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Riemann’s zeta-function and the divisor
problem. III

Matti Jutila

Abstract. In two earlier papers with the same title, we studied connections between

Voronoi’s formula in the divisor problem and Atkinson’s formula for the mean square of Riemann’s

zeta-function. Now we consider this correspondence in terms of segments of sums appearing in

these formulae and show that a certain arithmetic conjecture concerning the divisor function im-

plies best possible bounds for the classical error terms Δ(x) and E(T ).

1. Introduction

This paper is a continuation of [6] and [10], where we considered connections

between the square
∣
∣ζ
(
1
2+it

)∣
∣
2
of Riemann’s zeta-function and the divisor func-

tion d(n), the number of positive divisors of n. This analogy was pointed out by

Atkinson [1] in his classical paper, the main result of which was a formula for the

function

E(T )=

∫ T

0

∣
∣ζ
(
1
2+it

)∣
∣
2
dt−

(

log
T

2π
+2γ−1

)

T,

where γ is Euler’s constant. Atkinson’s formula is of the form

(1.1) E(T )=Σ1(T )+Σ2(T )+O(log2 T ),

where Σ1(T ) and Σ2(T ) are sums of length �T involving coefficients d(n). The nota-

tion A�B for positive A and B means that A�B�A. As references to Atkinson’s

formula, in addition to his original paper, see [4], [3], and [11]. The significant one

of the sums in (1.1) is

(1.2) Σ1(T )=
√
2

(
T

2π

)1/4 ∑

n≤N

(−1)nd(n)n−3/4e(T, n) cos f(T, n),
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where N�T ,

(1.3) e(T, n)= 1+O
( n

T

)

,

and

(1.4) f(T, n)=−π

4
+2

√
2πnT+An3/2+O(n5/2T−3/2)

with A=A(T )= 1
6

√
2π3/2T−1/2. The explicit formulae for e(T, n) and f(T, n), which

can be found in the above-mentioned references, will be irrelevant in the following.

The second sum in (1.1) is

(1.5) Σ2(T )=−2
∑

n≤N ′

d(n)
√
n log

T

2πn

cos

(

T log
T

2πn
−T+

π

4

)

,

where N ′=T/2π+N/2−
√

N2/4+NT/2π.

Turning to the divisor problem, recall an identity of the Voronoi type for the

sum

D

(

x,
h

k

)

=
∑

n≤x

d(n)e

(
nh

k

)

,

where e(α)=e2πiα as usual. For x>0, k≥1, and (h, k)=1 we have (see [9, Theo-

rem 1.6])

(1.6) D

(

x,
h

k

)

=
x

k
(log x+2γ−1−2 log k)+E

(

0,
h

k

)

+Δ

(

x,
h

k

)

with

(1.7)

Δ

(

x,
h

k

)

=−
√
x

∞∑

n=1

d(n)√
n

(

e

(

−nh̄

k

)

Y1

(
4π

√
nx

k

)

+
2

π
e

(
nh̄

k

)

K1

(
4π

√
nx

k

))

,

where hh̄≡1 (mod k), E(s, h/k) is the Estermann zeta-function, and the convention

of summation is that if x is an integer, then the term for n=x is to be halved. Here

Y1 and K1 stand for Bessel functions in the standard notation. As a reference for

Bessel functions, see e.g. [12]. We are going to need only the cases h/k=1 and

h/k= 1
2 of (1.6), and then E(0, 1)=E

(

0, 1
2

)

= 1
4 (see [9, (1.1.10)]).
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The formula

D
(

x, 1
2

)

=
∑

n≤x

(−1)nd(n)

= 1
2x(log x+2γ−1−2 log 2)+ 1

4

−
√
x

∞∑

n=1

(−1)n
d(n)√

n

(

Y1

(

2π
√
nx

)

+
2

π
K1

(

2π
√
nx

)
)

is interesting in view of Atkinson’s formula. As an application, we have

(1.8) D∗(x)= 1
2D

(

4x, 1
2

)

=x(log x+2γ−1)+ 1
8+Δ∗(x)

with

(1.9) Δ∗(x)=−
√
x

∞∑

n=1

(−1)n
d(n)√

n

(

Y1

(

4π
√
nx

)

+
2

π
K1

(

4π
√
nx

)
)

.

This is an analogue of Voronoi’s formula (1.6) for the ordinary divisor sum D(x)=

D(x, 1), up to the constant term and the signs (−1)n in (1.9), which are missing

in the formula (1.7) for Δ(x)=Δ(x, 1). In addition to this analogue, there is the

following concrete connection between D∗(x) and D(x):

(1.10) D∗(x)=−D(x)+2D(2x)− 1
2D(4x);

we gave an approximate version of this relation in [6]. Namely, the leading terms

on both sides coincide, and the same holds even for the error terms:

(1.11) Δ∗(x)=−Δ(x)+2Δ(2x)− 1
2Δ(4x),

as can be verified by the argument following (15.69) in [4].

In applications, approximate formulae for Δ(x), Δ∗(x), and Δ(x, h/k) are often

more convenient than the precise ones. In particular, we have

(1.12) Δ∗(x)=
x1/4

π
√
2

∑

n≤N

(−1)nd(n)n−3/4 cos
(

4π
√
nx− π

4

)

+O(x1/2+εN−1/2)

with 1≤N�x. We let ε generally stand for a small positive constant, not necessarily

the same at each occurrence. Constants implied by notation like O(...) and � will

depend on ε whenever ε is involved in the estimations, so actually we should write

Oε(...) and �ε, but we omit ε here for simplicity. The formula (1.12) can be

verified either as a corollary of the similar well-known result for Δ(x) with the

coefficients (−1)n removed, or directly as an application of an approximate formula

for Δ(x, h/k) (see [9, Theorem 1.1]).
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Comparison of (1.12) with the sum Σ1(T ) in Atkinson’s formula reveals an

analogue

E(T )≈ 2πΔ∗
(

T

2π

)

.

Thus the function

E∗(t)=E(t)−2πΔ∗
(

t

2π

)

is expected to be“small” in some sense or another. In fact, this is true at least in a

mean-value sense since

(1.13)

∫ T

2

E∗(t)2 dt�T 4/3 log3 T,

whereas

(1.14)

∫ T

2

E(t)2 dt∼ cT 3/2

for a constant c. We proved (1.13) in [7], and (1.14) is due to Heath Brown [2].

Proofs of (1.13) and (1.14) can be found in [4], Sections 15.4 and 15.5. The estimate

(1.13) has been improved by Ivić [5] to an asymptotic formula with an error term,

and similar refinements of (1.14) have been considered by several authors. Moreover,

estimates for higher moments of E∗(t) have been obtained by Ivić.

As to concrete connections between the divisor function and the zeta-function,

we proved in [10] that if Δ(x)�xα, then

(1.15) E(T )�T (1+2α)/5(log T )12/5.

In Section 4 we are going to reprove this by a somewhat modified argument. In

particular, for the best possible value α= 1
4+ε we have

E(T )�T 3/10+ε and ζ
(
1
2+it

)

� t3/20+ε.

As far as applications to the zeta-function are concerned, the behavior of Δ is

more significant than its order, and therefore we introduce the function

Δ(x, y)= sup
|ξ|≤y

|Δ(x+ξ)−Δ(x)|.

The function Δ∗(x, y) is defined analogously in terms of Δ∗(x). Note that Δ(x, y)

and Δ∗(x, y) are closely related by (1.11). We showed in [10] that if

(1.16) Δ(x, y)�√
yxε

for y≥1, then ζ
(
1
2+it

)

�t1/8+ε.

Actually, the following weaker conjecture suffices in place of (1.16) since the

range x1/4�y�
√
x will be relevant for our purposes, as will be seen in the context

of Theorem 4 and Corollary 5.
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Conjecture. For 1≤y�
√
x, we have

(1.17) Δ(x, y)�max
(

x1/8,
√
y
)

xε.

This conjecture can be motivated by mean-value considerations. Namely, we

have (see [8], Corollary to Theorem 1)

∫ 2X

X

(Δ(x+ξ)−Δ(x))2 dx�Xξ log3
√
X

ξ

for Xε�ξ≤ 1
2

√
X , so typically Δ(x+ξ)−Δ(x)�

√
ξxε.

The conjecture (1.17) would imply best possible estimates for Δ(x) and E(T ).

Theorem 1. On the assumption of the Conjecture, we have

(1.18) Δ(x)�x1/4+ε and E(T )�T 1/4+ε.

For a proof, we analyze segments of the approximate Voronoi formula and the

sum Σ1(T ) in Atkinson’s formula.

Acknowledgement. The author is grateful to Professor Aleksandar Ivić for

helpful comments and suggestions.

2. Voronoi sums

Let V ∗(N1, N2;x) be a weighted subsum of the approximate Voronoi formula

(1.12) for Δ∗(x), that is the sum of the form

V ∗(N1, N2;x)=
x1/4

π
√
2

∑

N1≤n≤N2

(−1)nd(n)w(n)n−3/4 cos
(

4π
√
nx− π

4

)

,

and let V (N1, N2;x) be an analogous sum related to Δ(x), thus without the co-

efficients (−1)n. The weight function w(x), supported in the interval [N1, N2]

with N1<N2�N1, is assumed to be smooth in the sense that w(j)(x)�jN
−j
1 for

j=0, 1, ... . These assumptions will be adopted in the sequel, also for the weighted

Atkinson sums to be considered in the next section.

The next lemma gives transformation formulae for the Voronoi sums defined

above.
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Lemma 2. Let xε�N1�x, n0=[4x], and

(2.1) ν0 =N
−1/2
1 x1/2+ε.

Then

V ∗(N1, N2;x)=− (−1)n0

8π

∑

|ν|≤ν0

(−1)ν(d(n0+ν)−d(n0−ν))

×
∫ N2

N1

sin

(
πν

√
y

2
√
x

)
w(y)

y
dy+O(xε).(2.2)

Analogously, with n1=[x], we have

V (N1, N2;x)=− 1

4π

∑

|ν|≤ν0

(d(n1+ν)−d(n1−ν))

×
∫ N2

N1

sin

(
2πν

√
y√

x

)
w(y)

y
dy+O(xε).(2.3)

Proof. Consider the sum V ∗(N1, N2;x); the sum V (N1, N2;x) can be treated

analogously. We apply the Voronoi sum formula with oscillating signs (see [9],

Theorem 1.7): for 0<a<b and f∈C1[a, b], we have

∑

a≤n≤b

(−1)nd(n)f(n)=
1

2

∫ b

a

(log y+2γ−2 log 2)f(y) dy+
1

2

∞∑

n=1

(−1)nd(n)

×
∫ b

a

(

−2πY0

(

2π
√
ny

)

+4K0

(

2π
√
ny

))

f(y) dy(2.4)

with a similar convention of summation as above if a or b is an integer. For the

sum V ∗(N1, N2;x), the function f is

f(y)=w(y)y−3/4 cos
(

4π
√
xy− π

4

)

.

By repeated integration by parts, we see that the leading term in (2.4) is negligible.

The same holds for the terms involving the K0-Bessel function by the asymptotic

formula K0(x)∼
√

π/2xe−x for x≥1. For the Y0-Bessel function, we have an asymp-

totic expansion starting with the first approximation

(2.5) Y0(x)=

√

2

πx
sin

(

x− π

4

)

+O(x−3/2) for x≥ 1,

where the error term can be made more precise by subsequent explicit terms. Then,

integrating again by parts, we see that those terms on the right of (2.4) with n=
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n0+ν and |ν|>ν0 are negligible if ν0 is as in (2.1). Further, the contribution of the

error term in (2.5) to V ∗(N1, N2;x) is �xε. Hence

V ∗(N1, N2;x)=− (−1)n0x1/4

√
2π

∑

|ν|≤ν0

(−1)νd(n0+ν)(n0+ν)−1/4

×
∫ N2

N1

sin
(

2π
√

(n0+ν)y− π

4

)

cos
(

4π
√
xy− π

4

)w(y)

y
dy+O(xε).

When the trigonometric product here is written in terms of the exponential function,

those functions involving the exponent ±2π
√
y
(√

n0+ν−
√
4x

)

i will be relevant and

the others will give a small contribution, again by integration by parts. In this way,

the preceding formula becomes

V ∗(N1, N2;x)=− (−1)n0x1/4

2
√
2π

∑

|ν|≤ν0

(−1)νd(n0+ν)(n0+ν)−1/4

×
∫ N2

N1

sin
(

2π
√
y
(√

n0+ν−
√
4x

))w(y)

y
dy+O(xε).

We make here the simplifications

(n0+ν)−1/4 =(4x)−1/4+O(N
−1/2
1 x−3/4+ε),

√
y
(√

n0+ν−
√
4x

)

=
ν
√
y

4
√
x
+O(

√

N1x
−1/2+ε)

and omit the error terms with an admissible error. Now replacing ν by −ν, then

adding this new sum to the original one, and finally dividing the result by 2, we

end up with the desired formula. �

To deal with the ν-sums in Lemma 2, we need the following simple lemma.

Lemma 3. For 1≤ξ≤ 1
2n, we have

∑

1≤ν≤ξ

(d(n+ν)−d(n−ν))�Δ(n, ξ)+
ξ2

n
+nε,(2.6)

∑

1≤ν≤ξ

(−1)ν(d(n+ν)−d(n−ν))�Δ∗
(
n

4
,
ξ

4

)

+
ξ2

n
+nε.(2.7)
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Proof. The estimate (2.6) follows from the calculations

∑

1≤ν≤ξ

(d(n+ν)−d(n−ν)) = D(n+ξ)+D(n−ξ)−2D(n)+O(nε)

= (Δ(n+ξ)−Δ(n))+(Δ(n−ξ)−Δ(n))+O

(
ξ2

n

)

+O(nε)

�Δ(n, ξ)+
ξ2

n
+nε,

and the proof of (2.7) is analogous, based on the formula (1.8). �

Estimating the ν-sums in Lemma 2 by summation by parts and applying the

above lemma, we get immediately the following bounds for the Voronoi sums.

Theorem 4. For xε�N1�x, we have

V ∗(N1, N2;x)� (Δ∗(x,N
−1/2
1 x1/2+ε)+1)xε,

V (N1, N2, x)� (Δ(x,N
−1/2
1 x1/2+ε)+1)xε.

We note two applications of this theorem.

Corollary 5. On the assumption of the Conjecture (1.17), we have

V (N1, N2;x), V
∗(N1, N2;x)�

( x

N1

)1/4+ε

for xε�N1�
√
x.

Corollary 6. If Δ(x)�xα with 1
4<α< 1

3 for all x≥1, then

V (N1, N2;x), V
∗(N1, N2;x)�Xα+ε

for x�X and Xε�N1�X .

Remark 7. Corollary 5 is essentially best possible since

∫ 2X

X

V (N1, N2;x)
2 dx�X3/2N

−1/2
1 log3 N1

if N2−N1�N1 and the weight function w(x) is of a natural shape. This is seen

by the usual “square and integrate” argument; the diagonal terms then give the

dominating contribution.
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3. Atkinson sums

The Atkinson sum

A(N1, N2;T )=
√
2

(
T

2π

)1/4 N2∑

n=N1

(−1)nd(n)w(n)n−3/4e(T, n) cos f(T, n)

is a weighted segment of the sum Σ1(T ). It is analogous to 2πV ∗(N1, N2;T/2π),

which was analyzed in the preceding section. We are actually going to represent

the Atkinson sum in terms of Voronoi sums with T+τ in place of T , where τ runs

over a certain interval.

Lemma 8. We have

(3.1) A(N1, N2;T )� (1+N
3/4
1 T−1/4)T ε max

τ

∣
∣
∣
∣
V ∗

(

N1, N2;
T+τ

2π

)∣
∣
∣
∣
+O(T 1/8+ε),

where T ε�N1�
√
T and τ runs over the interval −T 1/3+ε≤τ≤(T 1/3+N1)T

ε.

Proof. To begin with, we simplify e(T, n) and f(T, n) omitting the error term

in (1.3) and (1.4). Then

A(N1, N2;T )=
√
2

(
T

2π

)1/4 N2∑

n=N1

(−1)nd(n)w(n)n−3/4

×cos
(

2
√
2πnT+An3/2−π/4

)

+O(N
5/4
1 T−3/4+ε)+O(N

11/4
1 T−5/4+ε),(3.2)

where A is as in (1.4). The error terms here are �T 1/8+ε for N1�
√
T .

Next, as in [10], we use the formula

(3.3) eiAy3

=

∫ ∞

−∞
β(u)eiuy du,

where β(u) is an Airy function. It can expressed by Bessel functions as (see [10])

β(u)=

√

|u|
3π

√
A
K1/3

(
2|u|3/2

3
√
3A

)

for u< 0,

β(u)=

√
u

3
√
3A

(

J1/3

(
2u3/2

3
√
3A

)

+J−1/3

(
2u3/2

3
√
3A

))

for u> 0.
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We apply (3.3) for y=
√
n with N1≤n≤N2. To separate a dominating part of

the integral in (3.3), let

(3.4) u0 =T−1/6+ε and u1 =T−1/2+ε(T 1/3+N1),

and introduce a smooth weight function v(u) supported in [u1/2,∞) such that

v(u)=1 for u≥u1 and v(j)(u)�ju
−j
1 for j=0, 1, 2, ... . Then

eiAn3/2

=

∫ −u0

−∞
β(u)eiu

√
n du+

∫ u1

−u0

(1−v(u))β(u)eiu
√
n du

+

∫ ∞

u1/2

v(u)β(u)eiu
√
n du.

We see, by familiar properties of Bessel functions, that the first and third integrals

are negligibly small; in the first integral, the integrand itself is small since the

K-Bessel function is exponentially small, and in the third integral the integrand

is oscillating by the asymptotic expansion of the J -Bessel functions, so repeated

integration by parts works for this part.

It remains to deal with the second integral. We have

β(u)�T 1/6 for all u �=0,

β(u)�T 1/8u−1/4 for u≥T−1/6,

so

(3.5)

∫ u1

−u0

|β(u)| du� (1+N
3/4
1 T−1/4)T ε.

We apply now, in (3.2), the truncated version of (3.3) with y=n1/2 getting

A(N1, N2;T )=
√
2

(
T

2π

)1/4 N2∑

n=N1

(−1)nd(n)w(n)n−3/4

×
∫ u1

−u0

(1−v(u))β(u) cos

(

4π
√
n

√

T+τ(u)

2π
− π

4

)

du+O(T 1/8+ε),

where τ(u)=u
√

T/2π+u2/8π. This expression can be rewritten as

(3.6) 2π

∫ u1

−u0

(1−v(u))β(u)V ∗
(

N1, N2;
T+τ(u)

2π

)

du+O(T 1/8+ε)
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if T 1/4 is replaced by (T+τ(u))1/4, which can be done by an admissible error. Then

the assertion of the lemma follows if the integral over u is estimated by (3.5) and

τ(u) is estimated by (3.4). �

Combining now (3.1) with Corollaries 5 and 6, we get another two corollaries.

Corollary 9. On the Conjecture (1.17), we have

A(N1, N2;T )�
(
√

N1+

(
T

N1

)1/4)

T ε

for T ε�N1�
√
T .

Corollary 10. If Δ(x)�xα with 1
4<α< 1

3 for all x≥1 and T ε�N1�
√
T ,

then

A(N1, N2;T )� (N
3/4
1 Tα−1/4+Tα)T ε.

Remark 11. The range of the integral (3.6) can be specified more precisely

if N1 exceeds T 1/3. Then this integral is a sum of oscillatory integrals over n∈
[N1, N2], and each of these has a saddle point of size �N1T

−1/2. Therefore the

range u�N1T
−1/2 gives the dominating contribution, and then τ(u)�N1. In view

of Lemma 2, this means that A(N1, N2;T ) depends on values of d(n) lying at

a distance about N1 to the right of 2T/π, whereas V ∗(N1, N2;T/2π) depends on

values of d(n) lying symmetrically near 2T/π at a distance at most �N
−1/2
1 T 1/2+ε.

Thus A(N1, N2;T ) and V ∗(N1, N2;T/2π) depend on values of d(n) lying in different

ranges if N1 exceeds T 1/3 and this explains why the Voronoi–Atkinson analogy

becomes weaker in this case.

4. Conditional estimates for Δ(x) and E(T )

We now prove Theorem 1 using Corollaries 5 and 9. As to Δ(x), we use the

approximate Voronoi formula (1.12) (the version for Δ(x)) choosing N=
√
x. We

may equip the sum in that formula with a smooth weight, and the weighted sum

can be split up into a sum of Voronoi sums of type V (N1, N2;x), up to the part over

n�xε, which can be estimated trivially. The conditional estimate Δ(x)�x1/4+ε

now follows from Corollary 5.

Turning to the estimates of E(T ), we use the inequality (10.1) in [6]:

(4.1) E(t1)+O((T−t1) log T )≤E(T )≤E(t2)+O((t2−T ) log T ),
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valid for 1≤t1≤T≤t2≤2T . Let U be a parameter to be chosen suitably, and let

t1 =T−U−u and t2 =T+U+u, 0≤u≤U,

where u is a variable. Averaging over u means smoothing of E(t1) and E(t2). The

averages of the Σ2(tj) are negligibly small by (1.5), and the sums Σ1(tj) can be

truncated to a length T 1+εU−2 owing to the smoothing. When we choose U=

T 1/4+ε, the error terms in (4.1) are �T 1/4+ε, and the same holds for the relevant

Atkinson sums by Corollary 9. Thus we get the asserted conditional estimate for

E(T ).

Finally we note that the present argument gives again the bound

E(T )�T (1+2α)/5+ε,

that is essentially the estimate (1.15), under the assumption Δ(x)�xα. Namely,

by Corollary 10 and the preceding discussion, the optimal value of U is determined

by the condition

Tα−1/4(TU−2)3/4 =U

giving U=T (1+2α)/5, and an estimate essentially like this then follows for E(T ).
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