℓ .

automorphism (called shear) of the form

 $z \mapsto z + f(z_1)\vec{e}_2$, where $z_1 = \pi_1(z)$ and $\vec{e}_2 = (0, 1, 0, ..., 0)$.

Although they worked with ℓ being a real line $\mathbb{R} \times \{0\}^{n-1}$, their idea can be carried over to a more general setting. For example, in [16] Wold used it for curves ℓ having a nice projection property.

An important property of sets on which we want to approximate by holomorphic automorphisms of \mathbb{C}^n is polynomial convexity. By Theorem C in [15] a union $K \cup C$ of a polynomially convex set K and pairwise disjoint embedded curves $C = \bigcup_{i=1}^k C_i$ is polynomially convex, if C is simply connected and each C_i meets Kin at most one point. When dealing with a union of slightly more general sets, we will use the following proposition, which is essentially the content of the proof of Proposition 1 in [17].

Proposition 2.3. Let M be a bordered complex, one-dimensional submanifold of \mathbb{C}^n , $n \ge 2$, whose boundary is a set of smooth curves that are all unbounded. Assume that K is a polynomially convex compact set in \mathbb{C}^n , K_i is a holomorphically convex compact set in M, and $K \cap M \subset K_i$. Then $K \cup K_i$ is polynomially convex.

3. Controlling unbounded arcs

Proving Theorem 1.3 we will follow the idea of Buzzard and Forstnerič [3], namely applying Proposition 2.2 and precomposing with a shear. We first explain the construction of the shear (see also the related results [3, Lemma 3.2] and [16, Lemma 1]).

Lemma 3.1. Let A and K be compact, polynomially convex sets in \mathbb{C}^n , and

$$\ell = \{\gamma(t) \colon t \in [0,\infty)\}$$

Figure 4. Properties of A, K, ℓ and C in Lemma 3.1.

be an embedded \mathcal{C}^{∞} real curve in \mathbb{C}^n that has an immediate nice projection property. Take a nice projection radius R with $\pi_1(K) \subset \mathbb{D}_R$, set $C = \gamma([0,1])$, and assume that $\pi_1(\ell) \cap \overline{\mathbb{D}}_R = \pi_1(C)$ and $\gamma(1) \notin A$ (see Figure 4). Given $\varepsilon > 0$ and an integer $r \ge 0$, there exists an automorphism $\varphi(z) = z + g(z_1)\vec{e}_2$ of \mathbb{C}^n such that

(1)
$$\|\varphi - \mathrm{id}\|_{\mathcal{C}^r(\pi_1^{-1}(\overline{\mathbb{D}}_R))} < \varepsilon, \quad \|\varphi - \mathrm{id}\|_{\mathcal{C}^r(C)} < \varepsilon,$$

and

(2)
$$\varphi(\ell \setminus C) \subset \mathbb{C}^n \setminus A.$$

Proof. Since $\gamma(1) \notin A$, there is s > 0 such that $\gamma(t) \notin A$ for all $t \in [1, 1+s]$. Set $R' = |\pi_1(\gamma(1+s))|$. Choose S > R' such that $A \subset \mathbb{B}_S$. Let

$$P = \{\gamma(1+s) + \zeta \, \vec{e}_2 \colon \zeta \in \mathbb{C}\}$$

and $E = A \cap P$. Since A is polynomially convex, so is E, which implies that $P \setminus E$ is connected. As $\gamma(1+s) \notin A$, we may choose a smooth curve $\lambda : [0,1] \to \mathbb{C}$ with $\lambda(0)=0$,

$$\gamma(1+s) + \lambda(t)\vec{e}_2 \in P \setminus E \text{ for } t \in [0,1] \text{ and } |\lambda(1) + \pi_2(\gamma(1+s))| > S+1$$

(see Figure 5). Define $\tilde{\ell}_S = \overline{\mathbb{D}}_S \cap \pi_1(\ell)$ and let $S - R' > \delta > 0$ be such that

$$\gamma(1+s)+\lambda([0,1])\vec{e}_2+\overline{\mathbb{B}}_{3\delta}\subset\mathbb{C}^n\backslash A \quad \text{and} \quad \pi_1(\gamma([1+s,1+s+\delta]))\subset\mathbb{D}_S.$$

Figure 5. Choosing the curve λ as in the proof of Lemma 3.1.

Define a function $h: \overline{\mathbb{D}}_{R'} \cup \tilde{\ell}_S \to \mathbb{C}$ by

$$h(\zeta) = \begin{cases} 0, & \zeta \in \overline{\mathbb{D}}_{R'}, \\ \lambda \left(\frac{t - 1 - s}{\delta} \right), & \text{if } \zeta = \pi_1(\gamma(t)) \text{ for } t \in (1 + s, 1 + s + \delta), \\ \lambda(1), & \text{if } \zeta = \pi_1(\gamma(t)) \text{ for } t \ge 1 + s + \delta. \end{cases}$$

Since $\lambda(0)=0$, h is continuous. Clearly h is holomorphic in $\mathbb{D}_{R'}$, and thus for any given $\eta > 0$ Mergelyan's theorem provides an entire function g such that

$$|g(\zeta) - h(\zeta)| < \eta \quad \text{for } \zeta \in \overline{\mathbb{D}}_{R'} \cup \widehat{\ell}_S.$$

A shear $\varphi(z) = z + g(z_1)\vec{e}_2$ satisfies conditions (1) by Cauchy's estimates if we take $\eta < \frac{1}{2} \min\{\varepsilon, R'\varepsilon, ..., (R')^r \varepsilon/r!\}.$

For $z \in \ell$ with $\pi_1(z) \notin \tilde{\ell}_S$, $|\pi_1(\varphi(z))| > S$ holds. Since $A \subset \mathbb{B}_S$, this implies that $\varphi(z) \notin A$. If $z \in \ell \setminus C$ is such that $\pi_1(z) \in \tilde{\ell}_S$, then $\varphi(z) \notin A$ by the choice of λ and h. This implies (2). \Box

Proof of Theorem 1.3. The automorphism Φ satisfying the conclusions of the theorem will be a composition of three automorphisms, $\Phi = \phi_2 \circ \phi_1 \circ \phi_0$. First, we get ϕ_1 by applying Proposition 2.2. The aim of ϕ_0 is gaining control over $\ell \setminus C$, for which Lemma 3.1 is used. The automorphism ϕ_2 is constructed before ϕ_0 (using Proposition 2.2 again) to meet the conditions of Lemma 3.1.

Irena Majcen

Proposition 2.2 provides an automorphism ϕ_1 and a neighborhood V of K such that

$$\|\phi_1 \!-\! \mathrm{id}\|_{\mathcal{C}^r(V)} \!<\! \frac{\varepsilon}{2} \quad \mathrm{and} \quad \|\phi_1 \!-\! F\|_{\mathcal{C}^r(C)} \!<\! \frac{\varepsilon}{2}.$$

We may assume ε to be small enough so that the second condition also implies $\phi_1(\gamma(1)) \notin A$.

Let $\alpha \in \operatorname{Aut}(\mathbb{C}^n)$ be as in the definition of the nice projection property of ℓ . Choose R to be a nice projection property radius with $\pi_1(\alpha(K) \cup \alpha(C)) \subset \mathbb{D}_R$. Let $c = \ell \cap \alpha^{-1}(\pi_1^{-1}(\mathbb{D}_R))$. Let G be a diffeomorphism defined on $\phi_1(c)$ which is an identity on $\phi_1(C)$ and such that $G(\phi_1(c) \setminus \phi_1(C)) \cap A = \emptyset$. Applying Proposition 2.2 (for the polynomially convex set $\phi_1(K)$, arc $\phi_1(c)$ and the diffeomorphism G) we get for any $\delta > 0$ an automorphism ϕ_2 and a neighborhood W of $\phi_1(K)$ such that

$$\|\phi_2 - \mathrm{id}\|_{\mathcal{C}^r(W)} < \delta$$
 and $\|\phi_2 - G\|_{\mathcal{C}^r(\phi_1(c))} < \delta$.

If necessary, we take δ even smaller so that the last condition also implies that

$$\phi_2 \circ \phi_1(c \backslash C) \cap A = \varnothing.$$

By the product and chain rules we get for all δ small enough that

$$\|\phi_2 \circ \phi_1 - \mathrm{id}\|_{\mathcal{C}^r(V)} < \frac{\varepsilon}{2} \quad \text{and} \quad \|\phi_2 \circ \phi_1 - F\|_{\mathcal{C}^r(C)} < \frac{\varepsilon}{2}.$$

The final diffeomorphism ϕ_0 will be of the form $\phi_0 = \alpha^{-1} \circ \varphi \circ \alpha$. Let \tilde{A} denote the set $\alpha \circ (\phi_2 \circ \phi_1)^{-1}(A)$. We have that $\alpha(\ell)$ is a curve with an immediate projection property and $\alpha(c)$ is an initial part of this curve with one endpoint attached to $\alpha(K)$ and the other endpoint outside \tilde{A} . By the choice of R and c it follows that the hypotheses of Lemma 3.1 are satisfied with $\alpha(K)$ in place of K, \tilde{A} in place of A, and $\alpha(\ell)$ and $\alpha(c)$ in place of ℓ and C. For any $\mu > 0$ the lemma gives a shear $\varphi(z) = z + g(z_1)\vec{e_2}$ such that

$$\|\varphi - \mathrm{id}\|_{\mathcal{C}^r(\pi_1^{-1}(\mathbb{D}_R))} < \mu, \quad \|\varphi - \mathrm{id}\|_{\mathcal{C}^r(\alpha(c))} < \mu \quad \text{and} \quad \varphi(\alpha(\ell) \setminus \alpha(c)) \subset \mathbb{C}^n \setminus \tilde{A}.$$

The last condition gives $\phi_2 \circ \phi_1 \circ \phi_0(\ell \setminus c) \cap A = \emptyset$. Taking μ small enough the chain and product rules imply that

$$\|\phi_2 \circ \phi_1 \circ \phi_0 - \operatorname{id}\|_{\mathcal{C}^r(V)} < \varepsilon, \quad \|\phi_2 \circ \phi_1 \circ \phi_0 - F\|_{\mathcal{C}^r(C)} < \varepsilon$$

and

$$|\phi_2 \circ \phi_1 \circ \phi_0(t) - G \circ \phi_1(t)| < \varepsilon \quad \text{for } t \in c.$$

This gives the required estimates for $\Phi = \phi_2 \circ \phi_1 \circ \phi_0$ and yields $\Phi(\ell \setminus C) \cap A = \emptyset$. \Box

336

Proof of Corollary 1.4. Since A is compact and ℓ has a nice projection property, there exist positive numbers s and $t_1 < t_2$, such that $A \subset \mathbb{B}_s$ and $\gamma([t_1, t_2]) \cap \mathbb{B}_s = \emptyset$. By Theorem C in [15] the set $L := K \cup \gamma([t_1, t_2])$ is polynomially convex. Choose $0 < t_0 < t_1$ and $t_3 > t_2$ such that the arcs $C_1 := \gamma([t_0, t_1])$ and $C_2 := \gamma([t_2, t_3])$ do not intersect $\overline{\mathbb{B}}_s$. Let

$$F: C_1 \cup C_2 \longrightarrow C_1 \cup C_2$$

be the identity map. Set

$$\ell_1 = \{\gamma(t) : t \in (-\infty, t_1] \text{ or } t \in [0, t_1]\} \text{ and } \ell_2 = \{\gamma(t) : t \in [t_2, \infty)\}.$$

If ℓ_1 is a finite arc, extend F to a smooth diffeomorphism

$$F: \ell_1 \cup C_2 \longrightarrow \ell'_1 \cup C_2 \subset \mathbb{C}^n,$$

such that $\ell'_1 = \widetilde{F}(\ell_1)$ does not intersect $\overline{\mathbb{B}}_s$. Now apply Proposition 2.2 (with $L \cup C_2$ in place of K, and ℓ_1 and ℓ'_1 in place of C and C') to approximate \widetilde{F} by an automorphism Φ_1 . Then use Theorem 1.3 (with $C = \Phi_1(C_2)$, $\ell = \Phi_1(\ell_2)$ and $\Phi_1(L \cup \ell_1)$ in place of K, $\overline{\mathbb{B}}_s$ in place of A, and the identity map in place of F) to get Φ_2 . Take $\Phi = \Phi_2 \circ \Phi_1$.

If ℓ_1 is unbounded, the result immediately follows from Theorem 1.3 with L in place of K, $\overline{\mathbb{B}}_s$ in place of A and the two pairs of curves (C_1, ℓ_1) and (C_2, ℓ_2) . \Box

4. Proper embeddings with approximation

In this section we prove Theorem 1.1. We first embed D into \mathbb{C}^N using a rational shear map g in such a way that g(D) has only unbounded boundary components, and that $g|_{\ell}$ is proper. We show that under a suitable choice of g, the boundary $\partial g(D)$ has a nice projection property. Automorphisms of \mathbb{C}^N are then used to push the rest of the boundary to infinity. The approximation of λ is achieved with the help of Theorem 1.3.

Proof of Theorem 1.1. Every finitely connected domain on the Riemann sphere is conformally equivalent to a domain bounded by smooth Jordan curves and isolated points. Thus we may assume ∂D to be smooth.

By approximation we may assume that $\lambda \colon \Gamma \to \mathbb{C}^N$ is a proper \mathcal{C}^{∞} embedding and η is small enough so that if $\mu \colon \Gamma \to \mathbb{C}^N$ satisfies the inequalities $|\mu(t) - \lambda(t)| < \eta(t)$ and $|\mu'(t) - \lambda'(t)| < \eta(t)$, then μ is a proper embedding (see [13, Proposition 2.15.4]).

Let K_1 be a holomorphically convex, compact set in D with

$$\bigcup_{i=1}^k (\gamma_i(0) \cup \gamma_i(1)) \cap D \subset K_1,$$

Figure 6. Choosing K_1 and $a_1, a_2, ..., a_M$.

which also satisfies the following property: if $\ell_i \subset D$ for some *i*, then $\ell_i \subset K_1$ (see Figure 6).

Choose finitely many points $a_1, a_2, ..., a_M$ in ∂D , at least one in each component of ∂D , so that $\overline{\ell}$ meets ∂D in a subset of $\{a_1, a_2, ..., a_M\}$ (see Figure 6). Set

$$\Gamma := (\partial D \setminus \{a_1, ..., a_M\}) \cup (\ell \setminus K_1).$$

Let $g: \mathbb{C} \setminus \{a_1, ..., a_M\} \rightarrow \mathbb{C}^N$ be defined by

$$g(z) = \left(z, \sum_{i=1}^{M} \frac{c_i}{z - a_i}, 0, ..., 0\right).$$

Clearly g embeds D into \mathbb{C}^N .

Claim. The numbers $c_1, ..., c_M$ can be chosen in such a way that the family of curves $g(\Gamma)$ has a nice projection property.

Proof. Let $\alpha(t)$ and $\beta(t)$ for $t \in [0, 1]$ be the parameterizations of two curves in $\overline{\Gamma}$ with $\alpha(0) = a_i$ and $\beta(0) = a_j$. If $i \neq j$, it follows by [16, Proposition 3.2] that for some positive number R and all positive t close to 0, the estimates

$$\left| \pi_2 \circ g \circ \alpha(t) - \frac{c_i}{(\pi_2 \circ g \circ \alpha)'(0)t} \right| < R \quad \text{and} \quad \left| \pi_2 \circ g \circ \beta(t) - \frac{c_j}{(\pi_2 \circ g \circ \beta)'(0)t} \right| < R$$

hold. If c_i and c_j are non-zero and

(3)
$$\frac{c_i}{(\pi_2 \circ g \circ \alpha)'(0)} \neq \frac{c_j}{(\pi_2 \circ g \circ \beta)'(0)}$$

the estimates imply that $\pi_2 \circ g \circ \alpha(t)$ and $\pi_2 \circ g \circ \beta(s)$ do not intersect for positive t and s close to 0.

Choose numbers $c_1, c_2, ..., c_M$ in such a way that (3) holds for all pairs (i, j), $1 \le i < j \le k$, and all possible pairs of curves (α, β) in $\overline{\Gamma}$ with endpoints $\alpha(0) = a_i$ and $\beta(0) = a_j$.

It remains to consider pairs of curves in $\overline{\Gamma}$ with a common endpoint. Denote the parameterizations again by $\alpha(t)$ and $\beta(t)$ for $t \in [0, 1]$ and assume that $\alpha(0) = a_i = \beta(0)$. Choose a number C > 0 such that for positive t and s close to 0 we have

$$\left|\sum_{\substack{j=1\\j\neq i}}^{M} \frac{c_j}{(\alpha(t) - a_j)(\beta(s) - a_j)}\right| < C.$$

Clearly, if the positive numbers t and s are small enough, the estimate

$$|(\alpha(t)-a_i)(\beta(s)-a_i)| < \frac{|c_i|}{2C}$$

holds. For such t and s this gives that

$$\begin{aligned} |\pi_2 \circ g \circ \alpha(t) - \pi_2 \circ g \circ \beta(s)| \\ &= \left| \sum_{j=1}^M c_j \left(\frac{1}{\alpha(t) - a_j} - \frac{1}{\beta(s) - a_j} \right) \right| \\ &= |\alpha(t) - \beta(s)| \left| \frac{c_i}{(\alpha(t) - a_i)(\beta(s) - a_i)} + \sum_{j \neq i} \frac{c_j}{(\alpha(t) - a_j)(\beta(s) - a_j)} \right| \\ &> |\alpha(t) - \beta(s)|(2C - C) \\ &= |\alpha(t) - \beta(s)|C. \end{aligned}$$

The number $|\alpha(t) - \beta(s)|C$ is positive, since α and β do not intersect in D. This means that for small positive t and s, the curves $\pi_2 \circ g \circ \alpha$ and $\pi_2 \circ g \circ \beta$ do not intersect, which yields a nice projection property of $g(\Gamma)$. \Box

We inductively construct a sequence Φ_n of holomorphic automorphisms of \mathbb{C}^n , converging to a map $\Phi: \Omega \to \mathbb{C}^n$. Besides establishing convergence and insuring $g(D) \subset \Omega$ and $g(\partial D \setminus \{a_1, ..., a_M\}) \subset \partial \Omega$, additional requirements arise from demanding that $f = \Phi \circ g$ satisfies

$$|f \circ \gamma_i^{(s)}(t) - \lambda \circ \gamma_i^{(s)}(t)| < \eta \circ \gamma_i(t) \quad \text{for all } t \in (0,1), \ 1 \le i \le k \text{ and } 0 \le s \le r.$$

It will be clear from the inductive construction that there is no loss of generality in assuming that ℓ consists of a single curve $\gamma([0, 1))$ (that means that $\gamma(0) \in D$ and $\gamma(1) \in \partial D$). Choose constants $0 < c_1 < c_2 < \dots$ converging to 1, such that $\gamma([0, c_1])$ contains $\ell \cap K_1$ and

$$\lambda(\gamma([c_j, 1])) \cap \overline{\mathbb{B}}_{j+2} = \emptyset.$$

Set

$$L_j = \left\{ z \in D : \operatorname{dist}(z, \partial D \cup \gamma([c_j, 1])) \ge \frac{1}{2^j} \right\}.$$

Clearly $\bigcup_{j=1}^{\infty} L_j = D$.

Choose smooth functions $\chi_j: \ell \to \mathbb{R}$ with $\chi_j(t) = 1$ if $t \in \gamma([0, c_j])$ and $\chi_j(t) = 0$ if $t \in \gamma([c_{j+1}, 1))$. Let C_j be constants such that

$$\|\chi_j h\|_{\mathcal{C}^r(\ell)} \le C_j \|h\|_{\mathcal{C}^r(\ell)} \quad \text{for all } h \in \mathcal{C}^r(\ell).$$

We proceed by induction. The assumptions for the nth step are that we have

– holomorphically convex sets $K_1 \Subset K_2 \Subset ... \Subset K_n$ in D, such that $L_j \subset K_j$ for j=1,...,n;

- a number $0 < \delta_n < 1/C_n \inf\{\eta(t) \colon t \in \gamma([0, c_{n+1}])\};$
- automorphisms $\Phi_n = \phi_n \circ \phi_{n-1} \circ \dots \circ \phi_1$ of \mathbb{C}^N ;

such that

- (1_n) $|\phi_n(x) x| < 1/2^{n+1}$ for $x \in \overline{\mathbb{B}}_{n-1} \cup \Phi_{n-1} \circ g(K_n);$
- $(2_n) |\Phi_n \circ g(x)| > n \text{ for } x \in \partial D;$
- $(3_n) |\Phi_n \circ g \circ \gamma^{(s)}(t) \lambda \circ \gamma^{(s)}(t)| < \frac{1}{2}\eta \circ \gamma(t) \text{ for } t \in [0, c_n] \text{ and } 0 \le s \le r;$
- $(4_n) |\Phi_n \circ g \circ \gamma^{(s)}(t) \lambda \circ \gamma^{(s)}(t)| < \overline{\delta}_n \text{ for } t \in [c_n, c_{n+1}] \text{ and } 0 \le s \le r.$

We will show how to obtain these hypotheses at step n+1. Step 1 is achieved using the same construction.

Condition (2_n) implies that $\Phi_n \circ g(\partial D) \cap \overline{\mathbb{B}}_n = \emptyset$, and thus $L := \Phi_n \circ g(D) \cap \overline{\mathbb{B}}_n$ is a compact set in D. Let K_{n+1} be a holomorphically convex compact set in D such that

$$K_n \cup L \cup L_{n+1} \subset K_{n+1}$$
 and $\ell \cap K_{n+1} \subset \gamma([0, c_{n+1}]).$

For $t \in \ell$ define

$$\lambda_n(t) := \Phi_n \circ g(t) \chi^n(t) + \lambda(t) (1 - \chi^n(t)).$$

If $t \in [0, c_n]$, (3_n) yields

$$|\lambda_n \circ \gamma^{(s)}(t) - \lambda \circ \gamma^{(s)}(t)| = |\Phi_n \circ g \circ \gamma^{(s)}(t) - \lambda \circ \gamma^{(s)}(t)| < \frac{1}{2}\eta \circ \gamma(t), \quad 0 \le s \le r.$$

If $t \in [c_{n+1}, 1)$, then $\lambda_n(\gamma(t)) - \lambda(\gamma(t)) = 0$. It follows from (4_n) and the choice of δ_n that

340

Proper holomorphic embeddings of finitely connected planar domains into \mathbb{C}^n

$$\begin{split} \|\lambda_{n} - \lambda\|_{\mathcal{C}^{r}(\gamma([c_{n}, c_{n+1}]))} &= \|(\Phi_{n} \circ g - \lambda)\chi_{n}(t)\|_{\mathcal{C}^{r}(\gamma([c_{n}, c_{n+1}]))} \\ &\leq C_{n}\|\Phi_{n} \circ g - \lambda\|_{\mathcal{C}^{r}(\gamma([c_{n}, c_{n+1}]))} \\ &< \inf\{\eta(t) \colon t \in \gamma([0, c_{n-1}])\}, \end{split}$$

which gives that

$$|\lambda_n \circ \gamma^{(s)}(t) - \lambda \circ \gamma^{(s)}(t)| < \eta(\gamma(t)) \quad \text{for all } t \in [c_n, c_{n+1}] \text{ and } 0 \le s \le r.$$

By the assumptions we posed on λ and η , these estimates imply that λ_n is an embedding.

Set

$$K = \Phi_n \circ g(K_{n+1}) \cup \overline{\mathbb{B}}_n.$$

Since $\overline{\mathbb{B}}_n \cap \Phi_n \circ g(D) \subset \Phi_n \circ g(K_{n+1})$, it follows by Proposition 2.3 that K is polynomially convex. Set

$$C = \Phi_n \circ g(\gamma([0, c_{n+1}])) \setminus \Phi_n \circ g(\mathring{K}_{n+1}), \quad \ell' = \Phi_n \circ g(\ell) \setminus \Phi_n \circ g(\mathring{K}_{n+1})$$

and $A = \overline{\mathbb{B}}_{n+1}$. Define $F: C \to C'$ by $F(z) = \lambda_n \circ (\Phi_n \circ g)^{-1}(z)$. Let

$$\delta_{n+1} = \frac{1}{2C_{n+1}} \inf\{\eta(t) \colon t \in \gamma([0, c_{n+2}])\} \quad \text{and} \quad \varepsilon = \min\bigg\{\frac{1}{2^{n+1}}, \delta_{n+1}, C_{n+1}\delta_{n+1}\bigg\}.$$

Applying Theorem 1.3 we get an automorphism ϕ_{n+1} and a neighborhood V of K such that

$$\|\phi_{n+1} - \operatorname{id}\|_{\mathcal{C}^r(V)} < \varepsilon, \quad \|\phi_{n+1} - F\|_{\mathcal{C}^r(C)} < \varepsilon \quad \text{and} \quad \phi_{n+1}(\ell' \setminus C) \cap A = \varnothing.$$

In particular these three conditions imply (1_{n+1}) , (2_{n+1}) , (3_{n+1}) and (4_{n+1}) , and this concludes induction step n+1.

By (1_n) the map

$$\Phi = \lim_{n \to \infty} \Phi_n \colon \Omega \longrightarrow \mathbb{C}^2$$

converges (Theorem 2.1) and satisfies $g(D) \subset \Omega$. Condition (2_n) yields that $g(\partial D) \subset \Omega$. $\partial\Omega$, and thus the composition $f = \Phi \circ g \colon D \to \mathbb{C}^2$ is a proper holomorphic embedding and (3_n) and (4_n) give that

$$|f\circ\gamma^{(s)}(t)-\lambda\circ\gamma^{(s)}(t)|<\eta(\gamma(t))\quad\text{for all }t\in[0,1)\text{ and }0\leq s\leq r.\quad \Box$$

341

5. Remark

Theorem 1.1 gives a generalization of a result by Buzzard and Forstnerič [3], which they named the Carleman-type theorem for proper holomorphic embeddings. In the complex plane, Arakelian's theorem [1] (see also [14]) generalizes Carleman's theorem. An Arakelian set is a closed subset E in \mathbb{C} such that $\mathbb{C}\setminus E$ has no bounded components and for every closed disc $D \subset \mathbb{C}$, the union of all bounded components of $\mathbb{C}\setminus (E\cup D)$ is a bounded set. Arakelian's theorem states: Given an Arakelian set E, $\varepsilon > 0$ and a continuous function λ on E that is holomorphic in the interior of E, there is a holomorphic function $f: \mathbb{C} \to \mathbb{C}$ that satisfies

$$|f(t) - \lambda(t)| < \varepsilon$$

for every $t \in E$.

Consider the following Arakelian type problem for proper holomorphic embeddings: Assume we are given a proper embedding $\lambda: E \to \mathbb{C}^n$, n > 1, which is holomorphic in \mathring{E} . Given $\varepsilon > 0$, does there exist a proper holomorphic embedding $f: \mathbb{C} \to \mathbb{C}^n$, such that $|f(t) - \lambda(t)| < \varepsilon$ for all $t \in E$?

In general, the answer is negative. By Proposition 4.5 in [2] there exists a discrete set of discs in \mathbb{C}^2 for which one cannot find a proper holomorphic embedding of \mathbb{C} into \mathbb{C}^2 containing small perturbations of the given discs.

We would also like to note that there are some other recent results related to Carleman's theorem. Løw and Wold [10] gave new results regarding polynomial convexity of closed, totally real (non-compact) submanifolds M of \mathbb{C}^n , which enabled Manne, Øvrelid and Wold [12] to generalize the Carleman theorem to Stein manifolds. For the exact statement, see [12].

References

- ARAKELIAN, N. U., Uniform approximation on closed sets by entire functions, *Izv. Akad. Nauk SSSR Ser. Mat.* 28 (1964), 1187–1206 (Russian).
- BORELL, S. and KUTZSCHEBAUCH, F., Embeddings through discrete sets of balls, Ark. Mat. 46 (2008), 251–269.
- 3. BUZZARD, G. and FORSTNERIČ, F., A Carleman type theorem for proper holomorphic embeddings, *Ark. Mat.* **35** (1997), 157–169.
- 4. FORSTNERIČ, F., Interpolation by holomorphic automorphisms and embeddings in \mathbb{C}^n , J. Geom. Anal. 9 (1999), 93–118.
- FORSTNERIČ, F. and LØW, E., Global holomorphic equivalence of smooth submanifolds in Cⁿ, Indiana Univ. Math. J. 46 (1997), 133–153.
- 6. FORSTNERIČ, F. and ROSAY, J.-P., Approximation of biholomorphic mappings by automorphisms of \mathbb{C}^n , *Invent. Math.* **112** (1993), 323–349.

- 7. FORSTNERIČ, F. and WOLD, E. F., Bordered Riemann surfaces in \mathbb{C}^2 , J. Math. Pures Appl. **91** (2009), 100–114.
- GLOBEVNIK, J. and STENSØNES, B., Holomorphic embeddings of planar domains into C², Math. Ann. 303 (1995), 579–597.
- KUTZSCHEBAUCH, F., LØW, E. and WOLD, E. F., Embedding some Riemann surfaces into C² with interpolation, Math. Z. 262 (2009), 603–611.
- LØW, E. and WOLD, E. F., Polynomial convexity and totally real manifolds, Complex Var. Elliptic Equ. 54 (2009), 265–281.
- MAJCEN, I., Embedding certain infinitely connected subsets of bordered Riemann surfaces properly into C², J. Geom. Anal. 19 (2009), 695–707.
- MANNE, P. E., ØVRELID, N. and WOLD, E. F., Holomorphic convexity and Carleman approximation by entire functions on Stein manifolds, *Math. Ann.* 351 (2011), 571–585.
- NARASIMHAN, R., Analysis on Real and Complex Manifolds, North-Holland, Amsterdam, 1985.
- ROSAY, J.-P. and RUDIN, W., Arakelian's approximation theorem, Amer. Math. Monthly 96 (1989), 432–434.
- STOLZENBERG, G., Uniform approximation on smooth curves, Acta Math. 115 (1969), 185–198.
- WOLD, E. F., Proper holomorphic embeddings of finitely and some infinitely connected subsets of C into C², Math. Z. 252 (2006), 1–9.
- WOLD, E. F., Embedding Riemann surfaces properly into C², Internat. J. Math. 17 (2006), 963–974.

Irena Majcen Mathematisches Institut Alpeneggstrasse 22 CH-3012 Bern Switzerland irena.majcen@math.unibe.ch

Received January 10, 2012 published online September 25, 2012