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On Möbius orthogonality for interval maps
of zero entropy and orientation-preserving circle

homeomorphisms

Davit Karagulyan

Abstract. We will prove Sarnak’s conjecture on Möbius disjointness for continuous interval

maps of zero entropy and also for orientation-preserving circle homeomorphisms by reducing these

result to a well-known theorem of Davenport from 1937.

1. Introduction

In [7], Sarnak discussed the disjointness conjecture concerning the Möbius func-

tion μ(n). The assertion of the conjecture is the following. Let X be a compact

metric space and f be a continuous map of zero entropy. Then for any pair (X, f)

as n→∞,

(1) Sn(f(x), ϕ)=
1

n

n∑

k=1

μ(k)ϕ(fk(x))= o(1),

where x∈X and ϕ∈C(X).

The conjecture is known to be true for several dynamical systems. For a

Kronecker flow it is proved in [9] and [3], while when (X, f) is a translation on

a compact nilmanifold it is proved in [4]. In [2] it is also established for horocycle

flows. In this paper we are going to prove the following two theorems.

Theorem 1.1. Let f : [0, 1]→[0, 1] and ϕ : [0, 1]→R be continuous maps, and

assume that f has zero entropy. Then (1) holds.

The author would like to express his gratitude to Ana Rodrigues for proposing the problem
and for useful comments on the manuscript, and to Michael Benedicks for his guidance and many
valuable suggestions. I also want to thank Lennart Carleson for his suggestion to consider circle
homeomorphisms that are only semi-conjugate to rotations.
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Theorem 1.2. Let f : S1→S1 be an orientation-preserving circle homeomor-

phism and ϕ : S1→R be a continuous map. Then (1) holds.

2. Some preliminary results

Before proving Theorems 1.1 and 1.2 we present some technical results which

will be used later. We first recall Lemmas 5 and 6 in Davenport’s paper [3].

Lemma 2.1. Let h>0 and N∈N. If l, q∈N, (l, q)=1 and q≤(logN)h, then

N∑

n=1
n≡l (mod q)

μ(n)=O(Ne−C(h)
√
logN ).

Lemma 2.2. In Lemma 2.1 the condition (l, q)=1 can be omitted.

Combining these two lemmas we obtain the following result.

Lemma 2.3. Let h>0 and N∈N. Then if l, q∈N and q≤(logN)h, then

N∑

n=1
n≡l (mod q)

μ(n)=O(Ne−C(h)
√
logN ).

We will also need Theorem 1, p. 319 in [3], which can be formulated as follows.

Theorem 2.4. For any given K>0,

N∑

n=1

μ(n)e2πinθ =O(N(logN)−K),

uniformly in θ.

From the above theorem, using approximation of a continuous function by

trigonometric polynomials one can obtain the following corollary.

Corollary 2.5. If ϕ∈C(S1) and Rρ is a rigid rotation by the irrational number

ρ, then
N∑

n=1

μ(n)ϕ(Rn
ρ (x))= o(N) for all x∈S1.
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Next we will continue with the following lemmas.

Lemma 2.6. Let {xn}∞n=1 be an eventually periodic sequence, i.e. xn=xn+m

for some fixed number m∈N and for any n≥n0, then

N∑

n=1

μ(n)xn = o(N).

Proof. It is clear, that

N∑

n=1

μ(n)xn =

m−1∑

l=0

xn0+l

(
∑

1≤n≤N
n≡n0+l (modm)

μ(n)

)
+o(N).

If al=minn{n:n≡n0+l (mod m) and 1≤n≤N}, then
∑

1≤n≤N
n≡n0+l (modm)

μ(n)=
∑

1≤n≤N
n≡al (modm)

μ(n).

According to Lemma 2.1, for large enough integers N (m≤(logN)h, and h>0),

1

N

∣∣∣∣∣
∑

1≤n≤N
n≡al (modm)

μ(n)

∣∣∣∣∣=
∣∣∣∣
O(Ne−C(h)

√
logN )

Ne−C(h)
√
logN

e−C(h)
√
logN

∣∣∣∣≤
∣∣∣∣

C0(h)

eC(h)
√
logN

∣∣∣∣→ 0,

as N→∞. �

Lemma 2.7. Let {xn}∞n=1 be a sequence of real numbers such that |xn|≤1 for

all n∈N and assume that there are n0 and k such that if n,m≥n0, xn �=0, xm �=0

and n �=m, then |n−m|≥k. Then we have

lim
N→∞

1

N

∣∣∣∣
N∑

n=1

xn

∣∣∣∣≤
1

k
.

Proof. First we observe that

lim
N→∞

1

N

∣∣∣∣
N∑

n=1

xn

∣∣∣∣≤ lim
N→∞

1

N

∣∣∣∣
n0∑

n=1

xn

∣∣∣∣+ lim
N→∞

1

N

∣∣∣∣
N∑

n=n0+1

xn

∣∣∣∣= lim
N→∞

1

N

∣∣∣∣
N∑

n=n0+1

xn

∣∣∣∣.

Now, as the number of non-zero elements from {xn}∞n=1 of indices between n0+1

and N cannot be greater then (N−n0)/k, we get

lim
N→∞

1

N

∣∣∣∣
N∑

n=n0+1

xn

∣∣∣∣≤ lim
N→∞

∣∣∣∣
N−n0

kN

∣∣∣∣= lim
N→∞

∣∣∣∣
1

k
− n0

kN

∣∣∣∣=
1

k
. �
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3. Proof of Theorem 1.1

We now prove the first main result of our paper.

Recall that the ω-limit set of a point x is the set defined as

ω(x, f)=
∞⋂

n=0

{fk(x) : k≥n}.

We divide the proof into three different cases.

Case 1. x is eventually periodic. In this case the result immediately follows

from Lemma 2.6.

Case 2. ω(x, f) is a finite set. According to Lemma 5.4.3 in [6], if ω(x, f), is

a finite set, then it is an orbit of some periodic point, i.e.

(2) ω(x, f)= {x1, x2, ..., xs},

where

fk(x1)=xk+1 for k <s and fs(x1)=x1.

Now let ε>0 be a real number such that the intervals

(x1−ε, x1+ε), (x2−ε, x2+ε), ..., (xs−ε, xs+ε)

are disjoint. For every l∈N define

Al
x1

= {n∈N : fn(x)∈ (x1−ε, x1+ε) and n≥ l}.

Then it is clear, that

lim
n→∞
n∈Al

x1

fn(x)=x1.

Hence

lim
n→∞

n∈Al
x1

+r

fn(x)=xr+1

for r<s, where Al
x1
+r={n+r : n∈Al

x1
}. Since x1 is a periodic point, we get

lim
n→∞

n∈Al
x1

+s

fn(x)=x1.

So, if l is sufficiently large, then

Al
x1
+s⊂Al

x1
.
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From the above mentioned properties, it follows, that for a sufficiently large number

l0∈N for any n∈Al0
x1
, and m∈N0, we will have

fn+m(x)∈ (xr+1−ε, xr+1+ε), where 0≤ r < s and m≡ r (mod s).

Therefore we get, that if

n0 =min
n

{n∈Al0
x1
},

then

|fn0+n(x)−fn(x1)| ≤ ε for any n∈N.

If we define x′ as the n0-th preimage of x1 on its ω-limit set (2), i.e. fn0(x′)=x1,

then

|fn+n0(x)−fn+n0(x′)| ≤ ε for n∈N.

Fix ε′>0. Then for a given continuous function ϕ we use uniform continuity to find

ε>0 and n0=n0(ε) such that

(3) |ϕ(fn(x))−ϕ(fn(x′))| ≤ ε′ for n≥n0.

From (3) we get

(4) lim
n→∞

|[Sn(f(x), ϕ)−Sn(f(x
′), ϕ)]| ≤ ε0.

But the sequence

xn =ϕ(fn(x′))

is periodic. Therefore from Lemma 2.6 we get that

(5)

∣∣∣∣
1

n

n∑

k=1

μ(k)ϕ(fk(x′))

∣∣∣∣→ 0, when n→ 0.

Then from (4) and (5) together we get (1).

Case 3. ω(x, f) is an infinite set. We now need a result essentially due to

Smı́tal [8], but also implicitly contained in several papers of Sharkovskii and stated

without proof in a paper of Blokh [1]. For our purposes we need a somewhat

extended version as formulated in the notes of Ruette [6]. According to Proposi-

tion 5.4.5 of [6] for any interval map of zero entropy and x∈[0, 1] such that ω(x, f)

is infinite, for all k≥0, one can find a sequence of closed intervals {Li
k}k≥0,0≤i<2k

such that

(i) f(Li
k)=L

(i+1) (mod 2k)
k for 0≤i<2k;

(ii) the intervals {Li
k}0≤i<2k have pairwise disjoint interiors;

(iii) ω(x, f)⊂
⋃2k−1

i=0 Li
k.
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Let us fix k∈N. Since ϕ is a continuous function there exists a function ϕ0 of

the form

ϕ0(x)=

m∑

r=1

drψ(ar,br)(x),

where

(6) ψ(a,b)(x)=

⎧
⎨

⎩

1, x∈(a, b),
1
2 , x=a or x=b,
0, otherwise,

such that

(7) |ϕ(x)−ϕ0(x)|<ε, for x∈ (0, 1),

the intervals {(ar, br)}mr=1 are disjoint and the points ar, br, r=1, ...,m, are different
from the endpoints of the intervals Li

k, i=0, ..., 2k−1.

This is a slight modification of the standard approximation of continuous func-

tion by step functions and follows from the uniform continuity of ϕ.

First we note that, if for any x∈[0, 1] the iterates of x visit any of the end-

points 0 and 1 more then once, then x is eventually periodic and (1) follows from

Lemma 2.6. Therefore, we can suppose, that the orbit of x does not contain any

of the points 0 and 1. Then, from (7) it follows that it is enough to prove (1) for

functions of the form (6), i.e. when

ϕ(x)=ψ(a,b)(x),

where 0≤a≤b≤1. In the following we write I=(a, b).
Since ω(x, f) is infinite and from property (iii), the interior of one of the in-

tervals {Li
k}

2k−1
i=0 will contain infinitely many points from ω(x, f). Let say it is the

interval Li
k. So

ω(x, f)∩int(Li
k) �=∅.

Therefore there exists n0∈N such that

fn0(x)∈ int(Li
k).

But in this case, from property (i),

(8) fn0+m(x)∈L
(m+i) (mod 2k)
k for m∈N.

Then

∑

n≤N

μ(n)ψ(a,b)(f
n(x))=

∑

n<n0

μ(n)ψ(a,b)(f
n(x))+

N∑

n=n0

μ(n)ψ(a,b)(f
n(x))

= o(N)+

2k−1∑

s=0

∑

n0≤n≤N
fn(x)∈Ls

k

μ(n)ψ(a,b)(f
n(x)).
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Now consider the sum

As
N =

∑

n0≤n≤N
fn(x)∈Ls

k

μ(n)ψ(a,b)(f
n(x)).

For s=0, ..., 2k−1 define the sequences

(9) xs
n =

{
0, n<n0,

ψ(a,b)(f
n(x))χLs

k
(fn(x)), n≥n0,

where χLs
k
(x) is the characteristic function of the interval Ls

k. One can see that,

if Ls
k does not contain any of the endpoints of I , then the sequence {xs

n}∞n=1 is

eventually periodic (according to (8) and (ii)). Therefore from Lemma 2.6 we will

get

(10) As
N = o(N).

If Ls
k contains any of the endpoint of I , then we note that, if xs

n �=0 and xs
m �=0, where

n,m≥n0, n �=m, then |n−m|≥2k (again from (8) and (ii)). Therefore according to

Lemma 2.7,

(11) lim
N→∞

∣∣∣∣
As

N

N

∣∣∣∣≤
1

2k
.

Since the intervals {Li
k}

2k−1
i=0 are disjoint, at most two of them can contain an

endpoint of I , and for all those intervals we will have the estimate (11). Therefore

from (10) and (11),

lim
N→∞

1

N

∣∣∣∣
∑

n≤N

μ(n)ψ(a,b)(f
n(x))

∣∣∣∣≤ lim
N→∞

1

N

2k−1∑

s=0

|As
N | ≤ 2

2k
=

1

2k−1
.

As k is an arbitrary integer, we get (1).

4. Proof of Theorem 1.2

Let us now proceed to the second part of the paper, the proof of Theorem 1.2.

It will be based on a semi-conjugacy to the known case of a circle rotation. We first

state and prove a result, which will be an important step of the proof in the case

when the rotation number is irrational.
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Lemma 4.1. Let J⊆S1 be an interval which can be either closed, open or half

open. Then for a rigid rotation Rρ with irrational rotation number ρ, we have

(12)

N∑

n=1

μ(n)χJ (R
n
ρ (x))= o(N)

for all x∈S1.

Proof. First note that the endpoints of J do not play any role in the limit (12),

as all the iterates of x are distinct. So let us suppose that J is a closed interval. If

J=∅, then there is nothing to prove. If J is the entire S1, then (12) follows from

Corollary 2.5. If the interior of S1\J is not empty, then for sufficiently small ε,

one can find an ε-neighbourhood J0 of J containing J , that is if the endpoints of

J are the points c and d, then we can find an interval J0=[c−ε, d+ε] the interior

of which will contain the closure of J . So we will be able to extend the function

χJ from J onto J0 to get a new function ϕJ0(x) which will be continuous. We can

define ϕJ0(x) as follows

(13) ϕJ0(x)=

⎧
⎨

⎩

1, for x∈(c, d),
0, x /∈(c−ε, d+ε),

linearly and continuously otherwise.

As mentioned the function ϕJ0(x) will be continuous. It follows, that

lim
n→∞

∣∣∣∣
1

n

n∑

k=1

μ(k)χJ (R
k
ρ(x))−

1

n

n∑

k=1

μ(k)ϕJ0(R
k
ρ(x))

∣∣∣∣

= lim
n→∞

1

n

∣∣∣∣
n∑

k=1

μ(k)(χJ (R
k
ρ(x))−ϕJ0(R

k
ρ(x)))

∣∣∣∣

≤ lim
n→∞

2

n

n∑

k=1

χ(c−ε,c)(R
k
ρ(x))+ lim

n→∞

2

n

n∑

k=1

χ(d,d+ε)(R
k
ρ(x))

= 4ε.(14)

To compute the limits in the last expression we used the equidistribution property

of the sequence {nρ}∞n=1 on S1. Now since ϕJ0 is a continuous function, according

to Corollary 2.5,

(15) lim
n→∞

1

n

∣∣∣∣
n∑

k=1

μ(k)ϕJ0(R
k
ρ(x))

∣∣∣∣=0.
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Hence from (14),

(16) lim
n→∞

1

n

∣∣∣∣
n∑

k=1

μ(k)χJ (R
k
ρ(x))

∣∣∣∣≤ 4ε.

Since ε is arbitrary we get (12). �

Proof of Theorem 1.2. Let us first suppose, that the rotation number of f is

rational and ρ(f)=p/q. According to Proposition 11.2.2, p. 394 in [5], for any x∈S1

the compositions of fq are convergent, that is

lim
n→∞

fnq(x)= y

for some y∈S1. We conclude that

lim
n→∞

fnq+s(x)= lim
n→∞

fnq(fs(x))= y′.

Therefore, if we write

1

n

n∑

k=1

μ(k)ϕ(fk(x))=
1

n

q∑

l=1

∑

1≤k≤n
k≡l (mod q)

μ(k)ϕ(fk(x)),

then the limit

lim
k→∞

k≡l (mod q)

ϕ(fk(x))

will exist as a real number. Hence for the sequence

xk =

{
ϕ(fk(x)), k≡l (mod q),

0, otherwise,

there exists a sequence {x′
k}∞k=1 which is eventually periodic and

|xk−x′
k|→ 0

as k→∞. Therefore,

(17) lim
n→∞

1

n

∣∣∣∣
n∑

k=1

μ(k)ϕ(fk(x))−
n∑

k=1

μ(k)x′
k

∣∣∣∣=0.

But from Lemma 2.6,

lim
n→∞

1

n

n∑

k=1

μ(k)x′
k =0.
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From the last expression and (17) we obtain (1).

Now let ρ(f) be an irrational number.

We again start by approximating the function ϕ with the function ϕ0 of the

form

ϕ0(x)=

m∑

r=1

dkψIk(x),

where {Ik}mk=1 are open, disjoint intervals in S1, the functions {ψIk}mk=1 are defined

as in (6) (to avoid problems at the endpoints of the intervals we can suppose that

m>1), and finally ϕ0 satisfies

(18) |ϕ(x)−ϕ0(x)|<ε for x∈S1.

So from (18) it follows that it is enough to prove (1) for functions of the form (6).

Since the rotation number of f is an irrational number, it does not have periodic

points, so we can ignore the values of the functions ψIk at the endpoints of Ik and

define it to be 0 there. So it will be enough to prove (1) for characteristic functions

of open intervals, i.e. when

ϕ(x)=χ(a,b)(x), where a, b∈ [0, 1).

According to Theorem 11.2.7, p. 397 in [5], there is a semi-conjugacy between f

and Rρ, i.e. there exists an orientation-preserving, continuous map π : S1→S1 such

that

π(f(x))=Rρ(π(x)).

In general π is not invertible, but one can see that the restriction of π to the orbit

of any x∈S1 is an invertible map. Indeed,

π(fk(x))=π(f(fk−1(x)))=Rρ(π(f
k−1(x)))= ...=Rρ(π

k(f(x))).

So

π(fk(x))=π(fm(x)) if and only if Rk
ρ(π(x))=Rm

ρ (π(x)).

But Rk
ρ(π(x))=Rm

ρ (π(x)) if and only if k=m, as ρ is an irrational number. There-

fore, for any interval I⊂S1 the following is true

{n∈N0 : f
n(x)∈ I}= {n∈N0 :R

n
ρ (x)∈π(I)}.

Equivalently

χI(f
n(x))=χπ(I)(R

n
ρ (x)) for all n∈N0.

From the last expression we get
∑

n≤N

μ(n)χ(a,b)(f
n(x))=

∑

n≤N

μ(n)χπ((a,b))(R
n
ρ (x)).
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Since π is a continuous map, it is clear that π((a, b)) is also an interval in S1, which

can be either a single point, or half-open, closed or open. Therefore, according to

Lemma 4.1, ∑

n≤N

μ(n)χπ((a,b))(R
n
ρ (x))= o(N).

From this we get (1). �
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