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Asymptotics for the size of the largest
component scaled to “log n” in inhomogeneous

random graphs
Tatyana S. Turova

Abstract. We study inhomogeneous random graphs in the subcritical case. Among other

results, we derive an exact formula for the size of the largest connected component scaled by

log n, with n being the size of the graph. This generalizes a result for the “rank-1 case”. We

also investigate branching processes associated with these graphs. In particular, we discover that

the same well-known equation for the survival probability, whose positive solution determines the

asymptotics of the size of the largest component in the supercritical case, also plays a crucial role

in the subcritical case. However, now it is the negative solutions that come into play. We disclose

their relationship to the distribution of the progeny of the branching process.

1. Introduction

1.1. Inhomogeneous random graphs

A general inhomogeneous random graph model that includes a number of pre-
vious models was introduced and studied in great detail by Bollobás, Janson and
Riordan [3]. Let us recall the basic definition of the inhomogeneous random graph
GV (n,ˇ), n≥1, with vertex space

V =(S, μ, (x(n)
1 , ..., x(n)

n )n≥1).

Here S is a separable metric space, μ is a Borel probability measure on S, for
each n≥1, (x(n)

1 , ..., x
(n)
n ) is a sequence of points in S, and ˇ is a kernel defined on

S ×S. No relationship is assumed between x
(n)
i and x

(n′)
i . To simplify notation we

shall write (x1, ..., xn)=(x(n)
1 , ..., x

(n)
n ). For each n≥1 let (x1, ..., xn) be a random
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sequence of points in S, such that for any μ-continuity set A⊆S,

(1.1)
#{i : xi ∈ A}

n
P−→μ(A), as n→ ∞.

Given a sequence x1, ..., xn, we let GV (n,ˇ) be the random graph on {1, ..., n}, such
that any two vertices i and j are connected by an edge independently of the others
and with a probability

(1.2) pij(n)=min
{
ˇ(xi, xj)

n
, 1

}
,

where the kernel ˇ is a symmetric non-negative measurable function on S ×S. We
shall also assume that the kernel ˇ is graphical on V , which means that

(i) ˇ is continuous a.e. on S ×S;
(ii) ˇ∈L1(S ×S, μ×μ);
(iii)

1
n
Ee(GV (n,ˇ)) −→ 1

2

∫
S2

ˇ(x, y) dμ(x) dμ(y),

where e(G) denotes the number of edges in the graph G.
Let C1(G) denote the size of the largest connected component in the graph G.

This is the most studied characteristic of a random graph. For instance, a striking
phenomena of phase transition is seen in the abrupt change of the value C1(G)
depending on the parameters of the model. There is a close connection between
C1(G) and the survival probability of a certain multi-type Galton–Watson process
Bˇ(x) defined below.

Definition 1.1. The type space of Bˇ(x) is S, and initially there is a single
particle of type x∈S. At any step a particle of type x∈S is replaced in the next
generation by a set of particles, where the number of particles of type y has a
Poisson distribution with intensity ˇ(x, y) dμ(y).

Let ρˇ(x) denote the survival probability of Bˇ(x). Then Theorem 3.1 in [3]
states that

(1.3)
C1(GV (n,ˇ))

n
P−→ ρˇ :=

∫
S

ρˇ(x) dμ(x),

where, as it was proved in [3], ρˇ(x) is the maximum solution to

(1.4) f(x)= 1−e−Tˇ [f ](x),
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and Tˇ is the integral operator on S defined by

(1.5) (Tˇf)(x) =
∫

S

ˇ(x, y)f(y) dμ(y).

Whether ρˇ is zero or strictly positive depends only on the norm

‖Tˇ‖ =sup{ ‖Tˇf ‖2 : f ≥ 0 and ‖f ‖2 ≤ 1}.

More precisely, Theorem 3.1 in [3] says

(1.6) ρˇ

{
>0, if ‖Tˇ‖>1,

=0, if ‖Tˇ‖ ≤1.

This together with (1.3) tells us that in the subcritical case, i.e., when ‖Tˇ‖ ≤1, we
have C1(GV (n,ˇ))=oP (n).

Under the additional assumption

sup
x,y

ˇ(x, y) < ∞,

Theorem 3.12 in [3] establishes that if ‖Tˇ‖<1 then C1(GV (n,ˇ))=O(log n) with
probability tending to one as n→∞.

On the other hand, it was pointed out in [3] that whenever the kernel is un-
bounded, the condition ‖Tˇ‖<1 is not sufficient for the size of the largest component
to be of order log n. For an example see the random growth model in [2]. Recently
Janson showed in [6] that a subcritical inhomogeneous random graph (in the rank-1
case) can also have largest component of order n1/γ under the assumption of a
power-law degree distribution with exponent γ+1, γ>2.

We shall obtain sufficient conditions under which C1(GV (n,ˇ))/log n converges
in probability to a finite constant, even for unbounded kernels. The exact value of
this constant was until recently only known for the Erdős–Rényi random graph [5].
The first result related to ours for the inhomogeneous model, but only in the rank-1
case, that is, when

(1.7) ˇ(x, y)=Φ(x)Φ(y),

was derived in [10]. However, in [10] the formula for the asymptotic value of
C1(GV (n,ˇ))/log n is given in terms of the function Φ and thus is not applica-
ble for a general kernel. Here we derive the first exact asymptotic formula for the
scaled size of the largest component in a setup that includes, but is not restricted
to, the rank-1 case (i.e., condition (1.7)).
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1.2. Results

Let X (x) denote the size of the total progeny of Bˇ(x), and set

(1.8) rˇ =sup
{

z ≥ 1 :
∫

S

E(zX (x)) dμ(x) < ∞
}

.

We shall show that rˇ is the determining parameter for the size C1(GV (n,ˇ)) in the
subcritical case. In particular, we need to know whether rˇ=1 or rˇ>1. Therefore
we shall first study rˇ . We shall see that there is a direct relation between rˇ and
the tail of the distribution of the total progeny X (x). For example, if the tail of
the distribution of X (x) decays exponentially, then rˇ defines the constant in the
exponent. In the case of a single-type branching process the exact result on the
relation between rˇ and the distribution of the total progeny was proved in [8].

Whenever the assumption

(1.9)
∫

S

ˇ(x, y) dμ(y) < ∞ for all x ∈ S,

is satisfied, Lemma 5.16 in [3] states the following: if ‖Tˇ‖>1 then ρˇ>0 on a set
of positive measure. This means that X =∞ on a set of positive measure, which
immediately implies

(1.10) rˇ =1, if ‖Tˇ‖ > 1.

We shall assume from now on that

(1.11) inf
x,y∈S

ˇ(x, y) > 0.

Theorem 1.2. rˇ is the supremum of all z ≥1 for which equation

(1.12) g(x) = zeTˇ [g−1](x)

has a.s. (i.e., μ-a.s.) a finite solution g ≥1.

Theorem 1.2 yields immediately the following criteria.

Corollary 1.3. rˇ>1 if and only if at least for some z>1, (1.12) has an
a.s. finite solution g>1. Otherwise, rˇ=1.

It turns out that rˇ=1 holds as well in the case ‖Tˇ‖=1.

Corollary 1.4. Let ˇ satisfy (1.9). Then

(1.13) rˇ =1, if ‖Tˇ‖ ≥ 1.
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Theorem 1.2 and Corollary 1.3 will permit us to derive some sufficient condi-
tions for rˇ>1. Assume that Tˇ has finite Hilbert–Schmidt norm, i.e.,

(1.14) ‖Tˇ‖HS := ‖ˇ‖L2(S×S) =
(∫

S

∫
S

ˇ
2(x, y) dμ(x) dμ(y)

)1/2

< ∞.

Define

(1.15) ψ(x) =
(∫

S

ˇ
2(x, y) dμ(y)

)1/2

,

and assume that for some positive constant a>0,

(1.16)
∫

S

eaψ(x) dμ(x) < ∞.

Theorem 1.5. Let ˇ satisfy (1.16). Then

(1.17) rˇ > 1, if ‖Tˇ‖ < 1

and at least one of the following conditions is satisfied : ‖Tˇ‖HS<1, and

(1.18) ˇ(x, y) ≤ c1Tˇ[1](x)Tˇ[1](y)

for some constant c1>0 and for all x, y ∈S.

Clearly, condition (1.18) holds in the rank-1 case (1.7). Here are some other
examples:

(i) condition supx,y ˇ(x, y)<∞ implies (1.18);
(ii) under assumption (1.16) the kernel ˇ(x, y)=max{x, y} satisfies (1.18) as

well. (Models with kernels of this type were considered, e.g., in [3] and [9].)
Observe that for all kernels we have ‖Tˇ‖ ≤ ‖Tˇ‖HS, with equality holding only

in the rank-1 case (1.7). Hence, under assumption (1.16) in the rank-1 case condition
‖Tˇ‖<1 is necessary and sufficient for rˇ>1.

Recall the model GV (n,ˇ) for which (1.1) and (1.2) hold. To be able to approx-
imate a component in GV (n,ˇ) by a branching process we need some additional
conditions on the distribution of the types of vertices x1, ..., xn.

Assumption 1.6. Let S ⊆ {1, 2, ...}, and suppose that for any ε>0 and q>0,

(1.19) P
{

#{1 ≤ i ≤ n : xi =x}
n

−μ(x) ≤ εeqTˇ [1](x)μ(x) for all x ∈ S

}
→ 1,

as n→∞.
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Notice, that in the case when S is finite, convergence (1.19) follows readily by
assumption (1.1). In [11] one can find examples of models with countable S that
satisfy condition (1.19).

Theorem 1.7. Let ˇ satisfy (1.16) and (1.18). Then under Assumption 1.6,

(1.20)
C1(GV (n,ˇ))

log n

P
−→ 1

log rˇ
,

where

(1.21) rˇ

{
>1, if ‖Tˇ‖<1,

=1, if ‖Tˇ‖ ≥1.

Theorem 1.7 provides sufficient conditions when the convergence (1.20) takes
place, even for unbounded kernels. Observe, however, that condition (1.16) seems
to be necessary as well. In particular, in the “rank-1” case (1.7), condition (1.16)
excludes the possibility of a power-law degree distribution. Such a distribution is
proved in [6] to yield order n1/γ (γ>2) for the largest component in a subcritical
graph.

Clearly, Theorem 1.7 complements statement (1.3) together with (1.6). There
is even a direct relation between the values rˇ and ρˇ as we shall see now. Setting
f(x)=−(g(x)−1) in (1.12), we get from Corollary 1.3 that rˇ>1 if and only if at
least for some z>1 the equation

(1.22) f(x)= 1−ze−Tˇ [f ](x)

has an a.s. finite solution f<0. Notice that when z=1, (1.22) coincides with (1.4).
This observation leads to an unexpected direct relation to the supercritical case.

Proposition 1.8. Let ˇ satisfy (1.11). Then rˇ>1 if (1.4) has an a.s. finite
solution f such that supx∈S f(x)<0.

In the case of a homogeneous Erdős–Rényi graph Gn,p (consult, e.g., [1]), where
the probability of any edge is p=c/n, the relation between the supercritical and
subcritical cases is most transparent. Placing Gn,p into the general definition of an
inhomogeneous random graph model gives us |S|=1 and ˇ≡c. In the corresponding
branching process Bˇ (see Definition 1.1), the offspring (of a single type) has the
Po(c) distribution. The survival probability ρc of this process is again the maximum
solution to (1.4), which in this case has the simple form

(1.23) f =1−e−cf .
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By Corollary 1.3 we have here rc>1 if and only if (1.12) holds, which in this case
implies that

(1.24) g = zec(g−1)

has a finite solution g>1 for some z>1. It is not difficult to compute, for all 0<c<1,

rc =sup{z ≥ 1 : g = zec(g−1) for some g > 1} =
1

ce1−c
,

which by Theorem 1.7 recovers the result known already in [5], namely for all
0<c<1,

C1(Gn,p)
log n

P
−→ 1

c−1−log c
.

It is straightforward to check that (1.24) has a finite positive solution for some
z>1 if and only if (1.23) has a strictly negative solution (or equivalently if and only
if c<1). Hence, in the case of Erdős–Rényi graphs the condition in Proposition 1.8
is necessary as well. However, whether this statement holds for general kernels
remains an open question. One may start with the rank-1 case, but we do not
consider this question here.

Observe, that while all the non-negative solutions to (1.4) are bounded by 1,
the non-positive ones can be unbounded. This certainly makes a great difference in
our analysis. It was to ease our difficulties in the unbounded case that we introduced
condition (1.18), which resembles the rank-1 case. One may surmise, however, that
the results of Theorems 1.5 and 1.7 should hold in a much more general setup than
we are able to treat here. In particular, condition (1.18) is far from optimal.

In the special “rank-1 case” (1.7) (which implies condition (1.18)) the conver-
gence (1.20) was established previously in [10] under additional conditions on the
function Φ. In fact, in the rank-1 case one can derive an explicit formula for rˇ , for
the details see [10].

In the general situation rˇ can be found at least numerically with the help of
the presented results.

An example with an unbounded kernel is a graph constructed on vertices with
independent identically distributed types x1, ..., xn ∈ {1, 2, ...}, such that Eeαx1 <∞
for some α>0, and kernel ˇ(x, y)=c(x∨y). For this model Theorem 1.7 is applicable
for all positive c. We refer to [3], Section 16.6, for a discussion on the norm of Tˇ

in this case.
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2. The generating function for the progeny of branching process

Recall that we denote by X (x) the size of the total progeny of Bˇ(x) (see
Definition 1.1 in the introduction). We shall study the function

hz(x) =EzX (x), x ∈ S,

for z ≥1. It is standard to derive (consult, e.g., [7], Chapter 6) that hz(k) as a
generating function for a branching process satisfies the equation

hz(k) = z exp
∫

S

ˇ(k, x)(hz(x)−1) dμ(x), k ∈ S,

or in a functional form

(2.1) hz = zeTˇ [hz −1] =: Φz,ˇhz.

Theorem 2.1. For any z ≥1, the function hz is the minimal solution f ≥1 to
the equation

(2.2) f =Φz,ˇf,

and moreover

(2.3) hz = lim
k→∞

Φk
z,ˇ[1].

Proof. Let us denote by Xk(x), k ≥0, the number of offspring of the process
Bˇ(x) in the first k generations. In particular, X0(x)=1 and

X1(x) =d 1+Px,

where Px is the number of offspring of a particle of type x, among which the number
of particles of each type y ∈S has Po(ˇ(x, y) dμ(y))-distribution. Set

hk,z(x) =EzXk(x)

for k ≥0 and x∈S. It is straightforward to derive that

h1,z(x) =EzX1(x) =Φz,ˇ[z](x)=Φz,ˇ[h0,z](x),

and similarly, for any k ≥1,

hk+1,z(x)=Φz,ˇ[hk,z](x).

Noticing that h0,z(x)=z=Φz,ˇ[1](x) for all x∈S, we derive from here that

(2.4) hk,z(x)=Φk+1
z,ˇ [1](x).
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Obviously, hk,z(x)↑hz(x), i.e.,

hz(x) = lim
k→∞

Φk
z,ˇ[1](x)

for all x∈S. By the monotone convergence

Tˇ[hz](x) =
∫

S

ˇ(x, y) lim
k→∞

Φk
z,ˇ[1](y) dμ(y) = lim

k→∞
Tˇ[Φk

z,ˇ[1]](x),

and therefore

(2.5) Φz,ˇ[hz](x) = elimk→∞ Tˇ [Φ
k
z,ˇ [1]−1](x) = lim

k→∞
Φz,ˇ[Φk

z,ˇ[1]](x) =hz(x).

Hence, hz=limk→∞ Φk
z,ˇ[1] is a solution to (2.2).

Since Φz,ˇ is monotone and Φz,ˇ[1](x)=z ≥1, it follows by induction that

(2.6) hz(x) = lim
k→∞

Φk
z,ˇ[1](x) ≥ 1

for all x∈S.
Finally, we show that hz is the minimal solution f ≥1 to (2.2). Assume, that

there is a solution f ≥1 such that 1≤f(x)<hz(x) for some x. Then due to the
monotonicity of Φz,ˇ we have also

Φk
z,ˇ[1](x) ≤ Φk

z,ˇ[f ](x) = f(x) <hz(x) = lim
N→∞

ΦN
z,ˇ[1](x)

for all k ≥1. Letting k→∞ in the last formula we come to the contradiction with
the strict inequality in the middle. Therefore hz is the minimal solution f ≥1
to (2.2). �

Remark 2.2. If f ≥1 satisfies (2.2) and f(x)<∞ at least for some x, then it
follows straight from the definition of Φz,ˇ that

∫
S
ˇ(x, y)f(y) dμ(y)<∞. Hence,

under assumption (1.11), if f ≥1 satisfies (2.2), then either f=∞ a.s. or f<∞
a.s., in which case also

∫
S
ˇ(x, y)f(y) dμ(y)<∞ a.s. The latter together with the

assumption (1.11) yields f ∈L1(S, μ) as well.

Remark 2.3. Theorem 1.2 and Corollary 1.3 follow directly from Theorem 2.1
and Remark 2.2.

Next we describe a sufficient condition when the minimal solution f ≥1 to (2.2)
is finite.

Lemma 2.4. If Φz,ˇf ≤f for some f ≥1, then there exists a function 1≤g ≤f

which is a solution to (2.2), i.e., Φz,ˇg=g.
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Proof. (The proof almost repeats the one of Lemma 5.12 from [3].) The mono-
tonicity of Φz,ˇ and the assumption Φz,ˇf ≤f yield by induction

f ≥ Φz,ˇf ≥ Φ2
z,ˇf ≥ ... .

Since f ≥1 we have for all x,

Φz,ˇ[f ](x) = zeTˇ [f −1](x) ≥ z ≥ 1,

which implies by induction that also Φk
z,ˇf ≥1 for all k ≥1. Hence the limit

f(x) ≥ g(x) = lim
k→∞

Φk
z,ˇ[f ](x) ≥ 1

exists for every x. By the monotone convergence (repeat the argument from (2.5))
g is a solution to (2.2). �

Theorem 2.5. Let ˇ satisfy condition (1.16).
(i) If ‖Tˇ‖HS<1 then at least for some z>1 there is a finite function f ≥1

which satisfies (2.2).
(ii) If ‖Tˇ‖<1 and the kernel ˇ satisfies condition (1.18) from Theorem 1.5,

then at least for some z>1 there is a finite function f ≥1 which satisfies (2.2).

Proof. To prove (i) we shall construct a function f ≥1 which satisfies the con-
ditions of Lemma 2.4. Let λ=‖Tˇ‖HS<1. Then

(2.7) ‖ψ‖2 =λ

(see the definition of ψ in (1.15)). For any ε≥0 let us define

(2.8) g(x, ε) =Tˇ[eεψ −1](x) =
∫

S

ˇ(x, y)(eεψ(y) −1) dμ(y).

By the Cauchy–Bunyakovskii inequality

(2.9) g(x, ε) ≤
(∫

S

ˇ
2(x, y) dμ(y)

)1/2(∫
S

(eεψ(y) −1)2 dμ(y)
)1/2

=ψ(x)A(ε),

where the function

A(ε) :=
(∫

S

(eεψ(y) −1)2 dμ(y)
)1/2

is increasing and, by assumption (1.16) and dominated convergence, continuous on
[0, a/4]. Furthermore, for 0<ε<a/4 we can compute

A′(ε) =

∫
S

ψ(y)eεψ(y)(eεψ(y) −1) dμ(y)
(
∫

S
(eεψ(y) −1)2 dμ(y))1/2

.
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Using again the Cauchy–Bunyakovskii inequality and condition (1.16) we derive
from here that for any small positive ε,

A′(ε) ≤
(∫

S

ψ2(y)e2εψ(y) dμ(y)
)1/2

≤
(∫

S

Me3εψ(y) dμ(y)
)1/2

< ∞,

where M is some absolute positive constant. Hence, taking into account (2.7) we
have

lim sup
ε↓0

A′(ε) ≤ ‖ψ‖2 =λ< λ+
1−λ

2
=: λ1 < 1.

This bound together with A(0)=0 and the mean-value theorem allows us to conclude
that there exists some positive value ε0>0 such that for all 0<ε<ε0,

(2.10) A(ε) <λ1ε.

Therefore for all 0<ε<ε0 we get by (2.9) that

(2.11) g(x, ε) ≤ ψ(x)A(ε) <λ1εψ(x).

Now fix z>1 arbitrarily and set ψ̃=zψ. Define also the function

(2.12) g̃(x, ε) = zTˇ[eεψ̃ −1](x) = zTˇ[eεzψ −1](x) = zg(x, zε).

According to (2.11) we have

(2.13) g̃(x, ε) ≤ zελ1ψ̃(x)

for all 0<ε<ε0. Let us set

(2.14) fz = z(eεzψ −1)+1 = z(eεψ̃ −1)+1.

We claim, that for some z>1,

(2.15) Φz[fz] ≤ fz.

Indeed, consider

(2.16) Φz[fz] := Φz,ˇ[fz] = zeTˇ [fz −1] = zezTˇ [eεψ̃ −1].

Using definition (2.12) and bound (2.13) we obtain from here that

(2.17) Φz[fz](x) = zeg̃(x,ε) ≤ zezελ1ψ̃(x).

Let us assume now that 1<z<δ/λ1 for some λ1<δ<1. Then we have

(2.18) ezελ1ψ̃(x) ≤ eεδψ̃(x).
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Under assumption (1.11) we have ψ(x)>b>0 for some positive b, which implies that
ψ̃(x)>b as well. Therefore we can find 1<z<δ/λ1 such that for all x∈S,

eεδψ̃(x) ≤ eεψ̃(x) − z −1
z

,

which together with (2.18) gives us

zezελ1ψ̃(x) ≤ zeεδψ̃(x) ≤ z

(
eεψ̃(x) − z −1

z

)
= z(eεψ̃(x) −1)+1 = fz(x).

Substituting this bound into (2.17) we finally get (2.15). Hence, fz satisfies the
conditions of Lemma 2.4, by which (i) of Theorem 2.5 follows.

The proof of (ii) is very similar to the previous one. Let ‖Tˇ‖=λ<1. Recall
that by Lemma 5.15 in [3] an operator Tˇ with a finite Hilbert–Schmidt norm
(assumption (1.14)) has a non-negative eigenfunction φ∈L2(S, μ) such that Tˇφ=
‖Tˇ‖φ. Hence, there is a function φ such that ‖φ‖2=1 and

(2.19) φ(x) =
1
λ

∫
S

ˇ(x, y)φ(y) dμ(y).

This together with (1.11) yields

(2.20) φ(x) ≥ c0 > 0

for all x∈S and some c0>0, and therefore

(2.21) φ(x) =
1
λ

∫
S

ˇ(x, y)φ(y) dμ(y) ≥ c0

λ
Tˇ[1](x).

Also (2.19) together with the Cauchy–Bunyakovskii inequality implies

(2.22) φ(x) ≤ 1
λ

ψ(x),

where due to condition (1.18),

ψ2(x) =
∫

S

ˇ
2(x, y) dμ(y) ≤ c2

1(Tˇ[1](x))2
∫

S

(Tˇ[1](y))2 dμ(y)(2.23)

≤ c2
1(Tˇ[1](x))2‖Tˇ‖2

HS.

Combining now (2.21)–(2.23) we get

c0

λ
Tˇ[1](x) ≤ φ(x) ≤ 1

λ
ψ(x) ≤ 1

λ
c1Tˇ[1](x)‖Tˇ‖HS,
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which immediately yields

(2.24)
ψ(x)
φ(x)

≤ c1λ‖Tˇ‖HS

c0

for all x∈S.
We will show now that the function

(2.25) Fz(x) = z(eεzφ(x) −1)−1,

defined similarly to (2.14), satisfies the conditions of Lemma 2.4 for some positive ε.
Consider similarly to (2.8) the function

G(x, ε) =Tˇ[eεφ −1](x) =
∫

S

ˇ(x, y)(eεφ(y) −1)dμ(y).

From here we derive using assumption (1.16) and bound (2.22), that at least for all
ε<aλ/4 the derivatives

(2.26)
∂

∂ε
G(x, ε) =

∫
S

ˇ(x, y)φ(y)eεφ(y) dμ(y)

and

(2.27)
∂2

∂ε2
G(x, ε) =

∫
S

ˇ(x, y)φ(y)2eεφ(y) dμ(y)

are finite and non-negative for any x∈S. Note that for all x∈S,

G(x, 0) =0

and

(2.28)
∂

∂ε
G(x, ε)

∣∣∣∣
ε=0

=
∫

S

ˇ(x, y)φ(y)dμ(y) =λφ(x).

Therefore for all x∈S and 0≤ε<aλ/4 we have

(2.29) G(x, ε) ≤ ε

(
λφ(x)+ε

∂2

∂ε2
G(x, ε)

)
.

Under the assumption (1.16) and (2.22) we get from (2.27) using the Cauchy–
Bunyakovskii inequality that for all 0≤ε<aλ/4,

(2.30)
∂2

∂ε2
G(x, ε) ≤ ψ(x)

(∫
S

φ(y)4e2εφ(y) dμ(y)
)1/2

≤ ψ(x)c2,
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where c2 is some positive constant. Taking also into account bound (2.24), we derive
from (2.30),

∂2

∂ε2
G(x, ε) ≤ c3φ(x)

for some positive constant c3. Substituting this into (2.29), we get

(2.31) G(x, ε) ≤ εφ(x)(λ+εc3).

For all small ε>0 we have

λ+εc3 <λ+
1−λ

2
=: λ1 < 1.

This together with (2.31) immediately yields

(2.32) G(x, ε) ≤ λ1εφ(x)

for all small ε>0.
Repeating now almost exactly the same argument which led from (2.11)

to (2.15), one can derive from (2.32) that for Fz defined by (2.25),

Φz[Fz] ≤ Fz.

Hence, Fz satisfies the conditions of Lemma 2.4, which yields (ii). �

3. Proofs of the main results

3.1. Proof of Theorem 1.2

Recall that

rˇ =sup
{

z ≥ 1 :
∫

S

hz(x) dμ(x) < ∞
}

.

Hence, the statement of Theorem 1.2 follows immediately from Theorem 2.1 and
Remark 2.2.

3.2. Proof of Corollary 1.4

Lemma 3.1. If ‖Tˇ‖=1 one has

(3.1) lim
c↑1

rcˇ =1.
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Proof. Let X c denote the total progeny of Bcˇ (see Definition 1.1). It is clear
that if 0<c<c′ then X c′

stochastically dominates X c, and therefore it is obvious
that rcˇ is a monotone non-increasing function in c>0. Also, it follows from the
definition of rcˇ , that rcˇ ≥1. Hence, the limit limc↑1 rcˇ ≥1 exists. Assume that

(3.2) lim
c↑1

rcˇ =: r > 1.

Define
1 <z :=

1
2

+
r

2
< lim

c↑1
rcˇ.

Then by Theorem 1.2 for any fixed c<1 there exists a minimal solution 1≤f<∞
to (2.2), i.e.

f = zeTcˇ [f −1].

Notice that also
f(x) ≥ z

for all x∈S. Let c′ =
√

z>1 and set

(3.3) g :=
f

c′ ≥
√

z > 1.

It is straightforward to derive

Φ√
z,c′cˇ[g] =

√
zec′Tcˇ [g−1] =

1√
z

zeTcˇ [c
′g−1]−(c′ −1)Tcˇ [1] =

1
c′ fe−(c′ −1)Tcˇ [1] ≤ g.

Hence, by Lemma 2.4 there exists a function 1<h<∞ such that

(3.4) h =Φ√
z,c′cˇ[h] ≡

√
zeT√

zcˇ [h−1].

Choose now 1/
√

z<c<1. Then existence of an a.s. finite solution h>1 to (3.4) with√
z>1 implies by Theorem 1.2 that r√

zcˇ>1 even when ‖T√
zcˇ‖=

√
zc>1. We get

a contradiction with (1.10), which finishes the proof of the lemma. �

By Lemma 3.1 when ‖Tˇ‖=1 we have

1 = lim
c↑1

rcˇ ≥ rˇ ≥ 1,

which yields

(3.5) rˇ =1, if ‖Tˇ‖ =1.

This together with (1.10) completes the proof of Corollary 1.4.
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3.3. Proof of Theorem 1.5

The statement follows immediately from Theorems 1.2 and 2.5.

3.4. Proof of Proposition 1.8

Assume that (1.4) has an a.s. finite solution f such that supx∈S f(x)<0. We
shall show that in this case there is z>1 such that (1.12) has an a.s. finite solution
g ≥1. This by Theorem 1.2 will imply that rˇ>1.

By our assumption,
f =1−e−Tˇ [f ] < 0.

Then for h:=−(f −1)>1 we have

(3.6) h = eTˇ [h−1].

Claim. There are 0<ε<1 and z>1 such that the function

(3.7) H = ε+(1−ε)h

satisfies the inequality

(3.8) Φz[H] := zeTˇ [H−1] ≤ H.

Proof. By (3.6) we have for any z>1,

(3.9) Φz[H] = zeTˇ [ε+(1−ε)h−1] = z(eTˇ [h−1])1−ε = zh1−ε ≡ z
h1−ε

ε+(1−ε)h
H.

Define for all numbers q ≥1,

Q(ε, q) :=
q1−ε

ε+(1−ε)q
.

It is straightforward to compute that for any 0<ε<1 and for any q>1,

(3.10)
∂

∂q
Q(ε, q) =

(1−ε)q−ε(ε+(1−ε)q)−q1−ε(1−ε)
(ε+(1−ε)q)2

< 0.

Recall that by the assumption,

h∗ = inf
x∈S

h(x)= 1−sup
x∈S

f(x) > 1.

Hence, by (3.10) for all x∈S,

Q(ε, h(x)) ≤ Q(ε, h∗) <Q(ε, 1) =1.
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Setting now z=1/Q(ε, h∗)>1 we derive from (3.9),

Φz[H] ≤ H,

which proves our claim. �

Notice, that by the definition

H = ε+(1−ε)h =1+(1−ε)(h−1) ≥ 1,

since h>1. This and (3.8) confirm that the conditions on Lemma 2.4 are fulfilled
by the function H . Therefore by Lemma 2.4 there exists an a.s. finite solution g ≥1
to (1.12) with some z>1. This completes the proof of Proposition 1.8.

3.5. Proof of Theorem 1.7

3.5.1. The upper bound

Theorem 3.2. If ‖T ‖<1 then under the conditions of Theorem 1.7 one has
rˇ>1 and

(3.11) lim
n→∞

P
{

C1(GV (n,ˇ)) >

(
1

log rˇ
+δ

)
log n

}
=0

for any δ>0.

Proof. Notice that here rˇ>1 simply by Theorem 1.5.
Recall the usual algorithm of finding a connected component in a random

graph. Given the sequence (x1, ..., xn) and a corresponding graph GV (n,ˇ), take
any vertex 1≤i≤n to be the root. Find all vertices connected to this vertex i in
the graph GV (n,ˇ), and then mark i as “saturated”. Then for each non-saturated
revealed vertex, we find all vertices connected to it but which have not been used
previously. We continue this process until we end up with a tree of saturated
vertices.

Denote by τ i
n the set of vertices in the tree constructed according to the above

algorithm with the root at vertex i. Then for any ω>0,

(3.12) P{C1(GV (n,ˇ)) >ω} =P
{

max
1≤i≤n

|τ i
n| >ω

}
.

Let the constant a be the one from condition (1.16). Then for any

(3.13) 0 ≤ q < 1
2a
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define the auxiliary probability measure on S,

(3.14) μq(x) =mqe
qTˇ [1](x)μ(x)

with normalizing constant

mq :=
(∑

S

eqTˇ [1](x)μ(x)
)−1

,

which is strictly positive due to assumption (1.16). Notice that μ0(x)=μ(x) for all
x∈S, and mq is continuous in q on [0, a/2] with m0=1. This implies in particular
that, for any ε′ >0, one can choose a positive q so that

(3.15) μ(x) ≤ (1+ε′)μq(x)

for all x. Fix ε>0 and 0<q<a/2 arbitrarily and define the event

(3.16) Bn =
{

#{1 ≤ i ≤ n : xi =x}
n

−μ(x) ≤ εμq(x) for all x ∈ S

}
.

By assumption (1.19) we have

(3.17) P{ Bn} =1−o(1).

Then we derive from (3.12) that

(3.18) P{C1(GV (n,ˇ)) >ω} ≤ P
{

max
1≤i≤n

|τ i
n| >ω

∣∣∣ Bn

}
+o(1).

Notice that the distribution of the size |τ i
n| depends only on the type xi of vertex i.

Then setting

(3.19) |τn(x)| =d |τ i
n|

∣∣
xi=x

for each x∈S, we derive from (3.18),

(3.20) P{C1(GV (n,ˇ)) >ω} ≤ n
∑
x∈S

(μ(x)+εμq(x))P{|τn(x)| >ω | Bn}+o(1),

as n→∞.
To approximate the distribution of |τn(x)| we shall use the following branching

processes. For any c≥1 and q ≥0 let Bc,q denote the process defined similar to Bˇ

in Definition 1.1, but with the distribution of the offspring being

Po(cˇ(x, y)μq(y))

instead of Po(ˇ(x, y)μ(y)). Notice, that B1,0 is defined exactly as Bˇ . Let further
X c,q(x) denote the total number of particles (including the initial one) produced by
the branching process Bc,q with the initial single particle of type x.
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Proposition 3.3. Under the conditions of Theorem 1.7 one can find q>0
and c>1 arbitrarily close to 0 and 1, respectively, such that for some ε>0 in the
definition of Bn,

(3.21) P{ |τn(x)| >ω | Bn} ≤ P{X c,q(x) >ω}

for all x∈S, ω>0, and for all large n.

Proof. Observe that at each step of the exploration algorithm which defines τ i
n,

the number of type-y offsprings of a particle of type x has the binomial distribution
Bin(N ′

y, pxy(n)), where N ′
y is the number of the remaining vertices of type y.

We shall use the well-known fact that the binomial Bin(n, p) distribution is
dominated by the Poisson distribution Po(−n log(1−p)). First we shall derive an
upper bound for N ′

y . Notice that conditionally on Bn we have

(3.22) N ′
y ≤ #{1 ≤ i ≤ n : xi = y} ≤ n(μ(y)+εμq(y))

for each y ∈S. The last inequality implies that for any y such that

#{1 ≤ i ≤ n : xi = y} > 0

we have

(3.23) n(μ(y)+εμq(y)) ≥ 1.

By the Cauchy–Bunyakovskii inequality and by assumption (1.16) we have
∑
S

eqTˇ [1](x)μ(x) ≤
∑
S

eqψ(x)μ(x) < ∞

for all q ≤a. Hence, for all 0<q<a/2 and for all y ∈S,

μ(y)+εμq(y) ≤ b3(e−aTˇ [1](y)+εmqe
(q−a)Tˇ [1](y)) ≤ b2e

−aTˇ [1](y)/2

for all 0<ε<1, where b2 and b3 are some positive constants. Combining this
with (3.23) we obtain for all y such that #{1≤i≤n:xi=y}>0,

1
n

≤ μ(y)+εμq(y) ≤ b2e
−aTˇ [1](y)/2.

This implies that conditionally on Bn,

max
x∈{x1,...,xn }

Tˇ[1](x) ≤ A1 log n
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for some constant A1. Taking into account assumption (1.18), we derive from here
that for all large n conditionally on Bn,

(3.24) pxixj (n) =
ˇ(xi, xj)

n
≤ c1(A1 log n)2

n
.

The last bound and (3.22) together with (3.15) allow us for any fixed positive ε1 to
choose ε and q so that conditionally on Bn we get

−N ′
y log (1−pxy(n)) ≤ (μ(y)+εμq(y))n|log(1−pxy(n))|(3.25)

≤ (1+ε1)μq(y)ˇ(x, y) =: cμq(y)ˇ(x, y)

for all large n and all x, y ∈ {x1, ..., xn}. Hence, (3.25) holds for any q>0 and c>1
arbitrarily close to 0 and 1, respectively. It follows by (3.25) that the binomial
distribution Bin(N ′

y, pxy(n)) is dominated stochastically by the Poisson distribu-
tion Po(cμq(y)ˇ(x, y)). Therefore if conditionally on Bn at each step of the explo-
ration algorithm which reveals τ i

n, we replace the Bin(N ′
y, pxy(n)) variable with the

Po(cμq(y)ˇ(x, y)) one, we arrive at the statement (3.21) of the proposition. �

Substituting (3.21) into (3.20) we derive that for any q>0 and c>1, one has

P{C1(GV (n,ˇ)) >ω} ≤ bn
∑
x∈S

μq(x)P{X c,q(x) >ω}+o(1),

as n→∞, where b is some positive constant. This bound together with the Markov
inequality imply for all z ≥1,

(3.26) P{C1(GV (n,ˇ)) >ω} ≤ bnz−ω
∑
x∈S

μq(x)EzX c,q(x)+o(1).

Let Tcˇ,μq denote the following integral operator associated with the branching
process Bc,q ,

(3.27) Tcˇ,μq [f ](x) =
∫

S

cˇ(x, y)f(y) dμq(y) =
∑
S

cˇ(x, y)f(y)μq(y).

Assume from now on that q>0 and c>1 are such that

(3.28) cmq ≥ 1.

We shall now extend the result from Lemma 7.2 in [3] on the approximation of
kernels to our special case of unbounded kernels. First, taking into account condi-
tions (1.16) and (1.18) we derive that for any fixed q<a/4 and c>1,

‖Tcˇ,μq ‖2
HS =

∫
S

∫
S

(cmq)2ˇ2(x, y)eqTˇ [1](x)eqTˇ [1](y) dμ(x) dμ(y) < ∞.
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Then by the dominated convergence theorem

(3.29) ‖Tcˇ,μq −Tˇ‖2
HS → 0,

as c→1 and q→0. Furthermore, since

‖Tˇ‖ ≤ ‖Tcˇ,μq ‖ ≤ ‖Tˇ‖+‖Tcˇ,μq −Tˇ‖HS,

the convergence (3.29) implies as well that

‖Tcˇ,μq ‖ → ‖Tˇ‖,

as c→1 and q→0. Hence, if ‖Tˇ‖<1 then we can choose 0<q<a/4 and c>1 so
that (3.28) holds together with

(3.30) ‖Tcˇ,μq ‖ < 1.

Now for all values c and q for which (3.30) holds we have by Theorem 2.5(ii) that

(3.31) r(q, c) := sup
{

z ≥ 1 :
∑
x∈S

EzX c,q(x)μq(x) < ∞
}

> 1,

and therefore for all 1<z<r(q, c),

(3.32)
∑
x∈S

μq(x)EzX c,q(x) < ∞.

Notice, that condition (3.28) implies that X c,q(x) is stochastically larger than
X (x) for any x∈S, which clearly yields

(3.33) r(q, c) ≤ rˇ.

Lemma 3.4. For any z<rˇ there are q>0 and c≥1/mq such that

(3.34) z ≤ r(q, c) ≤ rˇ.

Proof. Notice that when z ≤1 statement (3.34) follows from (3.31) and (3.33).
Let us fix 1<z<rˇ arbitrarily. We shall show that for some q>0 and c≥1/mq

the equation

(3.35) f = zeTcˇ,μq [f −1]

has a finite solution f ≥1. This by Theorem 1.2 will imply that z ≤r(q, c). The
latter together with (3.33) immediately yield (3.34).
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First we rewrite (3.35). Let q>0 and c≥1/mq be such that (3.30) holds. Set

cq := cmq ≥ 1 and ˜̌(x, y) := cqˇ(x, y)eqTˇ [1](y).

Then (3.35) becomes

(3.36) f =Φz, ˜̌[f ],

where
Φz, ˜̌[f ] = z exp(Tˇ[cqe

qTˇ [1]f ]−T ˜̌[1]).

Setting g=cqe
qTˇ [1]f we derive from (3.36),

g = cqz exp(Tˇ[g −1]+Tˇ[1]+qTˇ[1]−T ˜̌[1]) =Φcqz,ˇ[g]e(1+q)Tˇ[1]−T ˜̌[1].

Hence, (3.36) has a finite solution f ≥1 if and only if the equation

(3.37) g =Φcqz,ˇ[g]e(1+q)Tˇ[1]−T ˜̌[1] =: G[g]

has a finite solution g ≥cqe
qTˇ [1]. Observe that G is a monotone operator, i.e., if

g ≥g1 then G[g]≥G[g1]. Since

G[g] = cqe
qTˇ [1]Φz, ˜̌[c−1

q e−qTˇ [1]g],

for any
g ≥ cqe

qTˇ [1]

we have
G[g] ≥ cqe

qTˇ [1].

If we find a function g0 such that

(3.38) g0 ≥ cqe
qTˇ [1]

and

(3.39) G[g0] ≤ g0,

then we can derive (using an argument similar to the proof of Lemma 2.1) that

(3.40) g := lim
n→∞

Gn[g0] ≥ cqe
qTˇ [1]

is the finite solution to (3.37).
Let g0 be the minimal positive solution to

(3.41) g0 =Φcqz,ˇ[g0],
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where we assume that

(3.42) cqz < rˇ.

By Theorem 1.2 the minimal positive solution to (3.41) is finite. Furthermore, by
formula (2.6) we have

(3.43) g0 ≥ Φ2
cqz,ˇ[1] = cqze(cqz−1)Tˇ [1] ≥ cqe

(cq −1)Tˇ [1],

where we used the fact that z>1. Now for the fixed previously 1<z<rˇ we can
choose

(3.44) 0 <q <
rˇ
z

−1,

and then set

(3.45) cq =1+q.

With this choice of constants condition (3.42) is satisfied, and moreover from (3.43)
we derive

(3.46) g0 ≥ cqe
(cq −1)Tˇ [1] = cqe

qTˇ [1],

which means that condition (3.38) is satisfied as well. Notice also that by (3.44)
and (3.45),

(1+q)Tˇ[1](x)−T ˜̌[1](x) =
∫

S

(1+q −cqe
qTˇ [1](x))ˇ(x, y) dμ(y)(3.47)

≤
∫

S

(1+q −cq)ˇ(x, y)dμ(y)= 0.

Therefore with constants (3.44) and (3.45) we derive from (3.37), (3.47) and (3.41)
that

G[g0] = Φcqz,ˇ[g0]e(1+q)Tˇ [1]−T ˜̌[1] ≤ Φcqz,ˇ[g0] = g0.

Hence, both conditions (3.38) and (3.39) are fulfilled. Then by (3.40) equation (3.37)
has a desired finite solution. In turn, this implies that (3.36), and thus also (3.35)
has a finite solution f ≥1, which yields statement (3.34). �

By Lemma 3.4 for any δ>0 we can choose a small δ′ >0 and (q, c) close to (0, 1)
so that (3.32) holds with

z = r(q, c)−δ′ > 1,
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and moreover

(3.48)
(

1
log rˇ

+δ

)
log(r(q, c)−δ′) > 1.

Now setting ω=(1/log rˇ+δ) log n and z=r(q, c)−δ′ in (3.26) we derive with help
of (3.32),

P
{

C1(GV (n,ˇ)) >

(
1

log rˇ
+δ

)
log n

}

≤ b1nz−ω+o(1) = b1n exp
(

−log(r(q, c)−δ′)
(

1
log rˇ

+δ

)
log n

)
+o(1),

where b1 is some finite positive constant. This together with (3.48) yields state-
ment (3.11). �

3.5.2. The lower bound

Theorem 3.5. If ‖T ‖<1 then under the conditions of Theorem 1.7 one has
rˇ>1 and

(3.49) lim
n→∞

P
{

C1(GV (n,ˇ)) <

(
1

log rˇ
−δ

)
log n

}
=0

for any δ>0.

Proof. Fix any small positive δ<1/log rˇ and set

ω =
(

1
log rˇ

−δ

)
log n,(3.50)

N = N(n) =
n

ω2
.(3.51)

Introduce also for arbitrarily fixed finite D ∈S and ε1>0 the event

An =
{

#{xi : xi = y}
n

−μ(y) ≥ −ε1μ(y) for all 0 ≤ y ≤ D

}
∩ Bn

with Bn defined by (3.16). Observe that by assumption (1.1) and by (3.17),

(3.52) P{ An} → 1,

as n→∞. Let
PAn( · ) =P{ · | An}
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denote the conditional probability.
Given the graph GV (n,ˇ) we shall reveal recursively its connected components

in the following way:
Fix x0<D with μ(x0)>0 arbitrarily. Note that conditionally on An we have

(3.53) Nx0 :=#{1 ≤ i ≤ n : xi =x0} ≥ (1−ε1)μ(x0)n.

Let V1 be a random vertex uniformly distributed on {1≤i≤n:xi=x0}, and let L1=
τV1
n be the set of vertices in the tree with the root at vertex V1 (see the definition

of the algorithm in Section 3.5.1).
For any U ⊂ {1, ..., n} let τ i,U

n denote the set of vertices of the tree constructed
in the same way as τ i

n but on the set of vertices {1, ..., n} \U instead of {1, ..., n}.
In particular, with this notation τ i,∅

n =τ i
n.

Given constructed components L1, ..., Lk for 1≤k ≤[N ], let Vk+1 be a ver-
tex uniformly distributed on {1≤i≤n:xi=x0} \

⋃k
i=1 Li (whenever this set is non-

empty) and set Lk+1=τ
Vk,
Sk

i=1 Li
n (Vk+1). If {1≤i≤n:xi=x0} \

⋃k
i=1 Li=∅, we sim-

ply set Lk+1=∅. Then according to (3.52) we have

(3.54) P
{

C1(GV (n,ˇ)) <

(
1

log rˇ
−δ

)
log n

}
≤ PAn

{
max

1≤i≤[N ]+1
|Li| <ω

}
+o(1),

as n→∞.
Consider now

PAn

{
max

1≤i≤[N ]+1
|Li| <ω

}
(3.55)

=PAn { |L1| <ω}
[N ]∏
i=1

PAn

{
|Li+1| <ω

∣∣ |L1| <ω, ..., |Li| <ω
}
.

Observe that by (3.53) for all large n,

ω(N+1) = o(n) < (1−ε1)μ(x0)n ≤ Nx0 .

Hence, conditionally on { |L1|<ω, ..., |Lk |<ω} the set {1≤i≤n: xi=x0} \
⋃k

i=1 Li is
non-empty for any k ≤N . Notice also that if U ⊂U ′ then |τ i,U ′

n | is stochastically
dominated by |τ i,U

n | for any i. This allows us to derive from (3.55) that

(3.56) PAn

{
max

1≤i≤[N ]+1
|Li| <ω

}
≤

N∏
i=1

max
U ⊂ {1,...,n}

|U |≤Nω

PAn {|τVi,U
n | <ω}.
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To approximate the distribution of |τ i,U
n | we introduce another branching pro-

cess which will be stochastically dominated by Bˇ . First define for any value D ∈S

the probability measure

(3.57) μ̂D(y) =
{

M −1
D μ(y), if y ≤D,

0, otherwise,

where MD :=
∑

y≤D μ(y) is the normalizing constant. Then for any positive c and D

let B̂c,D be the process defined similar to Bˇ , but with the distribution of offspring

(3.58) Po(cˇ(x, y)μ̂D(y))

instead of Po(ˇ(x, y)μ(y)). Notice, that B̂1,∞ is defined exactly as Bˇ . Let X̂ c,D(x)
denote the total number of particles (including the initial one) produced by the
branching process B̂c,D with the initial particle of type x.

Lemma 3.6. Assume that the conditions of Theorem 1.7 are fulfilled. For all
large D and all small ε1 in the definition of An one can find c<1, arbitrarily close
to 1, so that

PAn { |τVi,U
n | <ω} ≤

(
1+b

log4 n

n2

)nω

P{X̂ c,D(x0) <ω}

for all large n, Vi ∈ {i:xi=x0} and all U ⊂ {1, ..., n} with |U | ≤Nω, where b is some
positive constant independent of x, c and D (ω and N are defined by (3.50)
and (3.51)).

Proof. At each step of the exploration algorithm which defines τVi,U
n , the

number of type-y offspring of a particle of type x has the binomial distribution
Bin(N ′

y, pxy(n)), where N ′
y is the number of remaining vertices of type y.

Here we shall explore another relation between the binomial and the Poisson
distributions. Let Yn,p ∈Bin(n, p) and Zλ ∈Po(λ). Then it is straightforward to
derive from the formulae for the corresponding probabilities that for all 0<p< 1

4

and 0≤k ≤n,

P{Yn,p = k} =
n!

k!(n−k)!
pk(1−p)n−k(3.59)

=
n!

nk(n−k)!
((1−p)ep/(1−p))ne−np/(1−p) (np/(1−p))k

k!

≤ (1+γp2)nP{Znp/(1−p) = k},
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where γ is some positive constant (independent of n, k and p). Also notice,
that (3.59) trivially holds for all k>n.

We shall now find a lower bound for N ′
y . Conditionally on An we have

(3.60) Ny :=#{xi : xi = y} ≥ (1−ε1)μ(y)n

for all y<D. By deleting an arbitrary set U with |U | ≤Nω from {1, ..., n}, we may
delete at most Nω vertices of type y. Hence, conditionally on An at any step of
the exploration algorithm which defines τ i,U

n with |τ i,U
n |<ω, the number N ′

y of the
remaining vertices of type y is bounded from below as

N ′
y ≥ Ny −ω −Nω,

and thus for all y<D by (3.60),

N ′
y ≥ n(1−ε1)μ(y)−ω −Nω.

Taking into account definitions (3.50) and (3.51) we derive from here that for any
ε′ >0 one can choose a small ε1>0 so that

N ′
y ≥ (1−ε′)μ(y)n

for all y ≤D and large n. This implies that conditionally on An at any step of the
exploration algorithm we have

(3.61) N ′
y

pxy(n)
1−pxy(n)

≥ μ(y)(1−ε′)ˇ(x, y)

for any y ≤D and large n. Now with help of (3.57) we rewrite (3.61) as

(3.62) N ′
y

pxy(n)
1−pxy(n)

≥ μ̂D(y)MD(1−ε′)ˇ(x, y) =: μ̂D(y)cˇ(x, y)

for all x, y ∈S, where
c =MD(1−ε′).

Recall that MD↑1, as D→∞. Therefore choosing the constants D and ε1 appro-
priately we can make c arbitrarily close to 1.

Now using relation (3.59) between the Poisson and the binomial distributions,
and taking into account (3.62), we derive for all k and N ′

y ≤n,

P{YN ′
y,pxy(n) = k} ≤ (1+γp2

xy(n))N ′
yP{ZN ′

ypxy(n)/(1−pxy(n)) = k}

≤
(

1+γc2
1A

4
1

log4 n

n2

)n

P{ZN ′
ypxy(n)/(1−pxy(n)) = k},
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where we used bound (3.24). Note that in the last formula ZN ′
ypxy(n)/(1−pxy(n))

stochastically dominates Zμ̂D(y)cˇ(x,y) due to (3.62). This implies that if condition-
ally on An, at each of at most ω steps of the exploration algorithm we replace the
Bin(N ′

y, pxy(n)) variable with the

Po(μ̂D(y)cˇ(x, y))

one, we arrive at the following bound using the branching process B̂c,D,

(3.63) PAn { |τVi,U
n | <ω} ≤

(
1+γc2

1A
4
1

log4 n

n2

)nω

P{X̂ c,D(x0) <ω}

for all large n. This yields the statement of Lemma 3.6. �

Now, combining (3.54) with (3.56) and using Lemma 3.6, we derive

P{C1(GV (n,ˇ)) <ω} ≤
((

1+b
log4 n

n2

)nω

P{X̂ c,D(x0) <ω}
)N

+o(1)(3.64)

≤ eb1 log3 n(1−P{X̂ c,D(x0) ≥ ω})n/ω2
+o(1),

as n→∞, where b1 is some positive constant independent of c and D.
Assume from now on that c=MD. Define the following operator associated

with the branching process B̂c,D,

TD[f ](x) :=Tcˇ,μ̂D
[f ](x) =

∫ D

0

ˇ(x, y)f(y) dμ(y) =
∑
y≤D

ˇ(x, y)f(y)μ(y).

Clearly, under the assumption ‖Tˇ‖<1 we also have

(3.65) ‖TD ‖ < 1.

Hence, Tcˇ,μ̂D
satisfies the conditions of Theorem 2.5(ii), which together with Re-

mark 2.2 implies that (when c=MD)

(3.66) r̂(D) := sup{z ≥ 1 :Ez
bX c,D(x) < ∞} > 1

for all x∈S. By the construction, μ(y)≥μD(y)c for all y ∈S (with c=MD). There-
fore X (x) is stochastically larger than X̂ c,D(x) for all x∈S, and hence

(3.67) rˇ ≤ r̂(D)

for all D ∈S. Furthermore, we shall prove the following result.

Lemma 3.7. Under the conditions of Theorem 1.7, limD→∞ r̂(D)=rˇ .
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Proof. Note that r̂(D) is non-increasing in D. Therefore inequality (3.67)
implies existence of the limit

(3.68) lim
D→∞

r̂(D) ≥ rˇ.

We shall show that if

(3.69) z < r̂(D) for all D,

then also

(3.70) z < rˇ.

This together with (3.68) will immediately imply the statement of the lemma.
From now on we fix z which satisfies (3.69). Then for any D ∈S equation

(3.71) f = zeTD [f −1] =: ΦD,z[f ]

has the minimal solution fD, which by (2.3) equals

(3.72) fD(x) := lim
k→∞

Φk
D,z[1](x) < ∞

for all x∈S. To prove (3.70) it is sufficient to show that equation

(3.73) f = zeT [f −1] =: Φz(f)

has a finite minimal solution as well. Therefore we shall prove that

(3.74) f∞(x) := lim
k→∞

Φk
z [1](x) < ∞

for all x∈S, which by Theorem 2.1 is the minimal solution to (3.73).

Claim. For all k ≥1 and for all x∈S,

(3.75) lim
D→∞

Φk
D,z[1](x)=Φk

z [1](x).

Proof. We shall use the induction argument. First, we notice that for all x∈S,

ΦD,z[1](x) = z =Φz[1](x),

and

(3.76) Φ2
D,z[1](x) = zeTD [1](x) ↑ zeT [1](x) =Φ2

z[1](x) < ∞,

as D→∞.
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Assume now that (3.75) holds for some k>1. We shall show that then also

(3.77) lim
D→∞

Φk+1
D,z [1](x)=Φk+1

z [1](x)

for all x∈S, which together with (3.76) will imply (3.75) for all k ≥1. Set

gD :=Φk
D,z[1] and g :=Φk

z [1].

By the assumption, gD↑g, as D→∞. Then with help of the monotone convergence
theorem, we derive

lim
D→∞

Φk+1
D,z [1] = lim

D→∞
ΦD,z[gD] = lim

D→∞
zeTD [gD −1] = zeT [g−1] =Φk+1

z [1],

which proves (3.77). �

Using (3.75) we can rewrite the function in (3.74) as

(3.78) f∞(x) = lim
k→∞

lim
D→∞

Φk
D,z[1](x).

Recall that by Theorem 2.1 and Remark 2.2 we have either f∞(x)<∞ or f∞(x)=∞
for all x∈S (take into account that S is countable here). Our aim is to prove that
f∞(x)<∞ for all x∈S.

Assume that, on the contrary, f∞(x)=∞ for all x∈S. Then by (3.78) for any
C>0 and x there is k0=k0(C, x)>1 such that

(3.79) lim
D→∞

Φk0
D,z[1](x) >C,

which in turn implies that there is D0=D0(C, x) such that

(3.80) Φk0
D0,z[1](x) >C.

Due to the definition in (3.72) we have

(3.81) fD0(x) = lim
k→∞

Φk
D0,z[1](x) = lim

k→∞
Φk

D0,z[Φ
k0
D0,z[1]](x) ≥ lim

k→∞
Φk

D0,z[C](x).

It is straightforward to derive, taking into account condition (1.11) and the definition
of ΦD,z , that for any D>0, z ≥1 and all large A one has limk→∞ Φk

D,z[A](x)=∞.
Hence, choosing constant C large enough, we derive from (3.81) that fD0(x)=∞,

which contradicts inequality in (3.72). Hence, (3.74) holds, which finishes the proof
of Lemma 3.7. �

By Lemma 3.7 for any given δ1>0 we can find a large constant D such that

(3.82) r̂(D) <rˇ+ 1
2δ1.
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It follows from definition (3.66) of r̂(D) that

lim sup
k→∞

P{X̂ c,D(x) = k}1/k =
1

r̂(D)
< 1

(here c=MD), which implies that also

(3.83) lim sup
k→∞

P{X̂ c,D(x) ≥ k}1/k =
1

r̂(D)
.

Proposition 3.8. Let c=MD. The limit

lim
k→∞

P{X̂ c,D(x) ≥ k}1/k

exists.

Proof. We shall use a super-multiplicativity property of P{X̂ c,D(x)≥k}. No-
tice that the branching process B̂c,D has in the first generation at least 2 offspring
of type x with probability

πx =1−e−ˇ(x,x)μ(x)(1+ˇ(x, x)μ(x)),

which is positive for all x. Hence, for all n, m≥0,

A(n+m) :=P{X̂ c,D(x) ≥ n+m} ≥ πxP{X̂ c,D(x) ≥ n}P{X̂ c,D(x) ≥ m−1}

≥ πxA(n)A(m).

Then, by the result of Theorem 23 in [4], limk→∞ log A(k)/k exists, and moreover,
it cannot be ∞ since log A(k)≤0. This implies the existence of limk→∞ A(k)1/k and
completes the proof of the proposition. �

Proposition 3.8 together with (3.83) gives us

(3.84) lim
k→∞

P{X̂ c,D(x) ≥ k}1/k =
1

r̂(D)

for all x∈S. Therefore for any δ1>0 and some positive constant A=A(δ1, x
0)<∞

we derive using (3.82) that

P{X̂ c,D(x0) >ω} ≥ A
(
r̂(D)+ 1

2δ1

)−ω ≥ A(rˇ+δ1)−ω.

This allows us to derive from (3.64) that for ω=(1/log rˇ −δ) log n, and any δ>0
and δ1>0,
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P{C1(GV (n,ˇ)) <ω}(3.85)

≤ eb1 log3 n(1−A(rˇ+δ1)−(1/log rˇ−δ) log n)n/(α log n)2 +o(1),

where α=1/log rˇ −δ. Now for any δ>0 we choose a positive δ1 so that

γ1 :=
(

1
log rˇ

−δ

)
log(rˇ+δ1) < 1.

Then (3.85) becomes

P
{

C1(GV (n,ˇ)) <

(
1

log rˇ
−δ

)
log n

}
≤ eb1 log3 n

(
1− A0

nγ1

)n/(α log n)2

+o(1),

where the right-hand side tends to zero as n→∞. This completes the proof of
Theorem 3.5. �

3.5.3. Proof of Theorem 1.7

Theorems 3.5 and 3.2 yield the assertion of Theorem 1.7 when ‖Tˇ‖<1.
When ‖Tˇ‖ ≥1 we have that rˇ=1 by Corollary 1.4. It is clear that for any

0<c<1/‖Tˇ‖ ≤1 the size C1(GV (n,ˇ)) stochastically dominates C1(GV (n, cˇ)).
Then we have by the previous case for any 0<c<1/‖Tˇ‖ ≤1,

(3.86) P
{

C1(GV (n,ˇ))
log n

<
1

2 log rcˇ

}
≤ P

{
C1(GV (n, cˇ))

log n
<

1
2 log rcˇ

}
→ 0,

as n→∞. By Lemma 3.1 we have that rcˇ→1 as c↑1/‖Tˇ‖. Therefore we derive
from (3.86) that

C1(GV (n,ˇ))
log n

P
−→ ∞ =

1
log rˇ

,

which finishes the proof of Theorem 1.7.
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