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Nilpotent p-local finite groups
José Cantarero, Jérôme Scherer and Antonio Viruel

Abstract. We provide characterizations of p-nilpotency for fusion systems and p-local finite

groups that are inspired by known result for finite groups. In particular, we generalize criteria by

Atiyah, Brunetti, Frobenius, Quillen, Stammbach and Tate.

1. Introduction

This article is concerned with the concept of p-nilpotency. A finite group G

is p-nilpotent if its Sylow p-subgroup S has a normal complement N in G, that is,
the composition S→G→G/N is an isomorphism.

In the literature, there are characterizations of p-nilpotency using group co-
homology, Quillen categories, group theory, and fusion systems. For example, the
restriction map in mod-p cohomology H∗(G; Fp)→H∗(S; Fp) is an isomorphism if
and only if G is p-nilpotent [Q]. The Frobenius p-nilpotency criterion in group the-
ory [R, Theorem 10.3.2] characterizes these groups as those for which NG(P )/CG(P )
is a p-group for all p-subgroups P of S.

For our purposes, an interesting characterization of p-nilpotency is given by
[Gla, Theorem 8.6]: G is p-nilpotent if and only if S controls G-fusion in S, or
equivalently, in the terminology of fusion systems [BLO2], FS(G)=FS(S). Here
FS(G) is the category whose objects are subgroups of S and morphisms are maps
induced by conjugations in G, and FS(S) is the category with the same objects but
whose morphisms are maps induced by conjugations in S. This characterization
seems appropriate as a definition of p-nilpotency for fusion systems. This has
already been adopted by several authors, starting with Kessar and Linckelmann
in [KL2].
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The objects known as p-local finite groups were introduced by Broto, Levi,
and Oliver in [BLO2] as a mean to extract the essence of the p-local structure
of a group of course, but also of a block, or of more exotic occurrences such as
the Solomon 2-local groups [LO]. A p-local finite group is an enrichment of a
saturated fusion system, a notion introduced by Puig [P] in 1990 under the name
of “full Frobenius system”. For a finite group G, this p-local structure encodes
the homotopical properties of the lattice of its p-subgroups under the conjugation
action of G. It is natural then that most p-local properties enjoyed by finite groups
also hold for p-local finite groups.

Following this motivation and the definition for nilpotency of fusion systems
in [KL2], we say that a p-local finite group (S, F , L) (see Section 1 for background
on p-local finite groups) is nilpotent when F =FS(S). This definition does not
mention the centric linking system L, but it follows from Oliver’s solution to the
Martino–Priddy conjecture in [O1] and [O2], that there is a unique isomorphism
class of centric linking systems associated with the fusion system of a finite group.
Chermak proved recently the stronger result that every saturated fusion system has
an associated centric linking system that is unique up to isomorphism (see [Ch] and
[O3]). Both proofs rely on the classification of finite simple groups. In the case of
the fusion system FS(S) it is straightforward to show that it has a unique centric
linking system Lc

S(S) up to isomorphism, see Proposition 3.1, and hence we do not
need the heavy machinery used in the general case. In particular, a p-local finite
group is nilpotent if and only if its fusion system is that of the group S. Sometimes
it is more convenient to check a topological condition than to stay at the level of the
algebra of the fusion data, and having a centric linking system allows for topological
characterizations. Nevertheless, the reader might find it convenient to forget about
L where it is not needed.

Note that the prime p is implicitly given when we have a fusion system or
a p-local finite group, so we will simply say nilpotent instead of p-nilpotent. In
fact, considering that a p-local finite group is an object created to keep track of
the p-local structure only, this naming convention agrees with the well known fact
that a finite group is nilpotent if and only it is p-nilpotent for all prime numbers p.
According to the previous comments, if G is a finite group with Sylow p-subgroup
S, the associated p-local group is nilpotent if and only if G is p-nilpotent.

We offer a list of characterizations of nilpotency in this context, inspired by the
work on p-nilpotency of groups. Apart from the criteria we have already mentioned
above, we also obtain analogues of the criteria of Tate [T], Stammbach [S], Atiyah
[Q], and Quillen [Q].
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In the last decade the concept of p-nilpotency has attracted a lot of attention.
Let us mention for example the work of Kessar and Linckelmann, who proved the
p-nilpotency theorem of Glaubermann and Thompson for blocks in [KL1] and later
for fusion systems [KL2].

Even more recently, a result of Tate has been extended to fusion systems by the
four authors in [DGPS], providing another proof of one part of our Theorem 7.1. In
[DGMP] the Frobenius nilpotency criterion, already present in [L], is used to prove
Thompson’s result for saturated fusion systems. This criterion is also available in
this article as part of Theorem 5.8.

The work carried out in this paper is also of importance because nilpotency is
used to determine sparseness and extreme sparseness of fusion systems, as defined
in [Gle], as well as to define quasicentric subgroups, a concept heavily used in
[BCGLO1] and [BCGLO2].

The basic definitions of saturated fusion systems and their associated centric
linking systems are given in Section 2. Section 3 is dedicated to generalities about
nilpotent fusion systems and p-local finite groups. Section 4 deals with homological
and cohomological characterizations of nilpotency in low degrees, and some global
fusion criteria are studied in Section 5. A criterion in terms of elementary abelian
subgroups is described in Section 6. Section 7 is then concerned with cohomological
criteria in high degrees, as well as Morava K-theory. Finally, Section 8 contains
criteria obtained by using Quillen categories.

Acknowledgements. We would like to thank Natàlia Castellana for helpful dis-
cussions and the referee for his careful reading and the improvements he suggested.
We thank the Max Plank Institute in Bonn and the Centre de Recerca Matemàtica
in Barcelona where part of this work was done.

2. Fusion systems and associated centric linking systems

This first section is devoted to the basic definitions and properties we will use
from the beautiful theory of p-local finite groups. Our main reference is the article
[BLO2] by Broto, Levi, and Oliver. The expert can skip this section.

Given two finite groups P and Q, let Hom(P, Q) denote the set of group homo-
morphisms from P to Q, and let Inj(P, Q) denote the set of monomorphisms. If P

and Q are subgroups of a larger group G, then HomG(P, Q)⊆Inj(P, Q) denotes the
subset of homomorphisms induced by conjugation by elements of G, and AutG(P )
the group of automorphisms of P induced by conjugation in G.
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Definition 2.1. A fusion system F over a finite p-group S is a category whose
objects are the subgroups of S, and whose morphism sets HomF (P, Q) satisfy the
following conditions:

(a) HomS(P, Q)⊆HomF (P, Q)⊆Inj(P, Q) for all P, Q≤S.
(b) Every morphism in F factors as an isomorphism in F followed by an in-

clusion.

If F is a fusion system over S and P, Q≤S, then we write HomF (P, Q) for
the set of morphisms in F to emphasize that all morphisms in the category F are
homomorphisms. If IsoF (P, Q) denotes the subset of isomorphisms in F , we see that
IsoF (P, Q)=HomF (P, Q) if |P |=|Q|, and IsoF (P, Q)=∅ otherwise. We also write
AutF (P )=IsoF (P, P ) and OutF (P )=AutF (P )/Inn(P ). Two subgroups P, P ′ ≤S

are called F -conjugate if IsoF (P, P ′) �=∅.
Here, and throughout the paper, we write Sylp(G) for the set of Sylow p-

subgroups of G. Also, for any P ≤G and any g ∈NG(P ), cg ∈Aut(P ) denotes the
automorphism cg(x)=gxg−1. The fusion systems we consider in this paper will all
be saturated in the following sense [BLO2, Definition 1.2].

Definition 2.2. Let F be a fusion system over a p-group S.
• A subgroup P ≤S is fully centralized in F if |CS(P )| ≥ |CS(P ′)| for all P ′ ≤S

that are F -conjugate to P .
• A subgroup P ≤S is fully normalized in F if |NS(P )| ≥ |NS(P ′)| for all P ′ ≤S

that are F -conjugate to P .
• F is a saturated fusion system if the following two conditions hold:
(I) Any P ≤S which is fully normalized in F is fully centralized in F , and

AutS(P )∈Sylp(AutF (P )).
(II) If P ≤S and φ∈HomF (P, S) are such that φP is fully centralized, and if

we set
Nφ = {g ∈ NS(P ) | φcgφ

−1 ∈ AutS(φP )},

then there is φ̄∈HomF (Nφ, S) such that φ̄|P =φ.

The motivating example for this definition is the fusion system of a finite
group G. For any S ∈Sylp(G), we let FS(G) be the fusion system over S defined by
setting HomFS(G)(P, Q)=HomG(P, Q) for all P, Q≤S.

Proposition 2.3. ([BLO2, Proposition 1.3]) Let G be a finite group, and let
S be a Sylow p-subgroup of G. Then, the fusion system FS(G) over S is satu-
rated. Furthermore, a subgroup P ≤S is fully centralized in FS(G) if and only if
CS(P )∈Sylp(CG(P )), while P is fully normalized in FS(G) if and only if
NS(P )∈Sylp(NG(P )).
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In order to help motivate the next constructions, we recall some definitions.
If G is a finite group and p is a prime, then a p-subgroup P ≤G is p-centric if
CG(P )=Z(P )×C ′

G(P ), where C ′
G(P ) has order prime to p. For any P, Q≤G, let

NG(P, Q) denote the transporter, that is, the set of all g ∈G such that gPg−1 ≤Q.
For any S ∈Sylp(G), Lc

S(G) denotes the category whose objects are the p-centric
subgroups of S, and where MorLc

S(G)(P, Q)=NG(P, Q)/C ′
G(P ). By comparison,

HomG(P, Q)∼=NG(P, Q)/CG(P ). Hence there is a functor from Lc
S(G) to FS(G)

which is the inclusion on objects, and which sends the morphism corresponding to
g ∈NG(P, Q) to cg ∈HomG(P, Q).

Definition 2.4. Let F be any fusion system over a p-group S. A subgroup P ≤S

is F -centric if P and all of its F -conjugates contain their S-centralizers. We denote
by F c the full subcategory of F whose objects are the F -centric subgroups of S.

Definition 2.5. Let F be any fusion system over a finite p-group S. A sub-
group P ≤S is F -radical if OutF (P ) is p-reduced, that is, if the maximal normal
p-subgroup of OutF (P ) is {1}.

Theorem 2.6. (Alperin’s fusion theorem [BLO2, Theorem A.10]) Let F be
a saturated fusion system over a finite p-group S. Then for each φ∈IsoF (P, P ′),
there exist sequences of subgroups of S,

P =P0, P1, ..., Pk =P ′ and Q1, Q2, ..., Qk,

and elements φi ∈AutF (Qi), such that
(a) Qi is fully normalized in F , F -radical, and F -centric for each i;
(b) Pi−1, Pi ≤Qi and φi(Pi−1)=Pi for each i;
(c) φ=φk ◦φk−1 ◦...◦φ1.

Recall the following definition from [BLO2, Definition A.3].

Definition 2.7. The normalizer fusion system NF (Q) of a fully normalized
subgroup Q≤S in F is the fusion system defined over NS(Q) whose morphisms are
given by

HomNF (Q)(P, P ′) = {φ ∈ HomF (P, P ′) | there is ψ ∈ HomF (PQ, P ′Q)

with ψ|P =φ and ψ(Q) ≤ Q}.

Proposition A.6 in [BLO2] shows that this fusion system is saturated. More-
over, it has an associated centric linking system, see [BLO2, Definition 6.1]. When a
fusion system coincides with the normalizer fusion system of a normal subgroup, one
can define a quotient fusion system. We recall the definition from [L, Definition 6.1].
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Definition 2.8. Let F be a fusion system over a finite p-group S such that
F =NF (Q) for some normal subgroup Q of S. We define the category F /Q as
follows. Its objects are subgroups of S/Q and for any two subgroups H and K

of S containing Q, a group homomorphism ψ : H/Q→K/Q is a morphism in the
category F /Q if there exists a morphism φ : H→K in F satisfying φ(u)Q=ψ(uQ)
for all u in H .

Theorem 2.9. ([L, Theorem 6.2]) Let F be a fusion system over a finite p-
group S such that F =NF (Q) for some normal subgroup Q of S. Then the category
F /Q is a saturated fusion system over S/Q.

Definition 2.10. Let F be a fusion system over the p-group S. A centric linking
system associated with F is a category L whose objects are the F -centric subgroups
of S, together with a functor

π : L −→ F c

and “distinguished” monomorphisms δP : P→AutL(P ) for each F -centric subgroup
P ≤S, which satisfy the following conditions:

(A) π is the identity on objects and is surjective on morphisms. More precisely,
for each pair of objects P, Q∈ L, Z(P ) acts freely on MorL(P, Q) by composition
(upon identifying Z(P ) with δP (Z(P ))≤AutL(P )), and π induces a bijection

MorL(P, Q)/Z(P )
∼=−→HomF (P, Q);

(B) For each F -centric subgroup P ≤S and each g ∈P , π sends δP (g)∈AutL(P )
to cg ∈AutF (P );

(C) For each f ∈MorL(P, Q) and each g ∈P , the following square commutes
in L:

P
f

δP (g)

Q

δQ(π(f)(g))

P
f

Q.

One easily checks that for any finite group G and any S ∈Sylp(G), Lc
S(G) is a

centric linking system associated with the fusion system FS(G). We are now ready
to give the definition of a p-local finite group, as in [BLO2, Definition 1.8].

Definition 2.11. A p-local finite group is a triple (S, F , L), where F is a satu-
rated fusion system over the p-group S and L is a centric linking system associated
with F . The classifying space of the p-local finite group (S, F , L) is the space | L | ∧

p .
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Thus, for any finite group G and any S ∈Sylp(G), the triple (S, FS(G), Lc
S(G))

is a p-local finite group. Its classifying space | Lc
S(P )| ∧

p is homotopy equivalent to
BG∧

p by [BLO1]. In general, the fact that S itself is an object of the centric linking
system yields a “canonical inclusion” Bi : BS→| L | of the Sylow p-subgroup S into
the p-local finite group, which allows us to compare their mod-p cohomologies. We
will denote by Bi ∧

p the composition of Bi with the p-completion map | L |→| L | ∧
p .

3. Nilpotent fusion systems and p-local finite groups

In this short section we give the definition of nilpotency in terms of fusion data
and obtain different global characterizations, at the level of linking systems and
their mod-p cohomology. We start by giving an elementary proof of the fact that
the fusion system of a finite p-group has a unique associated centric linking system
(up to isomorphism). This also follows from [BCGLO1, Proposition 4.2], since a
nilpotent fusion system is constrained, or from the much stronger [Ch] and [O3].

Proposition 3.1. If S is a finite p-group, the fusion system FS(S) has a
unique associated centric linking system up to isomorphism of categories.

Proof. Note that Lc
S(S) is a centric linking system associated with FS(S).

If L is another centric linking system associated with FS(S), consider the functor
δ : Lc

S(S)→L constructed in [BLO2, Proposition 1.11]. It is clear that this functor
is an equivalence of categories. �

Following Kessar and Linckelmann’s definition for fusion systems in [KL2] and
the characterization of p-nilpotency for groups in terms of fusion stated in the
introduction, we define a p-local finite group to be nilpotent when its fusion system
is that of a p-group.

Definition 3.2. A p-local finite group (S, F , L) is nilpotent if F =FS(S).

Even though this definition seems to be stated at the level of fusion systems
only, it says that the p-local finite group is the one induced by a Sylow p-subgroup.
As it is sometimes more convenient to check a topological condition (using the
centric linking system) than to stay at the purely algebraic level of the fusion data,
we propose the following characterizations.

Proposition 3.3. A p-local finite group (S, F , L) is nilpotent if and only if
one of the following equivalent conditions is satisfied :
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(1) | L | ∧
p 	BS;

(2) the canonical inclusion induces an isomorphism H∗(| L |; Fp)→H∗(BS; Fp);
(3) Bi ∧

p has a retraction r : | L | ∧
p →BS.

Proof. The first condition is equivalent to the nilpotency of the p-local finite
group (S, F , L) by [BLO2, Theorem 7.4].

Since homotopy equivalences of p-completed spaces are Fp-homology isomor-
phisms, and the groups Hn(| L |; Fp)∼=Hn(| L |; Fp) are finitely generated Fp-modules
by [BLO2, Proposition 5.2 and Theorem 5.8], it follows from [BS, Theorem 2.48]
that conditions (1) and (2) are equivalent.

If (S, F , L) is nilpotent, F =FS(S) and we have seen in the proof of Proposi-
tion 3.1 that Lc

S(S) is the associated centric linking system. Thus Bi ∧
p : BS→| L | ∧

p

is an equivalence. On the other hand, the existence of a retraction of Bi ∧
p im-

plies that the cohomology of the Sylow p-subgroup is a retract of the cohomology
of | L | ∧

p . But the mod-p cohomology of | L | can be computed by stable elements by
[BLO2, Theorem 5.8], and moreover it is a subalgebra of H∗(S; Fp). Therefore Bi ∧

p

must be a homotopy equivalence. �

Remark 3.4. The result [BLO2, Proposition 5.5] on which the proof of the
stable element formula relies is stronger than the use we make of it in the above
proof. It actually tells us that the suspension spectrum of | L | ∧

p appears as a stable
summand in the suspension spectrum Σ∞BS. In particular Bi ∧

p always induces
an epimorphism in homology and a monomorphism in cohomology with arbitrary
constant coefficients (constant functors).

4. Cohomological characterizations in low degrees

We show in this section that a nilpotent p-local finite group can be recognized
by looking at (co)homological information in low degree. For finite groups the
criteria we obtain are those of Tate [T], Stammbach [S], and some variations. The
following result, which establishes an extension property for certain maps BS→X ,
will be used in combination with Proposition 3.3 to prove these criteria.

Proposition 4.1. Let S be a p-group and f : BS→X be a map from the
classifying space of S to a space X . Assume that f induces an epimorphism
H1(X; Fp)→→H1(BS; Fp) and a monomorphism H2(X; Fp)↪→H2(BS; Fp). Then
any map BS→BP to the classifying space of a p-group P factors through f up to
homotopy. In particular BS is a retract of X .



Nilpotent p-local finite groups 211

Proof. We proceed by induction on the order of P . If P ∼=Cp, the cyclic group
of order p, the conclusion is a direct consequence of the surjectivity of H1(f ; Fp).
Let us thus consider a p-group P of order pn with n≥2 and a group homomorphism
φ : S→P .

The center of a p-group is never trivial. Therefore there is a central extension
Cp ↪→P

π
→→Q and by induction there exists a map g : X→BQ such that the following

square commutes up to homotopy

BS
Bφ

f

BP

Bπ

X
g

BQ.

Now we have to lift g to a map h : X→BP . The central extension gives rise

to a fibration BP→BQ
k

−→K(Z/p, 2). The composite map k ◦Bπ ◦Bφ	k ◦g ◦f is
null-homotopic, and hence so is k ◦g : X→K(Z/p, 2) because of the injectivity of
H2(f ; Fp). Therefore there exists a map h : X→BP such that Bπ ◦h	g.

In general, h◦f �	Bφ because they can differ by the action of the central Cp.
This means, [BK, IX.4.1], that there exists a map α : BS→BCp such that the
composite map

BS
Δ

−→BS ×BS
(h◦f)×α

−−−−−→BP ×BCp −→BP

is homotopic to Bφ. By the induction hypothesis, there exists a map β : X→BCp

such that β ◦f 	α. The composite map

X
Δ

−→X ×X
h×β

−−−→BP ×BCp −→BP

is the map we seek. �

We emphasize that the factorization through f in the statement of the previous
proposition is not unique. If it were so, the classifying space of the p-group P would
be local with respect to f (in the sense of [F]). This property is the key ingredient
in the proof of the p-local version of Stammbach’s criterion [S] about the second
(co)homology group and the Huppert–Thompson–Tate criterion [T] about the first
one. Our proof goes along the same lines as in Stammbach’s note.

Theorem 4.2. Let (S, F , L) be a p-local finite group and let Bi : BS→| L | be
the standard inclusion. Then (S, F , L) is nilpotent if and only if one of the following
equivalent four conditions is satisfied :
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(1) Bi ∗ : H1(| L |; Fp)→H1(BS; Fp) is an isomorphism;
(2) Bi ∗ : H2(| L |; Fp)→H2(BS; Fp) is an isomorphism;
(3) Bi ∗ : H1(BS; Fp)→H1(| L |; Fp) is an isomorphism;
(4) Bi ∗ : H2(BS; Fp)→H2(| L |; Fp) is an isomorphism.

Proof. The universal coefficient formula clearly implies the equivalence of the
homological conditions and the cohomological ones. We follow Stammbach’s strat-
egy [S] and assume that (4) holds. Consider the universal coefficients exact se-
quences

0 H2(S; Z)⊗Z/p

α

H2(S; Fp)

∼=

Tor(H1(S; Z); Z/p)

β

0

0 H2(| L | ∧
p ; Z)⊗Z/p H2(| L | ∧

p ; Fp) Tor(H1(| L | ∧
p ; Z); Z/p) 0.

We see that α must be a monomorphism and β an epimorphism. By Remark 3.4
we know that α is an epimorphism, so that β is actually an isomorphism.

Now the short exact sequence K=Ker(H1(Bi ; Z))↪→H1(S; Z)→→H1(| L | ∧
p ; Z) in-

duces an exact sequence

0 −→Tor(K; Z/p) −→Tor(H1(S; Z); Z/p)
β

−−→Tor(H1(| L | ∧
p ; Z); Z/p),

so that Tor(K; Z/p)=0. Since the homology of S is p-torsion, K must be trivial.
Therefore H1(Bi ; Z) is an isomorphism, and in particular (3) holds.

It remains to prove that condition (3)—or equivalently condition (1)—implies
that (S, F , L) is nilpotent. We assume therefore that H1(Bi ; Fp) is an isomorphism.
Since H2(Bi ; Fp) is always a monomorphism, Proposition 4.1 applies and we deduce
that BS is a retract of | L | ∧

p . This means by Proposition 3.3 that the p-local finite
group is nilpotent. �

Using the universal coefficients theorems for the Z
∧
p -module Fp, one can replace

the Fp coefficients by the p-adic integers.

Corollary 4.3. Let (S, F , L) be a p-local finite group and let Bi : BS→| L | be
the standard inclusion. Then (S, F , L) is nilpotent if and only if one of the following
two equivalent conditions is satisfied :

(1) Bi ∗ : H1(BS; Z∧
p )→H1(| L |; Z∧

p ) is an isomorphism;
(2) Bi ∗ : H2(| L |; Z∧

p )→H2(BS; Z∧
p ) is an isomorphism.
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5. Global fusion criteria

This section is devoted to criteria which allow us to recognize a nilpotent p-local
finite group from its global fusion characteristics. We first need some facts about
the fundamental group of a p-local finite group. The following definition is due to
Puig [P]. The notation Op(−) stands for the subgroup generated by elements of
order prime to p.

Definition 5.1. Let F be any saturated fusion system over a p-group S. The
normal subgroup 〈g−1α(g) | g ∈P ≤S and α∈Op(AutF (P ))〉 is called the hyperfocal
subgroup of F and is denoted by Hyp(F ). The focal subgroup Foc(F ) is the normal
subgroup 〈g−1α(g) | g ∈P ≤S and α∈AutF (P )〉.

Theorem 5.2. ([BCGLO2, Theorem B]) Let (S, F , L) be a p-local finite group.
Then π1(| L | ∧

p )∼=S/ Hyp(F ).

We have seen in the previous section that the group H1(| L | ∧
p ; Z∧

p )∼=π1(| L | ∧
p )ab

plays an important role in establishing the nilpotency of a given p-local finite group.
The computation in the next proposition (compare with [Go, Theorem 7.3.4]) ex-
plains the relation between the focal and the hyperfocal subgroups.

Proposition 5.3. Let (S, F , L) be a p-local finite group. Then H1(| L | ∧
p ; Z∧

p )∼=
S/Foc(F ).

Proof. The group Foc(F ) is generated by Hyp(F ) and elements g−1α(g) where
α∈AutF (P )\Op(AutF (P )) for some P ≤S. By Alperin’s fusion theorem, Theo-
rem 2.6, it is enough to consider those subgroups P that are fully normalized in F .

Assume then that P is fully normalized in F . Since AutS(P )∈Sylp(AutF (P )),
any elements of p-power order in AutF (P ) can be conjugated via an element of
Op(AutF (P )) to an element of AutS(P ). Therefore Foc(F ) is generated by Hyp(F )
and commutators in [S, S]. By Theorem 5.2, we have that π1(| L | ∧

p )∼=S/ Hyp(F ), so
its abelianization is S/ Foc(F ). �

Recall the following definitions from [BLO2, Definition A.3].

Definition 5.4. The normalizer fusion system NF (Q) of a fully normalized
subgroup Q≤S in F is the fusion system defined over NS(Q) whose morphisms are
given by
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HomNF (Q)(P, P ′) = {φ ∈ HomF (P, P ′) | there is ψ ∈ HomF (PQ, P ′Q)

with ψ|P =φ and ψ(Q) ≤ Q}.

The centralizer fusion system CF (Q) of a fully centralized subgroup Q≤S in F is
the fusion system defined over CS(Q) whose morphisms are given by

HomCF (Q)(P, P ′) = {φ ∈ HomF (P, P ′) | there is ψ ∈ HomF (PQ, P ′Q)

with ψ|P =φ and ψ|Q = id}.

Proposition A.6 in [BLO2] shows that these fusion systems are saturated.
Moreover, they have associated centric linking systems, see [BLO2, Definition 2.4]
and [BLO2, Definition 6.1].

Definition 5.5. ([BCGLO1, Definition 1.5]) A subgroup of S is F -weakly closed
if no other subgroup is F -conjugate to it.

Lemma 5.6. Let (S, F , L) be a p-local finite group and let V ≤Z(S) be an
F -weakly closed subgroup of S. Then V is normal in (S, F , L), that is, (S, F , L)=
(NS(V ), NF (V ), NL(V )).

Proof. By Alperin’s fusion theorem for saturated fusion systems, Theorem 2.6,
every morphism in F is the composition of automorphisms of F -centric subgroups.
More precisely, every morphism α∈MorF (P, Q) is the composition of an isomor-
phism α̃∈MorF (P, α(P )) with an inclusion α(P )≤Q. Then α̃=φk ◦φk−1 ◦...◦φ1 for
some φi ∈AutF (Pi) with Pi being an F -centric subgroup of S for 1≤i≤k. Since V

is central in S, we must have V ≤Pi, and φi(V )≤V because V is weakly closed in
(S, F , L). Thus α̃ can be extended to a morphism from V P to V α(P ) and therefore
α can be extended to a morphism from V P to V Q. �

A straightforward consequence is the following p-local version of Grün’s theo-
rem [Go, Theorem 7.5.2].

Proposition 5.7. Let (S, F , L) be a p-local finite group and let A≤Z(S) be
weakly closed in F . Then Foc(F )=Foc(NF (A)).

Proof. By Lemma 5.6, A is normal in F , so the fusion systems F and NF (A)
actually coincide. �

We are now ready to give our “global fusion criteria”. At the level of groups,
the first criterion is due to Huppert and is proven in [H, Satz IV.4.9] by means of
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the abelian transfer. We propose also a variation. The third one is called Frobenius
p-nilpotency criterion in the literature, see for example [R, Theorem 10.3.2], and
the fourth criterion is a stronger form.

Theorem 5.8. A p-local finite group (S, F , L) is nilpotent if and only if one
of the following four equivalent conditions is satisfied :

(1) two elements a, b∈S are F -conjugate if and only if they are S-conjugate;
(2) two n-tuples of commuting elements of S are F -conjugate if and only if

they are S-conjugate, n>1;
(3) for every subgroup P ≤S, AutF (P ) is a p-group;
(4) for every F -centric subgroup P ≤S, AutF (P ) is a p-group.

Proof. It is clear that all four conditions hold for a nilpotent p-local finite
group. Let us thus assume that condition (2) holds. In particular for any two
elements a and b in S which are F -conjugate, the n-tuples (a, ..., a) and (b, ..., b)
are also F -conjugate. Therefore they must be S-conjugate, which proves that a and
b are S-conjugate. This shows that (2) implies (1).

Assume now that condition (1) holds, so that the image of any element under an
F -automorphism in S is a conjugate of that element by some element in S, that is,
both the focal and hyperfocal subgroups are contained in the commutator subgroup
[S, S]. Therefore, according to Proposition 5.3, the identity of S/[S, S] factors
through the map H1(Bi ; Z∧

p ) : S/[S, S]→H1(| L | ∧
p ; Z∧

p )∼=S/ Foc(F ). We have seen
in Remark 3.4 that this map is always an epimorphism. It is hence an isomorphism
and we have proven that the p-adic characterization (1) in Corollary 4.3 holds.

It is obvious that (3) implies (4). Finally, if condition (4) holds, and P �S is
an F -centric subgroup of S, then P �NS(P ) and so Inn(P )�AutS(P ). In particu-
lar, OutS(P ) is a non-trivial subgroup of OutF (P ) and so OutF (P ) is a non-trivial
p-group, hence P is not F -radical. Therefore the only F -radical F -centric sub-
group is S. By Alperin’s fusion theorem, Theorem 2.6, every morphism in F is
the restriction of an F -automorphism of S. On the other hand, since S is fully
normalized in F , Inn(S)∈Sylp(AutF (S)), which implies AutF (S)=Inn(S). Hence
every morphism in F is induced by S-conjugation, that is, F =FS(S). �

The following corollary is a very simple criterion to determine nilpotency of
p-local finite groups with an abelian Sylow p-subgroup.

Corollary 5.9. Let (S, F , L) be a p-local finite group with S abelian. Then
(S, F , L) is nilpotent if and only if one of the following two equivalent conditions is
satisfied :
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(1) two elements a, b∈S are F -conjugate if and only if they are equal ;
(2) AutF (S) is the trivial group.

Theorem 5.8 allows us to obtain for example a p-local version of Huppert’s
result [H, Satz III.12.1].

Proposition 5.10. Let (S, F , L) be a p-local finite group and n be a positive
integer such that pn>2. Suppose that every element of order pn in S is central
in F . Then (S, F , L) is nilpotent.

Proof. We use the Frobenius-type characterization (4) in Theorem 5.8 of nilpo-
tent p-local finite groups. Let K be the subgroup generated by all the elements of
order pn in S. Then K is maximal with respect to being an abelian subgroup and
having exponent pn. Let P ≤S be an F -centric subgroup, and let α∈AutF (P ). As
every element of order pn>2 is central in F , α acts trivially on every element of
order pn in P . As K ≤P , it acts trivially on K and, by [Bl], α is an element of
order p, i.e., AutF (P ) is a p-group. �

6. Quillen’s first criterion

The criterion we offer in this section is an extension of Quillen’s [Q, Theo-
rem 1.5]. The following lemma was originally [Q, Proposition 4.1], in which Quillen
only considers elementary abelian subgroups of the Sylow p-subgroup. Here the
exponent is arbitrary.

Lemma 6.1. Let (S, F , L) be a p-local finite group and let A be a subgroup
of S maximal subject to being normal abelian and of exponent pn>2. Then A is
also maximal subject to being abelian and of exponent pn in (S, F , L), that is, any
F -conjugate of A is maximal subject to being abelian and of exponent pn in S.

Proof. Assume that there exist abelian subgroups A′ ≤W ′ ≤S of exponent
pn>2 such that A and A′ are F -conjugate by the morphism ϕ : A′→A. Since
W ′ ≤CS(A′)≤Nϕ, the subgroup W ′ is F -conjugate to another abelian subgroup W

that contains A. But according to [A] (see also [H, Satz III.12.1]), A is maximal in
S subject to being abelian and of exponent pn. Hence W =A and W ′ =A′, and the
result follows. �

The following result provides a way to show that certain subgroups are central
in a p-local finite group.
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Proposition 6.2. Let (S, F , L) be a p-local finite group and let V ≤Z(S) be
an F -weakly closed subgroup such that AutF (V ) is a p-group. Then V is central in
(S, F , L), that is, (S, F , L)=(CS(V ), CF (V ), CL(V )).

Proof. By Lemma 5.6 we know that (S, F , L)=(S, NF (V ), NL(V )). Note that
V is F -weakly closed, and so it is fully normalized and fully centralized. Therefore
AutS(V )∈Sylp(AutF (V )). Since AutF (V ) is a p-group, it must be AutS(V )=
NS(V )/CS(V )=S/S={1}. We will show that the centralizer and normalizer p-
local finite groups (S, CF (V ), CL(V )) and (S, NF (V ), NL(V )) are equal.

Clearly HomCF (V )(P, Q)⊆HomNF (V )(P, Q) for all P, Q≤S. Let φ : P→Q be
a morphism in NF (V ), then there exists ψ : PV →QV in F such that ψ|P =φ and
ψ(V )≤V . Since ψ|V is a morphism in F , it must be the identity, and hence φ is a
morphism in CF (V ). Now, if P and Q are F -centric, then the morphisms for CL(V )
and NL(V ) as defined in [BLO2, Definitions 2.4 and 6.1] are given respectively by

MorCL(V )(P, Q) = π−1(HomCF (V )(P, Q)),

MorNL(V )(P, Q) = π−1(HomNF (V )(P, Q)),

where π : L→F c is the projection functor from Definition 2.10. This shows that
CL(V )=NL(V ). �

Before stating Quillen’s characterization, we start with a special case.

Lemma 6.3. Let (S, F , L) be a p-local finite group at an odd prime p. As-
sume that there exists a maximal elementary abelian normal subgroup V 
S which is
F -normal and such that AutF (V ) is a p-group. Then (S, F , L) is nilpotent.

Proof. We show that for every P ≤S, AutF (P ) is a p-group, and thereby veri-
fying condition (3) in Theorem 5.8. Let α∈AutF (P ) be an element of order q prime
to p. Then it is the restriction of some element α̃∈AutF (PV ). Let the order of α̃

be qnpkt where n>0 and t is prime to q and p. In particular, r=pkt is prime to q

and so there is a positive integer l prime to q such that lr is congruent to 1 mod q.
The order of α̃lr divides a, in particular it is prime to p, and the restriction to P is
α again. Therefore, we may assume that α̃ has order prime to p.

Now, α̃|V is an element in the p-group AutF (V ), which must be the identity.
As p>2, Lemma 6.1 applies and so V is a maximal elementary abelian subgroup
of S and hence of PV . We deduce from [Bl] that the order of α̃ is a power of p.
Hence α̃=1 and therefore α=1. �
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In the proof of the following theorem we will use quotients of fusion systems
and centric linking systems. We refer the reader to Definition 2.8 and Theorem 2.9
in Section 2 and [BLO2, Lemma 5.6] for more details.

Theorem 6.4. Let (S, F , L) be a p-local finite group at an odd prime p. Then
(S, F , L) is nilpotent if and only if every elementary abelian normal subgroup V 
S

is F -weakly closed and AutF (V ) is a p-group.

Proof. This condition is necessary in view of Theorem 5.8. Let thus (S, F , L)
be a p-local finite group such that every elementary abelian normal subgroup V 
S

is F -weakly closed and AutF (V ) is a p-group. We show that it must then be
nilpotent.

Consider first the elementary abelian normal subgroup V0=Ω1(Z(S)). It is
weakly closed in (S, F , L) by hypothesis, and thus normal in F by Lemma 5.6.
Given that AutF (V0) is a p-group, Proposition 6.2 applies. We have the equality
(S, F , L)=(S, CF (V0), CL(V0)). Hence V0 is central in (S, F , L).

Let V ≤S be a maximal normal elementary abelian subgroup of S contain-
ing V0. If V =V0, then it is F -normal and, by Lemma 6.3, (S, F , L) is nilpotent.
Let us thus assume that V0 is strictly contained in V .

Consider the quotient p-local finite group (S1, F1, L1)=(S/V0, F /V0, L/V0), as
in [BLO2, Lemma 5.6]. From the fibration

BV0 −→ | L | ∧
p −→ | L1| ∧

p ,

we see that (S, F , L) is nilpotent if and only if (S1, F1, L1) is so. Let V1 be the only
subgroup satisfying V0<V1 ≤V and V1/V0=V/V0 ∩Z(S1).

By construction, V1 is elementary abelian and normal in S. It is also strictly
larger than V0 because V/V0 is a non-trivial normal subgroup of S/V0 and therefore
it has non-trivial intersection with its center [Go, Theorem 2.6.4]. By the hypothesis,
V1 is weakly closed in F , so V1/V0 is weakly closed in F1. By Lemma 5.6, V1/V0 is
normal in (S1, F1, L1).

Let f : P/V0→Q/V0 be a map in F1. Since V1/V0 is normal in F1, f is the
restriction of a map g : PV1/V0→QV1/V0 in F1=F /V0. This map must be induced
by a morphism h : PV1→QV1 in F , which must satisfy h(P )≤Q and h(V1)=V1,
since V1 is F -weakly closed and both P and Q contain V0. This shows that F1=
NF (V1)/V0, and so there is a fibration

BV0 −→ |NL(V1)| ∧
p −→ | L1| ∧

p ,

from which we deduce that (S1, F1, L1) is nilpotent if and only if (S, F 1, L1)=
(S, NF (V1), NL(V1)) is nilpotent. The fusion system F 1 is a subcategory of F with
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the same objects, so it also satisfies that every elementary abelian normal subgroup
W 
S is F 1-weakly closed and AutF 1(W ) is a p-group. Moreover, V1 is normal in
(S, F 1, L1).

If V1 �=V we can iterate the process by defining V2 to be the only subgroup sat-
isfying V1<V2 ≤V and V2/V1=V/V1 ∩Z(S/V1). The p-local finite group (S, F 1, L1)
is nilpotent if and only if a new p-local finite group (S, F 2, L2), which normalizes
V2 and satisfies that every elementary abelian normal subgroup W 
S is F 2-weakly
closed and AutF 2(W ) is a p-group, is nilpotent.

Iterating this process a finite number of times, we end up with a p-local finite
group (S, ˜F , ˜L) for which V is ˜F -normal and such that (S, F , L) is nilpotent if and
only if (S, ˜F , ˜L) is so. We conclude by Lemma 6.3. �

Note that p>2 is a necessary condition, since the 2-local finite group induced
by the semidirect product Q8�3 provides a counterexample at the prime 2.

7. Cohomological characterizations in high degrees

In contrast to the results in Section 4, we now look at cohomological charac-
terizations of nilpotent p-local finite groups in high degrees. The proofs follow the
lines of Quillen’s arguments in the case of finite groups [Q]. Quillen attributes the
first criterion to Atiyah. Let F be a saturated fusion system. We will use the ring
of stable elements

H∗(F ; Fp) = lim←−
O(F )

H∗(−; Fp),

as introduced in [BLO2, Section 5]. It only depends on the fusion system, but the
main theorem of the cited section identifies it with the mod-p cohomology of | L |
when a centric linking system L associated with F exists.

Theorem 7.1. Let (S, F , L) be a p-local finite group and Bi : BS→| L | be the
standard inclusion. Then (S, F , L) is nilpotent if and only if one of the following
equivalent three conditions is satisfied :

(1) Bi ∗ : Hn(| L |; Fp)→Hn(BS; Fp) is an isomorphism for all sufficiently large
integers n;

(2) Bi ∗ : Hn(| L |; Z∧
p )→Hn(BS; Z∧

p ) is an isomorphism for all sufficiently large
integers n;

(3) if p>2, then for each x∈Heven(BS; Fp) there exists a power q of p such
that xq ∈Im(Bi ∗), that is, Bi ∗ is an F -epimorphism.
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Proof. Conditions (1) and (2) are equivalent by a universal coefficient theorem
argument. We work therefore with p-adic coefficients and assume now that the
p-local finite group (S, F , L) satisfies condition (2). By Castellana and Morales’
theorem [CM], the p-adic K-theory of | L | can be computed with stable elements
and so K0(| L |; Z∧

p ) is a free Z
∧
p -module and its rank is the number of F -conjugacy

classes of elements in S. However, the map Bi : BS→| L | induces a morphism of
Atiyah–Hirzebruch spectral sequences [K, Theorem 4.2.7], converging to the map of
p-completed K-theory rings K∗(| L |; Z∧

p )→K∗(BS; Z∧
p ) induced by Bi . This map

has finite kernel and cokernel in each dimension by assumption, so K0(| L |; Z∧
p ) and

K0(BS; Z∧
p ) must have the same rank. Two elements in S are hence F -conjugate if

and only if they are S-conjugate and this is the characterization of nilpotency given
by part (1) of Theorem 5.8.

By Proposition 3.3, a nilpotent p-local finite group satisfies condition (3). To
prove that condition (3) characterizes nilpotency for p>2, we show that it implies
the condition appearing in Theorem 6.4. Let V 
S be an elementary abelian normal
subgroup of S and consider the ideal

pV = {u ∈ Heven(BS; Fp) | u|Heven(BV ;Fp) is nilpotent}

in Heven(BS; Fp). It is a prime ideal since restriction to V induces an injection
Heven(BS; Fp)/pV →Heven(BV ; Fp)/n=S(V #), where S(V #) is the symmetric al-
gebra on V #=Rep(V, Z/p) with the elements of V # in degree 2 [Q] and n is the
nilradical. For simplicity of notation, let us denote by Bi −1(X) the set (Bi ∗)−1(X)
for any X ⊆Heven(BS; Fp).

Let A be an elementary abelian subgroup of S which is F -isomorphic to V .
Then we have Bi −1(pA)=Bi −1(pV ), since H∗(| L |; Fp) is computed by stable ele-
ments. Given u∈pV , condition (3) implies that uq ∈Im(Bi ∗) for some q which is
a power of p. Say Bi ∗(v)=uq . That means that v ∈Bi −1(pV )=Bi −1(pA) and so
uq ∈pA. But pA is a prime ideal of Heven(BS; Fp), so u∈pA. We conclude that
pA=pV . Applying [Q, Theorem 2.7] we obtain that A and V must be conjugate
subgroups in S. Since V 
S, A=V and V is F -weakly closed.

It remains to prove that AutF (V ) is a p-group. We will actually show that
AutF (V )=AutS(V ). We proceed as Quillen in [Q, Theorem 2.10]. Consider the
maps Heven(| L |; Fp)/Bi −1(pV )−→Heven(BS; Fp)/pV −→S(V #) and the associated
extensions of quotient fields

k(Bi −1(pV )) ⊆ k(pV ) ⊆ k(V ).

Note that the groups of automorphisms of the extensions k(pV )⊆k(V ) and
k(Bi −1(pV ))⊆k(V ) are AutS(V ) and AutF (V ), respectively [Q, Theorem 2.10].
The proof of [BLO2, Proposition 5.2] shows that the ring Heven(BS; Fp) is integral
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over Heven(| L |; Fp) and thus k(Bi −1(pV ))⊆k(pV ) is an algebraic extension. Since
any element in Heven(BS; Fp) is in Heven(L; Fp) after being raised to a certain power
of p, the extension k(Bi −1(pV ))⊆k(pV ) is purely inseparable [I, Theorem 19.10].
Therefore, AutF (V )=AutS(V ). �

We also offer a characterization of nilpotency in terms of the Morava K-theory
K(n), for any n≥1. For groups, this criterion was discovered by Brunetti in [Br].
His proof is based on the beautiful result of Hopkins, Kuhn, and Ravenel [HKR] on
generalized characters of finite groups.

Theorem 7.2. Let (S, F , L) be a p-local finite group and let Bi : BS→| L | be
the standard inclusion. Then (S, F , L) is nilpotent if and only if Bi ∗ : K(n)∗(| L |)→
K(n)∗(BS) is an isomorphism.

Proof. By [W], if we have a map of spaces inducing an isomorphism on the nth
Morava K-theory, then it also induces an isomorphism on the first Morava K-theory.
By [CM], an isomorphism in K(1) implies that two elements are conjugate in S if
and only if they are conjugate in F , that is, condition (1) holds in Theorem 4.2.

Conversely, if a p-local finite group is nilpotent, we have seen in Proposition 3.3
that Bi induces an isomorphism in mod-p cohomology. It must then be a K(n)-
equivalence as well, see for example [M, Corollary 1.5]. �

8. Quillen categories

For a finite p-group S, let εS denote the category whose objects are the ele-
mentary abelian p-subgroups of S and whose morphisms are given by conjugation.
Similarly, for a p-local finite group (S, F , L), let εF be the category with the same
objects considered as a full subcategory of F . They are the Quillen categories
of S and F , respectively. Recall that a ring homomorphism γ : B→A is an F -
isomorphism if each element in Ker(γ) is nilpotent and if for all a∈A there is some
k>0 such that ak ∈Im(γ). Following [BLO2], we define

H∗
ε (S; Fp) = lim←−

εS

H∗(−; Fp) and H∗
ε (F ; Fp) = lim←−

εF

H∗(−; Fp).

Definition 8.1. Let C and D be two categories equipped with functors C
γ
→Gr

and D
δ
→Gr to the category of groups. A functor Ψ: C→D is isotypical if γ is

naturally isomorphic to δ ◦Ψ.
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Theorem 8.2. Let (S, F , L) be a p-local finite group, p>2, and Bi : BS→| L |
be the standard inclusion. Then (S, F , L) is nilpotent if and only if one of the
following equivalent conditions is satisfied :

(1) the Quillen categories of S and F are isotypically equivalent ;
(2) Bi ∗ : H∗(| L |; Fp)→H∗(BS; Fp) is an F -isomorphism.

Proof. By Broto, Levi, and Oliver [BLO2, Proposition 5.1], there are F -iso-
morphisms λS : H∗(BS)→H∗

ε (S) and λF : H∗(F )→H∗
ε (F ). The stable element

formula [BLO2, Theorem 5.8] shows that the natural map RL : H∗(| L |)→H∗(F ) is
an isomorphism. So in fact, we have the commutative diagram

H∗(| L |)
λF RL

Bi∗

H∗
ε (F )

j

H∗(BS)
λS

H∗
ε (S).

If the Quillen categories of S and F are isotypically equivalent, then the map
j is an isomorphism and therefore the map Bi ∗ is an F -isomorphism. Assume
now that Bi ∗ is an F -isomorphism. Then condition (3) in Theorem 7.1 holds
and so (S, F , L) is nilpotent. It is obvious that a nilpotent p-local group satisfies
condition (1). �

Let C be a class of finite subgroups of S. We say that a subgroup H of S

controls fusion of C-groups in F if the following conditions hold:
• any C-subgroup of S is F -conjugate to a subgroup of H ;
• for any C-subgroup P of H and any f : P→S in F such that f(P )≤H , there

exists h∈H such that f(x)=hxh−1 for all x∈P .
When H=S, the first condition is a tautology, so S itself controls fusion if any

F -morphism P→S from a group P ∈ C is conjugation by an element in S.

Definition 8.3. Let G be a group. We say x∈G is a Cp-element when xp=1 if
p is odd or x4=1 if p=2. A subgroup of G generated by a Cp-element is called a
Cp-subgroup and we denote by Cp the class of Cp-subgroups.

Given K ≤S and f : K→S, let us denote by [K, f ] the subgroup of S generated
by the elements of the form [a, f ]=a−1f(a) with a∈K. We also denote by [K, f, f ]
the subgroup [[K, f ], f ].

Theorem 8.4. Let (S, F , L) be a p-local finite group. Then (S, F , L) is nilpo-
tent if and only if S controls fusion of Cp-subgroups.



Nilpotent p-local finite groups 223

Proof. We follow the strategy in [GS, Theorem 2]. We will show that the
control of the fusion condition implies condition (3) in Theorem 5.8. Let P ≤S, and
let f ∈AutF (P ) be an automorphism of order prime to p. There exists some l≥1
such that P is contained in a subgroup Zl(S) of the upper central series, defined
inductively by Z0(S)=1 and Zl(S)={x∈S |[x, y]∈Zl−1(S) for all y ∈S}. We will
prove by induction on l that f is the identity map.

Suppose first that P ≤Z(S) and consider a Cp-element a∈P . Since S controls
fusion of Cp-subgroups, there is an s∈S such that f(a)=sas−1. But a∈Z(S), so
f(a)=a. By [Go, Theorem 5.2.4], f=1P .

Now consider P ≤Zl(S) and suppose that the result is known for subgroups
of Zl−1(S). Let K be the subgroup of P generated by Cp-elements. Both K and
[K, f ] are stabilized by f .

Consider a Cp-element a∈P . Since S controls fusion of Cp-subgroups, there
is s∈S such that f(a)=sas−1 and so [a, f ]=[a, s]∈Zl−1(S). Note that [K, f ] is
generated by elements of the form b[a, f ]b−1, where a, b∈K and a is a Cp-element.
Therefore [K, f ]≤Zl−1(S), so that the induction hypothesis applies: f restricted to
[K, f ] must be the identity. Since f stabilizes [K, f ], we have that [K, f, f ]=1. But
by [Go, Theorem 5.3.6], [K, f, f ]=[K, f ] under these circumstances, so f restricted
to K is the identity as well. In particular, f fixes the Cp-elements of P . Now [H,
Satz IV.5.12] implies that f is the identity. �

Definition 8.5. ([BCGLO1]) For any saturated fusion system F over a finite
p-group S, the center of F is the subgroup

ZF (S) = {x ∈ Z(S) | f(x) =x for all f ∈ Mor(F c)} = lim←−
F c

Z(−).

The characteristic subgroup Ωi(S) is the subgroup generated by all elements
x such that xpi

=1. The following result is now a straightforward consequence of
Theorem 8.4.

Corollary 8.6. Let (S, F , L) be a p-local finite group. If the Cp-elements of
S are in the center of F , then (S, F , L) is nilpotent. In particular, if p is odd and
Ω1(S)⊆ZF (S) (respectively p=2 and Ω2(S)⊆ZF (S)), then (S, F , L) is nilpotent.
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