On normal forms for Levi-flat hypersurfaces with an isolated line singularity

Arturo Fernández-Pérez

Abstract. We prove the existence of normal forms for some local real-analytic Levi-flat hypersurfaces with an isolated line singularity. We also give sufficient conditions for a Levi-flat hypersurface with a complex line as singularity to be a pullback of a real-analytic curve in \mathbb{C} via a holomorphic function.

1. Introduction

Let $M \subset U \subset \mathbb{C}^n$ be a real-analytic hypersurface, where U is an open set. Denote by M^* the regular part, that is, near each point $p \in M^*$, the variety M is a manifold of real codimension one. For each $p \in M^*$, there is a unique complex hyperplane L_p contained in the tangent space $T_p M^*$, and this consequently defines a real-analytic distribution $p \mapsto L_p$ of complex hyperplanes in $T_p M^*$, the so-called Levi distribution. We say that M is Levi-flat, if the Levi distribution is integrable in the sense of Frobenius. The foliation defined by this distribution is called the *Levi-foliation*. The local structure near regular points is very well understood, according to É. Cartan, around each $p \in M^*$ we can find local holomorphic coordinates $z_1, ..., z_n$ such that $M^* =$ $\{(z_1, ..., z_n) | \operatorname{Re}(z_n) = 0\}$, and consequently the leaves of the Levi-foliation are imaginary levels of z_n . They case was studied by Burns-Gong [3]. They classified singular Levi-flat hypersurfaces in \mathbb{C}^n with quadratic singularities and also proved the existence of a normal form, in the case of generic (Morse) singularities. In [4], Cerveau–Lins Neto proved that a local real-analytic Levi-flat hypersurface M with a sufficiently small singular set is given by the zeros of the real part of a holomorphic function.

This work was partially supported by PRPq—Universidade Federal de Minas Gerias UFMG 2013, FAPEMIG APQ-00371-13 and CNPq grant number 301635/2013-7.

The aim of this paper is to prove the existence of some normal forms for local real-analytic Levi-flat hypersurfaces defined by the vanishing of the real part of holomorphic functions with an *isolated line singularity* (for short: ILS). In particular, we establish an analogous result like in singularity theory for germs of holomorphic functions.

The main motivation for this work is a result due to D. Siersma, who introduced in [13] the class of germs of holomorphic functions with an ILS. More precisely, let $\mathcal{O}_{n+1} := \{f: (\mathbb{C}^{n+1}, 0) \to \mathbb{C}\}$ be the ring of germs of holomorphic functions and let m be its maximal ideal. If $(x, y) = (x, y_1, ..., y_n)$ denote the coordinates in \mathbb{C}^{n+1} , consider the line $L := \{(x, y) | y_1 = ... = y_n = 0\}$, let $I := (y_1, ..., y_n) \subset \mathcal{O}_{n+1}$ be its ideal and denote by \mathcal{D}_I the group of local analytic isomorphisms $\varphi: (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}^{n+1}, 0)$ for which $\varphi(L) = L$. Then \mathcal{D}_I acts on I^2 and for $f \in I^2$, the tangent space of (the orbit of) f with respect to this action is the ideal defined by

$$\tau(f) := m \cdot \frac{\partial f}{\partial x} + I \cdot \frac{\partial f}{\partial y}$$

and the codimension of (the orbit) of f is $c(f) := \dim_{\mathbb{C}}(I^2/\tau(f))$.

A line singularity is a germ $f \in I^2$. An ILS is a line singularity f such that $c(f) < \infty$. Geometrically, $f \in I^2$ is an ILS if and only if the singular locus of f is L and for every $x \neq 0$, the germ of (a representative of) f at $(x, 0) \in L$ is equivalent to $y_1^2 + \ldots + y_n^2$. In a certain sense ILSs are the first generalization of isolated singularities. Siersma proved the following result. (The topology on \mathcal{O}_{n+1} is introduced as in [5, p. 145].)

Theorem 1.1. A germ $f \in I^2$ is D_I -simple (i.e. $c(f) < \infty$ and f has a neighborhood in I^2 which intersects only a finite number of D_I -orbits) if and only if f is D_I -equivalent to one of the germs in Table 1.

The singularities in Theorem 1.1 are analogous of the A-D-E singularities due to Arnold [1]. A new characterization of simple ILSs have been proved by Zaharia [14]. We prove the existence of normal forms for Levi-flat hypersurfaces with an ILS.

Theorem 1.2. Let $M = \{(x, y) | F(x, y) = 0\}$ be a germ of an irreducible realanalytic hypersurface on $(\mathbb{C}^{n+1}, 0), n \geq 3$. Suppose that

(1) $F(x,y) = \operatorname{Re}(P(x,y)) + H(x,y)$, where P(x,y) is one of the germs of Table 1;

(2) $M = \{(x, y) | F(x, y) = 0\}$ is Levi-flat;

(3) H(x,0)=0 for all $x \in (\mathbb{C},0)$, and $j_0^k(H)=0$ for $k=\deg(P)$.

Type	Normal form	Conditions
A_{∞}	$y_1^2\!+\!y_2^2\!+\!\ldots\!+\!y_n^2$	
D_{∞}	$xy_1^2\!+\!y_2^2\!+\!\ldots\!+\!y_n^2$	
$J_{k,\infty}$	$x^ky_1^2\!+\!y_1^3\!+\!y_2^2\!+\!\ldots\!+\!y_n^2$	$k \ge 2$
$T_{\infty,k,2}$	$x^2y_1^2\!+\!y_1^k\!+\!y_2^2\!+\!\ldots\!+\!y_n^2$	$k \ge 4$
$Z_{k,\infty}$	$xy_1^3\!+\!x^{k+2}y_1^2\!+\!y_2^2\!+\!\ldots\!+\!y_n^2$	$k \ge 1$
$W_{1,\infty}$	$x^3y_1^2\!+\!y_1^4\!+\!y_2^2\!+\!\ldots\!+\!y_n^2$	
$T_{\infty,q,r}$	$xy_1y_2 + y_1^q + y_2^r + y_3^2 + \ldots + y_n^2$	$q{\geq}r{\geq}3$
$Q_{k,\infty}$	$x^ky_1^2\!+\!y_1^3\!+\!xy_2^2\!+\!y_3^2\!+\!\ldots\!+\!y_n^2$	$k \ge 2$
$S_{1,\infty}$	$x^2y_1^2\!+\!y_1^2y_2\!+\!y_3^2\!+\!\ldots\!+\!y_n^2$	

Table 1. Isolated Line singularities.

Then there exists a biholomorphism $\varphi \colon (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}^{n+1}, 0)$ preserving L such that $\varphi(M) = \{(x, y) \mid \operatorname{Re}(P(x, y)) = 0\}.$

This result is a Siersma-type theorem for singular Levi-flat hypersurfaces. We remark that the function H is of course restricted by the assumption that M is Levi flat. Now, if $\varphi(M) = \{(x, y) | \operatorname{Re}(P(x, y)) = 0\}$, where P is a germ with an ILS at L then $\operatorname{Sing}(M) = L$. In other words, M is a Levi-flat hypersurface with an ILS at L. If P(x, y) is the germ A_{∞} , we prove that Theorem 1.2 is true in the case n=2.

Theorem 1.3. Let $M = \{(x, y) | F(x, y) = 0\}$ be a germ of an irreducible realanalytic Levi-flat hypersurface on $(\mathbb{C}^3, 0)$. Suppose that F is defined by

$$F(x, y) = \operatorname{Re}(y_1^2 + y_2^2) + H(x, y)$$

where H is a germ of a real-analytic function such that H(x,0)=0 and $j_0^k(H)=0$ for k=2. Then there exists a biholomorphism $\varphi \colon (\mathbb{C}^3,0) \to (\mathbb{C}^3,0)$ preserving L such that $\varphi(M) = \{(x,y) | \operatorname{Re}(y_1^2+y_2^2)=0\}.$

The above result should be compared to [3, Theorem 1.1]. This result can be viewed as a Morse lemma for Levi-flat hypersurfaces with an ILS at L. The problem of normal forms of Levi-flat hypersurfaces in \mathbb{C}^3 with an ILS seems difficult in the other cases. To prove these results we use techniques of holomorphic foliations developed in [4] and [6]. Similar normal forms of singular Levi-flat hypersurfaces have been obtained in [3], [7] and [9].

This paper is organized as follows: in Section 2, we recall some definitions and known results about Levi-flat hypersurfaces and holomorphic foliations. Section 3 is devoted to prove Theorem 1.2. In Section 4, we prove Theorem 1.3. Finally, in

Section 5, using holomorphic foliations, we give sufficient conditions for a Levi-flat hypersurface with a complex line as singularity to be a pullback of a real-analytic curve in \mathbb{C} via a holomorphic function (see Theorem 5.7).

2. Levi-flat hypersurfaces and foliations

In this section we work with germs at $0 \in \mathbb{C}^{n+1}$ of irreducible real-analytic hypersurfaces and of codimension-one holomorphic foliations. Let $M = \{(x, y) | F(x, y) = 0\}$, where $F: (\mathbb{C}^{n+1}, 0) \to (\mathbb{R}, 0)$ is a germ of an irreducible real-analytic function, and $M^* := \{(x, y) | F(x, y) = 0\} \setminus \{(x, y) | dF(x, y) = 0\}$. Let us define the singular set of M (or "set of critical points" of M) by

(1)
$$\operatorname{Sing}(M) := \{(x, y) \mid F(x, y) = 0\} \cap \{(x, y) \mid dF(x, y) = 0\}.$$

Note that $\operatorname{Sing}(M)$ contains all points $q \in M$ such that M is smooth at q, but the codimension of M at q is at least two. In general the singular set of a real-analytic subvariety M in a complex manifold is defined as the set of points near which M is not a real-analytic submanifold (of any dimension) and "in general" has structure of a semianalytic set; see for instance, [10]. In this paper, we work with $\operatorname{Sing}(M)$ as defined in (1). We recall that (in this case) the Levi distribution L on M^* is defined by

(2)
$$L_p := \ker(\partial F(p)) \subset T_p M^* = \ker(dF(p))$$
 for any $p \in M^*$.

Let us suppose that M is *Levi-flat*. This implies that M^* is foliated by complex codimension-one holomorphic submanifolds immersed on M^* .

Note that the Levi distribution L on M^* can be defined by the real-analytic 1-form $\eta = i(\partial F - \bar{\partial}F)$, which is called the *Levi* 1-form of F. It is well known that the integrability condition of L is equivalent to the equation $(\partial F - \bar{\partial}F) \wedge \partial \bar{\partial}F|_{M^*} = 0$.

Let us consider the Taylor series of F at $0 \in \mathbb{C}^{n+1}$,

$$F(x,y) = \sum_{j,\mu,k,\nu} F_{j\mu k\nu} x^j y^{\mu} \bar{x}^k \bar{y}^{\nu},$$

where $\overline{F}_{j\mu k\nu} = F_{k\nu j\mu}$ for all $j, k \in \mathbb{N}$, $\mu = (\mu_1, ..., \mu_n)$, $\nu = (\nu_1, ..., \nu_n)$, $(x, y) \in \mathbb{C} \times \mathbb{C}^n$, $y^{\mu} = y_1^{\mu_1} ... y_n^{\mu_n}$ and $\overline{y}^{\nu} = \overline{y}_1^{\nu_1} ... \overline{y}_n^{\nu_n}$. The complexification $F_{\mathbb{C}} \in \mathcal{O}_{2n+2}$ of F is defined by the series

$$F_{\mathbb{C}}(x, y, z, w) = \sum_{j, \mu, k, \nu} F_{j\mu k\nu} x^j y^{\mu} z^k w^{\nu},$$

where $z \in \mathbb{C}$, $w = (w_1, ..., w_n) \in \mathbb{C}^n$ and $w^{\nu} = w_1^{\nu_1} ... w_n^{\nu_n}$. Notice that

$$F(x,y) = F_{\mathbb{C}}(x,y,\bar{x},\bar{y}).$$

The complexification $M_{\mathbb{C}}$ of M is defined as $M_{\mathbb{C}}:=\{(x, y, z, w)|F_{\mathbb{C}}(x, y, z, w)=0\}$ and defines a complex subvariety in \mathbb{C}^{2n+2} , its regular part is

$$M^*_{\mathbb{C}} := M_{\mathbb{C}} \setminus \{ (x, y, z, w) \mid dF_{\mathbb{C}}(x, y, z, w) = 0 \}.$$

Now, assume that M is Levi-flat. Then the integrability condition of

$$\eta = i(\partial F - \bar{\partial}F)|_{M^*}$$

implies that $\eta_{\mathbb{C}}|_{M^*_{\mathbb{C}}}$ is integrable, where

$$\eta_{\mathbb{C}} := i [(\partial_x F_{\mathbb{C}} + \partial_y F_{\mathbb{C}}) - (\partial_z F_{\mathbb{C}} + \partial_w F_{\mathbb{C}})].$$

Therefore $\eta_{\mathbb{C}}|_{M^*_{\mathbb{C}}}$ defines a codimension-one holomorphic foliation $\mathcal{L}_{\mathbb{C}}$ on $M^*_{\mathbb{C}}$ that will be called the *complexification of* \mathcal{L} .

Let $W := M_{\mathbb{C}}^* \setminus \operatorname{Sing}(\eta_{\mathbb{C}}|_{M_{\mathbb{C}}^*})$ and denote by L_{ζ} the leaf of $\mathcal{L}_{\mathbb{C}}$ through ζ , where $\zeta \in W$. The next results will be used several times througout the paper.

Lemma 2.1. (Cerveau–Lins Neto [4]) For any $\zeta \in W$, the leaf L_{ζ} of $\mathcal{L}_{\mathbb{C}}$ through ζ is closed in $M^*_{\mathbb{C}}$.

Definition 2.2. The algebraic dimension of $\operatorname{Sing}(M)$ is the complex dimension of the singular set of $M_{\mathbb{C}}$.

The following result will be used enunciated in the context of Levi-flat hypersurfaces in \mathbb{C}^{n+1} .

Theorem 2.3. (Cerveau-Lins Neto [4]) Let $M = \{(x, y) | F(x, y) = 0\}$ be a germ of an irreducible analytic Levi-flat hypersurface at $0 \in \mathbb{C}^{n+1}$, $n \ge 2$, with Levi 1-form $\eta = i(\partial F - \overline{\partial} F)$. Assume that the algebraic dimension of $\operatorname{Sing}(M)$ is $\le 2n-2$. Then there exists a unique germ at $0 \in \mathbb{C}^{n+1}$ of the holomorphic codimension-one foliation \mathcal{F}_M tangent to M, if one of the following conditions is fulfilled:

(1) $n \geq 3$ and $\operatorname{cod}_{M^*_{\mathbb{C}}}(\operatorname{Sing}(\eta_{\mathbb{C}}|_{M^*_{\mathbb{C}}})) \geq 3;$

(2) $n \ge 2$, $\operatorname{cod}_{M^*_{\mathbb{C}}}(\operatorname{Sing}(\eta_{\mathbb{C}}|_{M^*_{\mathbb{C}}})) \ge 2$ and $\mathcal{L}_{\mathbb{C}}$ admits a non-constant holomorphic first integral.

Moreover, in both cases the foliation \mathcal{F}_M admits a non-constant holomorphic first integral f such that $M = \{(x, y) | \operatorname{Re}(f(x, y)) = 0\}$.

3. Proof of Theorem 1.2

We write

$$F(x, y) = \operatorname{Re}(P(x, y_1, ..., y_n)) + H(x, y_1, ..., y_n)$$

where $P(x, y_1, ..., y_n)$ is one of the polynomials of Table 1, $H: (\mathbb{C}^{n+1}, 0) \to (\mathbb{R}, 0)$ is a germ of a real-analytic function such that H(x, 0)=0 for all $x \in (\mathbb{C}, 0)$, and $j_0^k(H)=0$ for $k=\deg(P)$. The complexification of F is given by

$$F_{\mathbb{C}}(x, y, z, w) = \frac{1}{2}P(x, y) + \frac{1}{2}P(z, w) + H_{\mathbb{C}}(x, y, z, w),$$

and therefore $M_{\mathbb{C}} = \{(x, y, z, w) | F_{\mathbb{C}}(x, y, z, w) = 0\} \subset (\mathbb{C}^{2n+2}, 0)$, where $z \in \mathbb{C}$ and $w = (w_1, ..., w_n) \in \mathbb{C}^n$.

Since P(x, y) has an ILS at L, we get $\operatorname{Sing}(M_{\mathbb{C}}) = \{(x, y, z, \omega) | y = w = 0\} \simeq \mathbb{C}^2$. In particular, the algebraic dimension of $\operatorname{Sing}(M)$ is 2. On the other hand, the complexification of $\eta = i(\partial F - \overline{\partial}F)$ is

$$\eta_{\mathbb{C}} := i[(\partial_x F_{\mathbb{C}} + \partial_y F_{\mathbb{C}}) - (\partial_z F_{\mathbb{C}} + \partial_w F_{\mathbb{C}})].$$

Recall that $\eta|_{M^*}$ and $\eta_{\mathbb{C}}|_{M^*_{\mathbb{C}}}$ define \mathcal{L} and $\mathcal{L}_{\mathbb{C}}$ respectively. Now we compute $\operatorname{Sing}(\eta_{\mathbb{C}}|_{M^*_{\mathbb{C}}})$. We can write $dF_{\mathbb{C}} = \alpha + \beta$, with

$$\alpha := \frac{\partial F_{\mathbb{C}}}{\partial x} \, dx + \sum_{j=1}^{n} \frac{\partial F_{\mathbb{C}}}{\partial y_j} \, dy_j = \frac{1}{2} \frac{\partial P}{\partial x}(x, y) \, dx + \frac{1}{2} \sum_{j=1}^{n} \frac{\partial P}{\partial y_j}(x, y) \, dy_j + \theta_1$$

and

$$\beta := \frac{\partial F_{\mathbb{C}}}{\partial z} \, dz + \sum_{j=1}^{n} \frac{\partial F_{\mathbb{C}}}{\partial w_j} \, dw_j = \frac{1}{2} \frac{\partial P}{\partial z}(z, w) \, dz + \frac{1}{2} \sum_{j=1}^{n} \frac{\partial P}{\partial w_j}(z, w) \, dw_j + \theta_2,$$

where

$$\theta_1 = \frac{\partial H_{\mathbb{C}}}{\partial x} \, dx + \sum_{j=1}^n \frac{\partial H_{\mathbb{C}}}{\partial z_j} \, dz_j \quad \text{and} \quad \theta_2 = \frac{\partial H_{\mathbb{C}}}{\partial z} \, dz + \sum_{j=1}^n \frac{\partial H_{\mathbb{C}}}{\partial w_j} \, dw_j.$$

Note that $\eta_{\mathbb{C}} = i(\alpha - \beta)$, and so

(3)
$$\eta_{\mathbb{C}}|_{M^*_{\mathbb{C}}} = (\eta_{\mathbb{C}} + i \, dF_{\mathbb{C}})|_{M^*_{\mathbb{C}}} = 2i\alpha|_{M^*_{\mathbb{C}}} = -2i\beta|_{M^*_{\mathbb{C}}}$$

In particular, $\alpha|_{M^*_{\mathbb{C}}}$ and $\beta|_{M^*_{\mathbb{C}}}$ define $\mathcal{L}_{\mathbb{C}}$. Therefore $\operatorname{Sing}(\eta_{\mathbb{C}}|_{M^*_{\mathbb{C}}})$ can be split in two parts. In fact, let

$$M_{1} := \left\{ (x, y, z, w) \in M_{\mathbb{C}} \middle| \frac{\partial F_{\mathbb{C}}}{\partial z} \neq 0 \text{ or } \frac{\partial F_{\mathbb{C}}}{\partial w_{j}} \neq 0 \text{ for some } j = 1, ..., n \right\},$$
$$M_{2} := \left\{ (x, y, z, w) \in M_{\mathbb{C}} \middle| \frac{\partial F_{\mathbb{C}}}{\partial x} \neq 0 \text{ or } \frac{\partial F_{\mathbb{C}}}{\partial z_{j}} \neq 0 \text{ for some } j = 1, ..., n \right\}.$$

Then $M_{\mathbb{C}}=M_1\cup M_2$. If we let $A_0=\partial H_{\mathbb{C}}/\partial x$, $A_j=\partial H_{\mathbb{C}}/\partial z_j$, $B_0=\partial H_{\mathbb{C}}/\partial z$ and $B_j=\partial H_{\mathbb{C}}/\partial w_j$ for all $1\leq j\leq n$, we obtain that $\operatorname{Sing}(\eta_{\mathbb{C}}|_{M_{\mathbb{C}}^*})=X_1\cup X_2$, where

On normal forms for Levi-flat hypersurfaces with an isolated line singularity

$$X_1 := M_1 \cap \left\{ (x, y, z, w) \left| \frac{\partial P}{\partial x}(x, y) + A_0 = \frac{\partial P}{\partial y_1}(x, y) + A_1 = \dots = \frac{\partial P}{\partial y_n}(x, y) + A_n = 0 \right\}$$

and

$$X_2 := M_2 \cap \left\{ (x, y, z, w) \left| \frac{\partial P}{\partial z}(z, w) + B_0 = \frac{\partial P}{\partial w_1}(z, w) + B_1 = \ldots = \frac{\partial P}{\partial w_n}(z, w) + B_n = 0 \right\}$$

Since P is a polynomial with an ILS at $L = \{(x, y) | y = 0\}$, we conclude that

 $\operatorname{cod}_{M^*_{\mathbb{C}}}\operatorname{Sing}(\eta_{\mathbb{C}}|_{M^*_{\mathbb{C}}}) = n.$

By hypothesis $n \ge 3$. Then it follows from Theorem 2.3(1) that there exists a germ $f \in \mathcal{O}_{n+1}$ such that the holomorphic foliation \mathcal{F} defined by df = 0 is tangent to M. Moreover $M = \{(x, y) | \operatorname{Re}(f(x, y)) = 0\}$. Note that if

$$M = \{(x, y) \mid \operatorname{Re}(f(x, y)) = 0\} = \{(x, y) \mid F(x, y) = 0\},\$$

with F being an irreducible germ, we must have $\operatorname{Re}(f) = UF$, where U is a germ of a real-analytic function with $U(0) \neq 0$. Without loss of generality, we can assume that U(0)=1. In particular, $\operatorname{Re}(f) = UF$ implies that

f = P + higher order terms.

According to Theorem 1.1, there exists a biholomorphism $\varphi : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}^{n+1}, 0)$ preserving *L* such that $f \circ \varphi^{-1} = P$, (*f* is D_I -equivalent to *P*, because *f* is a germ with ILS at *L*). Therefore, $\varphi(M) = \{(x, y) | \operatorname{Re}(P(x, y)) = 0\}$ and the proof is complete.

4. Proof of Theorem 1.3

The idea is to use Theorem 2.3(2). In order to prove our result in the case n=2, we are going to prove that $\mathcal{L}_{\mathbb{C}}$ has a non-constant holomorphic first integral.

We begin by a blow-up along $C\!:=\!\{(x,y,z,w)|y_1\!=\!y_2\!=\!w_1\!=\!w_2\!=\!0\}\!\simeq\!\mathbb{C}^2\!\subset\!\mathbb{C}^6.$ Let

$$F(x, y_1, y_2) = \operatorname{Re}(y_1^2 + y_2^2) + H$$

J

and assume that $M = \{(x, y) | F(x, y) = 0\}$ is Levi-flat. Its complexification can be written as

$$F_{\mathbb{C}}(x, y_1, y_2, z, w_1, w_2) = \frac{1}{2}(y_1^2 + y_2^2) + \frac{1}{2}(w_1^2 + w_2^2) + H_{\mathbb{C}}(x, y_1, y_2, z, w_1, w_2).$$

Note that

$$Sing(M_{\mathbb{C}}) = \{(x, y, z, w) \mid y = w = 0\} = C.$$

Let E be the exceptional divisor of the blow-up $\pi: \widetilde{\mathbb{C}}^6 \to \mathbb{C}^6$ along C. Denote by $\widetilde{M}_{\mathbb{C}}:=\pi^{-1}(M_{\mathbb{C}}\setminus\{C\})\subset \widetilde{\mathbb{C}}^6$ the strict transform of $M_{\mathbb{C}}$ via π and by $\widetilde{\mathcal{F}}:=\pi^*(\mathcal{L}_{\mathbb{C}})$ the foliation on $\widetilde{M}_{\mathbb{C}}$.

Now, we consider a special situation. Suppose that $\widetilde{M}_{\mathbb{C}}$ is smooth and set $\widetilde{C}:=\widetilde{M}_{\mathbb{C}}\cap E$. Moreover, assume that \widetilde{C} is invariant by $\widetilde{\mathcal{F}}$. Take $S=\widetilde{C}\setminus \operatorname{Sing}(\widetilde{\mathcal{F}})$. Then S is a smooth leaf of $\widetilde{\mathcal{F}}$. Pick $p_0 \in S$ and a transverse section Σ through p_0 . Let $G \subset \operatorname{Diff}(\Sigma, p_0)$ be the holonomy group of the leaf S of $\widetilde{\mathcal{F}}$. Since dim $\Sigma=1$, we can assume that $G \subset \operatorname{Diff}(\Sigma, 0)$. We state a fundamental lemma.

Lemma 4.1. (Fernández-Pérez [9]) In the above situation, suppose that the following properties are satisfied:

(1) For any $p \in S \setminus \text{Sing}(\widetilde{\mathcal{F}})$ the leaf L_p of $\widetilde{\mathcal{F}}$ through p is closed in S;

(2) g'(0) is a primitive root of unity for all $g \in G \setminus \{id\}$.

Then $\mathcal{L}_{\mathbb{C}}$ admits a non-constant holomorphic first integral.

Proof. Let $G' = \{g'(0) | g \in G\}$ and consider the homomorphism $\phi \colon G \to G'$ defined by $\phi(g) = g'(0)$. We claim that ϕ is injective. In fact, assume that $\phi(g) = 1$ and suppose by contradiction that $g \neq id$. In this case $g(z) = z + az^{r+1} + ...$, where $a \neq 0$. According to [11], the pseudo-orbits of this transformation accumulate at $0 \in (\Sigma, 0)$, contradicting the fact that the leaves of $\widetilde{\mathcal{F}}$ are closed and so the assertion is proved. Now, it suffices to prove that any element $g \in G$ has finite order (cf. [12]). In fact, $\phi(g) = g'(0)$ is a root of unity, and thus g has finite order because ϕ is injective. Hence, all transformations of G have finite order and G is linearizable.

This implies that there is a coordinate system w on $(\Sigma, 0)$ such that

$$G = \langle w \mapsto \lambda w \rangle,$$

where λ is a *d*th-primitive root of unity (cf. [12]). In particular, $\psi(w) = w^d$ is a first integral of *G*, that is $\psi \circ g = \psi$ for any $g \in G$.

Let Γ be the union of the separatrices of $\mathcal{L}_{\mathbb{C}}$ through $0 \in \mathbb{C}^6$ and $\widetilde{\Gamma}$ be its strict transform under π . The first integral ψ can be extended to a first integral $\varphi \colon \widetilde{M}_{\mathbb{C}} \setminus \widetilde{\Gamma} \to \mathbb{C}$ by setting

$$\varphi(q) = \psi(\tilde{L}_q \cap \Sigma),$$

where \tilde{L}_p denotes the leaf of $\tilde{\mathcal{F}}$ through q. Since ψ is bounded (in a compact neighborhood of $0 \in \Sigma$), so is φ . It follows from Riemann's extension theorem that φ can be extended holomorphically to $\tilde{\Gamma}$ with $\varphi(\tilde{\Gamma})=0$. This provides the first integral of $\mathcal{L}_{\mathbb{C}}$. \Box

The rest of the proof is devoted to prove that we are indeed in the conditions of Lemma 4.1. It follows from Lemma 2.1 that the leaves of $\mathcal{L}_{\mathbb{C}}$ are closed. Therefore,

we need to prove that each generator of the holonomy group G of $\widetilde{\mathcal{F}}$ with respect to S has finite order.

Consider for instance the chart $(U_1, (x, t, s, z, u, v))$ of $\widetilde{\mathbb{C}}^6$, where

$$\pi(x, t, s, z, u, v) = (x, tu, su, z, u, vu) = (x, y_1, y_2, z, w_1, w_2).$$

We have

$$\widetilde{M}_{\mathbb{C}} \cap U_1 = \{ (x, t, s, z, u, v) \in U_1 \mid 1 + t^2 + s^2 + v^2 + uH_1(x, t, s, z, u, v) = 0 \},\$$

where $H_1 = H(x, ut, us, z, u, uv)/u^3$ and this fact imply that

$$E \cap \widetilde{M}_{\mathbb{C}} \cap U_1 = \{ (x, t, s, z, u, v) \in U_1 \mid 1 + t^2 + s^2 + v^2 = u = 0 \}.$$

It is not difficult to see that these complex subvarieties are smooth. Now, let us describe the foliation $\widetilde{\mathcal{F}}$ on U_1 . In fact, note that the foliation $\mathcal{L}_{\mathbb{C}}$ is defined by $\alpha|_{M_{\mathcal{C}}^*}=0$, where

$$\alpha = \frac{1}{2} \frac{\partial P}{\partial x} \, dx + \frac{1}{2} \frac{\partial P}{\partial y_1} \, dy_1 + \frac{1}{2} \frac{\partial P}{\partial y_2} \, dy_2 + \frac{\partial H_{\mathbb{C}}}{\partial x} \, dx + \sum_{j=1}^2 \frac{\partial H_{\mathbb{C}}}{\partial y_j} \, dy_j$$

It follows that $\alpha = y_1 dy_1 + y_2 dy_2 + (\partial H_{\mathbb{C}}/\partial x) dx + \sum_{j=1}^2 (\partial H_{\mathbb{C}}/\partial y_j) dy_j$, and then $\widetilde{\mathcal{F}}|_{U_1}$ is defined by $\widetilde{\alpha}|_{\widetilde{M}_{\mathbb{C}}\cap U_1} = 0$, where

(4)
$$\widetilde{\alpha} = (t^2 + s^2) \, du + ut \, dt + us \, ds + u\widetilde{\theta},$$

and

$$\tilde{\theta} = \frac{\pi^* \left(\frac{\partial H_{\mathbb{C}}}{\partial x} \, dx + \sum_{j=1}^2 \frac{\partial H_{\mathbb{C}}}{\partial y_j} \, dy_j \right)}{u^2}.$$

Therefore, the singular set of $\widetilde{\mathcal{F}}|_{U_1}$ is given by

$$\operatorname{Sing}(\widehat{\mathcal{F}}|_{U_1}) = \{(x, t, s, z, u, v) \mid u = t + is = 0 \text{ or } u = t - is = 0\}.$$

On the other hand, note that the exceptional divisor E is invariant by $\widetilde{\mathcal{F}}$ and the intersection with $\operatorname{Sing}(\widetilde{\mathcal{F}})$ is

$$\operatorname{Sing}(\widetilde{\mathcal{F}}|_{U_1}) \cap E = \{(x, t, s, z, u, v) \mid u = t + is = v^2 + 1 = 0 \text{ or } u = t - is = v^2 + 1 = 0\}.$$

In particular, $S:=(E \cap \widetilde{M}_{\mathbb{C}}) \setminus \operatorname{Sing}(\tilde{\mathcal{L}}_{\mathbb{C}})$ is a leaf of $\widetilde{\mathcal{F}}$. We calculate the generators of the holonomy group G of the leaf S. We work in the chart U_1 , because of the symmetry of the variables in the definition of the variety $\widetilde{M}_{\mathbb{C}}$.

Pick $p_0 = (0, 1, 0, 0, 0, 0) \in S \cap U_1$ and a transversal $\Sigma = \{(0, 1, 0, 0, \lambda, 0) | \lambda \in \mathbb{C}\}$ parameterized by λ at p_0 . We have that

$$\operatorname{Sing}(\widetilde{\mathcal{F}}|_{U_1}) \cap E = \{(x, t, s, z, u, v) \mid u = t + is = v^2 + 1 = 0 \text{ or } u = t - is = v^2 + 1 = 0\}.$$

For j=1,2, let ρ_j be a 2nd-primitive root of -1. The fundamental group $\pi_1(S, p_0)$ can be written in terms of generators as

$$\pi_1(S, p_0) = \langle \gamma_j, \delta_j \rangle_{j=1,2},$$

where for $j=1,2, \gamma_j$ are loops that turn around $\{(x,t,s,z,u,v)|u=t+is=v-\rho_j=0\}$ and δ_j are loops that turns around $\{(x,t,s,z,u,v)|u=t-is=v-\rho_j=0\}$. Therefore, $G=\langle f_j,g_j\rangle_{j=1,2}$, where f_j and g_j correspond to $[\gamma_j]$ and $[\delta_j]$, respectively. We get from (4) that $f'_j(0)=e^{-\pi i}$ and $g'_j(0)=e^{-\pi i}$ for j=1,2. The proof of the theorem is complete.

5. Levi-flat hypersurfaces with a complex line as singularity

In this section, we work with the system of coordinates $z=(z_1,...,z_n)\in\mathbb{C}^n$. The canonical local model examples of Levi-flat hypersurfaces M in \mathbb{C}^3 such that $\operatorname{Sing}(M)=L=\{z|z_1=z_2=0\}$ are $\{z|\operatorname{Re}(z_1^2+z_2^2)=0\}$ and $\{z|z_1\bar{z}_2-\bar{z}_1z_2=0\}$.

Recently, Burns and Gong [3] classified, up to local biholomorphism, all germs of quadratic Levi-flat hypersurfaces. Namely, up to biholomorphism, there are only five models as given in Table 2.

We address the problem of providing conditions to characterize singular Leviflat hypersurfaces with a complex line as singularity. Using the classification due to Burns and Gong [3], it is not hard to prove the following proposition.

Proposition 5.1. Suppose that M is a quadratic real-analytic Levi-flat hypersurface in \mathbb{C}^n , $n \ge 3$, such that $\operatorname{Sing}(M) = \{z | z_1 = ... = z_{n-1} = 0\}$. Then

- (1) if n=3, M is biholomorphically equivalent to $Q_{0,2}$ or $Q_{2,4}$;
- (2) if $n \ge 4$, M is biholomorphically equivalent to $Q_{0,2(n-1)}$.

Proof. To prove part (1), observe that there only are two models of M that admits $\operatorname{Sing}(M) = \{z | z_1 = z_2 = 0\}$ as singularity, viz. $Q_{0,2}$ and $Q_{2,4}$. Now to prove part (2), note that if $n \ge 4$, the real hypersurface $\{z | z_1 \overline{z}_2 - \overline{z}_1 z_2 = 0\}$ has a complex subvariety of dimension n-2 as singularity. It follows that M is biholomorphically equivalent to $Q_{0,2(n-1)}$. \Box

In order to obtain a characterization, we define the Segre varieties associated with real-analytic hypersurfaces. Let M be a real-analytic hypersurface defined by

Type	Normal form	Singular set
$Q_{0,2k}$	${\rm Re}(z_1^2\!+\!z_2^2\!+\!\ldots\!+\!z_k^2)$	\mathbb{C}^{n-k}
$Q_{1,1}$	$z_1^2\!+\!2z_1^2\bar{z}_1\!+\!z_1^2$	empty
$Q_{1,2}^{\lambda}$	$z_1^2\!+\!2\lambda z_1^2\bar{z}_1\!+\!z_1^2$	\mathbb{C}^{n-1}
$Q_{2,2}$	$(z_1\!+\!ar z_1)(z_2\!+\!ar z_2)$	$\mathbb{R}^2 \!\times\! \mathbb{C}^{n-2}$
$Q_{2,4}$	$z_1\bar{z}_2\!-\!\bar{z}_1z_2$	\mathbb{C}^{n-2}

Table 2. Levi-flat quadrics.

 $\{z|F(z)=0\}$. Fix $p \in M$. The Segre variety associated with M at p is the complex variety in (\mathbb{C}^n, p) defined by

(5)
$$Q_p := \{ z \in (\mathbb{C}^n, p) \mid F_{\mathbb{C}}(z, \bar{p}) = 0 \}.$$

Now assume that M is Levi-flat and denote by L_p the leaf of \mathcal{L} through $p \in M^*$. We denote by Q'_p the union of all branches of Q_p which are contained in M. Observe that Q'_p could be the empty set when $p \in \operatorname{Sing}(M)$. Otherwise, it is a complex variety of pure dimension n-1.

The following result is classical, we prove it here for completeness.

Proposition 5.2. In the above situation, L_p is an irreducible component of (Q_p, p) and $Q'_p = L_p$.

Proof. Since $p \in M^*$, É. Cartan's theorem assures that there exists a holomorphic coordinate system such that near p, M is given by $\{z | \operatorname{Re}(z_n) = 0\}$ and p is the origin. In this coordinates system the foliation \mathcal{L} is defined by $dz_n|_{M^*}=0$. In particular, $L_0 = \{z | z_n = 0\}$ and obviously $\{z | z_n = 0\}$ is a branch of Q_0 . Furthermore, L_0 is the unique germ of the complex variety of pure dimension n-1 at 0 which is contained in M. Hence $Q'_0 = L_0$. \Box

Let $p \in \text{Sing}(M)$, we say that p is a Segre degenerate singularity if Q_p has dimension n, that is, $Q_p = (\mathbb{C}^n, p)$. Otherwise, we say that p is a Segre non-degenerate singularity.

Suppose that M is defined by $\{z | F(z)=0\}$ in a neighborhood of p, observe that p is a degenerate singularity of M if $z \mapsto F_{\mathbb{C}}(z, \bar{p})$ is identically zero.

Remark 5.3. If V is a germ of a complex variety of dimension n-1 contained in M, then for $p \in V$ we have $(V, p) \subset (Q_p, p)$. In particular, if there exists infinitely many distinct complex varieties of dimension n-1 through $p \in M$ then p is a Segre degenerate singularity. To continuation, we consider a germ at $0 \in \mathbb{C}^n$ of a codimension-one singular holomorphic foliation \mathcal{F} .

Definition 5.4. We say that \mathcal{F} and M are *tangent*, if the leaves of the Levifoliation \mathcal{L} on M are also leaves of \mathcal{F} .

Definition 5.5. A meromorphic (holomorphic) function h is called a *meromorphic* (holomorphic) first integral for \mathcal{F} if its indeterminacy (zeros) set is contained in Sing(\mathcal{F}) and its level hypersurfaces contain the leaves of \mathcal{F} .

Recently, Cerveau and Lins Neto proved the following result.

Theorem 5.6. (Cerveau–Lins Neto [4]) Let \mathcal{F} be a germ at $0 \in \mathbb{C}^n$, $n \geq 3$, of a holomorphic codimension-one foliation tangent to a germ of an irreducible realanalytic hypersurface M. Then \mathcal{F} has a non-constant meromorphic first integral.

In our context, we prove the following result.

Theorem 5.7. Let M be a germ at $0 \in \mathbb{C}^n$, $n \geq 3$, of an irreducible real-analytic Levi-flat hypersurface such that $\operatorname{Sing}(M) = L := \{z | z_1 = ... = z_{n-1} = 0\}$. Suppose that

(1) every point in Sing(M) is a Segre non-degenerate singularity;

(2) the Levi-foliation \mathcal{L} on M^* extends to a holomorphic foliation \mathcal{F} in some neighborhood of M.

Then there exists $f \in \mathcal{O}_n$ and a real-analytic curve $\gamma \subset \mathbb{C}$ such that $M = f^{-1}(\gamma)$.

Proof. Since the Levi-foliation \mathcal{L} on M^* extends to a holomorphic foliation \mathcal{F} , we can apply directly Theorem 5.6, and thus \mathcal{F} has a non-constant meromorphic first integral f=g/h, where g and h are relatively prime. We assert that f is holomorphic. In fact, if f is purely meromorphic, we have that for all $\zeta \in \mathbb{C}$, the complex hypersurfaces $V_{\zeta} = \{z | g(z) - \zeta h(z) = 0\}$ contains leaves of \mathcal{F} . In particular, M contains infinitely many hypersurfaces V_{ζ} , because M is closed and \mathcal{F} is tangent to M. Set $\Lambda := \{\zeta \in \mathbb{C} | V_{\zeta} \subset M\}$. Note also that the foliation \mathcal{F} is singular at L, so that $\mathcal{I}_f := \{z | h(z) = g(z) = 0\}$, the indeterminacy set of f, intersect L. Therefore, we have a point q in $\mathcal{I}_f \cap L$, which would be a Segre degenerate singularity, because $q \in V_{\zeta}$, for all $\zeta \in \Lambda$. This is a contradiction and the assertion is proved.

The foliation \mathcal{F} is defined by df = 0, $f \in \mathcal{O}_n$, and is tangent to M. Without loss of generality, we can assume that f is an irreducible germ in \mathcal{O}_n . According to a remark of Brunella [2, p. 8], there exists a real-analytic curve $\gamma \subset \mathbb{C}$ through the origin such that $M = f^{-1}(\gamma)$. \Box Remark 5.8. In [10], Lebl gave conditions for the Levi-foliation on M^* to extend to a holomorphic foliation. One could consider these hypothesis and establish a more refined theorem. Note also that if $\operatorname{Sing}(M)$ is a germ of a smooth complex curve, it is possible to adapt the proof of Theorem 5.7. In general, the holomorphic extension problem for the Levi-foliation of a Levi-flat real-analytic hypersurface remains open and is of independent interest, for more details see [8].

Acknowledgements. I would like to thank Maurício Corrêa JR for his comments and suggestions, and the referee for pointing out corrections.

References

- ARNOLD, V. I., Normal forms of functions near degenerate critical points, the Weyl groups A_k, D_k, E_k and Lagrangian singularities, Funktsional. Anal. i Prilozhen.
 6:4 (1972), 3–25 (Russian). English transl.: Funct. Anal. Appl. **6** (1972), 254–272.
- BRUNELLA, M., Some remarks on meromorphic first integrals, *Enseign. Math.* 58 (2012), 315–324.
- BURNS, D. and GONG, X., Singular Levi-flat real analytic hypersurfaces, Amer. J. Math. 121 (1999), 23–53.
- CERVEAU, D. and LINS NETO, A., Local Levi-Flat hypersurfaces invariants by a codimension one holomorphic foliation, Amer. J. Math. 133 (2011), 677–716.
- DURFEE, A. H., Fifteen characterizations of rational double points and simple critical points, *Enseign. Math.* 25 (1979), 131–163.
- FERNÁNDEZ-PÉREZ, A., Singular Levi-flat hypersurfaces. An Approach Through Holomorphic Foliations, Ph.D. Thesis, Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, 2010.
- FERNÁNDEZ-PÉREZ, A., On normal forms of singular Levi-flat real analytic hypersurfaces, Bull. Braz. Math. Soc. 42 (2011), 75–85.
- FERNÁNDEZ-PÉREZ, A., On Levi-flat hypersurfaces with generic real singular set, J. Geom. Anal. 23 (2013), 2020–2033.
- FERNÁNDEZ-PÉREZ, A., Normal forms of Levi-flat hypersurfaces with Arnold type singularities, to appear in Ann. Sc. Norm. Supér. Pisa Cl. Sci. doi:10.2422/2036-2145.201112_003.
- LEBL, J., Singular set of a Levi-flat hypersurface is Levi-flat, Math. Ann. 355 (2013), 1177–1199.
- LORAY, F., Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux, 2006. http://hal.archives-ouvertes.fr/hal-00016434.
- MATTEI, J. F. and MOUSSU, R., Holonomie et intégrales premières, Ann. Sci. Éc. Norm. Supér. 13 (1980), 469–523.
- SIERSMA, D., Isolated line singularity, in *Singularities (Arcata, CA, 1981)*, Proc. Sympos. Pure Math. **40**, Part **2**, pp. 485–496, Amer. Math. Soc., Providence, RI, 1983.

Arturo Fernández-Pérez: On normal forms for Levi-flat hypersurfaces with an isolated line singularity

 ZAHARIA, A., Characterizations of simple isolated line singularities, Canad. Math. Bull. 42 (1999), 499–506.

Arturo Fernández-Pérez Departamento de Matemática Universidade Federal de Minas Gerais Av. Antônio Carlos 6627 C.P. 702 BR-30123-970 Belo Horizonte, MG Brazil arturofp@mat.ufmg.br

Received April 3, 2013 published online April 10, 2014

78