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Extremal functions for real convex bodies

Daniel M. Burns, Norman Levenberg and Sione Ma‘u

Abstract. We study the smoothness of the Siciak–Zaharjuta extremal function associated

to a convex body in R
2. We also prove a formula relating the complex equilibrium measure of

a convex body in R
n (n≥2) to that of its Robin indicatrix. The main tool we use is extremal

ellipses.

1. Introduction

The Siciak–Zaharjuta extremal function for a compact set K⊂C
n is the pluri-

subharmonic (psh) function on C
n given by

VK(z) := sup{u(z) :u∈L(Cn) and u≤ 0 on K},

where L(Cn)={u psh on C
n :there exists C∈R such that u(z)≤log+ |z|+C} denot-

es the class of psh functions on C
n with logarithmic growth.

The upper semicontinuous regularization V ∗
K(z):=lim supζ→z VK(ζ) is identi-

cally ∞ if K is pluripolar; otherwise V ∗
K∈L(Cn). In fact, V ∗

K∈L+(Cn), where

L+(Cn)= {u∈L(Cn) : there exists C ∈R such that u(z)≥ log+ |z|+C}.

The set K is L-regular if K is nonpluripolar and VK=V ∗
K ; this is equivalent to

VK being continuous. In this paper, VK will always have a continuous foliation

structure that automatically gives L-regularity.

The complex Monge–Ampère operator applied to a function u of class C2 on

some domain in C
n is given by

(ddcu)n = i∂∂̄u∧...∧i∂∂̄u, n times.
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Its action can be extended to certain nonsmooth classes of plurisubharmonic func-

tions (cf., [3]). In particular, for a locally bounded psh function u, (ddcu)n is

well-defined as a positive measure.

If K is compact and nonpluripolar, we define the complex equilibrium measure

of K as (ddcV ∗
K)n. We also call it the (complex ) Monge–Ampère measure of K.

This is a positive measure supported on K.

For L-regular sets, the relationship between the higher order smoothness of VK

and geometric properties of K is not completely understood, except in a few special

cases. It is not known whether VK is smooth if K is the closure of a bounded domain

and the boundary of K is smooth or even real-analytic. It is known that if K is the

disjoint union of the closures of finitely many strictly pseudoconvex domains with

smooth boundary, then VK is C1,1 [10].

However, the extremal function has particularly nice properties when K is the

closure of a bounded, smoothly bounded, strictly lineally convex domain D⊂C
n.

Then VK is smooth on C
n\K, as a consequence of Lempert’s results ([12], [13] and

[14]). He showed that there is a smooth foliation of Cn\K by holomorphic disks on

which VK is harmonic (extremal disks).

If K is a convex body in R
n⊂C

n, it was shown in [8] that as long as ∂K in R
n

does not contain parallel line segments, there is a continuous foliation of Cn\K by

extremal disks. For a symmetric convex body, the existence of such a foliation was

proved earlier in [1] by different methods.

The existence of extremal disks through each point of Cn\K (K being a real

convex body) was obtained in [7] by an approximation argument using Lempert

theory, and it was shown that these disks must be contained in complexified real el-

lipses (extremal ellipses). An important tool used in this study was a real geometric

characterization of such ellipses, which was derived from a variational description

of the extremal disks. The goal of this paper is to establish further properties of VK

by studying its foliation in more detail. We begin in the next section by recalling

basic properties of VK and its associated extremal ellipses that will be used in what

follows.

In Section 3, we study the smoothness of VK . Results are proved in R
2⊂C

2

as the geometric arguments work only in dimension 2. For a convex body K⊂R
2

we first show that at certain points of C2\K, VK is pluriharmonic (and therefore

smooth). At other points, we use the foliation structure of VK by extremal ellipses

to study its smoothness. We derive geometric conditions on extremal ellipses that

ensure smoothness of the foliation, under the assumption that the real boundary

∂K (i.e., the boundary of K as a subset of R2) is sufficiently smooth. We also give

simple examples to illustrate what happens when these conditions fail. Two types

of ellipses are considered separately:
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(1) extremal ellipses intersecting ∂K in exactly two points;

(2) extremal ellipses intersecting ∂K in exactly three points.

This accounts for most ellipses; those that remain are contained in a subset of

C
2 of real codimension 1.

Theorem 3.11. Let K⊂R
2⊂C

2 be a convex body whose boundary ∂K is Cr-

smooth (r∈{2, 3, ...}∪{∞, ω}). Then VK is Cr on C
2\K except for a set of real

dimension at most 3.

Finally, in Section 4, we study the complex equilibrium measure of a convex

body K⊂R
n⊂C

n, n≥2. If a compact set K⊂C
n has the foliation property, we

can use a “transfer of mass” argument to relate its complex equilibrium measure to

(ddcρ+

K)n, where ρK denotes the Robin function of K and ρ+

K=max{ρK , 0}. The

measure (ddcρ+

K)n is in fact the equilibrium measure of the Robin indicatrix of K,

Kρ :={z :ρK(z)≤0}, and the relation is given in terms of the Robin exponential map,

first defined in [8].

Theorem 4.6. Let K⊂R
n be a convex body with unique extremals. Then for

any φ continuous on K,∫
φ(ddcVK)n =

∫
(φ◦F )(ddcρ+

K)n.

Here F denotes the extension of the Robin exponential map as a continuous

function from ∂Kρ onto K. A preliminary step is to prove a version of this (The-

orem 4.3) for K=˙D, the closure of a smoothly bounded, strictly lineally convex

domain D.

2. Background

In this section we recall essential properties of extremal functions and foliations

associated to convex bodies.

The following properties of extremal functions are well-known.

Theorem 2.1. (1) Suppose K1⊂C
n and K2⊂C

m are compact sets. Then for

(z, w)∈Cn+m\K1×K2 we have

(2.1) VK1×K2(z, w)=max{VK1(z), VK2(w)}.

(2) Let K⊂C
n be compact and let P=(P1, ..., Pn) : C

n→C
n be a polynomial

map of degree d, Pj=P̂j+rj with P̂j homogeneous of degree d and deg(rj)<d.
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Suppose P̂−1(0)={0}, where P̂=(P̂1, ..., P̂n). Then for all z∈Cn,

(2.2) VP−1(K)(z)= d·VK(P (z)).

Proof. See e.g. Chapter 5 of [11]. �

If L is an affine change of coordinates then (2.2) shows that VL(K)(L(z))=

VK(z).

Next, let K be a convex body. We summarize the essential properties of ex-

tremal curves for VK .

Theorem 2.2. (1) Through every point z∈Cn\K there is either a complex

ellipse E with z∈E such that VK restricted to E is harmonic on E\K, or there is

a complexified real line L with z∈L such that VK is harmonic on L\K.

(2) For E as above, E∩K as above is a real ellipse inscribed in K, i.e., for

its given eccentricity and orientation, it is the ellipse with largest area completely

contained in K; if L is as above, L∩K is the longest line segment (for its given

direction) completely contained in K.

(3) Conversely, suppose CT ⊂K is a real inscribed ellipse (or line segment)

with maximal area (or length) as above. Form E (or L) by complexification (i.e.,

find the unique complex algebraic curve of degree ≤2 containing CT ). Then VK is

harmonic on E\CT (resp. L\CT ).

Proof. See Theorem 5.2 and Section 6 of [8]. �

The ellipses and lines discussed above have parametrizations of the form

(2.3) F (ζ)= a+cζ+
c̄

ζ
,

where a∈Rn, c∈Cn and ζ∈C\{0} with VK(F (ζ))=
∣∣log |ζ|∣∣. (As usual, c̄ denotes

the component-wise complex conjugate of c.) These are higher-dimensional analogs

of the classical Joukowski function ζ �→ 1
2 (ζ+1/ζ).

A curve parametrized as in (2.3) is the image of the curve {(z1, z2)∈C2 :

z21+z22=1} under the affine map

C
2 � (z1, z2) �−→ a+z12Re(c)−z22 Im(c)∈C

n.

Hence F parametrizes an ellipse in C
n if Im(c) =0, otherwise (for c∈R2) it gives

the complex line {a+λc:λ∈C}. For convenience, we usually consider both cases
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together by regarding the complex lines to be degenerate ellipses with infinite ec-

centricity. These algebraic curves will be referred to as extremal curves or extremal

ellipses, including the degenerate case.

From Theorem 2.2(3), one can see that an extremal curve for VK may not be

unique for a given eccentricity and orientation if K contains parallel line segments

in its boundary ∂K (as a boundary in R
n), as it may be possible to translate the

curve and obtain another extremal. On the other hand, if no such line segments

exist (e.g. if K is strictly convex) then extremal curves are unique.

The following was shown in [8].

Theorem 2.3. If K⊂R
n is a convex body such that all its extremal curves are

unique, then these curves give a continuous foliation of CP
n\K by analytic disks

such that the restriction of VK to any leaf of the foliation is harmonic.

In the above result we are considering CP
n=C

n∪H∞ via the usual iden-

tification of homogeneous coordinates [Z0 :Z1 :...:Zn] with the affine coordinates

(z1, ..., zn) given by zj=Zj/Z0 when Z0 =0, and H∞={[Z0 :...:Zn]:Z0=0}. An an-

alytic disk which is a leaf of the foliation is precisely ‘half’ of an extremal ellipse.

Letting Δ̄={ζ :|ζ|≤1} denote the closed unit disk in C and Ĉ the Riemann sphere,

a leaf of the foliation may be given by F (Ĉ\Δ̄), with F as in (2.3) extended holo-

morphically to infinity via F (∞)=[0:c1 :...:cn]=:[0:c].

Analytic disks through conjugate points [0:c] and [0:c̄] at H∞ (called conjugate

leaves in [7]) are the two ‘halves’ of an extremal ellipse, and fit together along the

corresponding real inscribed ellipse in K.

The bulk of the proof of Theorem 2.3 consisted in verifying that two extremal

ellipses can only intersect in the set K, and hence they are disjoint in C
n\K. This

was done on a case-by-case basis using the geometry of real convex bodies.

That these ellipses foliate CP
n\K continuously was obtained as a by-product

of the approximation techniques used to prove their existence. This was to approx-

imate K by a decreasing sequence Kj↘K of strictly convex, conjugation invariant

bodies in C
n with real-analytic boundary. For such sets Kj , Lempert theory gives

the existence of a smooth foliation of Cn\Kj by analytic disks such that the re-

striction of VKj to each disk is harmonic. It was also verified in [8] that these

foliations extend smoothly across H∞ in local coordinates. In the limit as j→∞,

they converge to a continuous foliation parametrized by H∞.

We remark that H∞ is a natural parameter space for leaves of the foliation by

recalling its real geometric interpretation. Two ellipses

ζ �−→ a+bζ+
b̄

ζ
and ζ �−→ a′+b′ζ+

¯b′

ζ



208 Daniel M. Burns, Norman Levenberg and Sione Ma‘u

intersect the same point c=[0:b]=[0:b′]∈H∞ if and only if b=λb′ for some λ∈C∗=

C\{0}. Writing λ=reiψ , r>0, and putting ζ=eiθ, the parametrizations become

eiθ �−→ a+2(Re(b) cos θ−Im(b) sin θ) and

eiθ �−→ a′+2r(Re(b) cos(θ+ψ)−Im(b) sin(θ+ψ)).

As θ runs through R these parametrizations trace real ellipses in R
n related by

the translation a−a′ and the scale factor r, but with the same eccentricity and

orientation. If a=a′ and |λ|=1 we get a reparametrization of the same ellipse.

Given a parameter c∈H∞, write a=a(c) and b=b(c), where ζ �→a+bζ+b̄/ζ ,

b=(b1, ..., bn), is an extremal ellipse for the eccentricity and orientation given by

c∈H∞. When b1 =0, we may reparametrize the ellipse so that b1∈(0,∞). Put

cj=bj/b1 and ρ(c)=b1. We then write an extremal as

(2.4) ζ �−→ a(c)+ρ(c)

(
(1, c2, ..., cn)ζ+

(1, c̄2, ..., c̄n)

ζ

)
= a(c)+ρ(c)

(
cζ+

c̄

ζ

)

(slightly abusing notation in the last expression). When extremals are unique, a(c)

and ρ(c) are uniquely determined by c, so by Theorem 2.3 they are continuous

functions. (Note that this is only valid locally, i.e., when b1 =0.)

3. Smoothness of VK in C
2

We specialize now to a compact convex body K⊂R
2⊂C

2, and ∂K will then

denote the boundary in R
2. Denote coordinates in C

2 by z=(z1, z2), and use x=

(x1, x2) when restricting to R
2. In analyzing the extremal ellipses associated to K,

we will employ elementary geometric arguments, which do not directly generalize

to higher dimensions.

3.1. Points at which VK is pluriharmonic

From classical potential theory in one complex variable we have the well-known

formula

V[−1,1](ζ)= log |h(ζ)|, ζ /∈ [−1, 1],

where h(ζ)=ζ+
√

ζ2−1 is the inverse of the Joukowski function (cf., [18]). Hence

if S=[−1, 1]×[−1, 1]⊂R
2⊂C

2 is the square centered at the origin, then by (2.1),

(3.1) VS(z)=max{log |h(z1)|, log |h(z2)|}.

On C
2\S this is the maximum of two pluriharmonic functions. A continuous folia-

tion for VS is given by extremal ellipses for S centered at the origin [1].
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Lemma 3.1. Suppose C is an extremal curve for the square S, and z=

(z1, z2)∈C . Let j=1 or j=2. Then C intersects both of the lines zj=±1 if and

only if VS(z)=log |h(zj)|.

Proof. Take j=1; the proof when j=2 is identical. We have a parametrization

z=(a1, a2)+ρ((1, c2)t+(1, c̄2)/t)∈C. Since C is extremal, if it intersects the lines

z1=±1, then it intersects these lines tangentially. By symmetry the midpoint of

the ellipse lies on the line z1=0; so a1=0.

We verify that ρ= 1
2 . Since C intersects the lines z1=±1 there exist φ1, φ2∈

[−π, π] such that

1 = ρ(eiφ1+e−iφ1)= 2ρ cosφ1,

−1 = ρ(eiφ2+e−iφ2)= 2ρ cosφ2.

Either equation immediately implies that ρ≥ 1
2 , and the reverse inequality follows

since the real points of C lie in S. Hence z1 is given by the Joukowski function:

z1=
1
2 (t+1/t)=h−1(t) for t∈C and

VS(z)= log |t|= log |h◦h−1(t)|= log |h(z1)|.

Conversely, suppose C does not intersect, say, z1=1. We want to show that

VS(z)>log |h(z1)|. Now the real points of C, which are contained in S, tangentially

intersect the line z1=1−ε for some ε>0. At a point (z1, z2)∈C, the parametrization

of C yields z1=a1+ρ(t+1/t). The z1-coordinates of real points of C, given by t=eiθ,

θ∈R, must satisfy

a1+2ρ cos θ∈ [−1, 1−ε] for all θ.

We show that ρ≥ 1
2 cannot hold. Suppose it does; then we must have cos θ∈I ,

where I :=[−1−a1, 1−ε−a1]. If a1<0, then cosπ=−1 /∈I , a contradiction. But on

the other hand, if a1≥0 then cos 0=1 /∈I , which is also a contradiction. Hence ρ< 1
2 .

Finally, taking a1=0 for simplicity, a calculation yields

log |h(z1)|= log

∣∣∣∣h
(
ρ

(
t+

1

t

))∣∣∣∣= log |2ρt|< log |t|=VS(z1). �

The above lemma shows that if z∈C2\S lies on an extremal ellipse for S that

does not intersect all four sides, then VS is pluriharmonic in a neighborhood of z.

Theorem 3.2. Let K⊂R
2 be a convex body, and suppose that ∂K contains a

pair of parallel line segments. Suppose C is an extremal curve of K that intersects

∂K in the interior of these two line segments and in no other points. Then for any

z∈C\K, VK is pluriharmonic in a neighborhood of z.
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Proof. First, we simplify the situation using Theorem 2.1 and the fact that

pluriharmonicity is unaffected by linear transformations. Hence we may assume

that the parallel line segments lie on the lines x2=1 and x2=−1 and that C is

centered at the origin. By rescaling and translating the x1-axis, we may further

assume that K⊂S, S=[−1, 1]×[−1, 1] as above, and that C intersects ∂K in the

two points (α, 1) and (−α,−1), where 0<α<1.

Write CT ={F (eiθ):θ∈R} for the real ellipse contained in K, where F (t)=

bt+b̄/t is the parametrization of C. By elementary topology in R
2 there exists ε>0

such that for any s∈[−ε, ε], the translated sets (s, 0)+CT are contained in K.

By construction, C is extremal for S as well as for K, so for any z∈C\R2, we

have VK(z)=VS(z). We show that for any sufficiently close point z′ we also have

VK(z′)=VS(z
′).

Consider an extremal ellipse C ′ for S containing a point z′ that is given by

the parametrization t �→b′t+¯b′/t. By the continuity of the foliation for VS given

by extremal ellipses centered at the origin, then given ε>0 there is δ>0 such that

|z−z′|<δ implies |b−b′|<ε/2 and |t0−t′0|<ε/2, where

z= ct0+
c̄

t0
and z′ = c′t′0+

¯c′

t′0
.

Since K⊂S, to show that C ′ is extremal for K we only need to verify that C ′
T =

C ′∩S⊂K . Let x=(x1, x2)∈C ′
T and define y1 by the condition that y=(y1, x2)∈CT

is the closest point to x with the same second coordinate. We have

x1 = b′1e
iθ+˙b′1e

−iθ = b1e
iθ+b̄1e

−iθ+(b′1−b1)e
iθ+(˙b′1−b̄1)e

−iθ

= y1+(b′1−b1)e
iθ+(˙b′1−b̄1)e

−iθ,

where y=(y1, y2) for some y∈CT . Hence |x1−y1|≤2|b′1−b1|<ε. So C ′
T is contained

in the convex hull of CT −(ε, 0) and CT +(ε, 0), which in turn is contained in K.

(See Figure 1.) Therefore C ′
T is an extremal curve through z′ for both S and K,

and VK(z′)=VS(z
′) follows.

Applying the previous lemma, VK(z′)=VS(z
′)=log |h(z′2)| for all z′=(z′1, z

′
2)

with |z−z′|<δ. So VK is pluriharmonic in a neighborhood of z. �

Remark 3.3. If C is an extremal ellipse that does not intersect ∂K in a pair of

parallel line segments, then it is unique for its value of c∈H∞. If K contains parallel

line segments elsewhere, we may get rid of this parallelism by modifying K slightly

(e.g. shaving off a thin wedge along one of the line segments). This can be done

without affecting C and nearby extremals. Hence in studying the local behavior

of extremal ellipses near a unique extremal C, we may assume that uniqueness
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Figure 1. Proof of Theorem 3.2.

holds globally, and that extremal ellipses give a continuous foliation of Cn\K (by

Theorem 2.3).

We now turn to study the smoothness of the foliation at points on unique

extremals.

3.2. Extremal ellipses meeting ∂K in two points

As before, write C to denote an extremal ellipse for VK , F its parametrization,

and CT ={F (eiθ):θ∈R} its trace on K.

Note. From now until the end of Section 3, coordinates in R
2⊂C

2 will be

denoted by (x, y).

We will assume in what follows that ∂K is at least C2. For a point a∈∂K,

denote by Ta(∂K) the tangent line to ∂K that passes through a.

Proposition 3.4. Let CT ∩∂K={a, b}. If ∂K is smooth at a and b, then the

tangent lines Ta(∂K) and Tb(∂K) are parallel.

Proof. Let va and vb be unit vectors parallel to Ta(∂K) and Tb(∂K) respec-

tively. We may assume they are oriented so that va ·vb≥0. Suppose va =vb. Then
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take any unit vector v for which

va ·vb <v·vb < 1=vb ·vb.

For t>0 sufficiently small, the translated ellipse CT,t :=CT +tv is then contained in

the interior ofK so that CT,t can be expanded to an ellipse with the same orientation

and eccentricity as CT . This contradicts the fact that CT is extremal. �

Let us start now by fixing an extremal curve C, with CT ⊂K, corresponding to

a fixed value c=c0∈H∞ and ρ(c0)=ρ0. The parametrization of C may be written

as

(3.2) ζ �−→ (x0, y0)+ρ0

(
(1, c0)ζ+

(1, c̄0)

ζ

)
.

(In the above equation, we identify c0 with its representation in local coordinates,

i.e., as a complex number c0∈C.)
For convenience, we will use a more natural parametrization of CT from the

point of view of real geometry, i.e., CT =F (θ)=(F1(θ), F2(θ)), where

F1(θ) = ρ0[α cos θ cosψ−β sin θ sinψ]+x0,(3.3)

F2(θ) = ρ0[α cos θ sinψ+β sin θ cosψ]+y0.(3.4)

Here α, β and ψ incorporate the parameter c∈H∞; in local coordinates, they are

real-analytic functions of c. Precisely, c determines ψ and γ :=β/α, which are

scale-invariant parameters. (See Figure 2 for the explicit geometry.) By rotating

coordinates, it is no loss of generality to assume that α sinψ =0, which we will

assume in what follows.

Differentiating (3.3) and (3.4), we have

F ′
1(θ) = ρ0[−α sin θ cosψ−β cos θ sinψ],(3.5)

F ′
2(θ) = ρ0[−α sin θ sinψ+β cos θ cosψ].(3.6)

Let a=F (θ0) and b=F (θ1) be the points of intersection with ∂K. Write K=

{(x, y)∈R2 :r(x, y)≤0} with ∇r(a),∇r(b) =(0, 0). By Proposition 3.4, θ1=θ0+π.

We rotate coordinates and normalize r so that ∇r(a)=(0, 1) and ∇r(b)=(0,−λ)

with λ>0. Since

∇r(a)·F ′(θ0)=∇r(b)·F ′(θ1)= 0,

we have

F ′
2(θ0)=F ′

2(θ1)= 0.
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Figure 2. The parameters α, β and ψ and their relation to c in local coordinates. The
smaller ellipse is the reference ellipse given by setting (x0, y0)=(0, 0) and ρ0=1 in (3.2).
Then α and β are the lengths of its axes and ψ is the angle between the axis of length α
and the horizontal axis. Scaling by ρ0 (and translating to (x0, y0)) yields the extremal
ellipse CT . Note that in local coordinates, a reference ellipse is the unique ellipse, for
a given eccentricity and orientation, that is centered at the origin and tangent to the
vertical line x=2.

Take a=(0, 0) and write ∂K near a as ∂K={(s, η(s)):|s|<ε} with η(0)=

η′(0)=0. Now we consider variations in s, so that we consider the point a(s):=

(s, η(s)) on ∂K. This determines the normal ∇r(a(s)) and an “antipodal” point

b(s)=(x(s), y(s))∈∂K such that ∇r(b(s))=λ∇r(a(s)) for some λ=λ(s)<0. We de-

fine the parameter θ0(s) via the defining relation

rx(s, η(s))
∂F1

∂θ
(θ0(s))+ry(s, η(s))

∂F2

∂θ
(θ0(s))= 0

and this defines θ1(s):=θ0(s)+π. We also write the center as

(x0(s), y0(s))=
a(s)+b(s)

2
=

(
s

2
+
x(s)

2
,
η(s)

2
+
y(s)

2

)
.

Allowing ρ and c (i.e., ρ, γ and ψ) to vary, we now consider F as a function

F (θ)=F (θ0(s), x0(s), y0(s), ρ, α, β, ψ).

Consider the equations

A(s, ρ, γ, ψ) := s−F1(θ0(s), x0(s), y0(s), ρ, γ, ψ),

B(s, ρ, γ, ψ) := η(s)−F2(θ0(s), x0(s), y0(s), ρ, γ, ψ).
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We get a mapping (s, ρ, γ, ψ) �→(A,B) near (0, ρ0, γ0, ψ0), where ρ0=ρ(c0) for the

parameter c=c0 corresponding to γ0 and ψ0; that is at s=0. Therefore we have

A(0, ρ0, γ0, ψ0)=B(0, ρ0, γ0, ψ0)=0,

rx(s, η(s))
∂F1

∂θ
(θ0(s))+ry(s, η(s))

∂F2

∂θ
(θ0(s))= 0,

and

rx(x(s), y(s))
∂F1

∂θ
(θ1(s))+ry(x(s), y(s))

∂F2

∂θ
(θ1(s))= 0.

We want to find conditions for which

(3.7) det

⎛
⎜⎜⎝

∂A

∂s

∂A

∂ρ

∂B

∂s

∂B

∂ρ

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
s=0
ρ=ρ0

=0.

Then by the implicit function theorem we can solve for s, ρ near 0, ρ0 in terms of

γ, ψ (i.e., c) near γ0, ψ0.

We write, for simplicity, θ0=θ0(0) and θ1=θ1(0) so that

∂F2

∂θ
(θ0)=

∂F2

∂θ
(θ1)= 0.

From (3.6), (∂F2/∂θ)(θ0)=0 says that

(3.8) α sin θ0 sinψ=β cos θ0 cosψ.

We compute the entries of the matrix in (3.7). Below, prime (′) denotes differ-

entiation with respect to s,

∂A

∂s
=1− ∂F1

∂θ
θ′− ∂F1

∂x0
x′
0−

∂F1

∂y0
y′0.

From (3.3), ∂F1/∂x0=1 and ∂F1/∂y0=0. Thus

(3.9)
∂A

∂s
=1− ∂F1

∂θ
θ′−x′

0.

Next,
∂A

∂ρ
=−∂F1

∂ρ
=−(α cos θ cosψ−β sin θ sinψ).

Then
∂B

∂s
= η′− ∂F2

∂θ
θ′− ∂F2

∂x0
x′
0−

∂F2

∂y0
y′0 = η′− ∂F2

∂θ
θ′−y′0
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since (3.4) implies ∂F2/∂x0=0 and ∂F2/∂y0=1. Moreover, at s=0, we have η′(0)=0

and (∂F2/∂θ)(θ0)=0 so that
∂B

∂s

∣∣∣∣
s=0

= y′0(0).

But y0(s)=
1
2 (η(s)+y(s)) so that

y′0(0)=
1
2 (η

′(0)+y′(0))= 0.

Thus (∂B/∂s)|s=0=0.

On the other hand, we claim that if α sinψ =0, then (∂B/∂ρ)|s=0 =0. By (3.4),

∂B

∂ρ
=−∂F2

∂ρ
=−(α cos θ sinψ+β sin θ cosψ).

If on the contrary, (∂B/∂ρ)|s=0=0, then using (3.8),

α sin θ0 sinψ = β cos θ0 cosψ,

α cos θ0 sinψ = −β sin θ0 cosψ.

Multiplying the top equation by sin θ0 and the bottom one by cos θ0 and adding, we

obtain α sinψ=0, a contradiction. Thus (3.7) holds precisely when (∂A/∂s)|s=0 =0.

We now show that

(3.10)
∂A

∂s

∣∣∣∣
s=0

=
1

2
+

(
∂F1

∂θ
(θ0)

)2
rxx(0, 0)

y0
− 1

2

rxx(0, 0)ry(x(0), y(0))

rxx(x(0), y(0))ry(0, 0)
.

To see this, recall first that rx(0, 0)=0 and ry(0, 0)=1. Moreover,

rx(s, η(s))
∂F1

∂θ
(θ(s))+ry(s, η(s))

∂F2

∂θ
(θ(s))= 0;

differentiating this equation with respect to s we get

(rxx+ryxη
′)
∂F1

∂θ
+rx

∂2F1

∂θ2
θ′+(rxy+ryyη

′)
∂F2

∂θ
+ry

∂2F2

∂θ2
θ′ =0.

Now at s=0, η′(0)=(∂F2/∂θ)(θ0)=rx(0, 0)=0; moreover, writing F2 :=J+y0 we see

that ∂2F2/∂θ
2=−J so that

∂2F2

∂θ2
(θ0)=−J(θ0)= y0−F2(θ0)= y0.

Hence

rxx(0, 0)
∂F1

∂θ
(θ0)+y0θ

′(0)= 0
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and so

(3.11) θ′(0)=
−rxx(0, 0)

∂F1

∂θ
(θ0)

y0
.

To compute/rewrite x′
0(0), we use the fact that ∇r(s, η(s))=λ∇r(x(s), y(s)).

This implies the relation

rx(x(s), y(s))·ry(s, η(s))−ry(x(s), y(s))·rx(s, η(s))= 0.

Differentiate this with respect to s, and set s=0 gives

(rxx(x(0), y(0))·x′(0)+rxy(x(0), y(0))·y′(0))ry(0, 0)

−(rxx(0, 0)+rxy(0, 0)·η′(0))ry(x(0), y(0))= 0.

Here we have used the fact(s) that rx(0, 0)=rx(x(0), y(0))=0. But we also have

η′(0)=y′(0)=0, ry(0, 0)=1, and ry(x(0), y(0))=1/λ; and so

rxx(x(0), y(0))·x′(0)− 1

λ
rxx(0, 0)=0;

i.e.,

x′(0)=
rxx(0, 0)

λrxx(x(0), y(0))
.

Now x0(s)=
1
2 (s+x(s)), so x′

0(0)=
1
2 (1+x′(0)), and so

(3.12) x′
0(0)=

1

2
+
1

2

rxx(0, 0)

λrxx(x(0), y(0))
.

Plugging (3.11) and (3.12) into (3.9) yields (3.10).

We now analyze the situation when (∂A/∂s)|s=0=0. From (3.10), this occurs

precisely when

(
∂F1

∂θ
(θ0)

)2

y0
=

1

2

(
−1

rxx(0, 0)
+

ry(x(0), y(0))

ry(0, 0)rxx(x(0), y(0))

)

=
1

2

(
−1

rxx(0, 0)
+

ry(x(0), y(0)

rxx(x(0), y(0))

)
.(3.13)

Since rx(0, 0)=rx(x(0), y(0))=0, ry(0, 0)=1 and ry(x(0), y(0))<0, the right-hand

side of (3.13) is minus the average of the radii of the osculating circles of ∂K at

a=(0, 0) and b=(x(0), y(0)).
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We claim that the left-hand side of (3.13) is minus the average of the radii of

the osculating circles of CT at a and b. To see this, note from (3.4) and (3.5) (and

(∂2F2/∂θ
2)(θ0)=y0), that

(
∂F1

∂θ
(θ0)

)2

y0
=

ρ(−α sin θ0 cosψ−β cos θ0 sinψ)
2

−(α cos θ0 sinψ+β sin θ0 cosψ)
.

Let us rotate coordinates so that sinψ=1; i.e., ψ=π/2, and assume θ0=0. Then

(
∂F1

∂θ
(θ0)

)2

y0
=

ρβ2

−α
.

On the other hand, CT now has the parametrization

F1(θ)=−ρβ sin θ+x0 and F2(θ)= ρα cos θ+y0,

and the curvature of CT as a function of θ is

ˇ(θ)=
1

ρ

αβ

(β2 cos2(θ)+α2 sin2 θ)3/2
.

At θ=0, π we get

ˇ(0)=ˇ(π)=
α

β2ρ

as claimed (precisely, −1
2 (1/ˇ(0)+1/ˇ(π))=−1

2 (2β
2ρ/α)=−ρβ2/α).

Remark 3.5. (i) Note that the radii of the osculating circles for ∂K at the

points a and b are at least as large as those for CT since CT is inscribed in ∂K.

Thus the condition (∂A/∂s)|s=0=0 fails if the curvature of CT is strictly less than

that of ∂K at either a or b.

(ii) A degenerate ellipse (i.e. line segment) occurs when β=0. A careful exam-

ination of the preceding calculations shows that (3.7) always holds in this case.

When ∂K is Cr, the implicit function theorem shows that s and ρ can be

solved in terms of γ and ψ (equivalently, c∈H∞) as Cr functions. This implies that

locally, the center (x0(s), y0(s)) is a Cr function of c, and must therefore coincide

with a(c) given in (2.4). Similarly, the scale factor ρ(c) is also a Cr function of c.

Altogether, this shows that the foliation of extremal ellipses near CT is Cr.

The smoothness of the foliation at a point z∈Cn\K in turn implies the smooth-

ness of VK at z, as the partial derivatives ∂/∂zj may be computed explicitly in terms

of foliation parameters using the chain rule. We summarize this in the following

theorem.
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Theorem 3.6. Suppose z∈C2\K lies on an extremal ellipse C for K with the

following properties:

(1) The intersection ∂K∩C is exactly two points.

(2) ∂K is Cr, r≥2, in a neighborhood of ∂K∩C.

(3) For at least one of these intersection points, the curvature of CT is strictly

greater than the curvature of ∂K at this point.

Then VK is Cr in a neighborhood of z.

Remark 3.7. Parameters c∈H∞ corresponding to extremal curves for VK that

intersect ∂K in two points but do not satisfy the curvature condition (3) form a set

of real dimension at most 1. One way to see this is to consider the collection of all

extremal ellipses Ca that intersect ∂K at a point a. Then Ca is parametrized by a

subset of (real) dimension 1 in H∞, and
⋃

a∈∂K Ca=C
2. For each a, however, there

is at most one ellipse parameter ca for which the curvature of the extremal ellipse

coincides with the curvature of ∂K. Now as a varies smoothly over the curve ∂K,

ca varies smoothly over a one-dimensional subset of H∞. Hence
⋃

a∈∂K{ca} is at

most 1-dimensional.

Example 3.8. Consider K to be the real unit disk, K={(x, y)∈R2⊂C
2 :x2+

y2≤1}. Then by Lundin’s formula [16],

VK(z)= 1
2 log

+(|z1|2+|z2|2+|z21+z22−1|).

On C
2\K this function is nonsmooth precisely on the complex ellipse C given by

z21+z22=1. In this case CT =∂K, so trivially the curvatures are equal.

3.3. Extremal ellipses meeting ∂K in three points

Suppose an extremal ellipse C meets ∂K in three points:

C∩∂K = {(x1, y1), (x2, y2), (x3, y3)}.

In this case, the ellipse is necessarily nondegenerate.

As before, we parametrize CT via F (θ)=(F1(θ), F2(θ)) as in (3.3) and (3.4).

For j=1, 2, 3 define θj∈[0, 2π) via F (θj)=(xj , yj). We may assume that α=1,

otherwise replace β with β/α and ρ with ρα.

We want to analyze this setup under variations of β and ψ (i.e., c). We will

assume that coordinates have been chosen so that ∂K can be represented as a graph

over either x or y near each point (xj , yj); in particular, we will assume that for each

j=1, 3 there exist smooth functions ηj with ∂K={(x, y):y=ηj(x)} near (xj , yj) and

∂K={(x, y):x=η2(y)} near (x2, y2) (see Figure 3).
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Figure 3. Local parametrizations of ∂K.

Now consider variations in β and ψ, and consider the variables ρ, x0, y0 and

xj , yj , θj , j=1, 2, 3, to be dependent on these variations. In total, there are 12

dependent variables.

We will eliminate eight of these variables. Using the functions ηj , we immedi-

ately eliminate y1, x2 and y3. We now proceed to eliminate θj , j=1, 2, 3. We use

the fact that the intersection CT ∩∂K is tangential at each point (xj , yj). For j=1,

this says that

(F ′
1(θ1), F

′
2(θ1))=λ(1, η′1(x1));

i.e., F ′
1(θ1)η

′
1(x1)=F ′

2(θ1). Explicitly, using (3.5) and (3.6) we obtain

(3.14) tan θ1 =
β(cosψ+η′1(x1) sinψ)

sinψ−η′1(x1) cosψ
.

Locally, we may take the principal branch of arctan (that gives angles in [0, 2π))

to obtain the function θ1(x1, β, ψ), and hence eliminate θ1 as a dependent variable.

Similarly we can do the same for θ2 and θ3.

The last two variables we will eliminate are x0 and y0. First, define the fol-

lowing functions (for notational convenience we suppress their dependence on the

variables β, ψ, ρ, x0 and y0):

A1(x1)=F1(θ1)−x1, B1(x1)=F2(θ1)−η1(x1),

A2(y2)=F1(θ2)−η2(y2), B2(y2)=F2(θ2)−y2,

A3(x3)=F1(θ3)−x3, B3(x3)=F2(θ3)−η3(x3).

The geometric condition that the points (xj , yj) are intersections of CT with ∂K

says that Aj=Bj=0, j=1, 2, 3.
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Define S1(θ):=F1(θ)−x0 and S2(θ):=F2(θ)−y0; then A3=B3=0 says that

x0 =x3−S1(θ3) and y0 = η3(x3)−S2(θ3).

Using this to eliminate x0 and y0, the system of equations reduces to

A1=S1(θ1)−S1(θ3)+x3−x1, B1=S2(θ1)−S2(θ3)+η3(x3)−η1(x1),

A2=S1(θ2)−S1(θ3)+x3−η2(y2), B2=S2(θ2)−S2(θ3)+η3(x3)−y2.

In summary, we have a map M : (x1, y2, x3, ρ, β, ψ) �→(A1, A2, B1, B2), where the

geometric condition that CT is inscribed in ∂K implies that M=0.

We can solve for x1, y2, x3, and ρ in terms of β and ψ provided the Jacobian

matrix

JM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂A1

∂x1

∂A1

∂y2

∂A1

∂x3

∂A1

∂ρ

∂B1

∂x1

∂B1

∂y2

∂B1

∂x3

∂B1

∂ρ

∂A2

∂x1

∂A2

∂y2

∂A2

∂x3

∂A2

∂ρ

∂B2

∂x1

∂B2

∂y2

∂B2

∂x3

∂B2

∂ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

has nonzero determinant. Note that ∂A1/∂y2=∂B1/∂y2=∂A2/∂x1=∂B2/∂x1=0.

Fix an initial inscribed ellipse, and denote its parameters by xj0, yj0, j=1, 2, 3,

and ρ0. To simplify the computations, without loss of generality we may assume

that

η′1(x1)|x1=x10 =0, η′2(y2)|y2=y20 =0 and η′3(x3)|x3=x30 > 0

by applying a linear change of coordinates (see Figure 3). In these coordinates, the

tangency of CT at its intersections with ∂K says that S′
2(θ1)|θ1=θ1(x10)=0, and so

(3.15)
∂B1

∂x1

∣∣∣∣
x1=x10

=

[
S′
2(θ1)

∂θ1
∂x1

−η′1(x1)

]
x1=x10

=0;

a similar argument also gives (∂A2/∂y2)|y2=y20=0. Hence
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(3.16) det(JM )=det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂A1

∂x1
0

∂A1

∂x3

∂A1

∂ρ

0 0
∂B1

∂x3

∂B1

∂ρ

0 0
∂A2

∂x3

∂A2

∂ρ

0
∂B2

∂y2

∂B2

∂x3

∂B2

∂ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∂A1

∂x1

∂B2

∂y2
det(M1),

where

M1 =

⎛
⎜⎜⎝
∂B1

∂x3

∂B1

∂ρ

∂A2

∂x3

∂A2

∂ρ

⎞
⎟⎟⎠ .

We derive conditions under which each factor on the right-hand side of (3.16)

is nonzero. First,

∂A1

∂x1
= S′

1(θ1)
∂θ1
∂x1

−1,(3.17)

∂B2

∂y2
= S′

2(θ2)
∂θ2
∂y2

−1.(3.18)

We analyze det(M1). For convenience, translate coordinates to the origin, i.e.,

put (x30, y30)=(0, 0). We then rotate coordinates as follows. Let e1=(1, 0) and

e2=(0, 1) denote the standard basis in R
2; let

Rα =

(
cosα sinα

− sinα cosα

)
,

where α∈(0, π/2) is given by tanα=η′3(0); now let e′1=R−1
α e1 and e′2=R−1

α e2. Let

( · )Rα denote coordinates and matrices written with respect to this new basis, e.g.,

(x̃, ỹ)Rα = x̃e′1+ỹe′2.

In these coordinates, the common tangent to ∂K and CT at 0=(0, 0)Rα has no sec-

ond (i.e., e′2) component. This says that η̃′3(0)=0, where (x̃, η̃3(x̃))Rα=(x, η3(x)).
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In what follows, tilded quantities (e.g., S̃1, S̃2) denote quantities expressed

with respect to rotated coordinates. We calculate that

Rα

⎛
⎜⎜⎝
∂A2

∂x3

∂B1

∂x3

⎞
⎟⎟⎠ = Rα

⎛
⎜⎜⎝

−1+S′
1(θ3)

∂θ3
∂x3

−η′3(x3)+S′
2(θ3)

∂θ3
∂x3

⎞
⎟⎟⎠

= Rα

⎛
⎜⎜⎝

−1+S̃′
1(θ3)

∂θ3
∂x̃3

−η̃′3(x̃3)+S̃′
2(θ3)

∂θ3
∂x̃3

⎞
⎟⎟⎠

Rα

∂x̃3

∂x3

= RαR
−1
α

⎛
⎝−1+S̃′

1(θ3)
∂θ3
∂x̃3

0

⎞
⎠ cosα,

where zero in the bottom component above follows from η̃′3(0)=0, by the same

argument that gave (3.15) earlier.

Define BRα and ARα by

(
ARα

BRα

)
:=Rα

⎛
⎜⎜⎝
∂A2

∂ρ

∂B1

∂ρ

⎞
⎟⎟⎠ .

With E=
(
01
10

)
, we have

det(M1)=−det(ERαM1) = det

⎛
⎝ 0 BRα(

1−S̃′
1(θ3)

∂θ3
∂x̃3

)
cosα ARα

⎞
⎠

=

(
S̃′
1(θ3)

∂θ3
∂x̃3

−1

)
(cosα)BRα .

Therefore, det(JM ) =0 holds if and only if none of

S̃′
1(θ3)

∂θ3
∂x̃3

= 1 and(3.19)

BRα = 0(3.20)

hold, and the right-hand sides of (3.17) and (3.18) are nonzero.
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We analyze (3.17) when its right-hand side is zero. Differentiating (3.3) and

(3.14) (the latter implicitly), we obtain

1=S′
1(θ1)

∂θ1
∂x1

=−ρβη′′1 (x1)
cos2 θ1(sin θ1 cosψ+β cos θ1 sinψ)

(sinψ−η′1(x1) cosψ)2
.

Using the fact that η′1(x1)=0, we can simplify this to

1

η′′1 (x1)
=−ρβ

(
sin θ1 cos

2 θ1
tanψ sinψ

+
β cos3 θ1
sinψ

)
,

and also simplify (3.14) to tanψ=β/tan θ1; hence

sinψ=
β cos θ1√

β2 cos2 θ1+sin2 θ1
.

Eliminating ψ, we obtain

1

η′′1 (x1)
= − ρ

β

√
β2 cos2 θ1+β2 cos2 θ1(sin

2 θ1+β2 cos2 θ1)

= − ρ

β
(sin2 θ1+β2 cos2 θ1)

3/2.

Now, note that ˇ∂K(x1)=−η′′1 (x1) and ˇCT
(x1)=(β/ρ)(sin2 θ1+β2 cos2 θ1)

−3/2,

where ˇ∂K(x1) (resp., ˇCT
(x1)) denotes the curvature of ∂K (resp., CT ) at the

point x1. Hence

S′
1(θ1)

∂θ1
∂x1

=1 ⇐⇒ ˇCT
(x1)=ˇ∂K(x1).

By (3.17), the above condition in turn is equivalent to ∂A1/∂x1=0.

Similar calculations as above show that

S′
2(θ2)

∂θ2
∂y2

=1 ⇐⇒ ˇCT
(x2)=ˇ∂K(x2),

S̃′
1(θ3)

∂θ3
∂x̃3

=1 ⇐⇒ ˇCT
(x3)=ˇ∂K(x3).

Using (3.17), (3.18) and (3.19), we obtain the following geometric criterion:

(�) If det JM =0 then the curvature of CT is strictly greater than the curvature

of ∂K at each of the three intersection points (xj , yj), j=1, 2, 3.
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It remains to show that (3.20) always fails. For if not, then

0=BRα =(S2(θ1)−S2(θ3)) cosα−(S1(θ2)−S1(θ3)) sinα,

i.e.,

tanα=
S2(θ1)−S2(θ3)

S1(θ2)−S1(θ3)
.

However, interpreting each side of the above equation geometrically, tanα=η′3(x3)

is the slope of ∂K at (x3, y3), while the right-hand-side of the equation is minus

the slope of the line connecting v1 and v2, where for j=1, 2, vj denotes the clos-

est point to (x3, y3) that lies on the tangent line to ∂K through (xj , yj). Hence

tanα>0>(S2(θ1)−S2(θ3))/(S1(θ2)−S1(θ3)), a contradiction. So (3.20) fails.

This shows that if condition (�) holds, then det(JM ) =0 and locally we may

solve for (x1, y2, x3, ρ) as functions of (β, ψ), and hence for ρ and a0=(x0, y0) as

functions of c. If ∂K is Cr, r≥2, then the foliation for VK is locally Cr at points

on C, and hence so is VK .

We have proved the following result.

Theorem 3.9. Suppose z∈C2\K lies on an extremal ellipse C for K with the

following properties:

(1) The intersection ∂K∩C is exactly three points.

(2) ∂K is Cr, r≥2, in a neighborhood of ∂K∩C.

(3) The curvature of CT is strictly greater than the curvature of ∂K at each of

the three intersection points.

Then VK is Cr in a neighborhood of z.

Similar reasoning as in Remark 3.7 shows that the parameters for which con-

dition (1) holds but condition (3) fails form a subset of H∞ of at most one real

dimension.

Extremal ellipses meeting ∂K in more than three points

The same reasoning also shows that the parameters for extremal ellipses meet-

ing ∂K in at least four points form a lower-dimensional subset. Note that VK may

not be smooth across such ellipses.

Example 3.10. For the unit square S=[−1, 1]×[−1, 1], we have by Lemma 3.1

that VS(z)=log |h(z1)|=log |h(z2)| if z=(z1, z2) lies on an extremal ellipse that

intersects all four sides. In C
2\S, VS is not smooth precisely on the set where

|h(z1)|=|h(z2)|, which is a submanifold of real dimension 3.
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The results of this section may be summarized in the following theorem.

Theorem 3.11. Let K⊂R
2⊂C

2 be a convex body whose boundary ∂K is Cr-

smooth (r∈{2, 3, ...}∪{∞, ω}). Then VK is Cr on C
2\K except for a set of real

dimension at most 3.

Proof. A point at which VK is not smooth must lie on an extremal ellipse C

that satisfies one of the following conditions:

˝ C satisfies property (1) but not (3) in Theorem 3.6;

˝ C satisfies property (1) but not (3) in Theorem 3.9;

˝ C meets ∂K in at least 4 points.

A collection of ellipses that satisfies one of the above conditions forms at most

a (real) one-parameter family; so the union of these ellipses is at most a real 3-

dimensional set. �

That VS in Example 3.10 is a maximum of smooth functions is an instance

of a more general phenomenon. Given a symmetric convex set K, suppose z∈C,

where C is an extremal ellipse that intersects K in four points, and suppose that the

curvature of CT is strictly greater than that of ∂K at these points. We enlarge K in

two different ways to obtain convex sets K1 and K2 with the following properties:

˝ K=K1∩K2;

˝ C is an extremal ellipse for each of K1 and K2;

˝ on some neighborhood of C\K, VKj is smooth for each j=1, 2 and

(3.21) VK =max{VK1 , VK2}.

Theorem 3.11 gives the smoothness of the VKj ’s in a neighborhood of C\R2. Fig-

ure 4 illustrates this method when ∂K is given by x4+y4=1. Since VK is the

maximum of two functions, it is not a priori smooth across C (and we expect

nonsmoothness in general). For ∂K given by x2n+y2n=1, where n>1, the ellipses

that intersect ∂K in four points form a real 3-dimensional set in C
2 in which we

expect VK to be nonsmooth.

Note that the same sort of argument works in other cases, e.g. CT intersects

∂K in more than four points and/or K is not symmetric. One can show that VK is

locally a maximum of smooth functions by considering enlargements of K to convex

sets whose boundaries each meet CT in three points, and then taking their extremal

functions.

The same argument can also be used to get local smooth approximations: given

ε>0 and z0∈C2\K, one can construct a convex set Kε with the property that for

all z in some neighborhood of z0, VKε is smooth and VKε(z)≤VK(z)≤VKε(z)+ε.
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Figure 4. The construction of K1 and K2 by locally modifying ∂K. The real ellipse
CT =C∩K intersects ∂K1 in {b, c, d} and ∂K2 in {a, b, c}. Equation (3.21) holds near
C because an extremal ellipse for K whose parameters are sufficiently close to those of
C is also an extremal ellipse for one of the Kj ’s.

For any compact convex set K, it seems plausible that one can make a finite

number of local boundary modifications as in Figure 4 to remove the ‘bad’ conditions

listed in the proof of Theorem 3.11, at least q.e.(1) This motivates the following

conjecture.

Conjecture. Let K⊂R
2 be a convex body with smooth boundary.

(1) There is a finite collection {Kj}j of convex bodies with the property that

VKj is smooth q.e. on C
2\Kj for each j, and VK=maxj VKj .

(2) Given ε>0 there is a convex body Kε such that VKε is smooth q.e. on

C
2\Kε and |VK(z)−VKε(z)|<ε for all z∈C2.

Remark 3.12. The above conjecture is (trivially) true for the real disk, whose

extremal function is smooth away from z21+z22=1. It is not known if there is a real

convex set whose extremal function is smooth everywhere on its complement.

4. The complex equilibrium measure and the Robin exponential map

In this section, we relate the complex equilibrium (or Monge–Ampère) measure

of a convex set K to that of its Robin indicatrix, defined below.

Given a compact set K⊂C
n, the Robin function ρK of K is the logarithmically

homogeneous, psh function given by ρK(z)=lim sup|λ|→∞[V ∗
K(λz)−log |λ|]. The

(1) Recall that a property holds q.e. = quasi-everywhere if it holds everywhere outside a
(possibly nonempty) pluripolar set.
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Robin indicatrix of K is the set given by

(4.1) Kρ = {z ∈C
n : ρK(z)≤ 0}.

LetD be a bounded, strictly lineally convex domain with smooth boundary. We

recall some basic facts concerning Lempert extremal curves for VD; i.e., holomorphic

curves which foliate C
n\D on which VD is harmonic, and the Robin indicatrix of

D (cf., [8], [15] and [17]). Recall that Δ={ζ∈C:|ζ|<1} is the open unit disk.

Proposition 4.1. Let K=D, where D is a bounded, strictly lineally convex

body in C
n with smooth boundary. Then the following are true:

(1) A Lempert extremal curve may be represented as f : C\Δ→C
n\K, with

Laurent expansion

(4.2) f(ζ)= a1ζ+
∑
j≤0

ajζ
j , aj ∈C

n, a1 =0,

and VK(f(ζ))=log |ζ|.
(2) A Lempert extremal curve may be extended continuously to a map on ∂Δ

with f(∂Δ)⊂∂D.

(3) A Lempert extremal curve is orthogonal to the level sets of VK . Precisely,

if z=f(ζ)∈Cn\K, then the complex hyperplane Hz given by

Hz = {z+w :w ·tf ′(ζ)= 0 for all t∈C}

is tangent to the level set of VK at z.

(4) If v∈∂Kρ then v=lim|ζ|→∞ f(ζ)/ζ for some f that parametrizes an ex-

tremal curve for VK . We obtain the same extremal curve for w∈∂Kρ if and only if

w=veiθ: in this case, w=lim|ζ|→∞ g(ζ)/ζ , where g(ζ)=f(ζe−iθ).

(5) There exists a smooth diffeomorphism F : Cn\Kρ→C
n\K such ρK(z)=

VK(F (z)), and for any Lempert extremal disk parametrized as in (4.2), we have

F (a1ζ)=f(ζ).

The smooth diffeomorphism F in (5) is called the Robin exponential map. The

set Kρ together with the complex lines through the origin may be regarded as a

linearized model of K and the associated foliation for VK .

By part (2), we can extend the Robin exponential map to ∂Kρ via F (a1e
iθ)=

f(eiθ). Part (4) ensures that the map is well-defined.

Given a bounded, strictly lineally convex domain D with smooth boundary, let

V =VK be the extremal function of its closure K=D. For λ∈(1,∞), write

Dλ = {z ∈C
n :V (z)< log λ}

for the sublevel sets of V .
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The main ingredient to relate the equilibrium measure of K with that of its

Robin indicatrix Kρ is the following “transfer of mass” formula.

Lemma 4.2. (Transfer to a level set) Let D be as above, and suppose ψ is a

continuous function on C
n\D with the property that ψ(f(ζ))=ψ(f(ζ/|ζ|)) for all

Lempert extremal disks f : Δ→C
n\D. Then for all 1<λ1<λ2<∞,

(4.3)

∫
∂Dλ1

ψ dcV ∧(ddcV )n−1 =

∫
∂Dλ2

ψ dcV ∧(ddcV )n−1.

Proof. Let us first carry out the proof under the assumption that ψ is smooth.

By Stokes’ theorem,
∫
−∂Dλ1

∪∂Dλ2

ψ dcV ∧(ddcV )n−1 =

∫
Dλ2

\¸Dλ1

ψ(ddcV )n

+

∫
Dλ2

\¸Dλ1

dψ∧dcV ∧(ddcV )n−1

:= I+II .

Here −∂Dλ1 means that we use the opposite orientation on ∂Dλ1 (i.e., the boundary

orientation induced by the complement of D).

Proving the lemma is equivalent to showing that I+II=0. Now I=0 since

(ddcV )n=0 on C
n\D.

Therefore, we must show that II=0. First note that with respect to polar

coordinates z=reiθ in one variable, we have d log |z|=dr/r and dc log |z|=dθ. Let

f : C\Δ→C
n\D parametrize a Lempert disk, with V (f(t))=log |t|, t=reiθ. Then

f∗dcV =dθ. Also, since ψ◦f(reiθ)=ψ◦f(eiθ), we have f∗ dψ=γ dθ for some func-

tion γ; thus f∗(dψ∧dcV )=0. This says that dψ∧dcV annihilates any pair of vectors

tangent to the curve parametrized by f , so it can act nontrivially only on the com-

ponents that are normal to the curve. Hence by Proposition 4.1(2), dψ∧dcV can

act nontrivially only on pairs of vectors with components in the complex tangent

space of the level sets of V , which is of complex dimension n−1.

On the other hand, f∗ddcV =0 since V is harmonic along the extremal curve;

so ddcV is a (1, 1)-form that also can act nontrivially only on pairs of vectors with

components in the complex tangent space of the level sets of V . Since dψ∧dcV ∧
(ddcV )n−1 is a smooth (n, n)-form that acts only on vectors spanning a space of

complex dimension n−1, it must be identically zero. So II=0, which proves the

lemma when ψ is smooth.

If ψ is only continuous, we first restrict it to ∂D and approximate it by a

sequence of smooth functions ψn, with ψn→ψ uniformly. This can be done as
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follows. Since ∂D is smooth, locally we have a smooth diffeomorphism χ : U⊂
R

2n−1→∂D, and if ψ is supported in χ(U), take ψn=(ψ◦χ)n◦χ−1, where (ψ◦χ)n
are standard mollifications of ψ◦χ in R

2n−1 with (ψ◦χ)n→ψ◦χ uniformly on U .

As ∂D is compact, a general ψ continuous on ∂D can be mollified as above using a

partition of unity, with ψn→ψ uniformly.

Next, extend ψn from ∂D to C
n\D via ψn(f(ζ))=ψn(f(ζ/|ζ|)), where f

parametrizes a foliation disk. The extended functions ψn converge uniformly to

ψ on C
n\D, and moreover are smooth on C

n\∂D since the Lempert foliation is

smooth. Therefore (4.3) holds with ψ replaced by ψn. Taking the limit as n→∞,

and using the uniform convergence ψn→ψ, yields the result for ψ. �

We now use the above lemma and a limiting procedure to transfer the Monge–

Ampère measure of K to the boundary of Kρ, the Robin indicatrix. In the calcula-

tions that follow we will use a standard Monge–Ampère formula (see e.g. [2]): given

a smooth psh function u such that the boundary of the set {z :u(z)>0} is a (real)

smooth hypersurface S, and u+=max{u, 0}, then for any continuous function ϕ,

(4.4)

∫
ϕ(ddcu+)n =

∫
{u>0}

ϕ(ddcu)n+

∫
S

ϕdcu∧(ddcu)n−1.

Note that by (4.4), the Monge–Ampère measures of Dλ (λ∈(1,∞)) and Kρ

are given (with ϕ being an arbitrary continuous function) by the formulas

(4.5)

∫
ϕ(ddcVDλ

)n =

∫
∂Dλ

ϕdcVK∧(ddcVK)n−1

and

(4.6)

∫
ϕ(ddcρ+

K)n =

∫
∂Kρ

ϕdcρK∧(ddcρK)n−1.

We will also use standard convergence properties of Monge–Ampère measures

(see e.g. [4]). Recall that for a sequence {uj}∞j=1 of locally bounded psh functions

on a domain D we have the weak-∗ convergence of measures (ddcuj)
n→(ddcu)n for

some locally bounded psh function u on D whenever:

(1) uj→u monotonically as j→∞ (i.e., uj↗u a.e. or uj↘u); or

(2) uj→u locally uniformly as j→∞.

Theorem 4.3. Let K=D⊂C
n be the closure of a smoothly bounded, strongly

lineally convex domain D; let V =VK be its Siciak–Zaharjuta extremal function, and

let ρ be its Robin function. Then for any continuous φ on ∂K,

(4.7)

∫
φ(ddcV )n =

∫
∂Kρ

(φ◦F ) dcρ∧(ddcρ)n−1,
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where Kρ={z :ρ(z)≤0} is the Robin indicatrix, and F : Cn\Kρ→C
n\K is the Robin

exponential map.

Proof. Using the Lempert foliation, we extend φ continuously to C
n\D by the

formula φ(f(ζ)):=φ(f(ζ/|ζ|)), for all Lempert disks f : Δ→C
n\D. Next, we have

VDλ
↗V , so (ddcVDλ

)n→(ddcV )n in the weak-∗ convergence of measures. But

for this particular φ,
∫
φ(ddcVDλ

)n=
∫
∂Dλ

φ dcV ∧(ddcV )n−1 is constant in λ by

Lemma 4.2, and hence the equality
∫

φ(ddcV )n =

∫
∂Dλ

φ dcV ∧(ddcV )n−1

holds for all λ>1.

To prove the theorem, it suffices to show that the right-hand side of the above

equation converges to the right-hand side of (4.7) as λ→∞. To see this, let λt=z;

then∫
z∈∂Dλ

φ(z) dczV ∧(ddczV )n−1

=

∫
t∈λ−1(∂Dλ)

φ(tλ) dct(V (tλ)−log |λ|)∧(ddct(V (tλ)−log |λ|))n−1.

For clarity, in the above lines the dependence (of derivatives and integrals) with

respect to the variable z or t has been made explicit.

Away from the origin, the convergence Vλ(t):=V (tλ)−log |λ|−→ρ(t) is

uniform as λ→∞. Therefore we get the weak-* convergence (ddc(maxVλ, 0))
n→

(ddc(max ρ, 0))n, i.e.,

∫
λ−1(∂Dλ)

ϕdcVλ∧(ddcVλ)
n−1 →

∫
∂Kρ

ϕdcρ∧(ddcρ)n−1

for any continuous function ϕ.

In particular, let ψ be the continuous function given by

(4.8) ψ(ζa)= (φ◦F )(a) for all a∈ ∂Kρ and ζ ∈ (1,∞).

Then ∫
λ−1(∂Dλ)

ψ dcVλ∧(ddcVλ)
n−1 →

∫
∂Kρ

ψ dcρ∧(ddcρ)n−1 as λ→∞.(4.9)

We want to replace ψ(t) on the left-hand side by φ(tλ) for λ sufficiently large.

To do this, we will prove a couple of lemmas before returning to the main proof.
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Lemma 4.4. There is a constant C>0 such that |aξ−fa(ξ)|<C for all a∈∂Kρ

and |ξ|>1.

Proof. Let fa denote the parametrization of the Lempert extremal curve given

by ξ �→aξ+
∑

j≤0 ajξ
j . The family of maps ga(ζ)=a/ζ−fa(1/ζ), a∈∂Kρ, are holo-

morphic in the unit disk Δ and uniformly bounded there by the maximum principle,

since fa(∂Δ)⊂K. In other words, there is a uniform bound |a/ζ−fa(1/ζ)|<C in-

dependent of a and ζ∈Δ; now identify ξ=1/ζ . �

Lemma 4.5. Let V =VK be the Siciak–Zaharjuta extremal function for a com-

pact set K. Suppose V is continuous, and that C
n\K is foliated continuously by

Lempert extremal disks. Suppose ϕ is a continuous function on C
n\K such that for

any leaf f : C\Δ→C
n\K of the foliation, ϕ(f(λ))=ϕ(f(rλ)) for all r∈(1/|λ|,∞).

Then given C>0 and ε>0, there is R=R(C)>0 such that |ϕ(z)−ϕ(z′)|<ε

whenever |z|, |z′|>R and |z−z′|<C.

Proof. Without loss of generality, K⊂B(0, 1), the unit ball. Then |V (z)−
V (z′)|≤ω(|z−z′|/|z|), where ω is the modulus of continuity of V on B(0, 2) (see

e.g., Lemma 4.5 of [6]).

Hence given η such that ω(η)<δ for some prescribed δ>0, then by choosing

R0>C/η, we have that if |z|, |z′|>R0 and |z−z′|<C, then

(4.10) |V (z)−V (z′)|<δ.

We also have

(4.11) z= fa(ξ)= aξ+

∞∑
k=0

bkξ
−k and z′ = fa′(ξ′)= a′ξ′+

∞∑
k=0

b′kξ
′−k,

with V (z)=log |ξ|, V (z′)=log |ξ′|, and a, a′∈Dρ.

Without loss of generality, we assume that ξ=|ξ| (by reparametrization). If z

and z′ satisfy (4.10), then e−δ<|ξ′|/|ξ|<eδ . Hence ξ′/ξ=eα+iθ for some |α|<δ and

θ∈[0, 2π).
Using the series expansions in (4.11) to estimate z−z′, we have

C ≥ |z−z′| ≥ |aξ−a′ξ′|−M = |ξ| |a−a′eα+iθ|−M

for some constant M (which may be obtained using the uniform bound in the

previous lemma). Hence |a−a′eα+iθ|≤(C+M)/|ξ|. The right-hand side can be

made smaller than δ>0 by taking |ξ|>(C+M)/δ.

Now take ε>0 as given by the hypothesis, and choose δ̃>0 such that

(4.12) if t, t′ ∈ ∂K and |t−t′|< δ̃, then |ϕ(t)−ϕ(t′)|<ε.
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By continuity of the foliation for VK , we can choose δ>0 such that

(4.13) |fc(1)−fc′(1)|< δ̃ whenever |c−c′|<δ and c, c′ ∈ ∂Kρ.

Choose R>R0 sufficiently large so that if |z|>R, then VK(z)>(C+M)/δ+1. Now

given |z|, |z′|>R, we have z=fa(ξ) and z′=fa′(ξ′) with VK(z)=log |ξ| and VK(z′)=

log |ξ′|; and |z−z′|<C implies |a−a′eα+iθ|<δ. Finally,

|ϕ(z)−ϕ(z′)|= |ϕ(fa(ξ))−ϕ(fa′(ξ′))|= |ϕ(fa(|ξ|))−ϕ(fa(e
−iθ|ξ′|))|

= |ϕ(fa(1))−ϕ(fa(e
−iθ))|= |ϕ(fa(1))−ϕ(feiθa(1))|<ε,

where we apply (4.12) and (4.13) in the last line. This concludes the proof. �

We now continue with the proof of Theorem 4.3. By Lemma 4.4, there is C>0

such that

|aξ−fa(ξ)|<C for all |ξ|> 1, a∈ ∂Kρ.

Given t, choose s∈C such that t=sa for some a∈∂Kρ. Then for λ>1 sufficiently

large (chosen so that |sλa|, |fa(sλ)|>R for all a∈∂Kρ, where R=R(C) is chosen as

in Lemma 4.5), we have from (4.8),

|ψ(t)−φ(tλ)|= |ψ(tλ)−φ(tλ)|= |ψ(sλa)−φ(sλa)|= |φ(fa(sλ))−φ(sλa)|<ε.

Then∣∣∣∣
∫
λ−1(∂Dλ)

ψ(t) dcVλ∧(ddcVλ)
n−1−

∫
λ−1(∂Dλ)

φ(tλ) dcVλ∧(ddcVλ)
n−1

∣∣∣∣< (2π)nε.

(The factor (2π)n is due to the fact that Vλ∈L+(Cn) implies
∫
(ddcVλ)

n=(2π)n; see

e.g. [5].) Since ε is arbitrary, we obtain

(4.14)

lim
λ→∞

∫
λ−1(∂Dλ)

ψ(t) dcVλ∧(ddcVλ)
n−1 = lim

λ→∞

∫
λ−1(∂Dλ)

φ(tλ) dcVλ∧(ddcVλ)
n−1.

The expression inside the limit on the right-hand side is actually constant in λ:

changing back to the variable z, where λt=z, we have
∫
λ−1(∂Dλ)

φ(tλ) dcVλ∧(ddcVλ)
n−1 =

∫
∂Dλ

φ(z) dcV ∧(ddcV )n−1 =

∫
φ(ddcVλ)

n,

which is independent of λ>1 by Lemma 4.2. Then

lim
λ→∞

∫
∂Dλ

φ dcV ∧(ddcV )n−1 = lim
λ→1+

∫
φ(ddcVλ)

n =

∫
φ(ddcVK)n,
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where the last equality follows by Monge–Ampère convergence. Finally, putting the

above together with (4.9) and (4.14) finishes the proof. �
We use Theorem 4.3 to get a similar result for convex bodies K⊂R

n with

unique extremals. The Robin exponential map in this case is of the form

F (bζ)= a+bζ+
b̄

ζ
, b∈ ∂Kρ, ζ ∈C\Δ.

(Recall that a depends on b; more precisely, on c=[0:b1 :...:bn]∈H∞.)

The Robin exponential map extends continuously to ∂Kρ via F (beiθ)=a+

beiθ+b̄e−iθ. Given x∈K and v∈Rn, there is always an extremal ellipse through x

with tangent in the direction of v (see Section 3 of [9]). Hence F : ∂Kρ→K is onto

but not injective.

Theorem 4.6. Let K⊂R
n be a convex body with unique extremals. Then for

any φ continuous on K,∫
φ(ddcVK)n =

∫
(φ◦F )(ddcρ+

K)n.

We will prove this using Theorem 4.3 and an approximation argument. Let

{Kk}∞k=1 be a strictly decreasing sequence of compact sets with the following prop-

erties:

(1) For each k, Kk is the closure of a smoothly bounded, strongly lineally

convex domain Dk.

(2) Kk+1⊂Kk with
⋂∞

k=1 Kk=K.

For convenience, let us denote the Siciak–Zaharjuta extremal functions by Vk=

VKk
and V =VK , and also write ρ=ρ+

K=max{ρK , 0} and ρk=ρ+

Kk
. Write (Kk)ρ=

{z :ρKk
(z)≤0} and Kρ={z :ρK(z)≤0} for the Robin indicatrices, and write Fk : C

n\
(Kk)ρ→C

n\Kk and F : Cn\Kρ→C
n\K for the Robin exponential maps.

A key ingredient in the approximation will be the following result, stated with-

out proof (cf., Corollary 7.2 of [8]).

Proposition 4.7. On any compact subset of C
n\Kρ we have the uniform

convergence Fk→F .

Given r>1, we put

Vk,r =max{0, Vk−log r}, ρk,r =max{0, ρk−log r},
Vr =max{0, V −log r}, ρr =max{0, ρ−log r}.

It is easy to see that Vk,r is the extremal function for the set Kk,r={z :Vk(z)≤log r},
ρk,r is the Robin function for Kk,r , and that Vk,r↗Vr and ρk,r↗ρr as k→∞.
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Remark 4.8. By Lempert theory, the set Kk,r is smoothly bounded and strong-

ly lineally convex. Also, if Fk,r denotes the corresponding Robin exponential map,

then Fk,r=Fk on the domain of Fk,r . This follows from the fact that the images

of Lempert extremal disks for Vk,r are contained in those of Vk. Precisely, if f(ζ)

parametrizes a Lempert extremal for Vk, then fr(ζ):=f(rζ) parametrizes a Lempert

extremal disk for Vk,r .

We will also make use of the following lemma whose proof is straightforward.

Lemma 4.9. Suppose we have the uniform convergence ϕk→ϕ of continuous

functions on a domain D and the weak-∗ convergence μk→μ of measures on D,

and the total masses μk(D) and μ(D) are uniformly bounded above.

Then
∫
D
ϕk dμk→

∫
D
ϕdμ.

We will apply this to Monge–Ampère measures of functions in L+(Cn), which

have total mass (2π)n.

We can now prove Theorem 4.6.

Proof of Theorem 4.6. Let φ be a real-valued continuous function on K. Form

the continuous function

φ̃(z)=

{
φ(z), if z∈K,

φ(f(ζ/|ζ|)), if z=f(ζ)∈Cn\K,

where f parametrizes an extremal disk that goes through z. Note that φ̃ is con-

tinuous since the foliation of extremals for VK is continuous and each leaf extends

holomorphically across K (as a complex ellipse).

Fix r>1. By Theorem 4.3, we have

(4.15)

∫
φ̃(ddcVk,r)

n =

∫
(φ̃◦Fk,r)(dd

cρk,r)
n =

∫
(φ̃◦Fk)(dd

cρk,r)
n,

where we use the observation in Remark 4.8 to get the second equality.

The Monge–Ampère formula (4.6) applied to ρk,r and ρr shows that (ddcρk,r)
n

and (ddcρr)
n are supported on the sets {z :ρk(z)=log r} and {z :ρ(z)=log r}, which

are contained in C
n\Kρ. Here we have Fk→F uniformly; hence φ̃◦Fk→φ̃◦F uni-

formly on a compact set S⊂C
n\Kρ that contains a neighborhood of {z :ρ(z)=log r}

and hence contains {z :ρk(z)=log r} for all sufficiently large k. Applying Lemma 4.9,

we have ∫
(φ̃◦Fk)(dd

cρk,r)
n →

∫
(φ̃◦F )(ddcρr)

n as k→∞.
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The standard Monge–Ampère convergence also gives
∫

φ̃(ddcVk,r)
n →

∫
φ̃(ddcVr)

n as k→∞.

As (4.15) is true for all k,
∫
φ̃(ddcVr)

n=
∫
(φ̃◦F )(ddcρr)

n follows by taking the limit

as k→∞. This latter formula is true for all r>1.

Since Vr↗V and ρr↗ρ as r→1−, we also have the weak-∗ convergences

(ddcVr)
n→(ddcV )n and (ddcρr)

n→(ddcρ)n. Taking the limit as r→1− yields
∫

φ̃(ddcV )n =

∫
(φ̃◦F )(ddcρ)n.

Finally, note that on K, where (ddcV )n is supported, we have φ̃=φ. Similarly,

it is easy to check that φ̃◦F=φ◦F on the support of (ddcρ)n. The theorem is

proved. �

Remark 4.10. Note that the formula in Theorem 4.6 exhibits (ddcVK)n as the

push-forward of the measure (ddcρ+

K)n under the Robin exponential map:

F∗((dd
cρ+

K)n)= (ddcVK)n.
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