Extrapolation from $A_{\infty}^{\rho, \infty}$, vector-valued inequalities and applications in the Schrödinger settings

Lin Tang

Abstract

In this paper, we generalize the A_{∞} extrapolation theorem (Cruz-Uribe-Martell-Pérez, Extrapolation from A_{∞} weights and applications, J. Funct. Anal. 213 (2004), 412-439) and the A_{p} extrapolation theorem of Rubio de Francia to Schrödinger settings. In addition, we also establish weighted vector-valued inequalities for Schrödinger-type maximal operators by using weights belonging to $A_{p}^{\rho, \infty}$ which includes A_{p}. As applications, we establish weighted vector-valued inequalities for some Schrödinger-type operators.

1. Introduction

In this paper, we consider the Schrödinger differential operator

$$
L=-\Delta+V(x) \quad \text { on } \mathbb{R}^{n}, n \geq 3
$$

where $V(x)$ is a nonnegative potential satisfying a certain reverse Hölder inequality.
A nonnegative locally L^{q} integrable function $V(x)$ on \mathbb{R}^{n} is said to belong to B_{q} for $1<q \leq \infty$ if there exists $C>0$ such that the reverse Hölder inequality

$$
\left(\frac{1}{|B(x, r)|} \int_{B(x, r)} V^{q}(y) d y\right)^{1 / q} \leq C\left(\frac{1}{|B(x, r)|} \int_{B(x, r)} V(y) d y\right)
$$

holds for every $x \in \mathbb{R}^{n}$ and $0<r<\infty$, where $B(x, r)$ denotes the ball centered at x with radius r. In particular, if V is a nonnegative polynomial, then $V \in B_{\infty}$. Throughout this paper, we always assume that $0 \not \equiv V \in B_{n / 2}$.

The study of the Schrödinger operator $L=-\Delta+V$ has recently attracted much attention; see [3], [4], [12], [11], [16], [23], [28] and [29]. In particular, it should

The research was supported by the NNSF (11271024) of China.
be pointed out that Shen [23] proved that Schrödinger-type operators, such as $\nabla(-\Delta+V)^{-1} \nabla, \nabla(-\Delta+V)^{-1 / 2},(-\Delta+V)^{-1 / 2} \nabla$ with $V \in B_{n}$, and $(-\Delta+V)^{i \gamma}$ with $\gamma \in \mathbb{R}$ and $V \in B_{n / 2}$, are standard Calderón-Zygmund operators.

Recently, Bongioanni-Harboure-Salinas [3] proved $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$, boundedness for commutators of Riesz transforms associated with Schrödinger operator with $\mathrm{BMO}_{\infty}(\rho)$ functions, which include the BMO functions, and they [4] established the weighted boundedness for Riesz transforms, fractional integrals and Littlewood-Paley functions associated with Schrödinger operators with weights in the $A_{p}^{\rho, \infty}$ class, which includes the Muckenhoupt weights. Very recently, the author ([25] and [26]) established weighted norm inequalities for some Schrödinger-type operators, which include commutators of Riesz transforms, fractional integrals and Littlewood-Paley functions associated with Schrödinger operators.

On the other hand, extrapolation of weights plays an important role in harmonic analysis. In particular, Rubio de Francia [22] proved the A_{p} extrapolation theorem: If the operator T is bounded on $L^{p_{0}}(\omega)$ for some $p_{0}, 1<p_{0}<\infty$, and every $\omega \in A_{p_{0}}$, then for every $p, 1<p<\infty, T$ is bounded on $L^{p}(\omega), \omega \in A_{p}$ (see also [9] and [14]). Recently, Cruz-Uribe-Martell-Pérez in [5] extended this theorem from A_{p} weights to A_{∞} weights, to pairs of operators, and to the range $0<p<\infty$ in the context of Muckenhoupt bases; see also [6], [7], [8], [10], [17] and [18].

In this paper, we generalize the A_{∞} extrapolation theorem in [5] and the A_{p} extrapolation theorem of Rubio de Francia to Schrödinger settings and give some applications.

The paper is organized as follows. In Section 2, we give factorization of $A_{p}^{\rho, \infty}$, and establish weighted vector-valued inequalities for Schrödinger-type maximal operators, these results play a crucial role in this paper. In Section 3, we obtain extrapolation theorems from $A_{\infty}^{\rho, \infty}$ and $A_{p}^{\rho, \infty}$. Finally, we establish weighted vector-valued inequalities for some Schrödinger-type operators in Section 4.

Throughout this paper, we let C denote constants that are independent of the main parameters involved but whose value may differ from line to line. By $A \sim B$, we mean that there exists a constant $C>1$ such that $1 / C \leq A / B \leq C$.

2. Factorization and vector-valued inequalities

In this section, we give the factorization of $A_{p}^{\rho, \infty}$ and weighted vector-valued inequalities for Schrödinger-type maximal operators.

We first recall some notation. Given $B=B(x, r)$ and $\lambda>0$, we will write λB for the λ-dilate ball, which is the ball with the same center x and with radius λr. Similarly, $Q(x, r)$ denotes the cube centered at x with the sidelength r (here and below only cubes with sides parallel to the coordinate axes are considered), and
$\lambda Q(x, r)=Q(x, \lambda r)$. Let $f=\left\{f_{k}\right\}_{k=1}^{\infty}$ be a sequence of locally integrable functions on $\mathbb{R}^{n},|f(x)|_{r}=\left(\sum_{k=1}^{\infty}\left|f_{k}(x)\right|^{r}\right)^{1 / r}$, and $|T f(x)|_{r}=\left(\sum_{k=1}^{\infty}\left|T f_{k}(x)\right|^{r}\right)^{1 / r}$.

The function $m_{V}(x)$ is defined by

$$
\rho(x)=\frac{1}{m_{V}(x)}=\sup _{r>0}\left\{r: \frac{1}{r^{n-2}} \int_{B(x, r)} V(y) d y \leq 1\right\} .
$$

Obviously, $0<m_{V}(x)<\infty$ if $V \neq 0$. In particular, $m_{V}(x)=1$ if $V=1$, and $m_{V}(x) \sim$ $(1+|x|)$ if $V=|x|^{2}$.

Lemma 2.1. ([23]) There exists $l_{0}>0$ and $C_{0}>1$ such that

$$
\frac{1}{C_{0}}\left(1+|x-y| m_{V}(x)\right)^{-l_{0}} \leq \frac{m_{V}(x)}{m_{V}(y)} \leq C_{0}\left(1+|x-y| m_{V}(x)\right)^{l_{0} /\left(l_{0}+1\right)} .
$$

In particular, $m_{V}(x) \sim m_{V}(y)$ if $|x-y|<C / m_{V}(x)$.
In this paper, we write $\Psi_{\theta}(B)=\left(1+r / \rho\left(x_{0}\right)\right)^{\theta}$, where $\theta>0$, and x_{0} and r denotes the center and radius of B respectively.

A weight will always mean a nonnegative function which is locally integrable. As in [4], we say that a weight ω belongs to the class $A_{p}^{\rho, \theta}$ for $1<p<\infty$, if there is a constant C such that for all balls B

$$
\left(\frac{1}{\Psi_{\theta}(B)|B|} \int_{B} \omega(y) d y\right)\left(\frac{1}{\Psi_{\theta}(B)|B|} \int_{B} \omega^{-1 /(p-1)}(y) d y\right)^{p-1} \leq C
$$

We also say that a nonnegative function ω satisfies the $A_{1}^{\rho, \theta}$ condition if there exists a constant C such that

$$
M_{V, \theta}(\omega)(x) \leq C \omega(x) \quad \text { for a.e. } x \in \mathbb{R}^{n}
$$

where

$$
M_{V, \theta} f(x)=\sup _{x \in B} \frac{1}{\Psi_{\theta}(B)|B|} \int_{B}|f(y)| d y .
$$

When $V=0$, we denote $M_{0} f(x)$ by $M f(x)$ (the standard Hardy-Littlewood maximal function). It is easy to see that $|f(x)| \leq M_{V, \theta} f(x) \leq M f(x)$ for a.e. $x \in \mathbb{R}^{n}$ and any $\theta \geq 0$.

Since $\Psi_{\theta}(B) \geq 1$ if $\theta \geq 0$, we then have $A_{p} \subset A_{p}^{\rho, \theta}$ for $1 \leq p<\infty$, where A_{p} denotes the classical Muckenhoupt weights; see [15] and [20]. We will see that $A_{p} \Subset A_{p}^{\rho, \theta}$ for $1 \leq p<\infty$ in some cases. In fact, letting $\theta>0$ and $0 \leq \gamma \leq \theta$, it is easy to check that $\omega(x)=(1+|x|)^{-(n+\gamma)} \notin A_{\infty}$ and $\omega(x) d x$ is not a doubling measure, but $\omega(x)=$ $(1+|x|)^{-(n+\gamma)} \in A_{1}^{\rho, \theta}$ provided that $V=1$ and $\Psi_{\theta}\left(B\left(x_{0}, r\right)\right)=(1+r)^{\theta}$.

We remark that balls can be replaced by cubes in the definitions of $A_{p}^{\rho, \theta}$ and $M_{V, \theta}$, since $\Psi_{\theta}(B) \leq \Psi_{\theta}(2 B) \leq 2^{n} \theta \Psi_{\theta}(B)$.

Next we give the weighted boundedness for $M_{V, \theta}$.

Lemma 2.2. ([27]) Let $1<p<\infty, p^{\prime}=p /(p-1)$ and assume that $\omega \in A_{p}^{\rho, \theta}$. There exists a constant $C>0$ such that

$$
\left\|M_{V, p^{\prime} \theta} f\right\|_{L^{p}(\omega)} \leq C\|f\|_{L^{p}(\omega)}
$$

Similar to the classical Muckenhoupt weights (see [15], [19] and [24]), we give some properties for the weight class $A_{p}^{\rho, \theta}$ for $p \geq 1$.

Proposition 2.3. Let $A_{p}^{\rho, \infty}:=\bigcup_{\theta \geq 0} A_{p}^{\rho, \theta}$ for $p \geq 1$. Then the following are true:
(i) If $1 \leq p_{1}<p_{2}<\infty$, then $A_{p_{1}}^{\rho, \theta} \subset A_{p_{2}}^{\rho, \theta}$;
(ii) $\omega \in A_{p}^{\rho, \theta}$ if and only if $\omega^{-1 /(p-1)} \in A_{p^{\prime}}^{\rho, \theta}$, where $1 / p+1 / p^{\prime}=1$;
(iii) If $\omega \in A_{p}^{\rho, \infty}, 1<p<\infty$, then there exists $\varepsilon>0$ such that $\omega \in A_{p-\varepsilon}^{\rho, \infty}$;
(iv) Let $f \in L_{\mathrm{loc}}\left(\mathbb{R}^{n}\right), 0<\delta<1$, then $\left(M_{V, \theta} f\right)^{\delta} \in A_{1}^{\rho, \theta}$;
(v) Let $1<p<\infty$, then $\omega \in A_{p}^{\rho, \infty}$ if and only if $\omega=\omega_{1} \omega_{2}^{1-p}$, where $\omega_{1}, \omega_{2} \in A_{1}^{\rho, \infty}$.

Proof. (i) and (ii) are obvious by the definition of $A_{p}^{\rho, \theta}$. (iii) is proved in [4]. In fact, from Lemma 5 in [4], we know that if $\omega \in A_{p}^{\rho, \theta}$, then $\omega \in A_{p_{0}}^{\rho, \theta_{0}}$, where $p_{0}=1+(p-1) /(1+\delta)<p$ with $\delta>0$ (δ is a constant depending only on the $A_{p}^{\rho, \text { loc }}$ constant of ω, see [4]) and

$$
\theta_{0}=\frac{\theta p+\eta(p-1)}{p_{0}} \quad \text { with } \eta=\theta p+(\theta+n) \frac{p l_{0}}{l_{0}+1}+\left(l_{0}+1\right) \frac{n \delta}{1+\delta}
$$

We now prove (iv). It will suffice to show that there exists a constant C such that for every f, every cube Q and almost every $x \in Q$,

$$
\frac{1}{\Psi_{\theta}(Q)|Q|} \int_{Q} M_{V, \theta} f(y)^{\delta} d y \leq C M_{V, \theta} f(x)^{\delta}
$$

Fix Q and decompose f as $f=f_{1}+f_{2}$, where $f_{1}=f \chi_{2 Q}$ and $f_{2}=f-f_{1}$. Then $M_{V, \theta} f(x) \leq M_{V, \theta} f_{1}(x)+M_{V, \theta} f_{2}(x)$, and so for $0 \leq \delta<1$,

$$
M_{V, \theta} f(x)^{\delta} \leq M_{V, \theta} f_{1}(x)^{\delta}+M_{V, \theta} f_{2}(x)^{\delta}
$$

Since $M_{V, \theta}$ is weak- $(1,1)$, by Kolmogorov's inequality (see [21])

$$
\begin{aligned}
\frac{1}{\Psi_{\theta}(Q)|Q|} \int_{Q}\left(M_{V, \theta} f_{1}\right)^{\delta}(y) d y & \leq \frac{C}{\Psi_{\theta}(Q)|Q|}|Q|^{1-\delta}\left\|f_{1}\right\|_{1}^{\delta} \\
& \leq C\left(\frac{1}{\Psi_{\theta}(Q)|Q|} \int_{2 Q}|f(y)| d y\right)^{\delta}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C\left(\frac{1}{\Psi_{\theta}(2 Q)|2 Q|} \int_{2 Q}|f(y)| d y\right)^{\delta} \\
& \leq C M_{V, \theta} f(x)^{\delta}
\end{aligned}
$$

To estimate $M_{V, \theta} f_{2}$, note that letting Q^{\prime} be a cube such that $x \in Q^{\prime}$, we have that if $Q^{\prime} \cap\left(\mathbb{R}^{n} \backslash 2 Q\right) \neq \varnothing$, then $Q \subset 4 n Q^{\prime}$. Hence, for any $z \in Q$,

$$
\frac{1}{\Psi_{\theta}\left(Q^{\prime}\right)\left|Q^{\prime}\right|} \int_{Q^{\prime}}\left|f_{2}(y)\right| d y \leq \frac{C}{\Psi_{\theta}\left(4 n Q^{\prime}\right)\left|4 n Q^{\prime}\right|} \int_{4 n Q^{\prime}}\left|f_{2}(y)\right| d y \leq C M_{V, \theta}(z)
$$

So $M_{V, \theta}(y) \leq C M_{V, \theta}(x)$ for any $y \in Q$. Thus

$$
\frac{1}{\Psi_{\theta}\left(Q^{\prime}\right)\left|Q^{\prime}\right|} \int_{Q^{\prime}} M_{V, \theta} f_{2}(y)^{\delta} d y \leq C M_{V, \theta} f(x)^{\delta}
$$

It remains to prove (v). We first assume that $\omega_{1} \in A_{1}^{\rho, \theta_{1}}$ and $\omega_{2} \in A_{1}^{\rho, \theta_{2}}$. Since

$$
\begin{aligned}
& \left(\frac{1}{\Psi_{\theta_{1}}(Q)|Q|} \int_{Q} \omega_{1}(y) d y\right)\left(\inf _{Q} \omega_{1}(y)\right)^{-1} \leq C_{1} \\
& \left(\frac{1}{\Psi_{\theta_{2}}(Q)|Q|} \int_{Q} \omega_{2}(y) d y\right)\left(\inf _{Q} \omega_{2}(y)\right)^{-1} \leq C_{2}
\end{aligned}
$$

moreover

$$
\begin{aligned}
\frac{1}{\Psi_{\theta}(Q)|Q|} \int_{Q} \omega(y) d y & =\frac{1}{\Psi_{\theta}(Q)|Q|} \int_{Q} \omega_{1}(y) \omega_{2}^{1-p}(y) d y \\
& \leq\left(\frac{1}{\Psi_{\theta}(Q)|Q|} \int_{Q} \omega_{1}(y) d y\right)\left(\inf _{Q} \omega_{2}(y)\right)^{1-p} \\
\left(\frac{1}{\Psi_{\theta}(Q)|Q|} \int_{Q} \omega^{-1 /(p-1)}(y) d y\right)^{p-1} & =\left(\frac{1}{\Psi_{\theta}(Q)|Q|} \int_{Q} \omega_{1}^{-1 /(p-1)}(y) \omega_{2}(y) d y\right)^{p-1} \\
& \leq\left(\frac{1}{\Psi_{\theta}(Q)|Q|} \int_{Q} \omega_{2}(y) d y\right)^{p-1}\left(\inf _{Q} \omega_{1}(y)\right)^{-1}
\end{aligned}
$$

From these inequalities and choosing $\theta=\max \left\{\theta_{1}, \theta_{2}\right\}$, we get that

$$
\left(\frac{1}{\Psi_{\theta}(Q)|Q|} \int_{Q} \omega(y) d y\right)\left(\frac{1}{\Psi_{\theta}(Q)|Q|} \int_{Q} \omega^{-1 /(p-1)}(y) d y\right)^{p-1} \leq C_{1} C_{2}^{p-1}
$$

To prove the converse, we consider first $p \geq 2$, let $\omega \in A_{p}^{\rho, \theta}$, and define T by

$$
T f=\left[\omega^{-1 / p} M_{V, p \theta}\left(f^{p / p^{\prime}} \omega^{1 / p}\right)\right]^{p^{\prime} / p}+\omega^{1 / p} M_{V, p \theta}\left(f \omega^{-1 / p}\right)
$$

Because $\omega^{-p^{\prime} / p} \in A_{p^{\prime}}^{\rho, \theta}$, then T is bounded on L^{p} by Lemma 2.2, that is,

$$
\|T f\|_{L^{p}} \leq A\|f\|_{L^{p}},
$$

for some $A>0$. Also, since $p \geq 2$, we have $p / p^{\prime} \geq 1$, and Minkowski's inequality gives $T\left(f_{1}+f_{2}\right) \leq T f_{1}+T f_{2}$. Fix now a nonnegative f with $\|f\|_{L^{p}}=1$ and write

$$
\eta=\sum_{k=1}^{\infty}(2 A)^{-k} T^{k}(f)
$$

where $T^{k}(f)=T\left(T^{k-1}(f)\right)$. Then $\|\eta\|_{L^{p}} \leq 1$. Furthermore, since T is positivitypreserving and subadditive, we have the pointwise inequality

$$
T \eta \leq \sum_{k=1}^{\infty}(2 A)^{-k} T^{k+1}(f)=\sum_{k=2}^{\infty}(2 A)^{1-k} T^{k}(f) \leq 2 A \eta
$$

Thus, if $\omega_{1}=\omega^{1 / p} \eta^{p / p^{\prime}}$, then

$$
M_{V, p \theta}\left(\omega_{1}\right) \leq T(\eta)^{p / p^{\prime}} \omega^{1 / p} \leq(2 A \eta)^{p / p^{\prime}} \omega^{1 / p}=(2 A)^{p / p^{\prime}} \omega_{1}
$$

and $\omega \in A_{1}^{\rho, p \theta}$. Similarly, if $\omega_{2}=\omega^{-1 / p} \eta$, then $M_{V, p \theta}\left(\omega_{1}\right) \leq 2 A \omega_{2}$, so $\omega_{2} \in A_{1}^{\rho, p \theta}$. Moreover,

$$
\omega=\omega_{1} \omega_{2}^{1-p}=\omega^{1 / p} \eta^{p / p^{\prime}}\left(\omega^{-1 / p} \eta\right)^{1-p}
$$

since $p / p^{\prime}=p-1$, finishing the proof for $p \geq 2$.
The case $p \leq 2$ is similar. In fact, let $\omega \in A_{p}^{\rho, \theta}$, then $\omega^{-p^{\prime} / p} \in A_{p^{\prime}}^{\rho, \theta}$, and define T by

$$
T f=\left[\omega^{1 / p} M_{V, p^{\prime} \theta}\left(f^{p^{\prime} / p} \omega^{-1 / p}\right)\right]^{p / p^{\prime}}+\omega^{-1 / p} M_{V, p^{\prime} \theta}\left(f \omega^{1 / p}\right)
$$

Then T is bounded on L^{p} by Lemma 2.2, that is,

$$
\|T f\|_{L^{p^{\prime}}} \leq B\|f\|_{L^{p^{\prime}}}
$$

for some $A>0$. Also, since $p \leq 2$, we have $p^{\prime} / p \geq 1$, and Minkowski's inequality gives $T\left(f_{1}+f_{2}\right) \leq T f_{1}+T f_{2}$. Fix now a nonnegative f with $\|f\|_{L^{p^{\prime}}}=1$ and write

$$
\eta=\sum_{k=1}^{\infty}(2 B)^{-k} T^{k}(f)
$$

where $T^{k}(f)=T\left(T^{k-1}(f)\right)$. Then $\|\eta\|_{L^{p^{\prime}}} \leq 1$. Furthermore, since T is positivitypreserving and subadditive, we have the pointwise inequality

$$
T \eta \leq \sum_{k=1}^{\infty}(2 B)^{-k} T^{k+1}(f)=\sum_{k=2}^{\infty}(2 B)^{1-k} T^{k}(f) \leq 2 B \eta
$$

Thus, if $\omega_{1}=\omega^{-1 / p} \eta^{p^{\prime} / p}$, then

$$
M_{V, p \theta}\left(\omega_{1}\right) \leq T(\eta)^{p^{\prime} / p} \omega^{-1 / p} \leq(2 B \eta)^{p^{\prime} / p} \omega^{1 / p}=(2 B)^{p^{\prime} / p} \omega_{1}
$$

and $\omega \in A_{1}^{\rho, p^{\prime} \theta}$. Similarly, if $\omega_{2}=\omega^{1 / p} \eta$, then $M_{V, p^{\prime} \theta}\left(\omega_{1}\right) \leq 2 B \omega_{2}$, so $\omega_{2} \in A_{1}^{\rho, p^{\prime} \theta}$. Moreover,

$$
\omega=\omega_{2} \omega_{1}^{1-p}=\omega^{1 / p} \eta\left(\omega^{-1 / p} \eta^{p^{\prime} / p}\right)^{1-p}
$$

since $p / p^{\prime}=p-1$, finishing the proof for $p \leq 2$. The proof is complete.

We remark that the referee has pointed out that in fact (v) of Proposition 2.3 can also be obtained by a direct argument in [17]. We leave this as an exercise for interested readers.
C. Fefferman and E. Stein [13] obtained vector-valued inequalities for HardyLittlewood maximal operators. Later, K. Andersen and R. John [1] generalized the Fefferman-Stein vector-valued inequalities to the A_{p} weight case. We next give some weighted vector-valued inequalities for maximal operators $M_{V, \eta}$ by using the new weights above. The following interpolation results will be used. Let \mathcal{S} denote the linear space of sequences $f=\left\{f_{k}\right\}_{k=1}^{\infty}$ of the form: $f_{k}(x)$ is a simple function on \mathbb{R}^{n} and $f_{k}(x) \equiv 0$ for all sufficient large $k . \mathcal{S}$ is dense in $L_{\omega}^{p}\left(l^{r}\right), 1 \leq p, r<\infty$; see [2].

Lemma 2.4. ([1]) Let $\omega \geq 0$ be locally integrable on $\mathbb{R}^{n}, 1<r<\infty, 1 \leq p_{i} \leq q_{i}<\infty$ and suppose T is a sublinear operator defined on \mathcal{S} satisfying

$$
\omega\left(\left\{x \in \mathbb{R}^{n}:|T f(x)|_{r}>\alpha\right\}\right) \leq \frac{M_{i}^{q_{i}}}{\alpha^{q_{i}}}\left(\int_{\mathbb{R}^{n}}|f(x)|_{r}^{p_{i}} \omega(x) d x\right)^{q_{i} / p_{i}}
$$

for $i=0,1$ and $f \in \mathcal{S}$. Then T extends uniquely to a sublinear operator on $L_{\omega}^{p}\left(l^{r}\right)$ and there is a constant M_{θ} such that

$$
\left(\int_{\mathbb{R}^{n}}|T f(x)|_{r}^{q} \omega(x) d x\right)^{1 / q} \leq M_{\theta}\left(\int_{\mathbb{R}^{n}}|f(x)|_{r}^{p} \omega(x) d x\right)^{1 / p}
$$

where $(1 / p, 1 / q)=(1-\theta)\left(1 / p_{0}, 1 / q_{0}\right)+\theta\left(1 / p_{1}, 1 / q_{1}\right), 0<\theta<1$.
Lemma 2.5. ([1]) Let $\omega \geq 0$ be locally integrable on $\mathbb{R}^{n}, 1<r_{i}, s_{i}<\infty$, $1 \leq p_{i}, q_{i}<\infty$ and suppose T is a sublinear operator defined on \mathcal{S} satisfying

$$
\left(\int_{\mathbb{R}^{n}}|T f(x)|_{s_{i}}^{q_{i}} \omega(x) d x\right)^{1 / q_{i}} \leq M_{i}\left(\int_{\mathbb{R}^{n}}|f(x)|_{r_{i}}^{p_{i}} \omega(x) d x\right)^{1 / p_{i}}
$$

for $i=0,1$ and $f \in \mathcal{S}$. Then T extends uniquely to a sublinear operator on $L_{\omega}^{p}\left(l^{r}\right)$ such that

$$
\left(\int_{\mathbb{R}^{n}}|T f(x)|_{r}^{q} \omega(x) d x\right)^{1 / q} \leq M_{0}^{1-\theta} M_{1}^{\theta}\left(\int_{\mathbb{R}^{n}}|f(x)|_{r}^{p} \omega(x) d x\right)^{1 / p}
$$

where $(1 / p, 1 / q, 1 / s, 1 / r)=(1-\theta)\left(1 / p_{0}, 1 / q_{0}, 1 / s_{0}, 1 / r_{0}\right)+\theta\left(1 / p_{1}, 1 / q_{1}, 1 / s_{1}, 1 / r_{1}\right)$, $0<\theta<1$.

We define the dyadic maximal operator $M_{V, \theta}^{\Delta} f(x)$ by

$$
M_{V, \theta}^{\Delta} f(x):=\sup _{x \in Q(\text { dyadic cube })} \frac{1}{\psi_{\theta}(Q)|Q|} \int_{Q}|f(x)| d x
$$

where $\psi_{\theta}(Q)=\left(1+r / \max _{\bar{Q}} \rho(x)\right)^{\theta}, r$ is the side-length of Q, \bar{Q} is the closure of Q and $\theta>0$.

Lemma 2.6. Let f be a locally integrable function on $\mathbb{R}^{n}, \lambda>0$, and $\Omega_{\lambda}=$ $\left\{x \in \mathbb{R}^{n}: M_{V, \theta}^{\Delta} f(x)>\lambda\right\}$. Then Ω_{λ} may be written as a disjoint union of dyadic cubes $\left\{Q_{j}\right\}_{j=1}^{\infty}$ with
(i) $\lambda<\left(\psi_{\theta}\left(Q_{j}\right)\left|Q_{j}\right|\right)^{-1} \int_{Q_{j}}|f(x)| d x$;
(ii) $\left(\psi_{\theta}\left(Q_{j}\right)\left|Q_{j}\right|\right)^{-1} \int_{Q_{j}}|f(x)| d x \leq(4 n)^{\theta} 2^{n} \lambda$;
for each cube Q_{j}. This has the immediate consequences:
(iii) $|f(x)| \leq \lambda$ for a.e. $x \in \mathbb{R}^{n} \backslash \bigcup_{j=1}^{\infty} Q_{j}$;
(iv) $\left|\Omega_{\lambda}\right| \leq \lambda^{-1} \int_{\mathbb{R}^{n}}|f(x)| d x$.

The proof follows from the same argument as of Lemma 1 on p. 150 of [24].
Theorem 2.7. Let $1<r<\infty$ and $\theta>0$.
(a) If $1 \leq p<\infty, \omega \in A_{p}^{\rho, \theta}$ and $\eta=p_{0} \theta_{0}$, where $p_{0}=4\left(l_{0}+1\right)^{5}\left(p+\frac{1}{2}(r+1)^{\prime}\right)$ and $\theta_{0}=p\left((3 \theta+n) p+\left(l_{0}+1\right) n\right)$, there is a constant $C_{r, p, \theta, l_{0}, C_{0}}$ such that

$$
\begin{equation*}
\omega\left(\left.\left\{x \in \mathbb{R}^{n}:\left|M_{V, \eta} f(x)\right|_{r}>\alpha\right\}\left|\leq \frac{C}{\alpha^{p}} \int_{\mathbb{R}^{n}}\right| f(x)\right|_{r} ^{p} \omega(x) d x\right. \tag{2.1}
\end{equation*}
$$

(b) If $1<p<\infty, \omega \in A_{p}^{\rho, \theta}$ and η is as above, there is a constant $C_{r, p, \theta, l_{0}, C_{0}}$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|M_{V, \eta} f(x)\right|_{r}^{p} \omega(x) d x \leq \frac{C}{\alpha^{p}} \int_{\mathbb{R}^{n}}|f(x)|_{r}^{p} \omega(x) d x \tag{2.2}
\end{equation*}
$$

Proof. Observe first that (2.2) for the case $r=p$ is an easy consequence of Lemma 2.2 since $\eta>r^{\prime} \theta$ and

$$
\begin{align*}
\int_{\mathbb{R}^{n}}\left|M_{V, \eta} f(x)\right|_{r}^{r} \omega(x) d x & =\sum_{k=1}^{\infty} \int_{\mathbb{R}^{n}}\left|M_{V, \eta} f_{k}(x)\right|^{r} \omega(x) d x \tag{2.3}\\
& \leq C \sum_{k=1}^{\infty} \int_{\mathbb{R}^{n}}\left|f_{k}(x)\right|^{r} \omega(x) d x \\
& =C \sum_{k=1}^{\infty} \int_{\mathbb{R}^{n}}\left|f_{k}(x)\right|_{r}^{r} \omega(x) d x .
\end{align*}
$$

Now suppose $r>p, \omega \in A_{p}^{\rho, \theta}$ and $\alpha>0$. As usual, we can assume that $f \in C_{0}^{\infty}$. Let $\theta_{1}=\theta\left(l_{0}+1\right)$. From Lemma 2.6, we obtain a sequence of nonoverlapping cubes $\left\{Q_{j}\right\}_{j=1}^{\infty}$ such that

$$
\begin{equation*}
|f(x)|_{r} \leq \alpha, \quad x \notin \Omega=\bigcup_{j=1}^{\infty} Q_{j} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha<\frac{1}{\psi_{\theta_{1}}\left(Q_{j}\right)\left|Q_{j}\right|} \int_{Q_{j}}|f(x)|_{r} d x \leq 2^{n}(4 n)^{\theta_{1}} \alpha, \quad j=1,2, \ldots \tag{2.5}
\end{equation*}
$$

Let $f=f^{\prime}+f^{\prime \prime}$, where $f^{\prime}=\left\{f_{k}^{\prime}\right\}_{k=1}^{\infty}, f_{k}^{\prime}(x)=f_{k}(x) \chi_{\mathbb{R}^{n} \backslash \Omega}(x)$. Then

$$
\left|M_{V, \eta} f(x)\right|_{r} \leq\left|M_{V, \eta} f^{\prime}(x)\right|_{r}+\left|M_{V, \eta} f^{\prime \prime}(x)\right|_{r} .
$$

From this, (2.1) will follow if we show that

$$
\begin{equation*}
\omega\left(\left\{x \in \mathbb{R}^{n}:\left|M_{V, \eta} f^{\prime}(x)\right|_{r}>\alpha\right\}\right) \leq \frac{C}{\alpha^{p}} \int_{\mathbb{R}^{n}}|f(x)|_{r}^{p} \omega(x) d x \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega\left(\left\{x \in \mathbb{R}^{n}:\left|M_{V, \eta} f^{\prime \prime}(x)\right|_{r}>\alpha\right\}\right) \leq \frac{C}{\alpha^{p}} \int_{\mathbb{R}^{n}}|f(x)|_{r}^{p} \omega(x) d x \tag{2.7}
\end{equation*}
$$

Since $\omega \in A_{r}^{\rho, \theta}$ by (i) of Proposition 2.3, from (2.3) and (2.4), we then have

$$
\begin{aligned}
\omega\left(\left\{x \in \mathbb{R}^{n}:\left|M_{V, \eta} f^{\prime}(x)\right|_{r}>\alpha\right\}\right) & \leq \frac{C}{\alpha^{r}} \int_{\mathbb{R}^{n}}|f(x)|_{r}^{r} \omega(x) d x \\
& \leq \frac{C}{\alpha^{p}} \int_{\mathbb{R}^{n}}|f(x)|_{r}^{p} \omega(x) d x .
\end{aligned}
$$

Thus, (2.6) is proved. To prove (2.7), define $\bar{f}=\left\{\bar{f}_{k}\right\}_{k=1}^{\infty}$ by

$$
\bar{f}_{k}(x)=\frac{1}{\psi_{\theta_{1}}\left(Q_{j}\right)\left|Q_{j}\right|} \int_{Q_{j}}\left|f_{k}(y)\right| d y, \quad \text { if } x \in Q_{j}, j=1,2, \ldots
$$

and zero, otherwise. Let $\widetilde{Q}_{j}=2 n Q_{j}$. We now claim that for any $x \in \widetilde{\Omega}=\bigcup_{j=1}^{\infty} \widetilde{Q}_{j}$,

$$
M_{V, \eta} f_{k}^{\prime \prime}(x) \leq C M_{V, \bar{\eta}} \bar{f}_{k}(x) \quad \text { for all } k
$$

where $\bar{\eta}=\eta / 2\left(l_{0}+1\right)^{2}$.
In fact, for all $x \notin \widetilde{\Omega}$, and any cube $Q \ni x$, if $Q_{j} \cap Q \neq \varnothing$, then $Q_{j} \subset \widetilde{Q}=4 n Q$, and hence

$$
\begin{aligned}
\frac{1}{\Psi_{\eta}(Q)|Q|} \int_{Q}\left|f_{k}^{\prime \prime}(x)\right| d x & =\frac{1}{\Psi_{\eta}(Q)|Q|} \sum_{j=1}^{\infty} \int_{Q_{j} \cap Q}\left|f_{k}(x)\right| d x \\
& \leq \frac{1}{\Psi_{\eta}(Q)|Q|} \sum_{Q_{j} \subset \widetilde{Q}} \int_{Q_{j}}\left|f_{k}(x)\right| d x \\
& \leq \frac{1}{\Psi_{\eta}(Q)|Q|} \sum_{Q_{j} \subset \widetilde{Q}} \psi_{\theta_{1}}\left(Q_{j}\right) \int_{Q_{j}} \bar{f}_{k}(x) d x \\
& \leq C \frac{\Psi_{\theta_{2}}(\widetilde{Q})}{\Psi_{\eta}(Q)|Q|} \int_{\widetilde{Q}} \bar{f}_{k}(x) d x \\
& \leq C M_{V, \bar{\eta}} \bar{f}_{k}(x)
\end{aligned}
$$

where $\theta_{2}=\theta_{1}\left(l_{0}+1\right)=\theta\left(l_{0}+1\right)^{2}$.
By the claim above, it is easy to see that (3.8) will follow if we show that

$$
\begin{equation*}
\omega(\widetilde{\Omega}) \leq \frac{C}{\alpha^{p}} \int_{\mathbb{R}^{n}}|f(x)|_{r}^{p} \omega(x) d x \tag{2.8}
\end{equation*}
$$

and that

$$
\begin{equation*}
\omega\left(\left\{x \in \mathbb{R}^{n}:\left|M_{V, \bar{\eta}} \bar{f}(x)\right|_{r}>\alpha\right\}\right) \leq \frac{C}{\alpha^{p}} \int_{\mathbb{R}^{n}}|f(x)|_{r}^{p} \omega(x) d x . \tag{2.9}
\end{equation*}
$$

If $p>1$, by (2.5), we then have
(2.10) $\omega\left(\widetilde{Q}_{j}\right)=\int_{\widetilde{Q}_{j}} \omega(x) d x$

$$
\leq \frac{1}{\alpha^{p}\left(\psi_{\theta_{1}}(Q)|Q|\right)^{p}}\left(\int_{Q_{j}}|f(x)|_{r} d x\right)^{p} \int_{\widetilde{Q}_{j}} \omega(x) d x
$$

$$
\begin{aligned}
\leq & \frac{1}{\alpha^{p}}\left(\int_{Q_{j}}|f(x)|_{r}^{p} \omega(x) d x\right)\left(\frac{1}{\left(\Psi_{\theta}(Q)|Q|\right)} \int_{Q_{j}} \omega^{-1 /(p-1)}(x) d x\right)^{p-1} \\
& \times\left(\frac{1}{\left(\Psi_{\theta}(Q)|Q|\right)} \int_{\widetilde{Q}_{j}} \omega(x) d x\right) \\
\leq & \frac{1}{\alpha^{p}} \int_{Q_{j}}|f(x)|_{r}^{p} \omega(x) d x
\end{aligned}
$$

since $\omega \in A_{p}^{\rho, \theta}$.
A similar argument shows that (2.10) holds also if $p=1$. Hence, (2.8) follows from (2.10) upon summing over j. Note that $|\bar{f}(x)|_{r} \leq 2^{n}(4 n)^{\theta_{1}} \alpha$, and since $|\bar{f}(x)|_{r}$ is supported in Ω, using Lemma 2.2, we obtain

$$
\omega\left(\left\{x \in \mathbb{R}^{n}:\left|M_{V, \bar{\eta}} \bar{f}(x)\right|_{r}>\alpha\right\}\right) \leq C \alpha^{-r} \int_{\mathbb{R}^{n}}|\bar{f}(x)|_{r}^{r} \omega(x) d x \leq C \int_{\Omega} \omega(x) d x
$$

which together with (2.10) yields (2.9) as required. This complete the proof of (2.1) in the case $r \geq p$. If $r>p>1$, by (iii) of Proposition 2.3, we know that for $\omega \in A_{p}^{\rho, \theta}$, there exist constants p_{1}, p_{2} and θ_{3} (depending only on ω) such that $(r+1) / 2<$ $p_{1}<p<p_{2}<r$ and $\theta_{3} \leq \theta_{0}$ so that (2.1) holds with $\omega \in A_{p_{1}}^{\theta_{3}}$ and $\omega \in A_{p_{2}}^{\theta}$ respectively. Obviously, $\bar{\eta}>2 p_{1}^{\prime} \theta_{3}$, and so Lemmas 2.2 and 2.4 yields (2.2) for $r>p>1$.

Suppose now that $p>r$ and $\omega \in A_{p}^{\rho, \theta}$. By (iii) of Proposition 2.3, there exist constants $\theta_{4} \leq \theta_{0}$ and $1<r_{0}<p$ such that $\omega \in A_{q}^{\rho, \theta_{4}}, q \geq p / r_{0}$. In particular, (i) of Proposition 2.3 yields $\omega(x)>0$ a.e. and $\omega(x)^{1-q^{\prime}} \in A_{q^{\prime}}^{\rho, \theta_{4}}$, so that by Lemma 2.2, for any nonnegative function $\|\varphi\|_{L_{\omega}^{q^{\prime}}} \leq 1$, we then have

$$
\int_{\mathbb{R}^{n}}\left|M_{V, \eta_{1}}(\varphi \omega)(x)\right|^{q^{\prime}} \omega(x)^{1-q^{\prime}} d x \leq C_{q} \int_{\mathbb{R}^{n}}|\varphi(x)|^{q^{\prime}} \omega(x) d x=C_{q}
$$

where $\eta_{1}=\bar{\eta} /\left(l_{0}+1\right)^{3}>q \theta_{4}$, and hence

$$
\begin{align*}
\int_{\mathbb{R}^{n}}\left|M_{V, \bar{\eta}} f(x)\right|_{r}^{r} \varphi(x) \omega(x) d x & \leq C \int_{\mathbb{R}^{n}}|f(x)|_{r}^{r} \frac{M_{V, \eta_{1}}(\varphi \omega)(x)}{\omega^{1 / q}(x)} \omega^{1 / q}(x) d x \tag{2.11}\\
& \leq C\left(\int_{\mathbb{R}^{n}}|f(x)|_{r}^{r q} \omega(x) d x\right)^{1 / q}
\end{align*}
$$

In the first inequality of (2.11), we used the fact that for any nonnegative measurable functions f and g, and $q>1$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(M_{V, \bar{\eta}} f\right)^{q} g d x \leq C \int_{\mathbb{R}^{n}} f^{q}\left(M_{V, \eta_{1}} g\right) d x \tag{2.12}
\end{equation*}
$$

Taking the supremum in (2.11) over such φ then yields (2.2) for $1<r \leq r_{0}$ upon taking $q=p / r$, and this together with the case $p=r$ provided in (2.3) yields (3.3) for $r_{0}<r<p$ by an application of Lemma 2.4. Thus, the proof of (a) and (b) is complete.

It remains to prove (2.12), let $\eta_{2}=\eta_{1}\left(l_{0}+1\right)=\bar{\eta} /\left(l_{0}+1\right)^{2}$, we shall begin by proving

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(M_{V, \eta_{2}}^{\Delta} f\right)^{q} g d x \leq C \int_{\mathbb{R}^{n}} f^{q}\left(M_{V, \eta_{1}} g\right) d x \tag{2.13}
\end{equation*}
$$

We do this as follows: Hold g fixed, and look at the mapping $T: f \rightarrow M_{V, \eta_{2}}^{\Delta} f$. Then (2.13) says that T is bounded from $L^{q}\left(\mathbb{R}^{n}, M_{V, \eta_{1}} g(x) d x\right)$ to $L^{q}\left(\mathbb{R}^{n}, g(x) d x\right)$. Clearly, T is bounded from $L^{\infty}\left(\mathbb{R}^{n}, M_{V, \eta_{1}} g(x) d x\right)$ to $L^{\infty}\left(\mathbb{R}^{n}, g(x) d x\right)$. If we can show that T is of weak- $(1,1)$ type, then (2.13) holds by the Marcinkiewicz interpolation theorem.

Lemma 2.6 shows that $\left\{x \in \mathbb{R}^{n}: M_{V, \eta_{2}}^{\Delta} f(x)>\lambda\right\}=\bigcup_{j=1}^{\infty} Q_{j}$, where the Q_{j} are pairwise disjoint cubes satisfying the condition

$$
\lambda \leq \frac{1}{\psi_{\eta_{2}}\left(Q_{j}\right)\left|Q_{j}\right|} \int_{Q_{j}} f(x) d x \leq 2^{n}(4 n)^{\eta_{2}} \lambda
$$

Then

$$
\begin{aligned}
\int_{Q_{j}} g(y) d y & \leq \int_{Q_{j}} g(y) d y \frac{1}{\lambda \psi_{\eta_{2}}\left(Q_{j}\right)\left|Q_{j}\right|} \int_{Q_{j}} f(x) d x \\
& \leq \frac{C}{\lambda} \int_{Q_{j}} f(x)\left(\frac{1}{\Psi_{\eta_{1}}\left(Q_{j}\right)\left|Q_{j}\right|} \int_{Q_{j}} g(y) d y\right) d x \\
& \leq \frac{C}{\lambda} \int_{Q_{j}} f(x) M_{V, \eta_{1}} g(x) d x
\end{aligned}
$$

Summing over j, we obtain that

$$
\int_{\left\{x \in \mathbb{R}^{n}:\left(M_{V, \eta_{2}}^{\Delta} f\right)(x)>\lambda\right\}} g(y) d y \leq C \int_{\mathbb{R}^{n}} f(x) M_{V, \eta_{1}} g(x) d x
$$

Thus, (2.13) holds. To complete the proof of (2.12), we first define

$$
M_{V, \eta_{3}}^{\prime} f(x)=\sup _{r>0} \frac{1}{(1+r / \rho(x))^{\eta_{3}}|Q|} \int_{Q(x, r)}|f(y)| d y
$$

Obviously, $(4 n)^{\bar{\eta}} C_{0} M_{V, \eta_{3}}^{\prime} f(x) \geq M_{V, \bar{\eta}} f(x)$, where $\eta_{3}=\bar{\eta} /\left(l_{0}+1\right)=\eta_{2}\left(l_{0}+1\right)$.
Hence, to end the proof, it will suffice to show that

$$
\begin{equation*}
\left\{x \in \mathbb{R}^{n}: M_{V, \eta_{3}}^{\prime} f(x)>c_{0} \lambda\right\} \subset \bigcup_{j=1}^{\infty} 2 Q_{j} \tag{2.14}
\end{equation*}
$$

where $c_{0}=C_{0}^{2} 4^{l_{0}+1+n}(4 n)^{\bar{\eta}}$.

Fix $x \notin \bigcup_{j=1}^{\infty} 2 Q_{j}$ and let Q be any cube centered at x. Let r denote the side length of Q, and choose $k \in \mathbb{Z}$ such that $2^{k-1} \leq r<2^{k}$. Then Q intersects $m\left(\leq 2^{n}\right)$ dyadic cubes with sidelength 2^{k}; call them $R_{1}=R_{1}\left(x_{1}, 2^{k}\right), R_{2}=R_{2}\left(x_{2}, 2^{k}\right), \ldots, R_{m}=$ $R_{m}\left(x_{m}, 2^{k}\right)$. None of these cubes is contained in any of the Q_{j} 's, for otherwise we would have $x \in \bigcup_{j=1}^{\infty} 2 Q_{j}$. Hence

$$
\begin{aligned}
\frac{1}{(1+r / \rho(x))^{\eta_{3}}|Q|} \int_{Q(x, r)}|f(y)| d y & =\frac{1}{(1+r / \rho(x))^{\eta_{3}}|Q|} \sum_{i=1}^{m} \int_{Q \cap R_{i}}|f(y)| d y \\
& \leq \sum_{i=1}^{m} \frac{C_{0} 4^{l_{0}+1} 2^{k n}}{\left(1+2^{k} / \max _{Q} \rho(x)\right)^{\eta_{2}}|Q|\left|R_{i}\right|} \int_{R_{i}}|f(y)| d y \\
& \leq 2^{n} 4^{l_{0}+1} C_{0} m \lambda \\
& \leq 4^{l_{0}+1+n} C_{0} \lambda .
\end{aligned}
$$

Thus, (2.14) holds, so (2.12) is proved.
We remark that the referee has pointed out that in fact Theorem 2.7 can be also obtained by a similar argument found in [7]. This is left as an exercise for the interested readers.

3. Extrapolation theorems

In this section, \mathcal{F} will denote a family of ordered pairs of nonnegative, measurable functions (f, g). If we say that for $p, 0<p<\infty$, and $\omega \in A_{\infty}^{\rho, \infty}=\bigcup_{p=1}^{\infty} A_{p}^{\rho, \infty}$,

$$
\int_{\mathbb{R}^{n}} f(x)^{p} \omega(x) d x \leq C \int_{\mathbb{R}^{n}} g(x)^{p} \omega(x), \quad(f, g) \in \mathcal{F},
$$

we mean that this inequality holds for any $(f, g) \in \mathcal{F}$ such that the left-hand side is finite, and that the constant C depends only on p and the $A_{\infty}^{\rho, \infty}$ constant of ω. We will make similar abbreviated statements involving Lorentz spaces. For vectorvalued inequalities we will consider sequences $\left\{\left(f_{j}, g_{j}\right)\right\}_{j=1}^{\infty}$, where each pair $\left(f_{j}, g_{j}\right)$ is contained in \mathcal{F}.

In addition, we will use following classes: given a pair of operators (T, S), let $\mathcal{F}(T, S)$ denote the family of pairs of functions $(|T f|,|S f|)$, where f lies in the common domain of T and S, and the left-hand side of the corresponding inequality is finite. To achieve this, the function f may be restricted in some other way, e.g. $f \in C_{0}^{\infty}$. In this case we may indicate this by writing $\mathcal{F}\left(|T f|,|S f|: f \in C_{0}^{\infty}\right)$.

We can now state our main results of this paper.

Theorem 3.1. Given a family \mathcal{F}, suppose that for some $p_{0}, 0<p_{0}<\infty$, and for every weight $\omega \in A_{\infty}^{\rho, \infty}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x)^{p_{0}} \omega(x) d x \leq C \int_{\mathbb{R}^{n}} g(x)^{p_{0}} \omega(x), \quad(f, g) \in \mathcal{F} \tag{3.1}
\end{equation*}
$$

Then the following are true:

- For all $0<p<\infty$ and $\omega \in A_{\infty}^{\rho, \infty}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x)^{p} \omega(x) d x \leq C \int_{\mathbb{R}^{n}} g(x)^{p} \omega(x) d x, \quad(f, g) \in \mathcal{F} \tag{3.2}
\end{equation*}
$$

- For all $0<p<\infty, 0<s \leq \infty$ and $\omega \in A_{\infty}^{\rho, \infty}$,

$$
\begin{equation*}
\|f\|_{L^{p, s}(\omega)} \leq C\|g\|_{L^{p, s}(\omega)}, \quad(f, g) \in \mathcal{F} \tag{3.3}
\end{equation*}
$$

- For all $0<p, q<\infty$ and $\omega \in A_{\infty}^{\rho, \infty}$,

$$
\begin{equation*}
\left\|\left(\sum_{j=1}^{\infty} f_{j}^{q}\right)^{1 / q}\right\|_{L^{p}(\omega)} \leq C\left\|\left(\sum_{j=1}^{\infty} g_{j}^{q}\right)^{1 / q}\right\|_{L^{p}(\omega)}, \quad\left\{\left(f_{j}, g_{j}\right)\right\}_{j=1}^{\infty} \subset \mathcal{F} \tag{3.4}
\end{equation*}
$$

- For all $0<p, q<\infty, 0<s \leq \infty$, and $\omega \in A_{\infty}^{\rho, \infty}$,

$$
\begin{equation*}
\left\|\left(\sum_{j=1}^{\infty} f_{j}^{q}\right)^{1 / q}\right\|_{L^{p, s}(\omega)} \leq C\left\|\left(\sum_{j=1}^{\infty} g_{j}^{q}\right)^{1 / q}\right\|_{L^{p, s}(\omega)}, \quad\left\{\left(f_{j}, g_{j}\right)\right\}_{j=1}^{\infty} \subset \mathcal{F} \tag{3.5}
\end{equation*}
$$

Our second main result shows that we can also extrapolate from an initial Lorentz space inequality.

Theorem 3.2. Given a family \mathcal{F}, suppose that for some $p_{0}, 0<p_{0}<\infty$, and for every weight $\omega \in A_{\infty}^{\rho, \infty}$,

$$
\begin{equation*}
\|f\|_{L^{p_{0}, \infty}(\omega)} \leq C\|g\|_{L^{p_{0}, \infty}(\omega)}, \quad(f, g) \in \mathcal{F} \tag{3.6}
\end{equation*}
$$

Then, for all $0<p<\infty$ and $\omega \in A_{\infty}^{\rho, \infty}$,

$$
\begin{equation*}
\|f\|_{L^{p, \infty}(\omega)} \leq C\|g\|_{L^{p, \infty}(\omega)}, \quad(f, g) \in \mathcal{F} \tag{3.7}
\end{equation*}
$$

Our third main result is a generalization of the A_{p} extrapolation theorem of Rubio de Francia.

Theorem 3.3. Fix $\gamma \geq 1$ and $r, \gamma<r<\infty$. If T is a bounded operator on $L^{r}(\omega)$ for any $\omega \in A_{r / \gamma}^{\rho, \infty}$, with operator norm depending only the $A_{r / \gamma}$ constant of ω, then T is bounded on $L^{p}(\omega), \gamma<p<\infty$, for any $\omega \in A_{p / \gamma}^{\rho, \infty}$.

As a consequence of Theorem 3.3, we have the following result.
Corollary 3.4. Fix $\gamma \geq 1$. Let $\gamma<p, q<\infty$ and T satisfy the conditions in Theorem 3.3. Then for any $\omega \in A_{p / \gamma}^{\rho, \infty}$ such that

$$
\left\|\left(\sum_{j=1}^{\infty}\left|T f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{p}(\omega)} \leq C\left\|\left(\sum_{j=1}^{\infty}\left|f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{p}(\omega)}
$$

We shall adapt an argument in [5] for proving Theorems 3.1 and 3.2, and prove Theorem 3.3 by using an argument in [9]. We first give the proof of Theorem 3.1.

3.1. Proof of inequality (3.2)

Step 1. We first show that hypothesis (3.1) is equivalent to the family of weighted inequalities with $A_{1}^{\rho, \infty}$ weights.

Proposition 3.5. Hypothesis (3.1) of Theorem 3.1 is equivalent to the fact that for all $0<q<p_{0}, \omega \in A_{1}^{\rho, \infty}$, and $(f, g) \in \mathcal{F}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x)^{q} \omega(x) d x \leq C \int_{\mathbb{R}^{n}} g(x)^{q} \omega(x) d x \tag{3.8}
\end{equation*}
$$

Proof. We will prove that (3.1) implies (3.8). If (3.2) is proved, then the converse is proved. Fix $(f, g) \in \mathcal{F}$. Without loss of generality, we can assume that $g \in L^{q}(\omega)$ and $\|f\|_{L^{q}(\omega)}>0$. Let $s=p_{0} / q$. Since $\omega \in A_{1}^{\rho, \infty}$, there is a $\theta>0$ such that $\omega \in A_{1}^{\rho, \theta} \subset A_{s^{\prime}}^{\rho, \theta}$, and $M_{V, s \theta}$ is bounded on $L^{s^{\prime}}(\omega)$ by Lemma 2.2, that is,

$$
\left\|M_{V, s \theta} h\right\|_{L^{s^{\prime}}(\omega)} \leq A\|h\|_{L^{s^{\prime}}(\omega)}
$$

for some $A>0$. For $h \in L^{s^{\prime}}(\omega), h \geq 0$, we apply the algorithm of Rubio de Francia to define

$$
\mathcal{R} h(x)=\sum_{k=0}^{\infty} \frac{M_{V, s \theta}^{k} h(x)}{(2 A)^{k}}
$$

where $M_{V, s \theta}^{k}$ is the operator $M_{V, s \theta}$ iterated k times if $k \geq 1$, and for $k=0$ is just the identity. From the definition of \mathcal{R}, it easy to see that
(a) $h(x) \leq \mathcal{R} h(x)$;
(b) $\|\mathcal{R} h\|_{L^{s^{\prime}}(\omega)} \leq 2\|h\|_{L^{s^{\prime}}(\omega)}$;
(c) $M_{V, s \theta}(\mathcal{R} h)(x) \leq 2 A \mathcal{R} h(x)$, so $\mathcal{R} h(x) \in A_{1}^{\rho, s \theta}$ with constant independent of h.

Since $f, g \in L^{s^{\prime}}(\omega)$ with positive norms, from (b), we then have

$$
H(x)=\mathcal{R}\left(\left(\frac{f}{\|f\|_{L^{s^{\prime}}(\omega)}}\right)^{q / s^{\prime}}\left(\frac{g}{\|g\|_{L^{s^{\prime}}(\omega)}}\right)^{q / s^{\prime}}\right)(x) \in L^{s^{\prime}}(\omega)
$$

By (a),

$$
\begin{equation*}
\left(\frac{f}{\|f\|_{L^{s^{\prime}}(\omega)}}\right)^{q / s^{\prime}} \leq H(x) \quad \text { and } \quad\left(\frac{g}{\|g\|_{L^{s^{\prime}}(\omega)}}\right)^{q / s^{\prime}} \leq H(x) \tag{3.9}
\end{equation*}
$$

So $H(x)>0$ whenever $f(x)>0$. Further, H is finite a.e. on the set where $\omega>0$ because $h \in L^{s^{\prime}}(\omega)$. Hence,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} f(x)^{q} \omega(x) d x & \leq\left(\int_{\mathbb{R}^{n}} f(x)^{p_{0}} H(x)^{-s} \omega(x) d x\right)^{1 / s}\left(\int_{\mathbb{R}^{n}} H(x)^{s^{\prime}} \omega(x) d x\right)^{1 / s^{\prime}} \\
& =: \mathrm{I} \cdot \mathrm{II} .
\end{aligned}
$$

Obviously, $\mathrm{II} \leq 4$ by (b).
To estimate I, since $\omega \in A_{1}^{\rho, \theta} \subset A_{1}^{\rho, s \theta}$, and $H \in A_{1}^{\rho, s \theta}$ by (c), we have $w H^{-s}=$ $w H^{1-(1+s)} \in A_{1+s}^{\rho, s \theta} \subset A_{\infty}^{\rho, \infty}$ by (v) of Proposition 2.3. On the other hand, by (3.9), we get that

$$
\int_{\mathbb{R}^{n}} f(x)^{p_{0}} H(x)^{-s} \omega(x) d x \leq\|f\|_{L^{s}(\omega)}^{q / s^{\prime}} \int_{\mathbb{R}^{n}} f(x)^{p_{0}-q s / s^{\prime}} \omega(x) d x=\|f\|_{L^{s}(\omega)}^{q s}<\infty .
$$

So, we can use (3.1); by (3.9), we get that

$$
I \leq\left(\int_{\mathbb{R}^{n}} g(x)^{p_{0}} H(x)^{-s} \omega(x) d x\right)^{1 / s} \leq C \int_{\mathbb{R}^{n}} g(x)^{p} \omega(x) d x
$$

By I and II, we obtain the desired result.
Step 2. We now show that for all $0<p<\infty$ and for every $\omega \in A_{\infty}^{\rho, \infty}$, (3.2) holds. Fix $0<p<\infty$ and $\omega \in A_{\infty}^{\rho, \infty}$. Assume that $(f, g) \in \mathcal{F}$ with $f, g \in L^{p}(\omega)$. By (i) of Proposition 2.3, we know that $A_{p_{1}}^{\rho, \theta} \subset A_{p_{2}}^{\rho, \theta}$ if $1 \leq p_{1} \leq p_{2}$, and thus there exist $\theta>0$ and $0<q<\min \left\{p, p_{0}\right\}$ such that $\omega \in A_{p / q}^{\rho, \theta}$. Let $r=p / q>1$. Since $\omega \in A_{r}^{\rho, \theta}$, we get that $\omega^{1-r^{\prime}} \in A_{r^{\prime}}^{\rho, \theta}$ by (ii) of Proposition 2.3. Given $h \in L^{r^{\prime}}\left(\omega^{1-r^{\prime}}\right), h \geq 0$, we use the algorithm of Rubio de Francia to define

$$
\mathcal{R} h(x)=\sum_{k=0}^{\infty} \frac{M_{V, r \theta}^{k} h(x)}{(2 B)^{k}},
$$

where B is the operator norm of $M_{V, r \theta}$ on $L^{r^{\prime}}\left(\omega^{1-r^{\prime}}\right)$; this is finite since $\omega^{1-r^{\prime}} \in A_{r^{\prime}}^{\rho, \theta}$. Then
(a) $h(x) \leq \mathcal{R} h(x)$;
(b) $\|\mathcal{R} h\|_{L^{r^{\prime}}\left(\omega^{1-r^{\prime}}\right)} \leq 2\|h\|_{L^{r^{\prime}}\left(\omega^{1-r^{\prime}}\right)}$;
(c) $M_{V, s r}(\mathcal{R} h)(x) \leq 2 B \mathcal{R} h(x)$, so $\mathcal{R} h(x) \in A_{1}^{\rho, r \theta}$ with constant independent of h.

By duality

$$
\|f\|_{L^{p}(\omega)}^{q}=\left\|f^{q}\right\|_{L^{r}(\omega)}=\sup _{\|h\|_{L^{r}}(\omega)} \leq 1
$$

Fix such a function $h \geq 0$. Then $h \omega \in L^{r^{\prime}}\left(\omega^{1-r^{\prime}}\right)$ and $\|h \omega\|_{L^{r^{\prime}}\left(\omega^{1-r^{\prime}}\right)}=\|h\|_{L^{r^{\prime}}(\omega)}=1$. By (c), $\mathcal{R}(h \omega) \in A_{1}^{\rho, r \theta}$. By (a) and (3.1), we then have

$$
\int_{\mathbb{R}^{n}} f(x)^{q} h(x) \omega(x) d x \leq \int_{\mathbb{R}^{n}} f(x)^{q} \mathcal{R}(h \omega)(x) d x \leq C \int_{\mathbb{R}^{n}} g(x)^{q} \mathcal{R}(h \omega)(x) d x,
$$

provided that the middle term is finite.
The same argument also holds for g instead of f. Hence,

$$
\int_{\mathbb{R}^{n}} f(x)^{q} h(x) \omega(x) d x \leq C \int_{\mathbb{R}^{n}} g(x)^{q} \mathcal{R}(h \omega)(x) d x \leq C\|g\|_{L^{p}(\omega)}^{q} .
$$

From this, we obtain the desired result.

3.2. Proof of inequality (3.3)

We need two lemmas. We first give a result about the operator M_{ω} defined by

$$
M_{\omega}(f)(x)=\sup _{x \in B} \frac{1}{\omega(5 B)} \int_{B}|f(x)| \omega(x) d x .
$$

Lemma 3.6. Let $1 \leq p<\infty$. If $\omega \in A_{\infty}^{\rho, \infty}$, then

$$
\omega\left(\left\{x \in \mathbb{R}^{n}: M_{\omega} f(x)>\lambda\right\}\right) \leq C\left(\frac{\|f\|_{L^{p}(\omega)}}{\lambda}\right)^{p} \quad \text { for all } \lambda>0 \text { and } f \in L^{p}(\omega) .
$$

In particular, for $1<p \leq \infty$,

$$
\left\|M_{\omega} f\right\|_{L^{p}(\omega)} \leq C\|f\|_{L^{p}(\omega)} .
$$

Proof. We set $x \in E_{\lambda}=\left\{x \in \mathbb{R}^{n}: M_{\omega} f(x)>\lambda\right\}$ with any $\lambda>0$. Then, there exists a ball $B_{x} \ni x$ such that

$$
\begin{equation*}
\frac{1}{\omega\left(5 B_{x}\right)} \int_{B_{x}}|f(y)| \omega(y) d y>\lambda . \tag{3.10}
\end{equation*}
$$

Thus, $\left\{B_{x}\right\}_{x \in E_{\lambda}}$ covers E_{λ}. By Vitali's lemma, there exists a collection of disjoint cubes $\left\{B_{x_{j}}\right\}_{j=1}^{\infty}$ such that $\bigcup_{j=1}^{\infty} B_{x_{j}} \subset E_{\lambda} \subset \bigcup_{j=1}^{\infty} 5 B_{x_{j}}$ and

$$
\begin{equation*}
\omega\left(E_{\lambda}\right) \leq \sum_{j=1}^{\infty} \omega\left(5 B_{x_{j}}\right) \tag{3.11}
\end{equation*}
$$

From (3.10) and by Hölder's inequality, we have

$$
\lambda<\frac{1}{\omega\left(5 B_{x}\right)^{1 / p}}\left(\int_{B_{x}}|f(y)|^{p} \omega(y) d y\right)^{1 / p} .
$$

From this and by (3.11), we get that

$$
\begin{aligned}
\omega\left(E_{\lambda}\right) x & \leq \sum_{j=1}^{\infty} \omega\left(5 B_{x j}\right) \leq \frac{C}{\lambda^{p}} \sum_{j=1}^{\infty} \int_{B_{x_{j}}}|f(y)|^{p} \omega(y) d y \\
& =\frac{C}{\lambda^{p}} \int_{\cup_{j=1}^{\infty} B_{x_{j}}}|f(y)|^{p} \omega(y) d y \leq \frac{C}{\lambda^{p}} \int_{\mathbb{R}^{n}}|f(y)|^{p} \omega(y) d y .
\end{aligned}
$$

Thus, Lemma 3.6 is proved.
Given two weights u and v, we say that $u \in A_{1}(v)$ if for every $x, M_{v} u(x) \leq C u(x)$.
Lemma 3.7. If $\omega_{1} \in A_{p}^{\rho, \theta}, 1 \leq p \leq \infty$, and $\omega_{2} \in A_{1}\left(\omega_{1}\right)$, then $\omega_{1} \omega_{2} \in A_{p}^{\rho, \theta p}$.
Proof. If $\omega_{2} \in A_{1}\left(\omega_{1}\right)$, then for any ball B,

$$
\begin{aligned}
\frac{1}{\left(\Psi_{\theta}(B)\right)^{p^{2}}|B|} \int_{B} \omega_{1}(x) \omega_{2}(x) d x & =\frac{\omega_{1}(5 B)}{\Psi_{\theta}(B)^{p^{2}}|B|} \frac{1}{\omega_{1}(5 B)} \int_{B} \omega_{2}(x) \omega_{1}(x) d x \\
& \leq C \frac{\omega_{1}(5 B)}{\Psi_{\theta}(B)^{p^{2}|B|}} \operatorname{ess} \inf _{B} \omega_{2} \\
& \leq C \frac{\omega_{1}(B)}{\Psi_{\theta}(B)^{p}|B|} \operatorname{ess} \inf _{B} \omega_{2},
\end{aligned}
$$

where in the last inequality we used the fact that (see [25])

$$
\omega_{1}(5 B) \leq C \Psi_{\theta}(B)^{p} \omega_{1}(B)
$$

On the other hand,

$$
\begin{aligned}
\left(\frac{1}{|B|} \int_{B}\left(\omega_{1}(x) \omega_{2}(x)\right)^{-1 /(p-1)} d x\right)^{p-1} & \\
& \leq\left(\frac{1}{|B|} \int_{B} \omega_{1}(x)^{-1 /(p-1)} d x\right)^{p-1}\left(\underset{B}{\operatorname{essinf}} \omega_{2}\right)^{-1}
\end{aligned}
$$

From these two inequalities, we get the desired result.

Proof of (3.3). Fix $p, s, \omega \in A_{\infty}^{\rho, \infty}$ and $(f, g) \in \mathcal{F}$ with $f, g \in L^{p, s}(\omega)$. Fix $0<$ $q<\min \{p, s\}$ and set $r=p / q>1$ and $\tilde{r}=s / q>1$. (If $s=\infty$, take $0<q<p$ and $\tilde{r}=\infty$.) Then

$$
\|f\|_{L^{p, s}(\omega)}^{q}=\left\|f^{q}\right\|_{L^{r, \tilde{r}}(\omega)}=\sup _{h} \int_{\mathbb{R}^{n}} f(x)^{q} h(x) \omega(x) d x
$$

where the supremum is taken over all $h \in L^{r^{\prime}, \tilde{r}}(\omega)$ with $h \geq 0$ and $\|h\|_{L^{r^{\prime}, \tilde{r}^{\prime}}}=1$. Fix such a function h. Using the algorithm of Rubio de Francia to define

$$
\mathcal{R}_{\omega} h(x)=\sum_{k=0}^{\infty} \frac{M_{\omega}^{k} h(x)}{\left(2 A_{\omega}\right)^{k}},
$$

where A_{ω} is the operator norm of M_{ω} on $L^{r^{\prime}, \tilde{r}}(\omega)$ endowed with a norm equivalent to $\|\cdot\|_{L^{r^{\prime}, \tilde{r}}(\omega)}$. Since M_{ω} is bounded on $L^{p}(\omega)$ by Lemma 3.6, and by Marcinkiewicz interpolation in the scale of Lorentz space, it is bounded on $L^{r^{\prime}, \tilde{r}}(\omega)$. Then,
(a) $h(x) \leq \mathcal{R}_{\omega} h(x)$;
(b) $\left\|\mathcal{R}_{\omega} h\right\|_{L^{r^{\prime}, \tilde{r}}\left(\omega^{1-r^{\prime}}\right)} \leq C\|h\|_{L^{r^{\prime}, \tilde{r}}\left(\omega^{\left.1-r^{\prime}\right)}\right.}=C$;
(c) $M_{V, s \theta}(\mathcal{R} h)(x) \leq 2 A_{\omega} \mathcal{R} h(x)$, so $\mathcal{R}_{\omega} h(x) \in A_{1}(\omega)$ with constant independent of h.

By Lemma 3.7, $\omega \mathcal{R}_{\omega} h \in A_{\infty}^{\rho, \infty}$. As above, (3.2) holds with exponent q and the $A_{\infty}^{\rho, \infty}$ weight $\omega \mathcal{R}_{\omega} h$. Thus,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} f(x)^{q} h(x) \omega(x) d x & \leq \int_{\mathbb{R}^{n}} f(x)^{q} \mathcal{R}_{\omega} h(x) \omega(x) d x \leq C \int_{\mathbb{R}^{n}} g(x)^{q} \mathcal{R}_{\omega} h(x) \omega(x) d x \\
& \leq C\left\|g^{q}\right\|_{L^{r, \tilde{r}}(\omega)}\left\|\mathcal{R}_{\omega} h\right\|_{L^{r^{\prime}, \tilde{r}^{\prime}}(\omega)} \leq C\|g\|_{L^{r, \tilde{r}}(\omega)}^{q},
\end{aligned}
$$

since

$$
\int_{\mathbb{R}^{n}} f(x)^{q} \mathcal{R}_{\omega} h(x) \omega(x) d x \leq\left\|f^{q}\right\|_{L^{r, \tilde{r}}(\omega)}\left\|\mathcal{R}_{\omega} h\right\|_{L^{r^{\prime}, \tilde{r}^{\prime}}(\omega)} \leq C\|f\|_{L^{r, \tilde{r}}(\omega)}^{q}<\infty .
$$

Thus, the desired inequality is obtained.

3.3. Proof of inequalities (3.4) and (3.5)

Fix $0<q<\infty$. It suffices to prove the vector-valued inequalities only for finite sums by the monotone convergence theorem. Fix $N \geq 1$ and define

$$
f_{q}(x)=\left(\sum_{j=1}^{N} f_{j}(x)^{q}\right)^{1 / q} \quad \text { and } \quad g_{q}(x)=\left(\sum_{j=1}^{N} g_{j}(x)^{q}\right)^{1 / q}
$$

where $\left\{\left(f_{j}, g_{j}\right)\right\}_{j=1}^{N} \subset \mathcal{F}$. Now form a new family \mathcal{F}_{q} consisting of the pairs $\left(f_{q}, g_{q}\right)$. Then, for every $\omega \in A_{\infty}^{\rho, \infty}$ and $\left(f_{q}, g_{q}\right) \in \mathcal{F}_{q}$, by (3.2) we get

$$
\left\|f_{q}\right\|_{L^{q}(\omega)}^{q}=\sum_{j=1}^{N} \int_{\mathbb{R}^{n}} f_{j}(x)^{q} \omega(x) d x \leq C \sum_{j=1}^{N} \int_{\mathbb{R}^{n}} g_{j}(x)^{q} \omega(x) d x=C\left\|g_{q}\right\|_{L^{q}(\omega)}^{q}
$$

which implies that the hypotheses of Theorem 3.1 are fulfilled by \mathcal{F}_{q} with $p_{0}=q$. Hence, by (3.2) and (3.3), for all $0<p<\infty, 0<s \leq \infty, \omega \in A_{\infty}^{\rho, \infty}$ and $\left(f_{q}, g_{q}\right) \in \mathcal{F}_{q}$, $\left\|f_{q}\right\|_{L^{p}(\omega)} \leq C\left\|g_{q}\right\|_{L^{p}(\omega)}$ and $\left\|f_{q}\right\|_{L^{p, s}(\omega)} \leq C\left\|g_{q}\right\|_{L^{p, s}(\omega)}$.

3.4. Proof of Theorem 3.2

This is similar to the proof of Theorem 3.1, adapting the same argument of Theorem 2.2 in [5], we omit the details here.

3.5. Proof of Theorem 3.3

We first need the following lemma, which is different from Lemma 2.2.
Lemma 3.8. Let $1 \leq p<\infty$ and suppose that $\omega \in A_{p}^{\rho, \theta}$. If $p<p_{1}<\infty$, then

$$
\int_{\mathbb{R}^{n}}\left|M_{V, \theta} f(x)\right|^{p_{1}} \omega(x) d x \leq C \int_{\mathbb{R}^{n}}|f(x)|^{p_{1}} \omega(x) d x
$$

Proof. In fact,

$$
\begin{aligned}
& \frac{1}{\Psi_{\theta}(B)|B|} \int_{B}|f(y)| d y \\
& \quad=\frac{1}{\Psi_{\theta}(B)|B|} \int_{B}|f(y)| \omega^{1 / p}(y) \omega^{-1 / p}(y) d y \\
& \quad \leq\left(\frac{1}{\Psi_{\theta}(B)|B|} \int_{B}|f(y)|^{p} \omega(y) d y\right)^{1 / p}\left(\frac{1}{\Psi_{\theta}(B)|B|} \int_{B} \omega^{-1 /(p-1)}(y) d y\right)^{(p-1) / p}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C\left(\frac{1}{\Psi_{\theta}(B)|B|} \int_{B}|f(y)|^{p} \omega(y) d y\right)^{1 / p}\left(\frac{1}{\Psi_{\theta}(5 B)|B|} \int_{5 B} \omega^{-1 /(p-1)}(y) d y\right)^{(p-1) / p} \\
& \leq C\left(\frac{1}{\Psi_{\theta}(B)|B|} \int_{B}|f(y)|^{p} \omega(y) d y\right)^{1 / p}\left(\frac{1}{\Psi_{\theta}(B)|B|} \int_{5 B} \omega(y) d y\right)^{-1 / p} \\
& \leq C\left(\frac{1}{\omega(5 B)} \int_{B}|f|^{p} \omega(y) d y\right)^{1 / p}
\end{aligned}
$$

Therefore,

$$
M_{V, \theta} f(x) \leq C M_{\omega}\left(|f|^{p}\right)(x)^{1 / p}, \quad x \in \mathbb{R}^{n}
$$

From this and using Lemma 3.6, we can deduce Lemma 3.8.

Proof of Theorem 3.3. We only consider the case $\gamma=1$, the case $\gamma>1$ is similar. We first show that if $1<q<r$ and $\omega \in A_{1}^{\rho, \infty}$ then T is bounded on $L^{q}(\omega)$. Without loss of generality, we assume that $\omega \in A_{1}^{\rho, \eta}$ for some $\eta>0$. By (iv) of Proposition 2.3 the function $M_{V, \eta}^{(r-q) /(r-1)}$ is in $A_{1}^{\rho, \eta}$, and $\omega\left(M_{V, \eta} f\right)^{q-r} \in A_{r}^{\rho, \eta}$ by (iv) of Proposition 2.3. Hence,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|T f|^{q} \omega & =\int_{\mathbb{R}^{n}}|T f|^{q}\left(M_{V, \eta} f\right)^{-(q-r) q / r}\left(M_{V, \eta} f\right)^{(q-r) q / r} \omega d x \\
& \leq\left(\int_{\mathbb{R}^{n}}|T f|^{r} \omega\left(M_{V, \eta} f\right)^{q-r} d x\right)^{q / r}\left(\int_{\mathbb{R}^{n}}\left(M_{V, \eta} f\right)^{q} \omega d x\right)^{(r-q) / r} \\
& \leq\left(\int_{\mathbb{R}^{n}}|f|^{r} \omega\left(M_{V, \eta} f\right)^{q-r} d x\right)^{q / r}\left(\int_{\mathbb{R}^{n}}|f|^{q} \omega d x\right)^{(r-q) / r} \\
& \leq C \int_{\mathbb{R}^{n}}|f|^{q} \omega d x
\end{aligned}
$$

where the second inequality holds by our hypothesis on T and by Lemma 3.8 (since $\left.\omega \in A_{1}^{\rho, \eta}\right)$, and the third inequality holds since $|f(x)| \leq M_{V, \eta} f(x)$ a.e. for any $\eta \geq 0$, so $M_{V, \eta} f(x)^{q-r} \leq|f(x)|^{q-r}$ a.e.

Given any $1<p<\infty$ and $\omega \in A_{p}^{\rho, \theta}$, by (iii) of Proposition 2.3 there exists $q>1$ and $\theta_{1} \geq \theta$ such that $\omega \in A_{p / q}^{\rho, \theta_{1}}$. Hence we only need to prove that T is bounded on $L^{p}(\omega)$ if $\omega \in A_{p / q}^{\rho, \theta_{1}}$.

Fix $\omega \in A_{p / q}^{\rho, \theta_{1}}$. Then by duality there exists $u \in L^{(p / q)^{\prime}}(\omega)$ with norm 1 such that

$$
\left(\int_{\mathbb{R}^{n}}|T f|^{p} \omega d x\right)^{q / p}=\int_{\mathbb{R}^{n}}|T f|^{q} \omega u d x
$$

For any $s>1, \omega u \leq M_{V, \eta}\left((\omega u)^{s}\right)^{1 / s}$ for any $\eta>0$ and $M_{V, \eta}\left((\omega u)^{s}\right)^{1 / s} \in A_{1}^{\rho, \eta}$. Hence, by the first part of the proof,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|T f|^{q} \omega u d x \leq & \int_{\mathbb{R}^{n}}|T f|^{q} M_{V, \eta}\left((\omega u)^{s}\right)^{1 / s} d x \\
\leq & C \int_{\mathbb{R}^{n}}|f|^{q} M_{V, \eta}\left((\omega u)^{s}\right)^{1 / s} d x \\
= & C \int_{\mathbb{R}^{n}}|f|^{q} \omega^{q / p} M_{V, \eta}\left((\omega u)^{s}\right)^{1 / s} \omega^{-q / p} d x \\
\leq & C\left(\int_{\mathbb{R}^{n}}|f|^{p} \omega d x\right)^{q / p} \\
& \times\left(\int_{\mathbb{R}^{n}} M_{V, \eta}\left((\omega u)^{s}\right)^{(p / q)^{\prime} / s} \omega^{1-(p / q)^{\prime}} d x\right)^{1 /(p / q)^{\prime}}
\end{aligned}
$$

Since $\omega \in A_{p / q}^{\rho, \theta_{1}}$, we have $\omega^{1-(p / q)^{\prime}} \in A_{(p / q)^{\prime}}^{\rho, \theta_{1}}$ by (ii) of Proposition 2.3. Therefore, if we take s sufficiently close to 1 , then there exists θ_{s} such that $\omega^{1-(p / q)^{\prime}} \in A_{(p / q)^{\prime} / s}^{\rho, \theta_{s}}$ by (iii) of Proposition 2.3. If we choose $\eta=\left((p / q)^{\prime} / s\right)^{\prime} \theta_{s}$, then by Lemma 2.2 the second integral is dominated by

$$
C \int_{\mathbb{R}^{n}}(\omega u)^{(p / q)^{\prime}} \omega^{1-(p / q)^{\prime}} d x=C
$$

The proof is complete.
We remark that an interesting problem posed by the referee is how to extend Theorem 3.3 to the context of rearrangement-invariant Banach function spaces, as considered in [8].

4. Some applications

Let T be a Schrödinger-type operator. From Theorem 3.1 in [25] we know that for all $0<p<\infty$ and $\omega \in A_{\infty}^{\rho, \infty}$, for any $\eta>0$, there exists a constant C depending only on η, p, q, C_{0}, l_{0} and the $A_{\infty}^{\rho, \infty}$ constant of ω such that

$$
\|T f\|_{L^{p}(\omega)} \leq C\left\|M_{V, \eta} f\right\|_{L^{p}(\omega)}
$$

By applying Theorem 3.1 to the family $\mathcal{F}_{\eta}\left(|T f|, M_{V, \eta} f: f \in C_{0}^{\infty}\right)$, we obtain that

- for all $0<p, q<\infty$ and $\omega \in A_{\infty}^{\rho, \infty}$,

$$
\begin{equation*}
\left\|\left(\sum_{j=1}^{\infty}\left|T f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{p}(\omega)} \leq C\left\|\left(\sum_{j=1}^{\infty}\left(M_{V, \eta} f_{j}\right)^{q}\right)^{1 / q}\right\|_{L^{p}(\omega)}, \quad\left\{\left(f_{j}, g_{j}\right)\right\}_{j=1}^{\infty} \subset \mathcal{F}_{\eta} \tag{4.1}
\end{equation*}
$$

- for all $0<p, q<\infty, 0<s \leq \infty$ and $\omega \in A_{\infty}^{\rho, \infty}$,

$$
\begin{equation*}
\left\|\left(\sum_{j=1}^{\infty}\left|T f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{p, s}(\omega)} \leq C\left\|\left(\sum_{j=1}^{\infty}\left(M_{V, \eta} f_{j}\right)^{q}\right)^{1 / q}\right\|_{L^{p, s}(\omega)}, \quad\left\{\left(f_{j}, g_{j}\right)\right\}_{j=1}^{\infty} \subset \mathcal{F}_{\eta} \tag{4.2}
\end{equation*}
$$

If we combine this with Theorem 2.7, we have the following inequalities:

- If $1<q<\infty$, then for every $\omega \in A_{1}^{\rho, \infty}$, there exists a constant C depending only on η, q, C_{0}, l_{0} and the $A_{1}^{\rho, \infty}$ constant of ω such that

$$
\begin{equation*}
\left\|\left(\sum_{j=1}^{\infty}\left|T f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{1, \infty}(\omega)} \leq C\left\|\left(\sum_{j=1}^{\infty}\left|f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{1}(\omega)} \tag{4.3}
\end{equation*}
$$

- If $1<q<\infty$ and $1<p<\infty$, then for every $\omega \in A_{p}^{\rho, \infty}$, there exists a constant C depending only on η, p, q, C_{0}, l_{0} and the $A_{p}^{\rho, \infty}$ constant of ω such that

$$
\begin{equation*}
\left\|\left(\sum_{j=1}^{\infty}\left|T f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{p}(\omega)} \leq C\left\|\left(\sum_{j=1}^{\infty} f_{j}^{q}\right)^{1 / q}\right\|_{L^{p}(\omega)} \tag{4.4}
\end{equation*}
$$

Let T be a Schrödinger-type operator as above. From Theorem 3.1 in [25] we have that for all $0<p<\infty$ and $\omega \in A_{\infty}$, for any $\eta>0$, there exists a constant C depending only on η, p, q, C_{0}, l_{0} and the $A_{\infty}^{\rho, \infty}$ constant of ω such that

$$
\|[b, T] f\|_{L^{p}(\omega)} \leq C\|b\|_{\mathrm{BMO}_{\infty}(\rho)}\left\|M_{V, \eta}\left(M_{V, \eta} f\right)\right\|_{L^{p}(\omega)}
$$

By applying Theorem 3.1 to the family $\mathcal{F}_{\eta}\left(|[b, T] f|, M_{V, \eta}\left(M_{V, \eta} f\right): f \in C_{0}^{\infty}\right)$, we obtain that

- for all $0<p, q<\infty, \omega \in A_{\infty}^{\rho, \infty}$ and $\left\{\left(f_{j}, g_{j}\right)\right\}_{j=1}^{\infty} \subset \mathcal{F}_{\eta}$,

$$
\begin{equation*}
\left\|\left(\sum_{j=1}^{\infty}\left|[b, T] f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{p}(\omega)} \leq C\|b\|_{\mathrm{BMO}_{\infty}(\rho)}\left\|\left(\sum_{j=1}^{\infty}\left(M_{V, \eta}\left(M_{V, \eta} f_{j}\right)\right)^{q}\right)^{1 / q}\right\|_{L^{p}(\omega)} \tag{4.5}
\end{equation*}
$$

- for all $0<p, q<\infty, 0<s \leq \infty, \omega \in A_{\infty}^{\rho, \infty}$ and $\left\{\left(f_{j}, g_{j}\right)\right\}_{j=1}^{\infty} \subset \mathcal{F}_{\eta}$,

$$
\begin{equation*}
\left\|\left(\sum_{j=1}^{\infty}\left|[b, T] f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{p, s}(\omega)} \leq C\|b\|_{\mathrm{BMO}_{\infty}(\rho)}\left\|\left(\sum_{j=1}^{\infty}\left(M_{V, \eta}\left(M_{V, \eta} f_{j}\right)\right)^{q}\right)^{1 / q}\right\|_{L^{p, s}(\omega)} \tag{4.6}
\end{equation*}
$$

where the new space $\mathrm{BMO}_{\theta}(\rho)$ introduced in [3] is defined by

$$
\|f\|_{\mathrm{BMO}_{\theta}(\rho)}=\sup _{B \subset \mathbb{R}^{n}} \frac{1}{\Psi_{\theta}(B)|B|} \int_{B}\left|f(x)-f_{B}\right| d x<\infty
$$

where $f_{B}=\frac{1}{|B|} \int_{B} f(y) d y, \Psi_{\theta}(B)=\left(1+r / \rho\left(x_{0}\right)\right)^{\theta}, B=B\left(x_{0}, r\right)$ and $\theta>0$. We also let $\mathrm{BMO}_{\infty}(\rho)=\bigcup_{\theta>0} \mathrm{BMO}_{\theta}(\rho)$.

If we combine this with Theorem 2.7, we have the following inequality: If $1<q<\infty$ and $1<p<\infty$, then for every $\omega \in A_{p}^{\rho, \infty}$, there exists a constant C depending only on η, p, q, C_{0}, l_{0} and the $A_{p}^{\rho, \infty}$ constant of ω such that

$$
\begin{equation*}
\left\|\left(\sum_{j=1}^{\infty}\left|[b, T] f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{p}(\omega)} \leq C\|b\|_{\operatorname{BMO}_{\infty}(\rho)}\left\|\left(\sum_{j=1}^{\infty}\left|f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{p}(\omega)} \tag{4.7}
\end{equation*}
$$

We remark that the inequalities (4.1)-(4.7) are all new.
Next we consider another class $V \in B_{q}$, with $q \geq \frac{1}{2} n$ for Riesz transforms associated with Schrödinger operators. Let $T_{1}=(-\Delta+V)^{-1} V, T_{2}=(-\Delta+V)^{-1 / 2} V^{1 / 2}$ and $T_{3}=(-\Delta+V)^{-1 / 2} \nabla$. By using Theorem 3.3 in [26] and Corollary 3.4, we have the following result.

Theorem 4.1. Suppose $V \in B_{q}$ and $q \geq \frac{1}{2} n$. Then
(i) if $q^{\prime}<p, r<\infty$ and $\omega \in A_{p / q^{\prime}}^{\rho, \infty}$,

$$
\left\|\left|T_{1} f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\left\||f|_{r}\right\|_{L^{p}(\omega)}
$$

(ii) if $(2 q)^{\prime}<p, r<\infty$ and $\omega \in A_{p /(2 q)^{\prime}}^{\rho, \infty}$,

$$
\left\|\left|T_{2} f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\left\||f|_{r}\right\|_{L^{p}(\omega)} ;
$$

(iii) if $p_{0}^{\prime}<p, r<\infty$ and $\omega \in A_{p / p_{0}^{\prime}}^{\rho, \infty}$, where $1 / p_{0}=1 / q-1 / n$ and $\frac{1}{2} n \leq q<n$,

$$
\left\|\left|T_{3} f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\left\||f|_{r}\right\|_{L^{p}(\omega)}
$$

Let $T_{1}^{*}=V(-\Delta+V)^{-1}, T_{2}^{*}=V^{1 / 2}(-\Delta+V)^{-1 / 2}$ and $T_{3}^{*}=\nabla(-\Delta+V)^{-1 / 2} . \quad$ By duality we can easily get the following result.

Corollary 4.2. Suppose $V \in B_{q}$ and $q \geq \frac{1}{2} n$. Then
(i) if $1<p, r<q$ and $\omega^{-1 /(p-1)} \in A_{p^{\prime} / q^{\prime}}^{\rho, \infty}$,

$$
\left\|\left|T_{1}^{*} f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\left\||f|_{r}\right\|_{L^{p}(\omega)}
$$

(ii) if $1<p, r<2 q$ and $\omega^{-1 /(p-1)} \in A_{p^{\prime} /(2 q)^{\prime}}^{\rho, \infty}$,

$$
\left\|\left|T_{2}^{*} f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\left\||f|_{r}\right\|_{L^{p}(\omega)}
$$

(iii) if $1<p, r<p_{0}$ and $\omega^{-1 /(p-1)} \in A_{p^{\prime} / p_{0}^{\prime}}^{\rho, \infty}$, where $1 / p_{0}=1 / q-1 / n$ and $\frac{1}{2} n \leq q<$ n,

$$
\left\|\left|T_{3}^{*} f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\left\||f|_{r}\right\|_{L^{p}(\omega)}
$$

Let T_{1}, T_{2} and T_{3} be as above. By using Theorem 4.5 in [26] and Corollary 3.4, we have the following result.

Theorem 4.3. Suppose $V \in B_{q}$ and $q \geq \frac{1}{2} n$. Let $b \in \mathrm{BMO}_{\infty}(\rho)$. Then
(i) if $q^{\prime}<p, r<\infty$ and $\omega \in A_{p / q^{\prime}}^{\rho, \infty}$,

$$
\left\|\left.\left[b, T_{1}\right] f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\|b\|_{\mathrm{BMO}_{\infty}(\rho)}\left\||f|_{r}\right\|_{L^{p}(\omega)} ;
$$

(ii) if $(2 q)^{\prime}<p, r<\infty$ and $\omega \in A_{p /(2 q)^{\prime}}^{\rho, \infty}$,

$$
\left\|\left|\left[b, T_{2}\right] f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\|b\|_{\mathrm{BMO}_{\infty}(\rho)}\left\||f|_{r}\right\|_{L^{p}(\omega)}
$$

(iii) if $p_{0}^{\prime}<p, r<\infty$ and $\omega \in A_{p / p_{0}^{\prime}}^{\rho, \infty}$, where $1 / p_{0}=1 / q-1 / n$ and $\frac{1}{2} n \leq q<n$,

$$
\left\|\left|\left[b, T_{3}\right] f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\|b\|_{\operatorname{BMO}_{\infty}(\rho)}\left\||f|_{r}\right\|_{L^{p}(\omega)}
$$

Let T_{1}^{*}, T_{2}^{*} and T_{3}^{*} be as above. By duality we can easily get the following result.

Corollary 4.4. Suppose $V \in B_{q}$ and $q \geq \frac{1}{2} n$. Let $b \in \mathrm{BMO}_{\infty}(\rho)$. Then
(i) if $1<p, r<q$ and $\omega^{-1 /(p-1)} \in A_{p^{\prime} / q^{\prime}}^{\rho, \infty}$,

$$
\left\|\left|\left[b, T_{1}^{*}\right] f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\|b\|_{\mathrm{BMO}_{\infty}(\rho)}\left\||f|_{r}\right\|_{L^{p}(\omega)}
$$

(ii) if $1<p, r<2 q$ and $\omega^{-1 /(p-1)} \in A_{p^{\prime} /(2 q)^{\prime}}^{\rho, \infty}$,

$$
\left\|\left|\left[b, T_{2}^{*}\right] f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\|b\|_{\mathrm{BMO}_{\infty}(\rho)}\left\||f|_{r}\right\|_{L^{p}(\omega)}
$$

(iii) if $1<p, r<p_{0}$ and $\omega^{-1 /(p-1)} \in A_{p^{\prime} / p_{0}^{\prime}}^{\rho, \infty}$, where $1 / p_{0}=1 / q-1 / n$ and $\frac{1}{2} n \leq q<$ n,

$$
\left\|\left|\left[b, T_{3}^{*}\right] f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\|b\|_{\mathrm{BMO}_{\infty}(\rho)}\left\||f|_{r}\right\|_{L^{p}(\omega)}
$$

Finally, we consider the Littlewood-Paley g-function related to Schrödinger operators defined by

$$
g(f)(x)=\left(\int_{0}^{\infty}\left|\frac{d}{d t} e^{-t L}(f)(x)\right|^{2} t d t\right)^{1 / 2}
$$

and the commutator g_{b} of g with $b \in \operatorname{BMO}(\rho)$ defined by

$$
g_{b}(f)(x)=\left(\int_{0}^{\infty}\left|\frac{d}{d t} e^{-t L}((b(x)-b(\cdot)) f)(x)\right|^{2} t d t\right)^{1 / 2}
$$

The maximal operator of the diffusion semi-group is defined by

$$
T^{*} f(x)=\sup _{t>0}\left|e^{-t L} f(x)\right|=\sup _{t>0}\left|\int_{\mathbb{R}^{n}} k_{t}(x, y) f(y) d y\right|
$$

and its commutator

$$
T_{b}^{*} f(x)=\sup _{t>0}\left|\int_{\mathbb{R}^{n}} k_{t}(x, y)(b(x)-b(y)) f(y) d y\right|
$$

where k_{t} is the kernel of the operator $e^{-t L}, t>0$.
By combining Theorems 1 and 2 in [4], Theorems 1.1 and 3.1 in [26] and Corollary 3.4 together, we obtain the following result.

Theorem 4.5. Let $b \in \mathrm{BMO}_{\infty}(\rho)$ and T, T_{b}^{*}, g and g_{b} be as above.
(i) If $1<p, r<\infty$ and $\omega \in A_{p}^{\rho, \infty}$, then there exists a constant C such that

$$
\left\||g(f)|_{r}\right\|_{L^{p}(\omega)}+\left\|\left|T^{*} f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\left\||f|_{r}\right\|_{L^{p}(\omega)} .
$$

(ii) If $1<p, r<\infty$ and $\omega \in A_{p}^{\rho, \infty}$, then there exists a constant C such that

$$
\left\|\left|g_{b}(f)\right|_{r}\right\|_{L^{p}(\omega)}+\left\|\left|T_{b}^{*} f\right|_{r}\right\|_{L^{p}(\omega)} \leq C\|b\|_{B M O_{\infty}(\rho)}\left\||f|_{r}\right\|_{L^{p}(\omega)}
$$

Acknowledgement. The author would like to thank the referee for his/her very valuable suggestions.

References

1. Andersen, K. and John, R., Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980), 19-31.
2. Benedek, A. and Panzone, R., The space L^{p} with mixed norm, Duke Math. J. 28 (1961), 301-324.
3. Bongioanni, B., Harboure, E. and Salinas, O., Commutators of Riesz transforms related to Schrödinger operators, J. Fourier Anal. Appl. 17 (2011), 115-134.
4. Bongioanni, B., Harboure, E. and Salinas, O., Class of weights related to Schrödinger operators, J. Math. Anal. Appl. 373 (2011), 563-579.
5. Cruz-Uribe, D., Martell, J. M. and Pérez, C., Extrapolation from A_{∞} weights and applications, J. Funct. Anal. 213 (2004), 412-439.
6. Cruz-Uribe, D., Martell, J. M. and Pérez, C., Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advances and Applications 215, Birkhäuser, Basel, 2011.
7. Cruz-Uribe, D., Martell, J. M. and Pérez, C., Sharp weighted estimates for classical operators, Adv. Math. 229 (2012), 408-441.
8. Curbera, G. P., García-Cuerva, J., Martell, J. M. and Pérez, C., Extrapolation with weights rearrangement invariant function spaces, modular inequalities and applications to singular integrals, Adv. Math. 203 (2006), 256-318.
9. Duoandikoetxea, J., Fourier Analysis, Graduate Studies in Mathematics 29, Amer. Math. Soc., Providence, RI, 2000.
10. Duoandikoetxea, J., Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal. 260 (2011), 1886-1901.
11. Dziubański, J., Garrigós, G., Torrea, J. and Zienkiewicz, J., BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 (2005), 249-356.
12. Dziubański, J. and Zienkiewicz, J., Hardy space H^{1} associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoam. 15 (1999), 279-296.
13. Fefferman, C. and Stein, E., Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.
14. García-Cuerva, J., An extrapolation theorem in the theory of A_{p}-weights, Proc. Amer. Math. Soc. 87 (1983), 422-426.
15. García-Cuerva, J. and Rubio de Francia, J., Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam-New York, 1985.
16. Guo, Z., Li, P. and Peng, L., L^{p} boundedness of commutators of Riesz transforms associated to Schrödinger operator, J. Math. Anal. Appl. 341 (2008), 421-432.
17. Hernández, E., Factorization and extrapolation of pairs of weights, Studia Math. 95 (1989), 179-193.
18. Jawerth, B., Weighted inequality's for maximal operator: linearization, localization, and factorization, Amer. J. Math. 108 (1986), 361-414.
19. Jones, P., Factorization of A_{p} weights, Ann of Math. 111 (1980), 511-530.
20. Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal functions, Trans. Amer. Math. Soc. 165 (1972), 207-226.
21. Rao, M. M. and Ren, Z. D., Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math. 146, Marcel Dekker, New York, 1991.
22. Rubio de Francia, J., Factorization theory and A_{p} weights, Amer. J. Math. 106 (1984), 533-547.
23. Shen, Z., L^{p} estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546.
24. Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.
25. Tang, L., Weighted norm inequalities for Schrödinger type operators, to appear in Forum Math. doi:10.1515/forum-2013-0070.
26. Tang, L., Weighted norm inequalities for commutators of Littlewood-Paley functions related to Schrödinger operators, Preprint, 2011. arXiv:1109.0100.
27. Taylor, M., Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991.
28. Yang, D. and Zhou, Y., Localized Hardy spaces H^{1} related to admissible functions on RD-spaces and applications to Schrödinger operators, Trans. Amer. Math. Soc. 363 (2011), 1197-1239.
29. Zhong, J., Harmonic Analysis for Some Schrödinger Type Operators, Ph.D. Thesis, Princeton University, Princeton, NJ, 1993.

Lin Tang

LMAM, School of Mathematical Science
Peking University
100871 Beijing
People's Republic of China
tanglin@math.pku.edu.cn

Received April 17, 2012
published online December 21, 2013

