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Extrapolation from Aρ,∞
∞ , vector-valued

inequalities and applications in the Schrödinger
settings

Lin Tang

Abstract. In this paper, we generalize the A∞ extrapolation theorem (Cruz-Uribe–

Martell–Pérez, Extrapolation from A∞ weights and applications, J. Funct. Anal. 213 (2004),

412–439) and the Ap extrapolation theorem of Rubio de Francia to Schrödinger settings. In addi-

tion, we also establish weighted vector-valued inequalities for Schrödinger-type maximal operators

by using weights belonging to Aρ,∞
p which includes Ap. As applications, we establish weighted

vector-valued inequalities for some Schrödinger-type operators.

1. Introduction

In this paper, we consider the Schrödinger differential operator

L=−Δ+V (x) on R
n, n≥ 3,

where V (x) is a nonnegative potential satisfying a certain reverse Hölder inequality.

A nonnegative locally Lq integrable function V (x) on R
n is said to belong to

Bq for 1<q≤∞ if there exists C>0 such that the reverse Hölder inequality

(
1

|B(x, r)|

∫
B(x,r)

V q(y) dy

)1/q

≤C

(
1

|B(x, r)|

∫
B(x,r)

V (y) dy

)

holds for every x∈Rn and 0<r<∞, where B(x, r) denotes the ball centered at

x with radius r. In particular, if V is a nonnegative polynomial, then V ∈B∞.

Throughout this paper, we always assume that 0 �≡V ∈Bn/2.

The study of the Schrödinger operator L=−Δ+V has recently attracted much

attention; see [3], [4], [12], [11], [16], [23], [28] and [29]. In particular, it should
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be pointed out that Shen [23] proved that Schrödinger-type operators, such as

∇(−Δ+V )−1∇, ∇(−Δ+V )−1/2, (−Δ+V )−1/2∇ with V ∈Bn, and (−Δ+V )iγ with

γ∈R and V ∈Bn/2, are standard Calderón–Zygmund operators.

Recently, Bongioanni–Harboure–Salinas [3] proved Lp(Rn), 1<p<∞, bound-

edness for commutators of Riesz transforms associated with Schrödinger opera-

tor with BMO∞(ρ) functions, which include the BMO functions, and they [4] es-

tablished the weighted boundedness for Riesz transforms, fractional integrals and

Littlewood–Paley functions associated with Schrödinger operators with weights in

the Aρ,∞
p class, which includes the Muckenhoupt weights. Very recently, the author

([25] and [26]) established weighted norm inequalities for some Schrödinger-type

operators, which include commutators of Riesz transforms, fractional integrals and

Littlewood–Paley functions associated with Schrödinger operators.

On the other hand, extrapolation of weights plays an important role in har-

monic analysis. In particular, Rubio de Francia [22] proved the Ap extrapolation

theorem: If the operator T is bounded on Lp0(ω) for some p0, 1<p0<∞, and every

ω∈Ap0 , then for every p, 1<p<∞, T is bounded on Lp(ω), ω∈Ap (see also [9]

and [14]). Recently, Cruz-Uribe–Martell–Pérez in [5] extended this theorem from

Ap weights to A∞ weights, to pairs of operators, and to the range 0<p<∞ in the

context of Muckenhoupt bases; see also [6], [7], [8], [10], [17] and [18].

In this paper, we generalize the A∞ extrapolation theorem in [5] and the Ap

extrapolation theorem of Rubio de Francia to Schrödinger settings and give some

applications.

The paper is organized as follows. In Section 2, we give factorization of Aρ,∞
p ,

and establish weighted vector-valued inequalities for Schrödinger-type maximal op-

erators, these results play a crucial role in this paper. In Section 3, we obtain extrap-

olation theorems from Aρ,∞
∞ and Aρ,∞

p . Finally, we establish weighted vector-valued

inequalities for some Schrödinger-type operators in Section 4.

Throughout this paper, we let C denote constants that are independent of the

main parameters involved but whose value may differ from line to line. By A∼B,

we mean that there exists a constant C>1 such that 1/C≤A/B≤C.

2. Factorization and vector-valued inequalities

In this section, we give the factorization of Aρ,∞
p and weighted vector-valued

inequalities for Schrödinger-type maximal operators.

We first recall some notation. Given B=B(x, r) and λ>0, we will write λB

for the λ-dilate ball, which is the ball with the same center x and with radius λr.

Similarly, Q(x, r) denotes the cube centered at x with the sidelength r (here and

below only cubes with sides parallel to the coordinate axes are considered), and
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λQ(x, r)=Q(x, λr). Let f={fk}∞k=1 be a sequence of locally integrable functions

on R
n, |f(x)|r=(

∑∞
k=1 |fk(x)|r)1/r, and |Tf(x)|r=(

∑∞
k=1 |Tfk(x)|r)1/r.

The function mV (x) is defined by

ρ(x)=
1

mV (x)
= sup

r>0

{
r :

1

rn−2

∫
B(x,r)

V (y) dy≤ 1

}
.

Obviously, 0<mV (x)<∞ if V �=0. In particular, mV (x)=1 if V =1, and mV (x)∼
(1+|x|) if V =|x|2.

Lemma 2.1. ([23]) There exists l0>0 and C0>1 such that

1

C0
(1+|x−y|mV (x))

−l0 ≤ mV (x)

mV (y)
≤C0(1+|x−y|mV (x))

l0/(l0+1).

In particular, mV (x)∼mV (y) if |x−y|<C/mV (x).

In this paper, we write Ψθ(B)=(1+r/ρ(x0))
θ , where θ>0, and x0 and r de-

notes the center and radius of B respectively.

A weight will always mean a nonnegative function which is locally integrable.

As in [4], we say that a weight ω belongs to the class Aρ,θ
p for 1<p<∞, if there is

a constant C such that for all balls B(
1

Ψθ(B)|B|

∫
B

ω(y) dy

)(
1

Ψθ(B)|B|

∫
B

ω−1/(p−1)(y) dy

)p−1

≤C.

We also say that a nonnegative function ω satisfies the Aρ,θ
1 condition if there exists

a constant C such that

MV,θ(ω)(x)≤Cω(x) for a.e. x∈R
n,

where

MV,θf(x)= sup
x∈B

1

Ψθ(B)|B|

∫
B

|f(y)| dy.

When V =0, we denote M0f(x) by Mf(x) (the standard Hardy–Littlewood maxi-

mal function). It is easy to see that |f(x)|≤MV,θf(x)≤Mf(x) for a.e. x∈Rn and

any θ≥0.

Since Ψθ(B)≥1 if θ≥0, we then have Ap⊂Aρ,θ
p for 1≤p<∞, where Ap denotes

the classical Muckenhoupt weights; see [15] and [20]. We will see that Ap�Aρ,θ
p

for 1≤p<∞ in some cases. In fact, letting θ>0 and 0≤γ≤θ, it is easy to check

that ω(x)=(1+|x|)−(n+γ) /∈A∞ and ω(x) dx is not a doubling measure, but ω(x)=

(1+|x|)−(n+γ)∈Aρ,θ
1 provided that V =1 and Ψθ(B(x0, r))=(1+r)θ .

We remark that balls can be replaced by cubes in the definitions of Aρ,θ
p and

MV,θ , since Ψθ(B)≤Ψθ(2B)≤2nθΨθ(B).

Next we give the weighted boundedness for MV,θ .
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Lemma 2.2. ([27]) Let 1<p<∞, p′=p/(p−1) and assume that ω∈Aρ,θ
p . There

exists a constant C>0 such that

‖MV,p′θf‖Lp(ω) ≤C‖f‖Lp(ω).

Similar to the classical Muckenhoupt weights (see [15], [19] and [24]), we give

some properties for the weight class Aρ,θ
p for p≥1.

Proposition 2.3. Let Aρ,∞
p :=

⋃
θ≥0 A

ρ,θ
p for p≥1. Then the following are

true:

(i) If 1≤p1<p2<∞, then Aρ,θ
p1

⊂Aρ,θ
p2

;

(ii) ω∈Aρ,θ
p if and only if ω−1/(p−1)∈Aρ,θ

p′ , where 1/p+1/p′=1;

(iii) If ω∈Aρ,∞
p , 1<p<∞, then there exists ε>0 such that ω∈Aρ,∞

p−ε ;

(iv) Let f∈Lloc(R
n), 0<δ<1, then (MV,θf)

δ∈Aρ,θ
1 ;

(v) Let 1<p<∞, then ω∈Aρ,∞
p if and only if ω=ω1ω

1−p
2 , where ω1, ω2∈Aρ,∞

1 .

Proof. (i) and (ii) are obvious by the definition of Aρ,θ
p . (iii) is proved in [4].

In fact, from Lemma 5 in [4], we know that if ω∈Aρ,θ
p , then ω∈Aρ,θ0

p0
, where

p0=1+(p−1)/(1+δ)<p with δ>0 (δ is a constant depending only on the Aρ,loc
p

constant of ω, see [4]) and

θ0 =
θp+η(p−1)

p0
with η= θp+(θ+n)

pl0
l0+1

+(l0+1)
nδ

1+δ
.

We now prove (iv). It will suffice to show that there exists a constant C such that

for every f , every cube Q and almost every x∈Q,

1

Ψθ(Q)|Q|

∫
Q

MV,θf(y)
δ dy≤CMV,θf(x)

δ.

Fix Q and decompose f as f=f1+f2, where f1=fχ2Q and f2=f−f1. Then

MV,θf(x)≤MV,θf1(x)+MV,θf2(x), and so for 0≤δ<1,

MV,θf(x)
δ ≤MV,θf1(x)

δ+MV,θf2(x)
δ.

Since MV,θ is weak-(1, 1), by Kolmogorov’s inequality (see [21])

1

Ψθ(Q)|Q|

∫
Q

(MV,θf1)
δ(y) dy ≤ C

Ψθ(Q)|Q| |Q|1−δ‖f1‖δ1

≤ C

(
1

Ψθ(Q)|Q|

∫
2Q

|f(y)| dy
)δ
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≤ C

(
1

Ψθ(2Q)|2Q|

∫
2Q

|f(y)| dy
)δ

≤ CMV,θf(x)
δ.

To estimate MV,θf2, note that letting Q′ be a cube such that x∈Q′, we have that

if Q′∩(Rn\2Q) �=∅, then Q⊂4nQ′. Hence, for any z∈Q,

1

Ψθ(Q′)|Q′|

∫
Q′

|f2(y)| dy≤
C

Ψθ(4nQ′)|4nQ′|

∫
4nQ′

|f2(y)| dy≤CMV,θ(z).

So MV,θ(y)≤CMV,θ(x) for any y∈Q. Thus

1

Ψθ(Q′)|Q′|

∫
Q′

MV,θf2(y)
δ dy≤CMV,θf(x)

δ.

It remains to prove (v). We first assume that ω1∈Aρ,θ1
1 and ω2∈Aρ,θ2

1 . Since
(

1

Ψθ1(Q)|Q|

∫
Q

ω1(y) dy

)(
inf
Q

ω1(y)
)−1

≤C1,

(
1

Ψθ2(Q)|Q|

∫
Q

ω2(y) dy

)(
inf
Q

ω2(y)
)−1

≤C2,

moreover

1

Ψθ(Q)|Q|

∫
Q

ω(y) dy =
1

Ψθ(Q)|Q|

∫
Q

ω1(y)ω
1−p
2 (y) dy

≤
(

1

Ψθ(Q)|Q|

∫
Q

ω1(y) dy

)(
inf
Q

ω2(y)
)1−p

,

(
1

Ψθ(Q)|Q|

∫
Q

ω−1/(p−1)(y) dy

)p−1

=

(
1

Ψθ(Q)|Q|

∫
Q

ω
−1/(p−1)
1 (y)ω2(y) dy

)p−1

≤
(

1

Ψθ(Q)|Q|

∫
Q

ω2(y) dy

)p−1(
inf
Q

ω1(y)
)−1

.

From these inequalities and choosing θ=max{θ1, θ2}, we get that

(
1

Ψθ(Q)|Q|

∫
Q

ω(y) dy

)(
1

Ψθ(Q)|Q|

∫
Q

ω−1/(p−1)(y) dy

)p−1

≤C1C
p−1
2 .

To prove the converse, we consider first p≥2, let ω∈Aρ,θ
p , and define T by

Tf = [ω−1/pMV,pθ(f
p/p′

ω1/p)]p
′/p+ω1/pMV,pθ(fω

−1/p).
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Because ω−p′/p∈Aρ,θ
p′ , then T is bounded on Lp by Lemma 2.2, that is,

‖Tf‖Lp ≤A‖f‖Lp ,

for some A>0. Also, since p≥2, we have p/p′≥1, and Minkowski’s inequality gives

T (f1+f2)≤Tf1+Tf2. Fix now a nonnegative f with ‖f‖Lp=1 and write

η=

∞∑
k=1

(2A)−kT k(f),

where T k(f)=T (T k−1(f)). Then ‖η‖Lp≤1. Furthermore, since T is positivity-

preserving and subadditive, we have the pointwise inequality

Tη≤
∞∑
k=1

(2A)−kT k+1(f)=

∞∑
k=2

(2A)1−kT k(f)≤ 2Aη.

Thus, if ω1=ω1/pηp/p
′
, then

MV,pθ(ω1)≤T (η)p/p
′
ω1/p ≤ (2Aη)p/p

′
ω1/p =(2A)p/p

′
ω1

and ω∈Aρ,pθ
1 . Similarly, if ω2=ω−1/pη, then MV,pθ(ω1)≤2Aω2, so ω2∈Aρ,pθ

1 . More-

over,

ω=ω1ω
1−p
2 =ω1/pηp/p

′
(ω−1/pη)1−p,

since p/p′=p−1, finishing the proof for p≥2.

The case p≤2 is similar. In fact, let ω∈Aρ,θ
p , then ω−p′/p∈Aρ,θ

p′ , and define T

by

Tf = [ω1/pMV,p′θ(f
p′/pω−1/p)]p/p

′
+ω−1/pMV,p′θ(fω

1/p).

Then T is bounded on Lp by Lemma 2.2, that is,

‖Tf‖Lp′ ≤B‖f‖Lp′ ,

for some A>0. Also, since p≤2, we have p′/p≥1, and Minkowski’s inequality gives

T (f1+f2)≤Tf1+Tf2. Fix now a nonnegative f with ‖f‖Lp′ =1 and write

η=

∞∑
k=1

(2B)−kT k(f),

where T k(f)=T (T k−1(f)). Then ‖η‖Lp′ ≤1. Furthermore, since T is positivity-

preserving and subadditive, we have the pointwise inequality

Tη≤
∞∑
k=1

(2B)−kT k+1(f)=

∞∑
k=2

(2B)1−kT k(f)≤ 2Bη.
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Thus, if ω1=ω−1/pηp
′/p, then

MV,pθ(ω1)≤T (η)p
′/pω−1/p ≤ (2Bη)p

′/pω1/p =(2B)p
′/pω1

and ω∈Aρ,p′θ
1 . Similarly, if ω2=ω1/pη, thenMV,p′θ(ω1)≤2Bω2, so ω2∈Aρ,p′θ

1 . More-

over,

ω=ω2ω
1−p
1 =ω1/pη(ω−1/pηp

′/p)1−p,

since p/p′=p−1, finishing the proof for p≤2. The proof is complete. �

We remark that the referee has pointed out that in fact (v) of Proposition 2.3

can also be obtained by a direct argument in [17]. We leave this as an exercise for

interested readers.

C. Fefferman and E. Stein [13] obtained vector-valued inequalities for Hardy–

Littlewood maximal operators. Later, K. Andersen and R. John [1] generalized

the Fefferman–Stein vector-valued inequalities to the Ap weight case. We next give

some weighted vector-valued inequalities for maximal operators MV,η by using the

new weights above. The following interpolation results will be used. Let S denote

the linear space of sequences f={fk}∞k=1 of the form: fk(x) is a simple function on

R
n and fk(x)≡0 for all sufficient large k. S is dense in Lp

ω(l
r), 1≤p, r<∞; see [2].

Lemma 2.4. ([1]) Let ω≥0 be locally integrable on R
n, 1<r<∞, 1≤pi≤qi<∞

and suppose T is a sublinear operator defined on S satisfying

ω({x∈R
n : |Tf(x)|r >α})≤ Mqi

i

αqi

(∫
Rn

|f(x)|pi
r ω(x) dx

)qi/pi

for i=0, 1 and f∈S . Then T extends uniquely to a sublinear operator on Lp
ω(l

r)

and there is a constant Mθ such that

(∫
Rn

|Tf(x)|qrω(x) dx
)1/q

≤Mθ

(∫
Rn

|f(x)|prω(x) dx
)1/p

,

where (1/p, 1/q)=(1−θ)(1/p0, 1/q0)+θ(1/p1, 1/q1), 0<θ<1.

Lemma 2.5. ([1]) Let ω≥0 be locally integrable on R
n, 1<ri, si<∞,

1≤pi, qi<∞ and suppose T is a sublinear operator defined on S satisfying

(∫
Rn

|Tf(x)|qisiω(x) dx
)1/qi

≤Mi

(∫
Rn

|f(x)|pi
riω(x) dx

)1/pi
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for i=0, 1 and f∈S . Then T extends uniquely to a sublinear operator on Lp
ω(l

r)

such that

(∫
Rn

|Tf(x)|qrω(x) dx
)1/q

≤M1−θ
0 Mθ

1

(∫
Rn

|f(x)|prω(x) dx
)1/p

,

where (1/p, 1/q, 1/s, 1/r)=(1−θ)(1/p0, 1/q0, 1/s0, 1/r0)+θ(1/p1, 1/q1, 1/s1, 1/r1),

0<θ<1.

We define the dyadic maximal operator MΔ
V,θf(x) by

MΔ
V,θf(x) := sup

x∈Q(dyadic cube)

1

ψθ(Q)|Q|

∫
Q

|f(x)| dx,

where ψθ(Q)=(1+r/maxQ ρ(x))θ , r is the side-length of Q, Q is the closure of Q

and θ>0.

Lemma 2.6. Let f be a locally integrable function on R
n, λ>0, and Ωλ=

{x∈Rn :MΔ
V,θf(x)>λ}. Then Ωλ may be written as a disjoint union of dyadic cubes

{Qj}∞j=1 with

(i) λ<(ψθ(Qj)|Qj |)−1
∫
Qj

|f(x)| dx;
(ii) (ψθ(Qj)|Qj |)−1

∫
Qj

|f(x)| dx≤(4n)θ2nλ;

for each cube Qj . This has the immediate consequences:

(iii) |f(x)|≤λ for a.e. x∈Rn\
⋃∞

j=1 Qj ;

(iv) |Ωλ|≤λ−1
∫
Rn |f(x)| dx.

The proof follows from the same argument as of Lemma 1 on p. 150 of [24].

Theorem 2.7. Let 1<r<∞ and θ>0.

(a) If 1≤p<∞, ω∈Aρ,θ
p and η=p0θ0, where p0=4(l0+1)5(p+ 1

2 (r+1)′) and

θ0=p((3θ+n)p+(l0+1)n), there is a constant Cr,p,θ,l0,C0 such that

(2.1) ω({x∈R
n : |MV,ηf(x)|r >α}|≤ C

αp

∫
Rn

|f(x)|prω(x) dx.

(b) If 1<p<∞, ω∈Aρ,θ
p and η is as above, there is a constant Cr,p,θ,l0,C0 such

that

(2.2)

∫
Rn

|MV,ηf(x)|prω(x) dx≤
C

αp

∫
Rn

|f(x)|prω(x) dx.
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Proof. Observe first that (2.2) for the case r=p is an easy consequence of

Lemma 2.2 since η>r′θ and

∫
Rn

|MV,ηf(x)|rrω(x) dx =

∞∑
k=1

∫
Rn

|MV,ηfk(x)|rω(x) dx(2.3)

≤ C

∞∑
k=1

∫
Rn

|fk(x)|rω(x) dx

= C

∞∑
k=1

∫
Rn

|fk(x)|rrω(x) dx.

Now suppose r>p, ω∈Aρ,θ
p and α>0. As usual, we can assume that f∈C∞

0 . Let

θ1=θ(l0+1). From Lemma 2.6, we obtain a sequence of nonoverlapping cubes

{Qj}∞j=1 such that

(2.4) |f(x)|r ≤α, x /∈Ω=

∞⋃
j=1

Qj ,

and

(2.5) α<
1

ψθ1(Qj)|Qj |

∫
Qj

|f(x)|r dx≤ 2n(4n)θ1α, j=1, 2, ... .

Let f=f ′+f ′′, where f ′={f ′
k}∞k=1, f

′
k(x)=fk(x)χRn\Ω(x). Then

|MV,ηf(x)|r ≤ |MV,ηf
′(x)|r+|MV,ηf

′′(x)|r.

From this, (2.1) will follow if we show that

(2.6) ω({x∈R
n : |MV,ηf

′(x)|r >α})≤ C

αp

∫
Rn

|f(x)|prω(x) dx

and

(2.7) ω({x∈R
n : |MV,ηf

′′(x)|r >α})≤ C

αp

∫
Rn

|f(x)|prω(x) dx.

Since ω∈Aρ,θ
r by (i) of Proposition 2.3, from (2.3) and (2.4), we then have

ω({x∈R
n : |MV,ηf

′(x)|r >α}) ≤ C

αr

∫
Rn

|f(x)|rrω(x) dx

≤ C

αp

∫
Rn

|f(x)|prω(x) dx.
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Thus, (2.6) is proved. To prove (2.7), define f̄={f̄k}∞k=1 by

f̄k(x)=
1

ψθ1(Qj)|Qj |

∫
Qj

|fk(y)| dy, if x∈Qj , j=1, 2, ...,

and zero, otherwise. Let Q̃j=2nQj . We now claim that for any x∈Ω̃=
⋃∞

j=1 Q̃j ,

MV,ηf
′′
k (x)≤CMV,η̄ f̄k(x) for all k,

where η̄=η/2(l0+1)2.

In fact, for all x /∈Ω̃, and any cube Qx, if Qj∩Q �=∅, then Qj⊂Q̃=4nQ, and

hence

1

Ψη(Q)|Q|

∫
Q

|f ′′
k (x)| dx =

1

Ψη(Q)|Q|

∞∑
j=1

∫
Qj∩Q

|fk(x)| dx

≤ 1

Ψη(Q)|Q|
∑

Qj⊂ eQ

∫
Qj

|fk(x)| dx

≤ 1

Ψη(Q)|Q|
∑

Qj⊂ eQ

ψθ1(Qj)

∫
Qj

f̄k(x) dx

≤ C
Ψθ2(Q̃)

Ψη(Q)|Q|

∫
eQ

f̄k(x) dx

≤ CMV,η̄ f̄k(x),

where θ2=θ1(l0+1)=θ(l0+1)2.

By the claim above, it is easy to see that (3.8) will follow if we show that

(2.8) ω(Ω̃)≤ C

αp

∫
Rn

|f(x)|prω(x) dx

and that

(2.9) ω({x∈R
n : |MV,η̄ f̄(x)|r >α})≤ C

αp

∫
Rn

|f(x)|prω(x) dx.

If p>1, by (2.5), we then have

ω(Q̃j) =

∫
eQj

ω(x) dx(2.10)

≤ 1

αp(ψθ1(Q)|Q|)p

(∫
Qj

|f(x)|r dx
)p ∫

eQj

ω(x) dx
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≤ 1

αp

(∫
Qj

|f(x)|prω(x) dx
)(

1

(Ψθ(Q)|Q|)

∫
Qj

ω−1/(p−1)(x) dx

)p−1

×
(

1

(Ψθ(Q)|Q|)

∫
eQj

ω(x) dx

)

≤ 1

αp

∫
Qj

|f(x)|prω(x) dx,

since ω∈Aρ,θ
p .

A similar argument shows that (2.10) holds also if p=1. Hence, (2.8) follows

from (2.10) upon summing over j. Note that |f̄(x)|r≤2n(4n)θ1α, and since |f̄(x)|r
is supported in Ω, using Lemma 2.2, we obtain

ω({x∈R
n : |MV,η̄ f̄(x)|r >α})≤Cα−r

∫
Rn

|f̄(x)|rrω(x) dx≤C

∫
Ω

ω(x) dx

which together with (2.10) yields (2.9) as required. This complete the proof of (2.1)

in the case r≥p. If r>p>1, by (iii) of Proposition 2.3, we know that for ω∈Aρ,θ
p ,

there exist constants p1, p2 and θ3 (depending only on ω) such that (r+1)/2<

p1<p<p2<r and θ3≤θ0 so that (2.1) holds with ω∈Aθ3
p1

and ω∈Aθ
p2

respectively.

Obviously, η̄>2p′1θ3, and so Lemmas 2.2 and 2.4 yields (2.2) for r>p>1.

Suppose now that p>r and ω∈Aρ,θ
p . By (iii) of Proposition 2.3, there exist

constants θ4≤θ0 and 1<r0<p such that ω∈Aρ,θ4
q , q≥p/r0. In particular, (i) of

Proposition 2.3 yields ω(x)>0 a.e. and ω(x)1−q′∈Aρ,θ4
q′ , so that by Lemma 2.2, for

any nonnegative function ‖ϕ‖
Lq′

ω
≤1, we then have

∫
Rn

|MV,η1(ϕω)(x)|q
′
ω(x)1−q′ dx≤Cq

∫
Rn

|ϕ(x)|q
′
ω(x) dx=Cq,

where η1=η̄/(l0+1)3>qθ4, and hence

∫
Rn

|MV,η̄f(x)|rrϕ(x)ω(x) dx ≤ C

∫
Rn

|f(x)|rr
MV,η1(ϕω)(x)

ω1/q(x)
ω1/q(x) dx(2.11)

≤ C

(∫
Rn

|f(x)|rqr ω(x) dx

)1/q

.

In the first inequality of (2.11), we used the fact that for any nonnegative measurable

functions f and g, and q>1, we have

(2.12)

∫
Rn

(MV,η̄f)
qg dx≤C

∫
Rn

fq(MV,η1g) dx.



186 Lin Tang

Taking the supremum in (2.11) over such ϕ then yields (2.2) for 1<r≤r0 upon

taking q=p/r, and this together with the case p=r provided in (2.3) yields (3.3)

for r0<r<p by an application of Lemma 2.4. Thus, the proof of (a) and (b) is

complete.

It remains to prove (2.12), let η2=η1(l0+1)=η̄/(l0+1)2, we shall begin by

proving

(2.13)

∫
Rn

(MΔ
V,η2

f)qg dx≤C

∫
Rn

fq(MV,η1g) dx.

We do this as follows: Hold g fixed, and look at the mapping T : f→MΔ
V,η2

f .

Then (2.13) says that T is bounded from Lq(Rn,MV,η1g(x) dx) to Lq(Rn, g(x) dx).

Clearly, T is bounded from L∞(Rn,MV,η1g(x) dx) to L∞(Rn, g(x) dx). If we can

show that T is of weak-(1, 1) type, then (2.13) holds by the Marcinkiewicz interpo-

lation theorem.

Lemma 2.6 shows that {x∈Rn :MΔ
V,η2

f(x)>λ}=
⋃∞

j=1 Qj , where the Qj are

pairwise disjoint cubes satisfying the condition

λ≤ 1

ψη2(Qj)|Qj |

∫
Qj

f(x) dx≤ 2n(4n)η2λ.

Then ∫
Qj

g(y) dy ≤
∫
Qj

g(y) dy
1

λψη2(Qj)|Qj |

∫
Qj

f(x) dx

≤ C

λ

∫
Qj

f(x)

(
1

Ψη1(Qj)|Qj |

∫
Qj

g(y) dy

)
dx

≤ C

λ

∫
Qj

f(x)MV,η1g(x) dx.

Summing over j, we obtain that∫
{x∈Rn:(MΔ

V,η2
f)(x)>λ}

g(y) dy≤C

∫
Rn

f(x)MV,η1g(x) dx.

Thus, (2.13) holds. To complete the proof of (2.12), we first define

M ′
V,η3

f(x)= sup
r>0

1

(1+r/ρ(x))η3 |Q|

∫
Q(x,r)

|f(y)| dy.

Obviously, (4n)η̄C0M
′
V,η3

f(x)≥MV,η̄f(x), where η3=η̄/(l0+1)=η2(l0+1).

Hence, to end the proof, it will suffice to show that

(2.14) {x∈R
n :M ′

V,η3
f(x)>c0λ}⊂

∞⋃
j=1

2Qj ,

where c0=C2
04

l0+1+n(4n)η̄ .
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Fix x /∈
⋃∞

j=1 2Qj and let Q be any cube centered at x. Let r denote the side

length of Q, and choose k∈Z such that 2k−1≤r<2k. Then Q intersects m (≤2n)

dyadic cubes with sidelength 2k; call them R1=R1(x1, 2
k), R2=R2(x2, 2

k), ..., Rm=

Rm(xm, 2k). None of these cubes is contained in any of the Qj ’s, for otherwise we

would have x∈
⋃∞

j=1 2Qj . Hence

1

(1+r/ρ(x))η3 |Q|

∫
Q(x,r)

|f(y)| dy =
1

(1+r/ρ(x))η3 |Q|

m∑
i=1

∫
Q∩Ri

|f(y)| dy

≤
m∑
i=1

C04
l0+12kn

(1+2k/maxQ ρ(x))η2 |Q| |Ri|

∫
Ri

|f(y)| dy

≤ 2n4l0+1C0mλ

≤ 4l0+1+nC0λ.

Thus, (2.14) holds, so (2.12) is proved. �

We remark that the referee has pointed out that in fact Theorem 2.7 can be

also obtained by a similar argument found in [7]. This is left as an exercise for the

interested readers.

3. Extrapolation theorems

In this section, F will denote a family of ordered pairs of nonnegative, mea-

surable functions (f, g). If we say that for p, 0<p<∞, and ω∈Aρ,∞
∞ =

⋃∞
p=1 A

ρ,∞
p ,

∫
Rn

f(x)pω(x) dx≤C

∫
Rn

g(x)pω(x), (f, g)∈F ,

we mean that this inequality holds for any (f, g)∈F such that the left-hand side

is finite, and that the constant C depends only on p and the Aρ,∞
∞ constant of ω.

We will make similar abbreviated statements involving Lorentz spaces. For vector-

valued inequalities we will consider sequences {(fj , gj)}∞j=1, where each pair (fj , gj)

is contained in F .

In addition, we will use following classes: given a pair of operators (T, S), let

F(T, S) denote the family of pairs of functions (|Tf |, |Sf |), where f lies in the

common domain of T and S, and the left-hand side of the corresponding inequality

is finite. To achieve this, the function f may be restricted in some other way, e.g.

f∈C∞
0 . In this case we may indicate this by writing F(|Tf |, |Sf |:f∈C∞

0 ).

We can now state our main results of this paper.
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Theorem 3.1. Given a family F , suppose that for some p0, 0<p0<∞, and

for every weight ω∈Aρ,∞
∞ ,

(3.1)

∫
Rn

f(x)p0ω(x) dx≤C

∫
Rn

g(x)p0ω(x), (f, g)∈F .

Then the following are true:

• For all 0<p<∞ and ω∈Aρ,∞
∞ ,

(3.2)

∫
Rn

f(x)pω(x) dx≤C

∫
Rn

g(x)pω(x) dx, (f, g)∈F ;

• For all 0<p<∞, 0<s≤∞ and ω∈Aρ,∞
∞ ,

(3.3) ‖f‖Lp,s(ω) ≤C‖g‖Lp,s(ω), (f, g)∈F ;

• For all 0<p, q<∞ and ω∈Aρ,∞
∞ ,

(3.4)

∥∥∥∥
( ∞∑

j=1

fq
j

)1/q∥∥∥∥
Lp(ω)

≤C

∥∥∥∥
( ∞∑

j=1

gqj

)1/q∥∥∥∥
Lp(ω)

, {(fj , gj)}∞j=1 ⊂F ;

• For all 0<p, q<∞, 0<s≤∞, and ω∈Aρ,∞
∞ ,

(3.5)

∥∥∥∥
( ∞∑

j=1

fq
j

)1/q∥∥∥∥
Lp,s(ω)

≤C

∥∥∥∥
( ∞∑

j=1

gqj

)1/q∥∥∥∥
Lp,s(ω)

, {(fj , gj)}∞j=1 ⊂F .

Our second main result shows that we can also extrapolate from an initial

Lorentz space inequality.

Theorem 3.2. Given a family F , suppose that for some p0, 0<p0<∞, and

for every weight ω∈Aρ,∞
∞ ,

(3.6) ‖f‖Lp0,∞(ω) ≤C‖g‖Lp0,∞(ω), (f, g)∈F .

Then, for all 0<p<∞ and ω∈Aρ,∞
∞ ,

(3.7) ‖f‖Lp,∞(ω) ≤C‖g‖Lp,∞(ω), (f, g)∈F .

Our third main result is a generalization of the Ap extrapolation theorem of

Rubio de Francia.

Theorem 3.3. Fix γ≥1 and r, γ<r<∞. If T is a bounded operator on Lr(ω)

for any ω∈Aρ,∞
r/γ , with operator norm depending only the Ar/γ constant of ω, then

T is bounded on Lp(ω), γ<p<∞, for any ω∈Aρ,∞
p/γ .
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As a consequence of Theorem 3.3, we have the following result.

Corollary 3.4. Fix γ≥1. Let γ<p, q<∞ and T satisfy the conditions in

Theorem 3.3. Then for any ω∈Aρ,∞
p/γ such that

∥∥∥∥
( ∞∑

j=1

|Tfj |q
)1/q∥∥∥∥

Lp(ω)

≤C

∥∥∥∥
( ∞∑

j=1

|fj |q
)1/q∥∥∥∥

Lp(ω)

.

We shall adapt an argument in [5] for proving Theorems 3.1 and 3.2, and prove

Theorem 3.3 by using an argument in [9]. We first give the proof of Theorem 3.1.

3.1. Proof of inequality (3.2)

Step 1. We first show that hypothesis (3.1) is equivalent to the family of

weighted inequalities with Aρ,∞
1 weights.

Proposition 3.5. Hypothesis (3.1) of Theorem 3.1 is equivalent to the fact

that for all 0<q<p0, ω∈Aρ,∞
1 , and (f, g)∈F ,

(3.8)

∫
Rn

f(x)qω(x) dx≤C

∫
Rn

g(x)qω(x) dx.

Proof. We will prove that (3.1) implies (3.8). If (3.2) is proved, then the

converse is proved. Fix (f, g)∈F . Without loss of generality, we can assume that

g∈Lq(ω) and ‖f‖Lq(ω)>0. Let s=p0/q. Since ω∈Aρ,∞
1 , there is a θ>0 such that

ω∈Aρ,θ
1 ⊂Aρ,θ

s′ , and MV,sθ is bounded on Ls′(ω) by Lemma 2.2, that is,

‖MV,sθh‖Ls′ (ω) ≤A‖h‖Ls′ (ω),

for some A>0. For h∈Ls′(ω), h≥0, we apply the algorithm of Rubio de Francia to

define

Rh(x)=

∞∑
k=0

Mk
V,sθh(x)

(2A)k
,

where Mk
V,sθ is the operator MV,sθ iterated k times if k≥1, and for k=0 is just the

identity. From the definition of R, it easy to see that

(a) h(x)≤Rh(x);

(b) ‖Rh‖Ls′ (ω)≤2‖h‖Ls′ (ω);

(c) MV,sθ(Rh)(x)≤2ARh(x), so Rh(x)∈Aρ,sθ
1 with constant independent of h.
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Since f, g∈Ls′(ω) with positive norms, from (b), we then have

H(x)=R
((

f

‖f‖Ls′ (ω)

)q/s′(
g

‖g‖Ls′ (ω)

)q/s′)
(x)∈Ls′(ω).

By (a),

(3.9)

(
f

‖f‖Ls′ (ω)

)q/s′

≤H(x) and

(
g

‖g‖Ls′ (ω)

)q/s′

≤H(x).

So H(x)>0 whenever f(x)>0. Further, H is finite a.e. on the set where ω>0

because h∈Ls′(ω). Hence,

∫
Rn

f(x)qω(x) dx ≤
(∫

Rn

f(x)p0H(x)−sω(x) dx

)1/s(∫
Rn

H(x)s
′
ω(x) dx

)1/s′

=: I·II.

Obviously, II≤4 by (b).

To estimate I, since ω∈Aρ,θ
1 ⊂Aρ,sθ

1 , and H∈Aρ,sθ
1 by (c), we have wH−s=

wH1−(1+s)∈Aρ,sθ
1+s⊂Aρ,∞

∞ by (v) of Proposition 2.3. On the other hand, by (3.9),

we get that∫
Rn

f(x)p0H(x)−sω(x) dx≤‖f‖qs/s
′

Ls(ω)

∫
Rn

f(x)p0−qs/s′ω(x) dx= ‖f‖qsLs(ω) <∞.

So, we can use (3.1); by (3.9), we get that

I ≤
(∫

Rn

g(x)p0H(x)−sω(x) dx

)1/s

≤C

∫
Rn

g(x)pω(x) dx.

By I and II, we obtain the desired result.

Step 2. We now show that for all 0<p<∞ and for every ω∈Aρ,∞
∞ , (3.2) holds.

Fix 0<p<∞ and ω∈Aρ,∞
∞ . Assume that (f, g)∈F with f, g∈Lp(ω). By (i) of

Proposition 2.3, we know that Aρ,θ
p1

⊂Aρ,θ
p2

if 1≤p1≤p2, and thus there exist θ>0

and 0<q<min{p, p0} such that ω∈Aρ,θ
p/q . Let r=p/q>1. Since ω∈Aρ,θ

r , we get

that ω1−r′∈Aρ,θ
r′ by (ii) of Proposition 2.3. Given h∈Lr′(ω1−r′), h≥0, we use the

algorithm of Rubio de Francia to define

Rh(x)=

∞∑
k=0

Mk
V,rθh(x)

(2B)k
,

where B is the operator norm of MV,rθ on Lr′(ω1−r′); this is finite since ω1−r′∈Aρ,θ
r′ .

Then
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(a) h(x)≤Rh(x);

(b) ‖Rh‖Lr′ (ω1−r′ )≤2‖h‖Lr′ (ω1−r′ );

(c) MV,sr(Rh)(x)≤2BRh(x), soRh(x)∈Aρ,rθ
1 with constant independent of h.

By duality

‖f‖qLp(ω) = ‖fq‖Lr(ω) = sup
‖h‖

Lr′ (ω)
≤1

∫
Rn

f(x)qh(x)ω(x) dx.

Fix such a function h≥0. Then hω∈Lr′(ω1−r′) and ‖hω‖Lr′ (ω1−r′ )=‖h‖Lr′ (ω)=1.

By (c), R(hω)∈Aρ,rθ
1 . By (a) and (3.1), we then have

∫
Rn

f(x)qh(x)ω(x) dx≤
∫
Rn

f(x)qR(hω)(x) dx≤C

∫
Rn

g(x)qR(hω)(x) dx,

provided that the middle term is finite.

The same argument also holds for g instead of f . Hence,

∫
Rn

f(x)qh(x)ω(x) dx≤C

∫
Rn

g(x)qR(hω)(x) dx≤C‖g‖qLp(ω).

From this, we obtain the desired result. �

3.2. Proof of inequality (3.3)

We need two lemmas. We first give a result about the operator Mω defined by

Mω(f)(x)= sup
x∈B

1

ω(5B)

∫
B

|f(x)|ω(x) dx.

Lemma 3.6. Let 1≤p<∞. If ω∈Aρ,∞
∞ , then

ω({x∈R
n :Mωf(x)>λ})≤C

(‖f‖Lp(ω)

λ

)p

for all λ> 0 and f ∈Lp(ω).

In particular, for 1<p≤∞,

‖Mωf‖Lp(ω) ≤C‖f‖Lp(ω).

Proof. We set x∈Eλ={x∈Rn :Mωf(x)>λ} with any λ>0. Then, there exists

a ball Bxx such that

(3.10)
1

ω(5Bx)

∫
Bx

|f(y)|ω(y) dy >λ.
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Thus, {Bx}x∈Eλ
covers Eλ. By Vitali’s lemma, there exists a collection of disjoint

cubes {Bxj}∞j=1 such that
⋃∞

j=1 Bxj⊂Eλ⊂
⋃∞

j=1 5Bxj and

(3.11) ω(Eλ)≤
∞∑
j=1

ω(5Bxj ).

From (3.10) and by Hölder’s inequality, we have

λ<
1

ω(5Bx)1/p

(∫
Bx

|f(y)|pω(y) dy
)1/p

.

From this and by (3.11), we get that

ω(Eλ)x ≤
∞∑
j=1

ω(5Bxj)≤
C

λp

∞∑
j=1

∫
Bxj

|f(y)|pω(y) dy

=
C

λp

∫
S∞

j=1 Bxj

|f(y)|pω(y) dy≤ C

λp

∫
Rn

|f(y)|pω(y) dy.

Thus, Lemma 3.6 is proved. �

Given two weights u and v, we say that u∈A1(v) if for every x, Mvu(x)≤Cu(x).

Lemma 3.7. If ω1∈Aρ,θ
p , 1≤p≤∞, and ω2∈A1(ω1), then ω1ω2∈Aρ,θp

p .

Proof. If ω2∈A1(ω1), then for any ball B,

1

(Ψθ(B))p2 |B|

∫
B

ω1(x)ω2(x) dx =
ω1(5B)

Ψθ(B)p2 |B|
1

ω1(5B)

∫
B

ω2(x)ω1(x) dx

≤ C
ω1(5B)

Ψθ(B)p2 |B| ess infB
ω2

≤ C
ω1(B)

Ψθ(B)p|B| ess infB
ω2,

where in the last inequality we used the fact that (see [25])

ω1(5B)≤CΨθ(B)pω1(B).

On the other hand,
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(
1

|B|

∫
B

(ω1(x)ω2(x))
−1/(p−1) dx

)p−1

≤
(

1

|B|

∫
B

ω1(x)
−1/(p−1) dx

)p−1(
ess inf

B
ω2

)−1

.

From these two inequalities, we get the desired result. �

Proof of (3.3). Fix p, s, ω∈Aρ,∞
∞ and (f, g)∈F with f, g∈Lp,s(ω). Fix 0<

q<min{p, s} and set r=p/q>1 and r̃=s/q>1. (If s=∞, take 0<q<p and r̃=∞.)

Then

‖f‖qLp,s(ω) = ‖fq‖Lr,r̃(ω) =sup
h

∫
Rn

f(x)qh(x)ω(x) dx,

where the supremum is taken over all h∈Lr′,r̃(ω) with h≥0 and ‖h‖Lr′,r̃′ =1. Fix

such a function h. Using the algorithm of Rubio de Francia to define

Rωh(x)=

∞∑
k=0

Mk
ωh(x)

(2Aω)k
,

where Aω is the operator norm of Mω on Lr′,r̃(ω) endowed with a norm equivalent

to ‖ · ‖Lr′,r̃(ω). Since Mω is bounded on Lp(ω) by Lemma 3.6, and by Marcinkiewicz

interpolation in the scale of Lorentz space, it is bounded on Lr′,r̃(ω). Then,

(a) h(x)≤Rωh(x);

(b) ‖Rωh‖Lr′,r̃(ω1−r′ )≤C‖h‖Lr′,r̃(ω1−r′ )=C;

(c) MV,sθ(Rh)(x)≤2AωRh(x), so Rωh(x)∈A1(ω) with constant independent

of h.

By Lemma 3.7, ωRωh∈Aρ,∞
∞ . As above, (3.2) holds with exponent q and the

Aρ,∞
∞ weight ωRωh. Thus,

∫
Rn

f(x)qh(x)ω(x) dx ≤
∫
Rn

f(x)qRωh(x)ω(x) dx≤C

∫
Rn

g(x)qRωh(x)ω(x) dx

≤ C‖gq‖Lr,r̃(ω)‖Rωh‖Lr′,r̃′ (ω) ≤C‖g‖q
Lr,r̃(ω)

,

since

∫
Rn

f(x)qRωh(x)ω(x) dx≤‖fq‖Lr,r̃(ω)‖Rωh‖Lr′,r̃′ (ω) ≤C‖f‖q
Lr,r̃(ω)

<∞.

Thus, the desired inequality is obtained. �
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3.3. Proof of inequalities (3.4) and (3.5)

Fix 0<q<∞. It suffices to prove the vector-valued inequalities only for finite

sums by the monotone convergence theorem. Fix N≥1 and define

fq(x)=

( N∑
j=1

fj(x)
q

)1/q

and gq(x)=

( N∑
j=1

gj(x)
q

)1/q

,

where {(fj , gj)}Nj=1⊂F . Now form a new family Fq consisting of the pairs (fq, gq).

Then, for every ω∈Aρ,∞
∞ and (fq, gq)∈Fq , by (3.2) we get

‖fq‖qLq(ω) =

N∑
j=1

∫
Rn

fj(x)
qω(x) dx≤C

N∑
j=1

∫
Rn

gj(x)
qω(x) dx=C‖gq‖qLq(ω),

which implies that the hypotheses of Theorem 3.1 are fulfilled by Fq with p0=q.

Hence, by (3.2) and (3.3), for all 0<p<∞, 0<s≤∞, ω∈Aρ,∞
∞ and (fq, gq)∈Fq,

‖fq‖Lp(ω)≤C‖gq‖Lp(ω) and ‖fq‖Lp,s(ω)≤C‖gq‖Lp,s(ω). �

3.4. Proof of Theorem 3.2

This is similar to the proof of Theorem 3.1, adapting the same argument of

Theorem 2.2 in [5], we omit the details here.

3.5. Proof of Theorem 3.3

We first need the following lemma, which is different from Lemma 2.2.

Lemma 3.8. Let 1≤p<∞ and suppose that ω∈Aρ,θ
p . If p<p1<∞, then

∫
Rn

|MV,θf(x)|p1ω(x) dx≤C

∫
Rn

|f(x)|p1ω(x) dx.

Proof. In fact,

1

Ψθ(B)|B|

∫
B

|f(y)| dy

=
1

Ψθ(B)|B|

∫
B

|f(y)|ω1/p(y)ω−1/p(y) dy

≤
(

1

Ψθ(B)|B|

∫
B

|f(y)|pω(y) dy
)1/p(

1

Ψθ(B)|B|

∫
B

ω−1/(p−1)(y) dy

)(p−1)/p
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≤C

(
1

Ψθ(B)|B|

∫
B

|f(y)|pω(y) dy
)1/p(

1

Ψθ(5B)|B|

∫
5B

ω−1/(p−1)(y) dy

)(p−1)/p

≤C

(
1

Ψθ(B)|B|

∫
B

|f(y)|pω(y) dy
)1/p(

1

Ψθ(B)|B|

∫
5B

ω(y) dy

)−1/p

≤C

(
1

ω(5B)

∫
B

|f |pω(y) dy
)1/p

.

Therefore,

MV,θf(x)≤CMω(|f |p)(x)1/p, x∈R
n.

From this and using Lemma 3.6, we can deduce Lemma 3.8. �

Proof of Theorem 3.3. We only consider the case γ=1, the case γ>1 is similar.

We first show that if 1<q<r and ω∈Aρ,∞
1 then T is bounded on Lq(ω). Without loss

of generality, we assume that ω∈Aρ,η
1 for some η>0. By (iv) of Proposition 2.3 the

function M
(r−q)/(r−1)
V,η is in Aρ,η

1 , and ω(MV,ηf)
q−r∈Aρ,η

r by (iv) of Proposition 2.3.

Hence,

∫
Rn

|Tf |qω =

∫
Rn

|Tf |q(MV,ηf)
−(q−r)q/r(MV,ηf)

(q−r)q/rω dx

≤
(∫

Rn

|Tf |rω(MV,ηf)
q−r dx

)q/r(∫
Rn

(MV,ηf)
qω dx

)(r−q)/r

≤
(∫

Rn

|f |rω(MV,ηf)
q−r dx

)q/r(∫
Rn

|f |qω dx

)(r−q)/r

≤ C

∫
Rn

|f |qω dx,

where the second inequality holds by our hypothesis on T and by Lemma 3.8 (since

ω∈Aρ,η
1 ), and the third inequality holds since |f(x)|≤MV,ηf(x) a.e. for any η≥0,

so MV,ηf(x)
q−r≤|f(x)|q−r a.e.

Given any 1<p<∞ and ω∈Aρ,θ
p , by (iii) of Proposition 2.3 there exists q>1

and θ1≥θ such that ω∈Aρ,θ1
p/q . Hence we only need to prove that T is bounded on

Lp(ω) if ω∈Aρ,θ1
p/q .

Fix ω∈Aρ,θ1
p/q . Then by duality there exists u∈L(p/q)′(ω) with norm 1 such that

(∫
Rn

|Tf |pω dx

)q/p

=

∫
Rn

|Tf |qωudx.
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For any s>1, ωu≤MV,η((ωu)
s)1/s for any η>0 and MV,η((ωu)

s)1/s∈Aρ,η
1 . Hence,

by the first part of the proof,∫
Rn

|Tf |qωudx ≤
∫
Rn

|Tf |qMV,η((ωu)
s)1/s dx

≤ C

∫
Rn

|f |qMV,η((ωu)
s)1/s dx

= C

∫
Rn

|f |qωq/pMV,η((ωu)
s)1/sω−q/p dx

≤ C

(∫
Rn

|f |pω dx

)q/p

×
(∫

Rn

MV,η((ωu)
s)(p/q)

′/sω1−(p/q)′ dx

)1/(p/q)′

.

Since ω∈Aρ,θ1
p/q , we have ω1−(p/q)′∈Aρ,θ1

(p/q)′ by (ii) of Proposition 2.3. Therefore, if

we take s sufficiently close to 1, then there exists θs such that ω1−(p/q)′∈Aρ,θs
(p/q)′/s

by (iii) of Proposition 2.3. If we choose η=((p/q)′/s)′θs, then by Lemma 2.2 the

second integral is dominated by

C

∫
Rn

(ωu)(p/q)
′
ω1−(p/q)′ dx=C.

The proof is complete. �

We remark that an interesting problem posed by the referee is how to extend

Theorem 3.3 to the context of rearrangement-invariant Banach function spaces, as

considered in [8].

4. Some applications

Let T be a Schrödinger-type operator. From Theorem 3.1 in [25] we know that

for all 0<p<∞ and ω∈Aρ,∞
∞ , for any η>0, there exists a constant C depending

only on η, p, q, C0, l0 and the Aρ,∞
∞ constant of ω such that

‖Tf‖Lp(ω) ≤C‖MV,ηf‖Lp(ω).

By applying Theorem 3.1 to the family Fη(|Tf |,MV,ηf :f∈C∞
0 ), we obtain that

• for all 0<p, q<∞ and ω∈Aρ,∞
∞ ,

(4.1)∥∥∥∥
( ∞∑

j=1

|Tfj |q
)1/q∥∥∥∥

Lp(ω)

≤C

∥∥∥∥
( ∞∑

j=1

(MV,ηfj)
q

)1/q∥∥∥∥
Lp(ω)

, {(fj , gj)}∞j=1 ⊂Fη;
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• for all 0<p, q<∞, 0<s≤∞ and ω∈Aρ,∞
∞ ,

(4.2)∥∥∥∥
( ∞∑

j=1

|Tfj |q
)1/q∥∥∥∥

Lp,s(ω)

≤C

∥∥∥∥
( ∞∑

j=1

(MV,ηfj)
q

)1/q∥∥∥∥
Lp,s(ω)

, {(fj , gj)}∞j=1 ⊂Fη.

If we combine this with Theorem 2.7, we have the following inequalities:

• If 1<q<∞, then for every ω∈Aρ,∞
1 , there exists a constant C depending

only on η, q, C0, l0 and the Aρ,∞
1 constant of ω such that

(4.3)

∥∥∥∥
( ∞∑

j=1

|Tfj |q
)1/q∥∥∥∥

L1,∞(ω)

≤C

∥∥∥∥
( ∞∑

j=1

|fj |q
)1/q∥∥∥∥

L1(ω)

;

• If 1<q<∞ and 1<p<∞, then for every ω∈Aρ,∞
p , there exists a constant C

depending only on η, p, q, C0, l0 and the Aρ,∞
p constant of ω such that

(4.4)

∥∥∥∥
( ∞∑

j=1

|Tfj |q
)1/q∥∥∥∥

Lp(ω)

≤C

∥∥∥∥
( ∞∑

j=1

fq
j

)1/q∥∥∥∥
Lp(ω)

.

Let T be a Schrödinger-type operator as above. From Theorem 3.1 in [25]

we have that for all 0<p<∞ and ω∈A∞, for any η>0, there exists a constant C

depending only on η, p, q, C0, l0 and the Aρ,∞
∞ constant of ω such that

‖[b, T ]f‖Lp(ω) ≤C‖b‖BMO∞(ρ)‖MV,η(MV,ηf)‖Lp(ω).

By applying Theorem 3.1 to the family Fη(|[b, T ]f |,MV,η(MV,ηf):f∈C∞
0 ), we ob-

tain that

• for all 0<p, q<∞, ω∈Aρ,∞
∞ and {(fj , gj)}∞j=1⊂Fη ,

(4.5)∥∥∥∥
( ∞∑

j=1

|[b, T ]fj |q
)1/q∥∥∥∥

Lp(ω)

≤C‖b‖BMO∞(ρ)

∥∥∥∥
( ∞∑

j=1

(MV,η(MV,ηfj))
q

)1/q∥∥∥∥
Lp(ω)

;

• for all 0<p, q<∞, 0<s≤∞, ω∈Aρ,∞
∞ and {(fj , gj)}∞j=1⊂Fη ,

(4.6)∥∥∥∥
( ∞∑

j=1

|[b, T ]fj |q
)1/q∥∥∥∥

Lp,s(ω)

≤C‖b‖BMO∞(ρ)

∥∥∥∥
( ∞∑

j=1

(MV,η(MV,ηfj))
q

)1/q∥∥∥∥
Lp,s(ω)

,

where the new space BMOθ(ρ) introduced in [3] is defined by

‖f‖BMOθ(ρ) = sup
B⊂Rn

1

Ψθ(B)|B|

∫
B

|f(x)−fB | dx<∞,
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where fB= 1
|B|

∫
B
f(y) dy, Ψθ(B)=(1+r/ρ(x0))

θ , B=B(x0, r) and θ>0. We also

let BMO∞(ρ)=
⋃

θ>0 BMOθ(ρ).

If we combine this with Theorem 2.7, we have the following inequality: If

1<q<∞ and 1<p<∞, then for every ω∈Aρ,∞
p , there exists a constant C depending

only on η, p, q, C0, l0 and the Aρ,∞
p constant of ω such that

(4.7)

∥∥∥∥
( ∞∑

j=1

|[b, T ]fj |q
)1/q∥∥∥∥

Lp(ω)

≤C‖b‖BMO∞(ρ)

∥∥∥∥
( ∞∑

j=1

|fj |q
)1/q∥∥∥∥

Lp(ω)

.

We remark that the inequalities (4.1)–(4.7) are all new.

Next we consider another class V ∈Bq , with q≥ 1
2n for Riesz transforms asso-

ciated with Schrödinger operators. Let T1=(−Δ+V )−1V, T2=(−Δ+V )−1/2V 1/2

and T3=(−Δ+V )−1/2∇. By using Theorem 3.3 in [26] and Corollary 3.4, we have

the following result.

Theorem 4.1. Suppose V ∈Bq and q≥ 1
2n. Then

(i) if q′<p, r<∞ and ω∈Aρ,∞
p/q′ ,

∥∥|T1f |r
∥∥
Lp(ω)

≤C
∥∥|f |r∥∥Lp(ω)

;

(ii) if (2q)′<p, r<∞ and ω∈Aρ,∞
p/(2q)′ ,

∥∥|T2f |r
∥∥
Lp(ω)

≤C
∥∥|f |r∥∥Lp(ω)

;

(iii) if p′0<p, r<∞ and ω∈Aρ,∞
p/p′

0
, where 1/p0=1/q−1/n and 1

2n≤q<n,

∥∥|T3f |r
∥∥
Lp(ω)

≤C
∥∥|f |r∥∥Lp(ω)

.

Let T ∗
1 =V (−Δ+V )−1, T ∗

2 =V 1/2(−Δ+V )−1/2 and T ∗
3 =∇(−Δ+V )−1/2. By

duality we can easily get the following result.

Corollary 4.2. Suppose V ∈Bq and q≥ 1
2n. Then

(i) if 1<p, r<q and ω−1/(p−1)∈Aρ,∞
p′/q′ ,

∥∥|T ∗
1 f |r

∥∥
Lp(ω)

≤C
∥∥|f |r∥∥Lp(ω)

;

(ii) if 1<p, r<2q and ω−1/(p−1)∈Aρ,∞
p′/(2q)′ ,

∥∥|T ∗
2 f |r

∥∥
Lp(ω)

≤C
∥∥|f |r∥∥Lp(ω)

;
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(iii) if 1<p, r<p0 and ω−1/(p−1)∈Aρ,∞
p′/p′

0
, where 1/p0=1/q−1/n and 1

2n≤q<

n, ∥∥|T ∗
3 f |r

∥∥
Lp(ω)

≤C
∥∥|f |r∥∥Lp(ω)

.

Let T1, T2 and T3 be as above. By using Theorem 4.5 in [26] and Corollary 3.4,

we have the following result.

Theorem 4.3. Suppose V ∈Bq and q≥ 1
2n. Let b∈BMO∞(ρ). Then

(i) if q′<p, r<∞ and ω∈Aρ,∞
p/q′ ,∥∥|[b, T1]f |r

∥∥
Lp(ω)

≤C‖b‖BMO∞(ρ)

∥∥|f |r∥∥Lp(ω)
;

(ii) if (2q)′<p, r<∞ and ω∈Aρ,∞
p/(2q)′ ,∥∥|[b, T2]f |r

∥∥
Lp(ω)

≤C‖b‖BMO∞(ρ)

∥∥|f |r∥∥Lp(ω)
;

(iii) if p′0<p, r<∞ and ω∈Aρ,∞
p/p′

0
, where 1/p0=1/q−1/n and 1

2n≤q<n,

∥∥|[b, T3]f |r
∥∥
Lp(ω)

≤C‖b‖BMO∞(ρ)

∥∥|f |r∥∥Lp(ω)
.

Let T ∗
1 , T ∗

2 and T ∗
3 be as above. By duality we can easily get the following

result.

Corollary 4.4. Suppose V ∈Bq and q≥ 1
2n. Let b∈BMO∞(ρ). Then

(i) if 1<p, r<q and ω−1/(p−1)∈Aρ,∞
p′/q′ ,∥∥|[b, T ∗

1 ]f |r
∥∥
Lp(ω)

≤C‖b‖BMO∞(ρ)

∥∥|f |r∥∥Lp(ω)
;

(ii) if 1<p, r<2q and ω−1/(p−1)∈Aρ,∞
p′/(2q)′ ,∥∥|[b, T ∗

2 ]f |r
∥∥
Lp(ω)

≤C‖b‖BMO∞(ρ)

∥∥|f |r∥∥Lp(ω)
;

(iii) if 1<p, r<p0 and ω−1/(p−1)∈Aρ,∞
p′/p′

0
, where 1/p0=1/q−1/n and 1

2n≤q<

n, ∥∥|[b, T ∗
3 ]f |r

∥∥
Lp(ω)

≤C‖b‖BMO∞(ρ)

∥∥|f |r∥∥Lp(ω)
.

Finally, we consider the Littlewood–Paley g-function related to Schrödinger

operators defined by

g(f)(x)=

(∫ ∞

0

∣∣∣∣ ddte−tL(f)(x)

∣∣∣∣
2

t dt

)1/2

,
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and the commutator gb of g with b∈BMO(ρ) defined by

gb(f)(x)=

(∫ ∞

0

∣∣∣∣ ddte−tL((b(x)−b( · ))f)(x)
∣∣∣∣
2

t dt

)1/2

.

The maximal operator of the diffusion semi-group is defined by

T ∗f(x)= sup
t>0

|e−tLf(x)|=sup
t>0

∣∣∣∣
∫
Rn

kt(x, y)f(y) dy

∣∣∣∣,
and its commutator

T ∗
b f(x)= sup

t>0

∣∣∣∣
∫
Rn

kt(x, y)(b(x)−b(y))f(y) dy

∣∣∣∣,
where kt is the kernel of the operator e−tL, t>0.

By combining Theorems 1 and 2 in [4], Theorems 1.1 and 3.1 in [26] and

Corollary 3.4 together, we obtain the following result.

Theorem 4.5. Let b∈BMO∞(ρ) and T , T ∗
b , g and gb be as above.

(i) If 1<p, r<∞ and ω∈Aρ,∞
p , then there exists a constant C such that

∥∥|g(f)|r∥∥Lp(ω)
+
∥∥|T ∗f |r

∥∥
Lp(ω)

≤C
∥∥|f |r∥∥Lp(ω)

.

(ii) If 1<p, r<∞ and ω∈Aρ,∞
p , then there exists a constant C such that

∥∥|gb(f)|r∥∥Lp(ω)
+
∥∥|T ∗

b f |r
∥∥
Lp(ω)

≤C‖b‖BMO∞(ρ)

∥∥|f |r∥∥Lp(ω)
.

Acknowledgement. The author would like to thank the referee for his/her very

valuable suggestions.

References

1. Andersen, K. and John, R., Weighted inequalities for vector-valued maximal func-
tions and singular integrals, Studia Math. 69 (1980), 19–31.

2. Benedek, A. and Panzone, R., The space Lp with mixed norm, Duke Math. J. 28
(1961), 301–324.

3. Bongioanni, B., Harboure, E. and Salinas, O., Commutators of Riesz transforms
related to Schrödinger operators, J. Fourier Anal. Appl. 17 (2011), 115–134.

4. Bongioanni, B., Harboure, E. and Salinas, O., Class of weights related to
Schrödinger operators, J. Math. Anal. Appl. 373 (2011), 563–579.

5. Cruz-Uribe, D., Martell, J. M. and Pérez, C., Extrapolation from A∞ weights
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