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Global integral gradient bounds for quasilinear
equations below or near the natural exponent

Nguyen Cong Phuc

Abstract. We obtain sharp integral potential bounds for gradients of solutions to a wide

class of quasilinear elliptic equations with measure data. Our estimates are global over bounded

domains that satisfy a mild exterior capacitary density condition. They are obtained in Lorentz

spaces whose degrees of integrability lie below or near the natural exponent of the operator in-

volved. As a consequence, nonlinear Calderón–Zygmund type estimates below the natural ex-

ponent are also obtained for A-superharmonic functions in the whole space R
n. This answers a

question raised in our earlier work (On Calderón–Zygmund theory for p- and A-superharmonic

functions, to appear in Calc. Var. Partial Differential Equations, DOI 10.1007/s00526-011-0478-8)

and thus greatly improves the result there.

1. Introduction

The main goal of this paper is to obtain maximal global regularity for gradients
of weak solutions to nonhomogeneous quasilinear equations with measure data of
the form {

−div A(x, ∇u)=μ in Ω,

u=0 on ∂Ω,
(1.1)

for a given finite measure μ on a bounded domain Ω⊂R
n, n≥2.

In (1.1) the nonlinearity A : R
n ×R

n→R
n is a Carathédory vector-valued func-

tion, i.e., A(x, ξ) is measurable in x for every ξ and continuous in ξ for a.e. x. We
assume that A satisfies the following growth and monotonicity conditions: for some
1<p≤n there holds

| A(x, ξ)| ≤ β|ξ|p−1,(1.2)
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〈A(x, ξ)− A(x, η), ξ −η〉 ≥ α(|ξ|2+|η|2)(p−2)/2|ξ −η|2(1.3)

for every (ξ, η)∈R
n ×R

n \ {(0, 0)} and a.e. x∈R
n. Here α and β are positive con-

stants.
Under a capacitary density condition on Ω, for 2−1/n<p≤n we show in this

paper the following integral gradient bound

(1.4)
∫

Ω

| ∇u|q dx ≤ C

∫
Rn

M1(χΩ|μ|)q/(p−1)
dx,

where q lies below or near the natural exponent p, i.e., 0<q<p+ε for some small
ε>0 depending only on n, p, α, β, and Ω. In (1.4), χΩ is the characteristic function
of Ω and M1 is the fractional maximal function defined for each nonnegative locally
finite measure ν in R

n by

M1(ν)(x)= sup
r>0

rν(Br(x))
|Br(x)| , x ∈ R

n.

By a capacitary density condition on Ω we mean in this paper that the com-
plement R

n \Ω is uniformly p-thick, i.e. there exist constants c0, r0>0 such that for
all 0<t≤r0 and all x∈R

n \Ω it holds that

(1.5) capp(Bt(x)∩(Rn \Ω), B2t(x)) ≥ c0 capp(Bt(x), B2t(x)).

Here for a compact set K ⊂B2t(x) we define its p-capacity by

capp(K, B2t(x)) = inf
{∫

B2t(x)

| ∇ϕ|p dy : ϕ ∈ C∞
0 (B2t(x)) and ϕ ≥ χK

}
.

It is easy to see that domains satisfying (1.5) include those with Lipschitz
boundaries or even those that satisfy a uniform exterior corkscrew condition, where
the latter means that there exist constants c0, r0>0 such that for all 0<t≤r0 and
all x∈R

n \Ω, there is y ∈Bt(x) such that Bt/c0(y)⊂R
n \Ω.

The restriction q<p+ε for a small ε>0 is a natural one in order to obtain (1.4).
For one reason by now it is well known that, in general, the structural assump-
tions (1.2) and (1.3) on the nonlinearity A(x, ξ) are not enough to ensure higher
integrability even locally for gradients of solutions to (1.1) (see, e.g., [21]). For
another reason our condition on the domain Ω allows all domains with Lipschitz
boundaries, whereas an example given in [15] (see also [20]) makes it clear that
global W 1,q regularity, q>2, fails in general even for solutions to Laplace equations
(p=2) over polygonal domains.

We should mention that, at least in the case 2≤p≤n, a local version of inequal-
ity (1.4) has already been obtained by G. Mingione for the first time in [24] and
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the possibility of extending such local results to global ones was also mentioned in
the same paper. Some of the key ideas in [24] are borrowed in this work in order
to obtain (1.4), but technically our presentation is somewhat different from that of
[24].

A solution u to the boundary value problem (1.1) is understood in the following
sense. For each integer k>0 the truncation

Tk(u) :=max{ −k, min{k, u}}

belongs to W 1,p
0 (Ω) and satisfies

−div A(x, ∇Tk(u)) =μk

in the sense of distributions in Ω for a finite measure μk in Ω. Moreover, if we
extend both μ and μk by zero to R

n \Ω then μ+
k and μ−

k converge respectively to
μ+ and μ− weakly as measures in R

n. Here for a (signed) measure ν, ν+ and ν−

stand for its positive and negative parts respectively, i.e., ν=ν+ −ν−. The existence
of such solutions to the measure datum problem (1.1) is now well known (see, e.g.,
[7]). Alternatively, one can also adopt the notion of solutions obtained by limit of
approximations (SOLA) (see [3], [4], and [8]) as having been employed, e.g., in [11]
and [25].

It is not hard to see that for a nonnegative locally finite measure ν in R
n we

have

M1(ν)(x) ≤ c(n)I1(ν)(x) := c(n)
∫

Rn

dν(y)
|x−y|n−1

, x ∈ R
n.

Thus inequality (1.4) can be viewed as an integral potential bound for gradients
of solutions to (1.1). In fact, by a well-known result of Muckenhoupt and Whee-
den [26] it is equivalent to use the first order Riesz potential I1 in place of M1 on
the right-hand side of (1.4).

Inequality (1.4) holds also in the setting of Lorentz spaces. Recall that the
Lorentz space Ls,t(Ω), with 0<s<∞ and 0<t≤ ∞, is the set of measurable functions
g on Ω such that

‖g‖Ls,t(Ω) :=
(

s

∫ ∞

0

(αs| {x ∈ Ω : |g(x)| >α}|)t/s dα

α

)1/t

< ∞

when t �=∞; for t=∞ the space Ls,∞(Ω) is the weak Ls or Marcinkiewicz space
with quasinorm

‖g‖Ls,∞(Ω) := sup
α>0

α| {x ∈ Ω : |g(x)| >α}|1/s.

It is easy to see that when t=s the Lorentz space Ls,s(Ω) is nothing but the Lebesgue
space Ls(Ω).

We are now ready to state the main result of the paper.
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Theorem 1.1. Let 2−1/n<p≤n and suppose that Ω⊂R
n is a bounded do-

main whose complement R
n \Ω is uniformly p-thick with constants c0, r0>0. Then

there exists ε=ε(n, p, α, β, c0)>0 such that for any 0<q<p+ε and 0<t≤ ∞, and
for any solution u to (1.1) with a finite measure μ it holds that

(1.6) ‖∇u‖Lq,t(Ω) ≤ C‖ M1(χΩ|μ|)1/(p−1)‖Lq,t(Rn).

Here the constant C depends only on n, p, q, t, c0, and diam(Ω)/r0.

Remark 1.2. The space Lq,t(Rn) appearing on the right-hand side of (1.6)
can be replaced by Lq,t(B0) for any ball B0 of radius, say, R0 ≤2 diam(Ω) that
contains Ω. Moreover, it can also be replaced by the space Lq,t(Ω) provided the
domain Ω satisfies an additional interior density condition: there exist constants
c1, r1>0 such that for all 0<t≤r1 and all x∈Ω it holds that

|Bt(x)∩Ω| ≥ c1|Bt(x)|.

In particular, (1.6) with Lq,t(Ω) in place of Lq,t(Rn) holds on any Lipschitz do-
main Ω.

By the boundedness property of the first order fractional maximal function on
Lorentz spaces we obtain the following corollary.

Corollary 1.3. Let 2−1/n<p≤n and 0<t≤ ∞, and suppose that Ω is a
bounded domain in R

n whose complement R
n \Ω is uniformly p-thick with constants

c0, r0>0. Assume that 1<γ<n(p+ε)/(n(p−1)+p+ε), where ε=ε(n, p, α, β, c0)>0
is as in Theorem 1.1. Then for any solution u to (1.1) with μ=f ∈Lγ,t(Ω) it holds
that ∥∥| ∇u|p−1

∥∥
Lnγ/(n−γ),t(Ω)

≤ C ‖f ‖Lγ,t(Ω) .

Here the constant C depends only on n, p, q, t, c0, and diam(Ω)/r0.

Remark 1.4. For μ=f ∈Lγ,γ(Ω)=Lγ(Ω) with 1<γ<np/(n(p−1)+p), Boccar-
do and Gallouët obtained in [4] the solvability of equation (1.1) with a (unique)
solution u∈W

1,nγ(p−1)/(n−γ)
0 (Ω) only under the assumption that Ω is bounded. For

1<γ<np/(n(p−1)+p), see also the papers [1], [9], and [16]. On the other hand, the
Lorentz space borderline case γ=np/(n(p−1)+p), with p<n, was first obtained by
Mingione [24] in the local setting. The possibility of extending such local results to
global ones was also mentioned without proof in the same paper. Note that since
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ε>0 we have

np

n(p−1)+p
<

n(p+ε)
n(p−1)+p+ε

.

We next take this opportunity to discuss a Calderón–Zygmund type estimate
below the natural exponent p for A-superharmonic functions in the whole space R

n.
For the notion of A-superharmonicity see [13], [17], and [18]. Suppose now that u

is an A-superharmonic solution to the equation

(1.7) div A(x, ∇u)=div F in D ′(Rn).

In a recent paper [27] we show that, for 2−1/n<p≤n and max{1, p−1}<q<p, and
under a BMO type smallness condition on the nonlinearity A, it holds that

(1.8) ‖∇u‖Lq(Rn) ≤ C ‖F ‖1/(p−1)

Lq/(p−1)(Rn)
,

provided that ‖∇u‖Lq(Rn)<∞. The following theorem shows that the norm
‖∇u‖Lq(Rn) is in fact finite as long as ∇u∈L1(Rn, Rn). This answers a question
raised by the author in [27, Remark 3.3].

Theorem 1.5. Let 2−1/n<p≤n, max{1, p−1}<q<p and 0<t≤ ∞, and sup-
pose that F is a vector field in Lq/(p−1),t/(p−1)(Rn, Rn). Assume that u is an entire
A-superharmonic solution of (1.7) such that ∇u∈L1(Rn, Rn). Then one has the
estimate

(1.9) ‖∇u‖Lq,t(Rn) ≤ C ‖ ∇u‖L1(Rn)+C ‖F ‖1/(p−1)

Lq/(p−1),t/(p−1)(Rn)
,

where C=C(n, p, q, t, α, β).

It is worth mentioning that estimate (1.8), with max{1, p−1}<q<p, was con-
jectured by T. Iwaniec in [14] to hold for all distributional solutions to (1.7). Thus
Theorem 1.5 provides a solution to this conjecture when the solution u belongs to
the class of A-superharmonic functions. Here the assumption q>1 is essential in
our approach to (1.9). As mentioned above the first term in the right-hand side
of (1.9) can be dropped if A satisfies an additional smallness condition of BMO
type. In general, we have the following existence result where the exponent q may
go below 1.
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Theorem 1.6. Let 2−1/n<p<n, p−1<q ≤p, and 0<t≤ ∞. Suppose that
F ∈Lq/(p−1),t/(p−1)(Rn, Rn) with −div F ≥0 in D ′(Rn). Then there exists an entire
nonnegative A-superharmonic solution of (1.7) such that

‖u‖Lnq/(n−q),t(Rn)+‖ ∇u‖Lq,t(Rn) ≤ C ‖F ‖1/(p−1)

Lq/(p−1),t/(p−1)(Rn)
,

where C=C(n, p, q, t, α, β).

Remark 1.7. If p−1<q ≤n(p−1)/(n−1) then by [28, Theorem 3.1] we have
div F =0. Thus in this case the solution u obtained in Theorem 1.6 is identically
zero. This also implies that Theorem 1.6 holds as well in the case p=n, with u≡0
being a valid nonnegative solution.

The proofs of Theorems 1.1, 1.5, and 1.6 will be presented in Section 4.

2. Interior and boundary comparison estimates

Following Mingione [24], in order to prove Theorem 1.1 we need to obtain
certain local interior and boundary comparison estimates. First let us consider
the interior ones. With u∈W 1,p

loc (Ω), for each ball B2R=B2R(x0)�Ω we defined
w ∈u+W 1,p

0 (B2R) as the unique solution to the Dirichlet problem

(2.1)

{
div A(x, ∇w)=0 in B2R,

w=u on ∂B2R.

Then a well-known version of Gehring’s lemma applied to the function w de-
fined above yields the following result (see [12, Theorem 6.7] and [12, Remark 6.12]).

Lemma 2.1. With u∈W 1,p
loc (Ω), let w be as in (2.1). Then there exists a

constant θ0=θ0(n, p, α, β)>1 such that for any t∈(0, p] the reverse Hölder type in-
equality

(
1

|Bρ/2(z)|

∫
Bρ/2(z)

| ∇w|θ0p dx

)1/θ0p

≤ C

(
1

|Bρ(z)|

∫
Bρ(z)

| ∇w|t dx

)1/t

holds for all balls Bρ(z)⊂B2R(x0) with a constant C depending only on n, p, α, β,
and t.
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It is worth mentioning that the approach of using this kind of reverse Hölder’s
inequalities with arbitrarily small exponents in the context of measure datum prob-
lems has been first implemented by Mingione in the paper [23].

The following important comparison lemma involving an estimate “below the
natural growth exponent” was also established in [23] (see also [11, Lemma 3.3])
for the degenerate case p≥2. This lemma was later obtained in [10, Lemma 4.2] for
the singular case 2−1/n<p<2.

Lemma 2.2. With p>2−1/n, let u∈W 1,p
loc (Ω) be a solution of (1.1) and let w

be as in (2.1). Then there is a constant C=C(n, p, α, β) such that

1
|B2R|

∫
B2R

| ∇u− ∇w| dx

≤ C

(
|μ|(B2R)

Rn−1

)1/(p−1)

+C
|μ|(B2R)

Rn−1

(
1

|B2R|

∫
B2R

| ∇u| dx

)2−p

.

Moreover, when p≥2 the second term on the right-hand side can be dropped.

Next we consider the counterparts of Lemmas 2.1 and 2.2 up to the bound-
ary. As R

n \Ω is uniformly p-thick with constants c0, r0>0, there exists 1<p0=
p0(n, p, c0)<p such that R

n \Ω is uniformly p0-thick with constants c∗ =c(n, p, c0)
and r0. This is by now a classical result due to Lewis [19] (see also [22]). Moreover,
p0 can be chosen near p so that p0 ∈(np/(n+p), p). Thus, since p0<n, we have

capp0
(Bt(x)∩(Rn \Ω), B2t(x)) ≥ c∗ capp0

(Bt(x), B2t(x)) ≥ C(n, p, c0)tn−p0(2.2)

for all 0<t≤r0 and all x∈R
n \Ω.

Now let x0 ∈∂Ω be a boundary point and for 0<2R≤r0 we set Ω2R=Ω2R(x0)=
B2R(x0)∩Ω. For u∈W 1,p

0 (Ω) we consider the unique solution w ∈u+W 1,p
0 (Ω2R) to

the equation

(2.3)

{
div A(x, ∇w)=0 in Ω2R,

w=u on ∂Ω2R.

In what follows we extend μ and u by zero to R
n \Ω and then extend w by u

to R
n \Ω2R.
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Lemma 2.3. With u∈W 1,p
0 (Ω), let w be as in (2.3). Then there exists a

constant θ0=θ0(n, p, α, β, c0)>1 such that the reverse Hölder type inequality

(
1

|Bρ/2(z)|

∫
Bρ/2(z)

| ∇w|θ0p dx

)1/θ0

≤ C

|B11ρ/4(z)|

∫
B11ρ/4(z)

| ∇w|p dx

holds for all balls B11ρ/4(z)⊂B2R(x0) with a constant C depending only on n, p, α,
β, and c0.

Proof. By Gehring’s lemma it is enough to show that there exists ε∈(0, 1) such
that

(2.4)
(

1
|Bρ/2(z)|

∫
Bρ/2(z)

| ∇w|p dx

)ε

≤ C

|B11ρ/4(z)|

∫
B11ρ/4(z)

| ∇w|εp dx

for all balls B11ρ/4(z)⊂B2R(x0).
Inequality (2.4) obviously holds when Bρ(z)⊂R

n \Ω. Next we suppose that
Bρ(z)⊂Ω. Let ϕ∈C∞

0 (Bρ(z)) be such that 0≤ϕ≤1, ϕ≡1 in Bρ/2(z) and | ∇ϕ| ≤c/ρ.
Then using

φ =(w −wBρ(z))ϕp, with wBρ(z) =
1

|Bρ(z)|

∫
Bρ(z)

w dy,

as a test function for (2.3) we find that∫
Bρ(z)

| ∇w|pϕp dx ≤ C

∫
Bρ(z)

| ∇w|p−1| ∇ϕ|ϕp−1|w −wBρ(z)| dx.

Thus by Hölder’s inequality we get that∫
Bρ/2(z)

| ∇w|p dx ≤ C

ρp

∫
Bρ(z)

|w −wBρ(z)|p dx.

This yields

(
1

|Bρ/2(z)|

∫
Bρ/2(z)

| ∇w|p dx

)1/p

≤ C

(
1

|Bρ(z)|

∫
Bρ(z)

| ∇w|mp dx

)1/mp

by the Poincaré–Sobolev inequality, where

m=

{
n/(n+p), if np/(n+p)≥1,

1/p, if np/(n+p)<1.

Hence, we obtain (2.4) with ε=m.
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Finally, we consider the case Bρ(z)∩∂Ω �=∅. In this case we choose z0 ∈∂Ω
such that |z −z0|=dist(z, ∂Ω). Then |z −z0|<ρ and thus

Bρ/2(z) ⊂ B3ρ/2(z0) ⊂ B7ρ/4(z0) ⊂ B11ρ/4(z) ⊂ B2R(x0).

Let ϕ∈C∞
0 (B7ρ/4(z0)) be such that 0≤ϕ≤1, ϕ≡1 in B3ρ/2(z0) and | ∇ϕ| ≤c/ρ.

Using φ=wϕp as a test function for (2.3) we find that∫
B3ρ/2(z0)

| ∇w|p dx ≤ C

ρp

∫
B7ρ/4(z0)

|w|p dx.

Recall now that R
n \Ω is uniformly p0-thick for some p0 ∈(np/(n+p), p). Thus

p<p0n/(n−p0) and by Hölder’s inequality we get(
1

|Bρ/2(z)|

∫
Bρ/2(z)

| ∇w|p dx

)1/p

≤ C

ρ

(
1

|B7ρ/4(z0)|

∫
B7ρ/4(z0)

|w|p dx

)1/p

≤ C

ρ

(
1

|B7ρ/4(z0)|

∫
B7ρ/4(z0)

|w|np0/(n−p0) dx

)(n−p0)/np0

.

On the other hand, with K={x∈B7ρ/4(z0):w(x)=0}, by a Sobolev type in-
equality (see Lemma 8.11 and Remark 8.14 in [22])(

1
|B7ρ/4(z0)|

∫
B7ρ/4(z0)

|w|np0/(n−p0) dx

)(n−p0)/np0

≤ C

(
1

capp0
(K, B7ρ/2(z0))

∫
B7ρ/4(z0)

| ∇w|p0 dx

)1/p0

≤ C

(
ρp0

1
|B7ρ/4(z0)|

∫
B7ρ/4(z0)

| ∇w|p0 dx

)1/p0

,

where we used (2.2) in the last inequality which is valid since 7ρ/4<11ρ/4≤2R≤r0.
These inequalities yield(

1
|Bρ/2(z)|

∫
Bρ/2(z)

| ∇w|p dx

)1/p

≤ C

(
1

|B11ρ/4(z)|

∫
B11ρ/4(z)

| ∇w|p0 dx

)1/p0

,

and thus we get (2.4) with ε=p0/p∈(0, 1). �

On the other hand, arguing as in [12, Remark 6.12] (see also [10, Lemma 3.2])
we have following lemma.
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Lemma 2.4. Let A⊂R
n be an open set and let f : A→R be an integrable

function such that

(
1

|Bρ|

∫
Bρ

|f |θ0 dx

)1/θ0

≤ C

|B11ρ/2|

∫
B11ρ/2

|f | dx

for all concentric balls Bρ ⊂B11ρ/2 ⊂A, where θ0>1 and C ≥0. Then for every
t∈(0, 1] and θ ∈(0, θ0] there exists a constant C0=C0(n, C, t) such that

(
1

|Bρ|

∫
Bρ

|f |θ dx

)1/θ

≤ C0

(
1

|B6ρ|

∫
B6ρ

|f |t dx

)1/t

for all concentric balls Bρ ⊂B6ρ ⊂A.

Thus combining the last two lemmas we obtain the following reverse Hölder
type inequality, a version of Lemma 2.1 up to the boundary.

Lemma 2.5. With u∈W 1,p
0 (Ω), let w be as in (2.3). Then there exists a

constant θ0=θ0(n, p, α, β, c0)>1 such that for every t∈(0, p] the reverse Hölder type
inequality

(
1

|Bρ/2(z)|

∫
Bρ/2(z)

| ∇w|θ0p dx

)1/θ0p

≤ C

(
1

|B3ρ(z)|

∫
B3ρ(z)

| ∇w|t dx

)1/t

holds for all balls B3ρ(z)⊂B2R(x0) with a constant C=C(n, p, t, α, β, c0).

We also have a counterpart of Lemma 2.2 up to the boundary.

Lemma 2.6. With p>2−1/n, let u∈W 1,p
0 (Ω) be a solution of (1.1) and let w

be as in (2.3). Then there is a constant C=C(n, p, α, β) such that

1
|B2R|

∫
B2R

| ∇u− ∇w| dx

≤ C

(
|μ|(B2R)

Rn−1

)1/(p−1)

+C
|μ|(B2R)

Rn−1

(
1

|B2R|

∫
B2R

| ∇u| dx

)2−p

.

Moreover, when p≥2 the second term on the right-hand side can be dropped.

Proof. A proof of this lemma can be obtained by the method of [23], [11], [10],
and [25] that was implemented for the interior situation, i.e., Lemma 2.2. Here, to
avoid a scaling argument, we choose to present a slightly different approach based
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on a technique in [2]. Note that u, w, and μ are all zero outside Ω. Since both u

and w are solutions we find that

(2.5)
∫

Ω2R

〈A(x, ∇u)− A(x, ∇w), ∇ϕ〉 dx=
∫

Ω2R

ϕdμ

for every ϕ∈W 1,p
0 (Ω2R). Thus choosing ϕ=Tk(u−w), k>0, in (2.5) we have

(2.6)
∫

{x∈Ω2R:|u(x)−w(x)|<k}
g(u, w)(x) dx ≤ ck|μ|(Ω2R),

where we set
g(u, w)= (| ∇u|2+| ∇w|2)(p−2)/2| ∇(u−w)|2.

For k, λ≥0 we now put

Φ(k, λ) = | {x ∈ Ω2R : |u(x)−w(x)| >k and g(u, w)(x) >λ}|.

As the map λ �→Φ(k, λ) is nonincreasing we find that

Φ(0, λ) ≤ 1
λ

∫ λ

0

Φ(0, s) ds ≤ Φ(k, 0)+
1
λ

∫ λ

0

[Φ(0, s)−Φ(k, s)] ds.

Thus

Φ(0, λ) ≤ | {x ∈ Ω2R : |u(x)−w(x)| >k} |

+
1
λ

∫ λ

0

| {x ∈ Ω2R : |u(x)−w(x)| <k and g(u, w)(x) >s}| ds

≤ | {x ∈ Ω2R : |u(x)−w(x)| >k} |+ 1
λ

∫
{x∈Ω2R:|u(x)−w(x)|<k}

g(u, w) dx

≤ | {x ∈ Ω2R : |u(x)−w(x)| >k} |+ 1
λ

ck|μ|(Ω2R),

where (2.6) was used in the last inequality. Using the Sobolev inequality this gives
that

Φ(0, λ) ≤ ck−n/(n−1) ‖ ∇u− ∇w‖n/(n−1)
L1(Ω2R)+

1
λ

ck|μ|(Ω2R)

which holds for all k>0. Choosing

k =
[λ ‖∇u− ∇w‖n/(n−1)

L1(Ω2R) /|μ|(Ω2R)](n−1)

2n−1

in the above inequality we arrive at

λn/(2n−1)Φ(0, λ) ≤ c|μ|(Ω2R)n/(2n−1) ‖∇u− ∇w‖n/(2n−1)
L1(Ω2R) .
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Letting λ=sp this yields

‖g(u, w)1/p‖Lnp/(2n−1),∞(Ω2R) ≤ c|μ|(Ω2R)1/p ‖∇u− ∇w‖1/p
L1(Ω2R) ,

and by Hölder’s inequality

(2.7) ‖g(u, w)1/p‖L1(Ω2R) ≤ c|μ|(Ω2R)1/p|Ω2R|1−(2n−1)/np ‖∇u− ∇w‖1/p
L1(Ω2R) ,

where we used the fact that p>2−1/n.

We next consider separately the case p≥2 and the case 2−1/n<p<2. For p≥2
using the pointwise bound

| ∇u− ∇w| ≤ g(u, w)1/p

coupled with inequality (2.7) we easily obtain the desired result. For 2−1/n<p<2
we write

| ∇u− ∇w| = g(u, w)1/2(| ∇u|2+| ∇w|2)(2−p)/4

≤ cg(u, w)1/2(| ∇u− ∇w|(2−p)/2+| ∇u|(2−p)/2)

≤ cg(u, w)1/p+ 1
2 | ∇u− ∇w|+cg(u, w)1/2| ∇u|(2−p)/2,

and thus
| ∇u− ∇w| ≤ cg(u, w)1/p+cg(u, w)1/2| ∇u|(2−p)/2.

Using this and Hölder’s inequality we get that

‖∇u− ∇w‖L1(Ω2R) ≤ c‖g(u, w)1/p‖L1(Ω2R)+c‖g(u, w)1/p‖p/2
L1(Ω2R) ‖∇u‖(2−p)/2

L1(Ω2R) .

By (2.7) this yields

‖∇u− ∇w‖L1(Ω2R) ≤ c|μ|(Ω2R)1/p|Ω2R|1−(2n−1)/np ‖∇u− ∇w‖1/p
L1(Ω2R)

+c|μ|(Ω2R)1/2|Ω2R|(1−(2n−1)/np)p/2

× ‖ ∇u− ∇w‖1/2
L1(Ω2R) ‖∇u‖(2−p)/2

L1(Ω2R) ,

or

‖∇u− ∇w‖1/2
L1(Ω2R) ≤ c|μ|(Ω2R)1/p|Ω2R|1−(2n−1)/np ‖∇u− ∇w‖1/p−1/2

L1(Ω2R)

+c|μ|(Ω2R)1/2|Ω2R|(1−(2n−1)/np)p/2 ‖∇u‖(2−p)/2
L1(Ω2R) .

Thus using Young’s inequality for the first term on the right-hand side we get
that

‖∇u− ∇w‖1/2
L1(Ω2R) ≤ c|μ|(Ω2R)1/2(p−1)|Ω2R|(1−(2n−1)/np)p/2(p−1)

+c|μ|(Ω2R)1/2|Ω2R|(1−(2n−1)/np)p/2 ‖∇u‖(2−p)/2
L1(Ω2R) .

The desired result is easily seen to follow from the last inequality. �
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3. Applications of comparison estimates

Our approach to Theorem 1.1 is based on the following technical lemma which
allows one to work with balls instead of cubes. A version of this lemma appeared
for the first time in [31]. It can be viewed as a version of the Calderón–Zygmund–
Krylov–Safonov decomposition that has been used in [6] and [24]. A proof of this
lemma, which uses Lebesgue’s differentiation theorem and the standard Vitali cov-
ering lemma, can be found in [5] with obvious modifications to fit the setting here.

Lemma 3.1. Assume that A⊂R
n is a measurable set for which there exist

c1, r1>0 such that

(3.1) |Bt(x)∩A| ≥ c1|Bt(x)|

holds for all x∈A and 0<t≤r1. Fix 0<r ≤r1 and let C ⊂D ⊂A be measurable sets
for which there exists 0<ε<1 such that

(1) |C|<εrn|B1|;
(2) for all x∈A and ρ∈(0, r], if |C ∩Bρ(x)| ≥ε|Bρ(x)|, then Bρ(x)∩A⊂D.

Then we have the estimate
|C| ≤ ε

c1
|D|.

We now recall that for a function f ∈L1
loc(R

n) the Hardy–Littlewood maximal
function of f is defined by

M(f)(x)= sup
r>0

1
|Br(x)|

∫
Br(x)

|f(y)| dy.

In order to apply Lemma 3.1 we need the following proposition, whose proof
relies essentially on the comparison estimates obtained in the previous section.

Proposition 3.2. There exist constants A, θ0>1, depending only on n, p, α,
β, and c0, so that the following holds for any T >1 and any λ>0. Suppose that
u∈W 1,p

0 (Ω) is a weak solution of (1.1) with A satisfying (1.2) and (1.3). Assume
that for some ball Bρ(y) with 16ρ≤r0 we have

{x ∈ Bρ(y) : M(χΩ| ∇u|)(x) ≤ λ and M1(χΩ|μ|)(x)1/(p−1) ≤ ε(T )λ} �= ∅,

where ε(T ) is defined by

(3.2) ε(T ) =

{
T −pθ0+1, if p≥2,

T (−pθ0+1)/(p−1), if 2−1/n<p<2.

Then

(3.3) | {x ∈ Bρ(y) : M(χΩ| ∇u|)(x) >ATλ}| <T −pθ0 |Bρ(y)|.
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Proof. By hypothesis, there exists x0 ∈Bρ(y) such that for any r>0,
(3.4)

1
|Br(x0)|

∫
Br(x0)

χΩ| ∇u| dz ≤ λ and
r

|Br(x0)|

∫
Br(x0)

χΩ d|μ| ≤ [ε(T )λ]p−1.

We first claim that for x∈Bρ(y) we have

(3.5) M(χΩ| ∇u|)(x) ≤ max{ M(χB2ρ(y)∩Ω| ∇u|)(x), 3nλ}.

Indeed, for r ≤ρ we have Br(x)∩Ω⊂B2ρ(y)∩Ω and thus

1
|Br(x)|

∫
Br(x)

χΩ| ∇u| dz =
1

|Br(x)|

∫
Br(x)

χB2ρ(y)∩Ω| ∇u| dz,

whereas for r>ρ we have Br(x)⊂B3r(x0) from which by (3.4) yields

1
|Br(x)|

∫
Br(x)

χΩ| ∇u| dz ≤ 3n 1
|B3r(x0)|

∫
B3r(x0)

χΩ| ∇u| dz ≤ 3nλ.

In view of (3.5) we see that (3.3) trivially holds provided that A≥3n and
B4ρ(y)⊂R

n \Ω. Thus it is enough to consider the case B4ρ(y)⊂Ω and the case
B4ρ(y)∩∂Ω �=∅.

First we consider the case when B4ρ(y)⊂Ω. Let w ∈u+W 1,p
0 (B4ρ(y)) be the

unique solution to the Dirichlet problem

(3.6)

{
div A(x, ∇w)=0 in B4ρ(y),

w=u on ∂B4ρ(y).

By weak type (1, 1) estimates for the maximal function we have

| {x ∈ Bρ(y) : M(χB2ρ(y)| ∇u|)(x) >ATλ} |
≤ | {x ∈ Bρ(y) : M(χB2ρ(y)| ∇w|)(x) >ATλ/2}|

+| {x ∈ Bρ(y) : M(χB2ρ(y)| ∇u− ∇w|)(x) >ATλ/2}|

≤ C(ATλ)−pθ0

∫
B2ρ(y)

| ∇w|pθ0 dx+C(ATλ)−1

∫
B2ρ(y)

| ∇u− ∇w| dx.

Note that by Lemma 2.1 we have(
1

|B2ρ(y)|

∫
B2ρ(y)

| ∇w|pθ0 dx

)1/pθ0

≤ C

|B4ρ(y)|

∫
B4ρ(y)

| ∇w| dx

≤ C

|B4ρ(y)|

∫
B4ρ(y)

| ∇u| dx

+
C

|B4ρ(y)|

∫
B4ρ(y)

| ∇u− ∇w| dx
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and thus

| {x ∈ Bρ(y) : M(χB2ρ(y)| ∇u|)(x) >ATλ} |(3.7)

≤ C(ATλ)−pθ0 |Bρ(y)|
(

1
|B4ρ(y)|

∫
B4ρ(y)

| ∇u| dx

)pθ0

+C(ATλ)−pθ0 |Bρ(y)|
(

1
|B4ρ(y)|

∫
B4ρ(y)

| ∇u− ∇w| dx

)pθ0

+C(ATλ)−1|Bρ(y)| 1
|B4ρ(y)|

∫
B4ρ(y)

| ∇u− ∇w| dx.

On the other hand, by Lemma 2.2 we have that
1

|B4ρ(y)|

∫
B4ρ(y)

| ∇u− ∇w| dx(3.8)

≤ C

(
|μ|(B5ρ(x0))

ρn−1

)1/(p−1)

+C
|μ|(B5ρ(x0))

ρn−1

(
1

|B5ρ(x0)|

∫
B5ρ(x0)

| ∇u| dx

)2−p

,

where the last term should be dropped when p≥2. Thus by (3.4) and the definition
of ε(T ) we get that

1
|B4ρ(y)|

∫
B4ρ(y)

| ∇u− ∇w| dx ≤ CT −pθ0+1λ

if p≥2, and
1

|B4ρ(y)|

∫
B4ρ(y)

| ∇u− ∇w| dx ≤ CT (−pθ0+1)/(p−1)λ+CT −pθ0+1λ

if 2−1/n<p<2. In any case, since T >1, we have

(3.9)
1

|B4ρ(y)|

∫
B4ρ(y)

| ∇u− ∇w| dx ≤ CT −pθ0+1λ.

At this point combining (3.7), (3.9) and using that T >1 we find that

| {x ∈ Bρ(y) : M(χB2ρ(y)| ∇u|)(x) >ATλ} | ≤ (CA−pθ0 +CA−1)T −pθ0 |Bρ(y)|.

We now choose A so that A≥3n and 2CA−1 ≤ 1
2 , i.e., A≥max{3n, 4C}. Then we

have that

| {x ∈ Bρ(y) : M(χB2ρ(y)| ∇u|)(x) >ATλ}| ≤ 1
2T −pθ0 |Bρ(y)|,

which in view of (3.5) yields (3.3).
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Finally, we consider the case when B4ρ(y)∩∂Ω �=∅. Let y0 ∈∂Ω be a boundary
point such that |y −y0|=dist(y, ∂Ω). Define w ∈u+W 1,p

0 (Ω16ρ(y0)) as the unique
solution to the Dirichlet problem{

div A(x, ∇w)=0 in Ω16ρ(y0),

w=u on ∂Ω16ρ(y0).

Here we also extend u by zero to R
n \Ω and then extend w by u to R

n \Ω16ρ(y0).
As in (3.7) in this case we have

| {x ∈ Bρ(y) : M(χΩ2ρ(y)| ∇u|)(x) >ATλ}|(3.10)

≤ C(ATλ)−pθ0 |Bρ(y)|
(

1
|B12ρ(y)|

∫
B12ρ(y)

| ∇u| dx

)pθ0

+C(ATλ)−pθ0 |Bρ(y)|
(

1
|B12ρ(y)|

∫
B12ρ(y)

| ∇u− ∇w| dx

)pθ0

+C(ATλ)−1|Bρ(y)| 1
|B12ρ(y)|

∫
B12ρ(y)

| ∇u− ∇w| dx,

where Lemma 2.5 is used in stead of Lemma 2.1. Since

B12ρ(y) ⊂ B16ρ(y0) ⊂ B20ρ(y) ⊂ B21ρ(x0)

by Lemma 2.6, as in (3.9), we find that

(3.11)
1

|B12ρ(y)|

∫
B12ρ(y)

| ∇u− ∇w| dx ≤ CT −pθ0+1λ.

Inequalities (3.10) and (3.11) and the fact that T >1 now yield

| {x ∈ Bρ(y) : M(χΩ2ρ(y)| ∇u|)(x) >ATλ}| ≤ (CA−pθ0 +CA−1)T −pθ0 |Bρ(y)|,

and thus we arrive at

| {x ∈ Bρ(y) : M(χΩ2ρ(y)| ∇u|)(x) >ATλ}| ≤ 1
2T −pθ0 |Bρ(y)|

provided A≥max{3n, 4C}. The last bound and (3.5) yield (3.3) as desired. �

Remark 3.3. By approximation Proposition 3.2 continues to hold without as-
suming that u∈W 1,p

0 (Ω). To this end, let uk=Tk(u) for each integer k>0. Then
by our notion of solutions uk ∈W 1,p

0 (Ω) solves

(3.12) −div A(x, ∇uk) =μk



Global integral gradient bounds for quasilinear equations 345

for a finite measure μk in Ω. Moreover, if we extend both μ and μk by zero to R
n \Ω

then μ+
k and μ−

k converge respectively to μ+ and μ− weakly as measures in R
n. This

implies in particular that

(3.13) lim sup
k→∞

|μk |(Br(z)) ≤ |μ|(Br(z))

for any ball Br(z)⊂R
n. To show (3.3) it is enough to consider the case B4ρ(y)⊂Ω

as the case B4ρ(y)∩∂Ω �=∅ is just similar. By working with (3.12) then instead of
(3.8) we have

1
|B4ρ(y)|

∫
B4ρ(y)

| ∇uk − ∇wk | dx

≤ C

(
|μk |(B5ρ(x0))

ρn−1

)1/(p−1)

+C
|μk |(B5ρ(x0))

ρn−1

(
1

|B5ρ(x0)|

∫
B5ρ(x0)

| ∇uk | dx

)2−p

,

where the last term should be dropped when p≥2. Here wk is the solution of (3.6)
with uk in place of u. Thus using (3.4) and (3.13) we have the following analogue
of (3.9)

lim sup
k→∞

1
|B4ρ(y)|

∫
B4ρ(y)

| ∇uk − ∇wk | dx ≤ CT −pθ0+1λ,

from which we obtain, for large enough A, that

(3.14) lim sup
k→∞

| {x ∈ Bρ(y) : M(χΩ| ∇uk |)(x) >ATλ}| ≤ 1
2T −pθ0 |Bρ(y)|.

In equality (3.3) (with 2A in place of A) follows from (3.14) by writing

| {x ∈ Bρ(y) : M(χΩ| ∇u|)(x) > 2ATλ} |

≤ | {x ∈ Bρ(y) : M(χΩ| ∇uk |)(x) >ATλ}|

+| {x ∈ Bρ(y) : M(χΩ| ∇u− ∇uk |)(x) >ATλ}|

and using the weak type (1, 1) bound of the maximal function.
We remark that the above argument works equally well for solutions obtained by

limit of approximations (SOLA) as property (3.13) holds also for the approximating
measures in that case (see, e.g., [11, Section 5]).

Proposition 3.2 can be restated as follows.
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Proposition 3.4. There exist constants A, θ0>1, depending only on n, p, α,
β, and c0, so that the following holds for any T >1 and any λ>0. Let u be a solution
of (1.1) with A satisfying (1.2) and (1.3). Suppose that for some ball Bρ(y) with
16ρ≤r0 we have

| {x ∈ Bρ(y) : M(χΩ| ∇u|)(x) >ATλ}| ≥ T −pθ0 |Bρ(y)|.

Then

Bρ(y) ⊂ {x ∈ R
n : M(χΩ| ∇u|)(x) >λ or M1(χΩ|μ|)(x)1/(p−1) >ε(T )λ},

where ε(T ) is as defined in (3.2).

We can now apply Lemma 3.1 and the last proposition to get the following
result.

Lemma 3.5. There exist constants A, θ0>1, depending only on n, p, α, β,
and c0, so that the following holds for any T >1. Let u be a solution of (1.1) with
A satisfying (1.2) and (1.3). Let B0 be a ball of radius R0. Fix a real number
0<r ≤min{r0, 2R0}/16 and suppose that there exists N>0 such that

(3.15) | {x ∈ R
n : M(χΩ| ∇u|)(x) >N }| <T −pθ0rn|B1|.

Then for any integer k ≥0 it holds that

4| {x ∈ B0 : M(χΩ| ∇u|)(x) >N(AT )k+1} |

≤ c(n)T −pθ0 | {x ∈ B0 : M(χΩ| ∇u|)(x) >N(AT )k }|

+c(n)| {x ∈ B0 : M1(χΩ|μ|)(x)1/(p−1) >ε(T )N(AT )k }|,

where ε(T ) is as defined in (3.2).

Proof. Let A and θ0>1 be as in Proposition 3.4 and set

C = {x ∈ B0 : M(χΩ| ∇u|)(x) >N(AT )k+1},

and

D = {x ∈ B0 : M(χΩ| ∇u|(x)) >N(AT )k or M1(χΩ|μ|)(x)1/(p−1) >ε(T )N(AT )k }.

Since AT >1 the assumption (3.15) implies that |C|<T −pθ0rn|B1|. Moreover,
if x∈B0 and ρ∈(0, r] are such that |C ∩Bρ(x)| ≥T −pθ0 |Bρ(x)|, then 16ρ≤r0 and
thus by using Proposition 3.4 with λ=N(AT )k we have

Bρ(x)∩B0 ⊂ D.
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Hence the hypotheses of Lemma 3.1 are satisfied with A=B0 and ε=T −pθ0

(note that condition (3.1) holds for all 0<t≤2R0). Since T >1, this yields

|C| ≤ c(n)T −pθ0 |D| ≤ c(n)T −pθ0 | {x ∈ B0 : M(χΩ| ∇u|)(x) >N(AT )k }|

+c(n)| {x ∈ B0 : M1(χΩ|μ|)(x)1/(p−1) >ε(T )N(AT )k }|.

The proof of the lemma is then complete. �

Remark 3.6. From its proof we see that Lemma 3.5 also holds if B0 is replaced
by Ω provided that A=Ω satisfies (3.1) with some constants c1, r1>0. Of course,
in this case r should be chosen so that 0<r ≤min{r0, r1}/16.

4. Global Lorentz estimates

We are now ready to prove the main theorem of the paper.

Proof of Theorem 1.1. Let B0 be a ball of radius R0 ≤2 diam(Ω) that con-
tains Ω. Note then that diam(Ω)≤2R0. As usual we set u and μ to be zero in
R

n \Ω. We are planning to show that

(4.1) ‖ ∇u‖Lq,t(Ω)) ≤ C‖ M1(|μ|)1/(p−1)‖Lq,t(B0),

where 0<q<p+ε and 0<t≤ ∞. Here ε>0 is a small number depending only on n,
p, α, β, and c0. In what follows we consider only the case t �=∞ as for t=∞ the
proof is similar. Moreover, to prove (4.1) we may assume that

‖ ∇u‖L1(Ω) �=0.

Let r=min{r0, diam(Ω)}/16. For T >1 to be determined, we claim that there
exists N>0 such that

| {x ∈ R
n : M(| ∇u|)(x) >N }| <T −pθ0rn|B1|.

To see this, we first use the weak type (1, 1) estimate for the maximal function
to get that

| {x ∈ R
n : M(| ∇u|)(x) >N } | <

C(n)
N

∫
Ω

| ∇u| dx.

Then we choose N>0 so that

(4.2)
C(n)
N

∫
Ω

| ∇u| dx=T −pθ0rn|B1|.
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Let A, θ0>1 be as in Lemma 3.5 and let ε(T ) be as in (3.2). For 0<t<∞ we
now consider the sum

S =
∞∑

k=1

[(AT )qk | {x ∈ B0 : M(| ∇u|)(x) >N(AT )k }|]t/q.

Note that we have

(4.3) C−1S ≤ ‖ M(| ∇u/N |)‖t
Lq,t(B0)

≤ C(|B0|t/q+S).

By Lemma 3.5 we find that

S ≤ C

∞∑
k=1

[(AT )qkT −pθ0 | {x ∈ B0 : M(| ∇u|)(x) >N(AT )k−1}|]t/q

+C
∞∑

k=1

[(AT )qk | {x ∈ B0 : M1(|μ|)(x)1/(p−1) >ε(T )N(AT )k−1}|]t/q

≤ C[(AT )qT −pθ0 ]t/q(S+|B0|t/q)+C1‖M1(|μ|/Np−1)1/(p−1)‖t
Lq,t(B0)

.

Thus for q<pθ0, i.e., q<p+ε with ε=p(θ0 −1), and T sufficiently large we have

S ≤ C(|B0|t/q+‖ M1(|μ|/Np−1)1/(p−1)‖t
Lq,t(B0)

).

By (4.3) this yields

‖∇u/N ‖Lq,t(Ω) ≤ C(|B0|1/q+‖ M1(|μ|/Np−1)1/(p−1)‖Lq,t(B0)),

and thus

(4.4) ‖ ∇u‖Lq,t(Ω) ≤ C(|B0|1/qN+‖M1(|μ|)1/(p−1)‖Lq,t(B0)).

On the other hand, by (4.2) and the condition p>2−1/n we get

N ≤ Cr−n‖ ∇u‖L1(Ω)

≤ C min{r0, diam(Ω)}−n|Ω|1−(n−1)/n(p−1)|μ|(Ω)1/(p−1)

≤ C min{r0, diam(Ω)}−n diam(Ω)n

(
|μ|(Ω)

diam(Ω)n−1

)1/(p−1)

,

where the second inequality follows from standard estimates for equations with
measure data (see, e.g., [2] and [7]). Thus for any x∈B0 we have

N ≤ C(n, p, diam(Ω)/r0)M1(|μ|)(x)1/(p−1),

which holds since R0 ≤2 diam(Ω). Combining the last inequality with (4.4) we
obtain (4.1) as desired. �
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Next, we present the proof of Theorem 1.5.

Proof of Theorem 1.5. Since u is A-superharmonic there is a nonnegative mea-
sure μ[u] such that

(4.5) −div A(x, ∇u) = −div F =μ[u]

in the sense of distributions in R
n. Moreover, for each integer k>0 the function

uk=Tk(u)∈W 1,p
loc (Rn) is also A-superharmonic and satisfies μ[uk]→μ[u] weakly

as measures in R
n. Here μ[uk] is the nonnegative measure generated by the

A-superharmonic function uk.
Thus it is easily seen that Lemma 3.5 holds also for solutions of (4.5) with

Ω=B0=R
n and, say, with r=1. More precisely, there exist constants A, θ0>1,

depending only on n, p, α, and β, such that the following holds for any T >1.
Suppose that u is an A-superharmonic solution of (4.5) such that

(4.6) | {x ∈ R
n : M(| ∇u|)(x) >N }| <T −pθ0 |B1|

for some N>0. Then for any integer k ≥0, and with ε(T ) as in (3.2),

| {x ∈ R
n : M(| ∇u|)(x) >N(AT )k+1} |(4.7)

≤ c(n)T −pθ0 | {x ∈ R
n : M(| ∇u|)(x) >N(AT )k }|

+c(n)| {x ∈ R
n : M1(μ[u])(x)1/(p−1) >ε(T )N(AT )k }|.

To continue, for T >1 to be chosen later, we now take

(4.8) N =
C(n)

T −pθ0 |B1| ‖ ∇u‖L1(Rn) > 0

with C(n) large enough so that condition (4.6) holds true.
For 0<t<∞ (the case t=∞ is similar) we next consider the sums

S+ =
∞∑

k=1

[(AT )qk | {x ∈ R
n : M(| ∇u|)(x) >N(AT )k }|]t/q

and

S− =
0∑

k=− ∞
[(AT )qk | {x ∈ R

n : M(| ∇u|)(x) >N(AT )k }|]t/q.
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By (4.7) we find that

S+ ≤ C

∞∑
k=1

[(AT )qkT −pθ0 | {x ∈ R
n : M(| ∇u|)(x) >N(AT )k−1}|]t/q

+C

∞∑
k=1

[(AT )qk | {x ∈ R
n : M1(μ[u])(x)1/(p−1) >ε(T )N(AT )k−1}|]t/q

≤ C[(AT )qT −pθ0 ]t/q(S++| {x ∈ R
n : M(| ∇u|)(x) >N }|t/q)

+C1‖ M1(μ[u]/Np−1)1/(p−1)‖t
Lq,t(Rn).

Thus for q<pθ0, i.e., q<p+ε with ε=p(θ0 −1), and T sufficiently large we have

S+ ≤ C| {x ∈ R
n : M(| ∇u|)(x) >N } |t/q+C‖M1(μ[u]/Np−1)1/(p−1)‖t

Lq,t(Rn)

≤ C(S− +‖ M1(μ[u]/Np−1)1/(p−1)‖t
Lq,t(Rn)).

On the other hand, by the weak type (1, 1) bound for the maximal function
and (4.8) we get

S− ≤
0∑

k=− ∞

(
(AT )qk C(n)

N(AT )k

∫
Ω

| ∇u| dx

)t/q

(4.9)

=
0∑

k=− ∞
[(AT )k(q−1)T −pθ0 |B1|]t/q ≤ C(q, t, p, θ0, A, T ),

where the last inequality follows since q>1. Note that we have

C−1(S++S−) ≤ ‖ M(| ∇u/N |)‖t
Lq,t(Rn) ≤ C(S++S−),

and thus by (4.9) and (4.9) this yields

‖∇u/N ‖Lq,t(Rn) ≤ C(1+‖ M1(μ[u]/Np−1)1/(p−1)‖Lq,t(Rn)).

We therefore have that

‖∇u‖Lq,t(Ω) ≤ C(N+‖ M1(μ[u])1/(p−1)‖Lq,t(Rn))

≤ C(‖ ∇u‖L1(Rn)+‖M1(μ[u])1/(p−1)‖Lq,t(Rn))

≤ C(‖ ∇u‖L1(Rn)+‖I1(μ[u])1/(p−1)‖Lq,t(Rn)).

Notice that, by the second equality in (4.5), the equality

(4.10) I1(μ[u]) = c(n)
n∑

j=1

Rjfj
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holds a.e. in R
n, where F =(f1, f2, ..., fn) and Rjfj denotes the jth Riesz transform

of the function fj (see [28], p. 1580). Since q>p−1 this yields

‖I1(μ[u])1/(p−1)‖Lq,t(Rn) = ‖I1(μ[u])‖1/(p−1)

Lq/(p−1),t/(p−1)(Rn)
≤ C‖F ‖1/(p−1)

Lq/(p−1),t/(p−1)(Rn)
,

and the desired estimate follows. �

Finally, we prove Theorem 1.6.

Proof of Theorem 1.6. Since −div F ≥0 in D ′(Rn) there is a nonnegative mea-
sure μ in R

n such that

−div F =μ.

For each integer m>0 let Bm denote the ball of radius m centered at the origin
of R

n. Also, let μBm be the restriction of μ to the ball Bm. Then there exists a
nonnegative A-superharmonic function um in Bm such that

{
−div A(x, ∇um)=μBm in Bm

um=0 on ∂Bm.
(4.11)

By Theorem 1.1 we have that

(4.12) ‖∇um‖Lq,t(Bm) ≤ C‖ M1(μ)1/(p−1)‖Lq,t(Rn) ≤ C‖I1(μ)1/(p−1)‖Lq,t(Rn),

where C is independent of m. Thus for q>1 the Sobolev inequality on Lorentz
spaces (see [32, Theorem 2.10.2]) yields

(4.13) ‖um‖Lnq/(n−q),t(Bm) ≤ C‖I1(μ)‖1/(p−1)

Lq/(p−1),t/(p−1)(Rn)
.

Inequality (4.13) holds also for p−1<q ≤1. To see this first note that by [29,
Theorem 2.1] (see also [18], [22], and [30]) we have a pointwise bound

(4.14) um(x) ≤ CW1,p(μ)(x), x ∈ R
n,

where C=C(n, p, α, β) and

W1,p(μ)(x) :=
∫ ∞

0

(
μ(Bt(x))

tn−p

)1/(p−1)
dt

t

is the Wolff potential of μ. Since 1/(p−1)>1 we find that
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W1,p(μ)(x) ≤ C

(∫ ∞

0

μ(Bt(x))
tn−p

dt

t

)1/(p−1)

= C[Ip(μ)(x)]1/(p−1) =C(Ip−1[I1(μ)](x))1/(p−1).

Here for 0<α<n and a nonnegative measure ν, Iα(ν) is the (unnormalized) Riesz
potential of ν defined by

Iα(ν)(x) :=
∫

Rn

dν(y)
|x−y|n−α

, x ∈ R
n.

Thus by (4.14) and the Sobolev inequality [32, Theorem 2.10.2] we have that

‖um‖Lnq/(n−q),t(Bm) ≤ C‖Ip−1[I1(μ)]‖1/(p−1)

Lnq/(n−q)(p−1),t/(p−1)(Rn)

≤ C‖I1(μ)‖1/(p−1)

Lq/(p−1),t/(p−1)(Rn)

as claimed.
At this point we use [17, Theorem 1.17] to find a subsequence {umj } ∞

j=1 of
{um} ∞

m=1 and an A-superharmonic function u in R
n such that

u(x) = lim
j→∞

umj (x)

a.e. in R
n and that ∇umj →∇u a.e. in the set {x∈R

n :u(x)<∞}. Note that by
(4.13) and Fatou’s lemma, u is finite a.e. and

‖u‖Lnq/(n−q),t(Rn) ≤ C‖I1(μ)‖1/(p−1)

Lq/(p−1),t/(p−1)(Rn)
.

Likewise, it follows from (4.10), (4.12) and Fatou’s lemma that

‖∇u‖Lq,t(Rn) ≤ C ‖I1(μ)‖1/(p−1)

Lq/(p−1),t/(p−1)(Rn)
≤ C‖F ‖1/(p−1)

Lq/(p−1),t/(p−1)(Rn)
.

Finally, (4.11) and the weak continuity result of [30] imply that u is a solution
of (1.7). �
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