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On normal forms for Levi-flat hypersurfaces
with an isolated line singularity

Arturo Fernández-Pérez

Abstract. We prove the existence of normal forms for some local real-analytic Levi-flat

hypersurfaces with an isolated line singularity. We also give sufficient conditions for a Levi-flat

hypersurface with a complex line as singularity to be a pullback of a real-analytic curve in C via

a holomorphic function.

1. Introduction

Let M⊂U⊂C
n be a real-analytic hypersurface, where U is an open set. Denote

by M∗ the regular part, that is, near each point p∈M∗, the variety M is a manifold

of real codimension one. For each p∈M∗, there is a unique complex hyperplane Lp

contained in the tangent space TpM
∗, and this consequently defines a real-analytic

distribution p �→Lp of complex hyperplanes in TpM
∗, the so-called Levi distribution.

We say thatM is Levi-flat, if the Levi distribution is integrable in the sense of Frobe-

nius. The foliation defined by this distribution is called the Levi-foliation. The local

structure near regular points is very well understood, according to É. Cartan, around

each p∈M∗ we can find local holomorphic coordinates z1, ..., zn such that M∗=

{(z1, ..., zn)|Re(zn)=0}, and consequently the leaves of the Levi-foliation are imag-

inary levels of zn. They case was studied by Burns–Gong [3]. They classified

singular Levi-flat hypersurfaces in C
n with quadratic singularities and also proved

the existence of a normal form, in the case of generic (Morse) singularities. In [4],

Cerveau–Lins Neto proved that a local real-analytic Levi-flat hypersurface M with

a sufficiently small singular set is given by the zeros of the real part of a holomorphic

function.

This work was partially supported by PRPq—Universidade Federal de Minas Gerias UFMG
2013, FAPEMIG APQ-00371-13 and CNPq grant number 301635/2013-7.
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The aim of this paper is to prove the existence of some normal forms for local

real-analytic Levi-flat hypersurfaces defined by the vanishing of the real part of holo-

morphic functions with an isolated line singularity (for short: ILS). In particular,

we establish an analogous result like in singularity theory for germs of holomorphic

functions.

The main motivation for this work is a result due to D. Siersma, who introduced

in [13] the class of germs of holomorphic functions with an ILS. More precisely, let

On+1 :={f : (Cn+1, 0)→C} be the ring of germs of holomorphic functions and let

m be its maximal ideal. If (x, y)=(x, y1, ..., yn) denote the coordinates in C
n+1,

consider the line L:={(x, y)|y1=...=yn=0}, let I :=(y1, ..., yn)⊂On+1 be its ideal

and denote by DI the group of local analytic isomorphisms ϕ : (Cn+1, 0)→(Cn+1, 0)

for which ϕ(L)=L. Then DI acts on I2 and for f∈I2, the tangent space of (the

orbit of) f with respect to this action is the ideal defined by

τ(f) :=m.
∂f

∂x
+I.

∂f

∂y

and the codimension of (the orbit) of f is c(f):=dimC(I
2/τ(f)).

A line singularity is a germ f∈I2. An ILS is a line singularity f such that

c(f)<∞. Geometrically, f∈I2 is an ILS if and only if the singular locus of f is L and

for every x �=0, the germ of (a representative of) f at (x, 0)∈L is equivalent to y21+

...+y2n. In a certain sense ILSs are the first generalization of isolated singularities.

Siersma proved the following result. (The topology on On+1 is introduced as in [5,

p. 145].)

Theorem 1.1. A germ f∈I2 is DI -simple (i.e. c(f)<∞ and f has a neigh-

borhood in I2 which intersects only a finite number of DI -orbits) if and only if f is

DI -equivalent to one of the germs in Table 1.

The singularities in Theorem 1.1 are analogous of the A-D-E singularities

due to Arnold [1]. A new characterization of simple ILSs have been proved by

Zaharia [14]. We prove the existence of normal forms for Levi-flat hypersurfaces

with an ILS.

Theorem 1.2. Let M={(x, y)|F (x, y)=0} be a germ of an irreducible real-

analytic hypersurface on (Cn+1, 0), n≥3. Suppose that

(1) F (x, y)=Re(P (x, y))+H(x, y), where P (x, y) is one of the germs of Ta-

ble 1;

(2) M={(x, y)|F (x, y)=0} is Levi-flat ;

(3) H(x, 0)=0 for all x∈(C, 0), and jk0 (H)=0 for k=deg(P ).



On normal forms for Levi-flat hypersurfaces with an isolated line singularity 67

Type Normal form Conditions

A∞ y21+y22+...+y2n

D∞ xy21+y22+...+y2n

Jk,∞ xky21+y31+y22+...+y2n k≥2

T∞,k,2 x2y21+yk1+y22+...+y2n k≥4

Zk,∞ xy31+xk+2y21+y22+...+y2n k≥1

W1,∞ x3y21+y41+y22+...+y2n

T∞,q,r xy1y2+yq1+yr2+y23+...+y2n q≥r≥3

Qk,∞ xky21+y31+xy22+y23+...+y2n k≥2

S1,∞ x2y21+y21y2+y23+...+y2n

Table 1. Isolated Line singularities.

Then there exists a biholomorphism ϕ : (Cn+1, 0)→(Cn+1, 0) preserving L such that

ϕ(M)= {(x, y) |Re(P (x, y))= 0}.

This result is a Siersma-type theorem for singular Levi-flat hypersurfaces. We

remark that the function H is of course restricted by the assumption that M is Levi

flat. Now, if ϕ(M)={(x, y)|Re(P (x, y))=0}, where P is a germ with an ILS at L

then Sing(M)=L. In other words, M is a Levi-flat hypersurface with an ILS at L.

If P (x, y) is the germ A∞, we prove that Theorem 1.2 is true in the case n=2.

Theorem 1.3. Let M={(x, y)|F (x, y)=0} be a germ of an irreducible real-

analytic Levi-flat hypersurface on (C3, 0). Suppose that F is defined by

F (x, y)=Re(y21+y22)+H(x, y),

where H is a germ of a real-analytic function such that H(x, 0)=0 and jk0 (H)=0

for k=2. Then there exists a biholomorphism ϕ : (C3, 0)→(C3, 0) preserving L such

that ϕ(M)={(x, y)|Re(y21+y22)=0}.

The above result should be compared to [3, Theorem 1.1]. This result can be

viewed as a Morse lemma for Levi-flat hypersurfaces with an ILS at L. The problem

of normal forms of Levi-flat hypersurfaces in C
3 with an ILS seems difficult in the

other cases. To prove these results we use techniques of holomorphic foliations

developed in [4] and [6]. Similar normal forms of singular Levi-flat hypersurfaces

have been obtained in [3], [7] and [9].

This paper is organized as follows: in Section 2, we recall some definitions and

known results about Levi-flat hypersurfaces and holomorphic foliations. Section 3

is devoted to prove Theorem 1.2. In Section 4, we prove Theorem 1.3. Finally, in
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Section 5, using holomorphic foliations, we give sufficient conditions for a Levi-flat

hypersurface with a complex line as singularity to be a pullback of a real-analytic

curve in C via a holomorphic function (see Theorem 5.7).

2. Levi-flat hypersurfaces and foliations

In this section we work with germs at 0∈Cn+1 of irreducible real-analytic

hypersurfaces and of codimension-one holomorphic foliations. Let M={(x, y)|
F (x, y)=0}, where F : (Cn+1, 0)→(R, 0) is a germ of an irreducible real-analytic

function, and M∗ :={(x, y)|F (x, y)=0}\{(x, y)|dF (x, y)=0}. Let us define the sin-
gular set of M (or “set of critical points” of M ) by

(1) Sing(M) := {(x, y) |F (x, y)= 0}∩{(x, y) | dF (x, y)= 0}.

Note that Sing(M) contains all points q∈M such that M is smooth at q, but the

codimension of M at q is at least two. In general the singular set of a real-analytic

subvariety M in a complex manifold is defined as the set of points near which M is

not a real-analytic submanifold (of any dimension) and “in general” has structure of

a semianalytic set; see for instance, [10]. In this paper, we work with Sing(M) as de-

fined in (1). We recall that (in this case) the Levi distribution L on M∗ is defined by

Lp := ker(∂F (p))⊂TpM
∗ =ker(dF (p)) for any p∈M∗.(2)

Let us suppose that M is Levi-flat. This implies that M∗ is foliated by complex

codimension-one holomorphic submanifolds immersed on M∗.

Note that the Levi distribution L on M∗ can be defined by the real-analytic

1-form η=i(∂F−∂̄F ), which is called the Levi 1-form of F . It is well known that

the integrability condition of L is equivalent to the equation (∂F−∂̄F )∧∂∂̄F |M∗=0.

Let us consider the Taylor series of F at 0∈Cn+1,

F (x, y)=
∑

j,μ,k,ν

Fjμkνx
jyμx̄kȳν ,

where ˙Fjμkν=Fkνjμ for all j, k∈N, μ=(μ1, ..., μn), ν=(ν1, ..., νn), (x, y)∈C×C
n,

yμ=yμ1

1 ...yμn
n and ȳν=ȳν1

1 ...ȳνn
n . The complexification FC∈O2n+2 of F is defined

by the series

FC(x, y, z, w)=
∑

j,μ,k,ν

Fjμkνx
jyμzkwν ,

where z∈C, w=(w1, ..., wn)∈Cn and wν=wν1
1 ...wνn

n . Notice that

F (x, y)=FC(x, y, x̄, ȳ).

The complexification MC of M is defined as MC :={(x, y, z, w)|FC(x, y, z, w)=0}
and defines a complex subvariety in C

2n+2, its regular part is
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M∗
C :=MC\{(x, y, z, w) | dFC(x, y, z, w)= 0}.

Now, assume that M is Levi-flat. Then the integrability condition of

η= i(∂F−∂̄F )|M∗

implies that ηC|M∗
C
is integrable, where

ηC := i[(∂xFC+∂yFC)−(∂zFC+∂wFC)].

Therefore ηC|M∗
C
defines a codimension-one holomorphic foliation LC on M∗

C
that

will be called the complexification of L.
Let W :=M∗

C
\Sing(ηC|M∗

C
) and denote by Lζ the leaf of LC through ζ , where

ζ∈W . The next results will be used several times througout the paper.

Lemma 2.1. (Cerveau–Lins Neto [4]) For any ζ∈W , the leaf Lζ of LC through

ζ is closed in M∗
C
.

Definition 2.2. The algebraic dimension of Sing(M) is the complex dimension

of the singular set of MC.

The following result will be used enunciated in the context of Levi-flat hyper-

surfaces in C
n+1.

Theorem 2.3. (Cerveau-Lins Neto [4]) Let M={(x, y)|F (x, y)=0} be a germ

of an irreducible analytic Levi-flat hypersurface at 0∈Cn+1, n≥2, with Levi 1-form

η=i(∂F−∂̄F ). Assume that the algebraic dimension of Sing(M) is ≤2n−2. Then

there exists a unique germ at 0∈Cn+1 of the holomorphic codimension-one foliation

FM tangent to M , if one of the following conditions is fulfilled :

(1) n≥3 and codM∗
C
(Sing(ηC|M∗

C
))≥3;

(2) n≥2, codM∗
C
(Sing(ηC|M∗

C
))≥2 and LC admits a non-constant holomorphic

first integral.

Moreover, in both cases the foliation FM admits a non-constant holomorphic first

integral f such that M={(x, y)|Re(f(x, y))=0}.

3. Proof of Theorem 1.2

We write

F (x, y)=Re(P (x, y1, ..., yn))+H(x, y1, ..., yn),
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where P (x, y1, ..., yn) is one of the polynomials of Table 1, H : (Cn+1, 0)→(R, 0) is a

germ of a real-analytic function such that H(x, 0)=0 for all x∈(C, 0), and jk0 (H)=0

for k=deg(P ). The complexification of F is given by

FC(x, y, z, w)=
1
2P (x, y)+ 1

2P (z, w)+HC(x, y, z, w),

and therefore MC={(x, y, z, w)|FC(x, y, z, w)=0}⊂(C2n+2, 0), where z∈C and w=

(w1, ..., wn)∈Cn.

Since P (x, y) has an ILS at L, we get Sing(MC)={(x, y, z, ω)|y=w=0}�C
2.

In particular, the algebraic dimension of Sing(M) is 2. On the other hand, the

complexification of η=i(∂F−∂̄F ) is

ηC := i[(∂xFC+∂yFC)−(∂zFC+∂wFC)].

Recall that η|M∗ and ηC|M∗
C

define L and LC respectively. Now we compute

Sing(ηC|M∗
C
). We can write dFC=α+β, with

α :=
∂FC

∂x
dx+

n∑

j=1

∂FC

∂yj
dyj =

1

2

∂P

∂x
(x, y) dx+

1

2

n∑

j=1

∂P

∂yj
(x, y) dyj+θ1

and

β :=
∂FC

∂z
dz+

n∑

j=1

∂FC

∂wj
dwj =

1

2

∂P

∂z
(z, w) dz+

1

2

n∑

j=1

∂P

∂wj
(z, w) dwj+θ2,

where

θ1 =
∂HC

∂x
dx+

n∑

j=1

∂HC

∂zj
dzj and θ2 =

∂HC

∂z
dz+

n∑

j=1

∂HC

∂wj
dwj .

Note that ηC=i(α−β), and so

ηC|M∗
C
=(ηC+i dFC)|M∗

C
=2iα|M∗

C
=−2iβ|M∗

C
.(3)

In particular, α|M∗
C
and β|M∗

C
define LC. Therefore Sing(ηC|M∗

C
) can be split in two

parts. In fact, let

M1 :=

{
(x, y, z, w)∈MC

∣∣∣
∂FC

∂z
�=0 or

∂FC

∂wj
�=0 for some j=1, ..., n

}
,

M2 :=

{
(x, y, z, w)∈MC

∣∣∣
∂FC

∂x
�=0 or

∂FC

∂zj
�=0 for some j=1, ..., n

}
.

Then MC=M1∪M2. If we let A0=∂HC/∂x, Aj=∂HC/∂zj , B0=∂HC/∂z and Bj=

∂HC/∂wj for all 1≤j≤n, we obtain that Sing(ηC|M∗
C
)=X1∪X2, where
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X1 :=M1∩
{
(x, y, z, w)

∣∣∣
∂P

∂x
(x, y)+A0 =

∂P

∂y1
(x, y)+A1 = ...=

∂P

∂yn
(x, y)+An =0

}

and

X2 :=M2∩
{
(x, y, z, w)

∣∣∣
∂P

∂z
(z, w)+B0 =

∂P

∂w1
(z, w)+B1 = ...=

∂P

∂wn
(z, w)+Bn =0

}
.

Since P is a polynomial with an ILS at L={(x, y)|y=0}, we conclude that

codM∗
C
Sing(ηC|M∗

C
)=n.

By hypothesis n≥3. Then it follows from Theorem 2.3(1) that there exists a

germ f∈On+1 such that the holomorphic foliation F defined by df=0 is tangent

to M . Moreover M={(x, y)|Re(f(x, y))=0}. Note that if

M = {(x, y) |Re(f(x, y))= 0}= {(x, y) |F (x, y)= 0},

with F being an irreducible germ, we must have Re(f)=UF , where U is a germ of

a real-analytic function with U(0) �=0. Without loss of generality, we can assume

that U(0)=1. In particular, Re(f)=UF implies that

f =P+higher order terms.

According to Theorem 1.1, there exists a biholomorphism ϕ : (Cn+1, 0)→(Cn+1, 0)

preserving L such that f ◦ϕ−1=P , (f is DI -equivalent to P , because f is a germ

with ILS at L). Therefore, ϕ(M)={(x, y)|Re(P (x, y))=0} and the proof is com-

plete.

4. Proof of Theorem 1.3

The idea is to use Theorem 2.3(2). In order to prove our result in the case

n=2, we are going to prove that LC has a non-constant holomorphic first integral.

We begin by a blow-up along C :={(x, y, z, w)|y1=y2=w1=w2=0}�C
2⊂C

6.

Let

F (x, y1, y2)=Re(y21+y22)+H

and assume that M={(x, y)|F (x, y)=0} is Levi-flat. Its complexification can be

written as

FC(x, y1, y2, z, w1, w2)=
1
2 (y

2
1+y22)+

1
2 (w

2
1+w2

2)+HC(x, y1, y2, z, w1, w2).

Note that

Sing(MC)= {(x, y, z, w) | y=w=0}=C.
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Let E be the exceptional divisor of the blow-up π : C̃6→C
6 along C. Denote

by M̃C :=π−1(MC\{C})⊂C̃
6 the strict transform of MC via π and by F̃ :=π∗(LC)

the foliation on M̃C.

Now, we consider a special situation. Suppose that M̃C is smooth and set

C̃ :=M̃C∩E. Moreover, assume that C̃ is invariant by F̃ . Take S=C̃\Sing(F̃).

Then S is a smooth leaf of F̃ . Pick p0∈S and a transverse section Σ through p0.

Let G⊂Diff(Σ, p0) be the holonomy group of the leaf S of F̃ . Since dimΣ=1, we

can assume that G⊂Diff(Σ, 0). We state a fundamental lemma.

Lemma 4.1. (Fernández-Pérez [9]) In the above situation, suppose that the

following properties are satisfied :

(1) For any p∈S\Sing (F̃) the leaf Lp of F̃ through p is closed in S;

(2) g′(0) is a primitive root of unity for all g∈G\{id}.
Then LC admits a non-constant holomorphic first integral.

Proof. Let G′={g′(0)|g∈G} and consider the homomorphism φ : G→G′ de-

fined by φ(g)=g′(0). We claim that φ is injective. In fact, assume that φ(g)=1 and

suppose by contradiction that g �=id. In this case g(z)=z+azr+1+..., where a �=0.

According to [11], the pseudo-orbits of this transformation accumulate at 0∈(Σ, 0),
contradicting the fact that the leaves of F̃ are closed and so the assertion is proved.

Now, it suffices to prove that any element g∈G has finite order (cf. [12]). In fact,

φ(g)=g′(0) is a root of unity, and thus g has finite order because φ is injective.

Hence, all transformations of G have finite order and G is linearizable.

This implies that there is a coordinate system w on (Σ, 0) such that

G= 〈w �→λw〉,

where λ is a dth-primitive root of unity (cf. [12]). In particular, ψ(w)=wd is a first

integral of G, that is ψ◦g=ψ for any g∈G.

Let Γ be the union of the separatrices of LC through 0∈C6 and Γ̃ be its

strict transform under π. The first integral ψ can be extended to a first integral

ϕ : M̃C\Γ̃→C by setting

ϕ(q)=ψ(L̃q∩Σ),

where L̃p denotes the leaf of F̃ through q. Since ψ is bounded (in a compact

neighborhood of 0∈Σ), so is ϕ. It follows from Riemann’s extension theorem that

ϕ can be extended holomorphically to Γ̃ with ϕ(Γ̃)=0. This provides the first

integral of LC. �

The rest of the proof is devoted to prove that we are indeed in the conditions of

Lemma 4.1. It follows from Lemma 2.1 that the leaves of LC are closed. Therefore,
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we need to prove that each generator of the holonomy group G of F̃ with respect

to S has finite order.

Consider for instance the chart (U1, (x, t, s, z, u, v)) of C̃
6, where

π(x, t, s, z, u, v)= (x, tu, su, z, u, vu)= (x, y1, y2, z, w1, w2).

We have

M̃C∩U1 = {(x, t, s, z, u, v)∈U1 | 1+t2+s2+v2+uH1(x, t, s, z, u, v)= 0},

where H1=H(x, ut, us, z, u, uv)/u3 and this fact imply that

E∩M̃C∩U1 = {(x, t, s, z, u, v)∈U1 | 1+t2+s2+v2 =u=0}.

It is not difficult to see that these complex subvarieties are smooth. Now, let us

describe the foliation F̃ on U1. In fact, note that the foliation LC is defined by

α|M∗
C
=0, where

α=
1

2

∂P

∂x
dx+

1

2

∂P

∂y1
dy1+

1

2

∂P

∂y2
dy2+

∂HC

∂x
dx+

2∑

j=1

∂HC

∂yj
dyj .

It follows that α=y1 dy1+y2 dy2+(∂HC/∂x) dx+
∑2

j=1(∂HC/∂yj) dyj , and then F̃ |U1

is defined by α̃|M̃C∩U1
=0, where

α̃=(t2+s2) du+ut dt+us ds+uθ̃,(4)

and

θ̃=

π∗
(
∂HC

∂x
dx+

2∑

j=1

∂HC

∂yj
dyj

)

u2
.

Therefore, the singular set of F̃ |U1 is given by

Sing(F̃ |U1)= {(x, t, s, z, u, v) |u= t+is=0 or u= t−is=0}.

On the other hand, note that the exceptional divisor E is invariant by F̃ and the

intersection with Sing(F̃) is

Sing(F̃ |U1)∩E= {(x, t, s, z, u, v) |u= t+is= v2+1=0 or u= t−is= v2+1=0}.

In particular, S :=(E∩M̃C)\Sing(L̃C) is a leaf of F̃ . We calculate the generators

of the holonomy group G of the leaf S. We work in the chart U1, because of the

symmetry of the variables in the definition of the variety M̃C.
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Pick p0=(0, 1, 0, 0, 0, 0)∈S∩U1 and a transversal Σ={(0, 1, 0, 0, λ, 0)|λ∈C} pa-

rameterized by λ at p0. We have that

Sing(F̃ |U1)∩E= {(x, t, s, z, u, v) |u= t+is= v2+1=0 or u= t−is= v2+1=0}.

For j=1, 2, let ρj be a 2nd-primitive root of −1. The fundamental group π1(S, p0)

can be written in terms of generators as

π1(S, p0)= 〈γj , δj〉j=1,2,

where for j=1, 2, γj are loops that turn around {(x, t, s, z, u, v)|u=t+is=v−ρj=0}
and δj are loops that turns around {(x, t, s, z, u, v)|u=t−is=v−ρj=0}. Therefore,
G=〈fj , gj〉j=1,2, where fj and gj correspond to [γj ] and [δj ], respectively. We get

from (4) that f ′
j(0)=e−πi and g′j(0)=e−πi for j=1, 2. The proof of the theorem is

complete.

5. Levi-flat hypersurfaces with a complex line as singularity

In this section, we work with the system of coordinates z=(z1, ..., zn)∈Cn.

The canonical local model examples of Levi-flat hypersurfaces M in C
3 such that

Sing(M)=L={z |z1=z2=0} are {z |Re(z21+z22)=0} and {z |z1z̄2−z̄1z2=0}.
Recently, Burns and Gong [3] classified, up to local biholomorphism, all germs

of quadratic Levi-flat hypersurfaces. Namely, up to biholomorphism, there are only

five models as given in Table 2.

We address the problem of providing conditions to characterize singular Levi-

flat hypersurfaces with a complex line as singularity. Using the classification due to

Burns and Gong [3], it is not hard to prove the following proposition.

Proposition 5.1. Suppose that M is a quadratic real-analytic Levi-flat hyper-

surface in Cn, n≥3, such that Sing(M)={z |z1=...=zn−1=0}. Then
(1) if n=3, M is biholomorphically equivalent to Q0,2 or Q2,4;

(2) if n≥4, M is biholomorphically equivalent to Q0,2(n−1).

Proof. To prove part (1), observe that there only are two models of M that

admits Sing(M)={z |z1=z2=0} as singularity, viz. Q0,2 and Q2,4. Now to prove

part (2), note that if n≥4, the real hypersurface {z |z1z̄2−z̄1z2=0} has a complex

subvariety of dimension n−2 as singularity. It follows that M is biholomorphically

equivalent to Q0,2(n−1). �

In order to obtain a characterization, we define the Segre varieties associated

with real-analytic hypersurfaces. Let M be a real-analytic hypersurface defined by
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Type Normal form Singular set

Q0,2k Re(z21+z22+...+z2k) Cn−k

Q1,1 z21+2z21 z̄1+z21 empty

Qλ
1,2 z21+2λz21 z̄1+z21 Cn−1

Q2,2 (z1+z̄1)(z2+z̄2) R2×Cn−2

Q2,4 z1z̄2−z̄1z2 Cn−2

Table 2. Levi-flat quadrics.

{z |F (z)=0}. Fix p∈M . The Segre variety associated with M at p is the complex

variety in (Cn, p) defined by

(5) Qp := {z ∈ (Cn, p) |FC(z, p̄)= 0}.

Now assume that M is Levi-flat and denote by Lp the leaf of L through p∈M∗.

We denote by Q′
p the union of all branches of Qp which are contained in M . Observe

that Q′
p could be the empty set when p∈Sing(M). Otherwise, it is a complex variety

of pure dimension n−1.

The following result is classical, we prove it here for completeness.

Proposition 5.2. In the above situation, Lp is an irreducible component of

(Qp, p) and Q′
p=Lp.

Proof. Since p∈M∗, É. Cartan’s theorem assures that there exists a holomor-

phic coordinate system such that near p, M is given by {z |Re(zn)=0} and p is

the origin. In this coordinates system the foliation L is defined by dzn|M∗=0. In

particular, L0={z |zn=0} and obviously {z |zn=0} is a branch of Q0. Furthermore,

L0 is the unique germ of the complex variety of pure dimension n−1 at 0 which is

contained in M . Hence Q′
0=L0. �

Let p∈Sing(M), we say that p is a Segre degenerate singularity if Qp has di-

mension n, that is, Qp=(Cn, p). Otherwise, we say that p is a Segre non-degenerate

singularity.

Suppose that M is defined by {z |F (z)=0} in a neighborhood of p, observe

that p is a degenerate singularity of M if z �→FC(z, p̄) is identically zero.

Remark 5.3. If V is a germ of a complex variety of dimension n−1 contained

in M , then for p∈V we have (V, p)⊂(Qp, p). In particular, if there exists infinitely

many distinct complex varieties of dimension n−1 through p∈M then p is a Segre

degenerate singularity.
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To continuation, we consider a germ at 0∈Cn of a codimension-one singular

holomorphic foliation F .

Definition 5.4. We say that F and M are tangent, if the leaves of the Levi-

foliation L on M are also leaves of F .

Definition 5.5. A meromorphic (holomorphic) function h is called a meromor-

phic (holomorphic) first integral for F if its indeterminacy (zeros) set is contained

in Sing(F) and its level hypersurfaces contain the leaves of F .

Recently, Cerveau and Lins Neto proved the following result.

Theorem 5.6. (Cerveau–Lins Neto [4]) Let F be a germ at 0∈Cn, n≥3, of

a holomorphic codimension-one foliation tangent to a germ of an irreducible real-

analytic hypersurface M . Then F has a non-constant meromorphic first integral.

In our context, we prove the following result.

Theorem 5.7. Let M be a germ at 0∈Cn, n≥3, of an irreducible real-analytic

Levi-flat hypersurface such that Sing(M)=L:={z |z1=...=zn−1=0}. Suppose that

(1) every point in Sing(M) is a Segre non-degenerate singularity ;

(2) the Levi-foliation L on M∗ extends to a holomorphic foliation F in some

neighborhood of M .

Then there exists f∈On and a real-analytic curve γ⊂C such that M=f−1(γ).

Proof. Since the Levi-foliation L on M∗ extends to a holomorphic foliation F ,

we can apply directly Theorem 5.6, and thus F has a non-constant meromorphic

first integral f=g/h, where g and h are relatively prime. We assert that f is

holomorphic. In fact, if f is purely meromorphic, we have that for all ζ∈C, the
complex hypersurfaces Vζ={z |g(z)−ζh(z)=0} contains leaves of F . In particular,

M contains infinitely many hypersurfaces Vζ , because M is closed and F is tangent

to M . Set Λ:={ζ∈C|Vζ⊂M}. Note also that the foliation F is singular at L, so

that If :={z |h(z)=g(z)=0}, the indeterminacy set of f , intersect L. Therefore, we

have a point q in If∩L, which would be a Segre degenerate singularity, because

q∈Vζ , for all ζ∈Λ. This is a contradiction and the assertion is proved.

The foliation F is defined by df=0, f∈On, and is tangent to M . Without

loss of generality, we can assume that f is an irreducible germ in On. According to

a remark of Brunella [2, p. 8], there exists a real-analytic curve γ⊂C through the

origin such that M=f−1(γ). �
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Remark 5.8. In [10], Lebl gave conditions for the Levi-foliation on M∗ to ex-

tend to a holomorphic foliation. One could consider these hypothesis and establish

a more refined theorem. Note also that if Sing(M) is a germ of a smooth complex

curve, it is possible to adapt the proof of Theorem 5.7. In general, the holomorphic

extension problem for the Levi-foliation of a Levi-flat real-analytic hypersurface

remains open and is of independent interest, for more details see [8].
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6. Fernández-Pérez, A., Singular Levi-flat hypersurfaces. An Approach Through Holo-
morphic Foliations, Ph.D. Thesis, Instituto Nacional de Matemática Pura e
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7. Fernández-Pérez, A., On normal forms of singular Levi-flat real analytic hypersur-
faces, Bull. Braz. Math. Soc. 42 (2011), 75–85.
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Norm. Supér. 13 (1980), 469–523.

13. Siersma, D., Isolated line singularity, in Singularities (Arcata, CA, 1981 ), Proc. Sym-
pos. Pure Math. 40, Part 2, pp. 485–496, Amer. Math. Soc., Providence, RI,
1983.

http://dx.doi.org/10.2422/2036-2145.201112_003
http://hal.archives-ouvertes.fr/hal-00016434


78 Arturo Fernández-Pérez:
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Departamento de Matemática
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