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Irregular sets of two-sided Birkhoff averages
and hyperbolic sets

Luis Barreira, Jinjun Li and Claudia Valls

Abstract. For two-sided topological Markov chains, we show that the set of points for
which the two-sided Birkhoff averages of a continuous function diverge is residual. We also show
that the set of points for which the Birkhoff averages have a given set of accumulation points
other than a singleton is residual. A nontrivial consequence of our results is that the set of points
for which the local entropies of an invariant measure on a locally maximal hyperbolic set does
not exist is residual. This strongly contrasts to the Shannon-McMillan-Breiman theorem in the
context of ergodic theory, which says that local entropies exist on a full measure set.

1. Introduction

We show that the irregular set of the points for which the two-sided Birkhoff
averages of a given continuous function diverge is often residual. More precisely,
for topologically mixing topological Markov chains we show that the irregular set
is either empty or residual, even though in the context of ergodic theory it has zero
measure with respect to any invariant measure.

Let f: X—X be a homeomorphism on a compact metric space. Given a
continuous function ¢: X —R, we consider the irregular set

n n
Xo=qreX :linrggf % Z o(fi(z)) <li711nj£p % Z o(fi(x))
1=—n =N
It follows from Birkhoft’s ergodic theorem that X, has zero measure with respect
to any finite f-invariant measure on X. It turns out that from the topological point
of view quite the contrary happens; namely, X, is typically as large as the whole
space. The following statement illustrates well this phenomenon. It is combination
of our results with work of Barreira and Schmeling in [4].
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Theorem 1.1. Let f: X—X be a topologically mixing topological Markov
chain. Then for a C%-dense set of continuous functions p: X =R the set X, is
residual.

More precisely, we show in the present paper that for each continuous func-
tion ¢ the set X, is either empty or residual (see Theorem 2.4). On the other
hand, it is shown in [4] that there exists a C°-dense set S of continuous functions
for which the irregular set is nonempty. For example, S can be taken to be the class
of (Holder) continuous functions ¢ such that:

1. ¢ is a linear combination of characteristic functions of cylinder sets;

2. ¢ is not cohomologous to a constant.

We recall that ¢ is said to be cohomologous to a constant if there exist a bounded
function ¥: X —R and a constant ¢ such that

p=v—vof+c on X.

Clearly, if ¢ is cohomologous to a constant, then X, is the empty set.
More generally, we consider the following refined version of the irregular set.
Given an interval ICR, let

X;={zeX:A,(x)=1},

where A, (z) is the set of accumulation points of the sequence

n

Splem)=5- 3 w(7(@).

i=—n

Again for topologically mixing topological Markov chains, we show that when [ is
not a singleton and ¢ is an arbitrary continuous function, the set X7 is either empty
or residual (see Theorem 2.1). This is our main result. Roughly speaking, the proof
consists of bridging together strings of sufficiently large length corresponding to
limits of two-sided Birkhoff averages. We note that X is a subset of the irregular
set X, when [ is not a singleton and so Theorem 1.1 is in fact a consequence of the
corresponding result for the sets Xj.

As an application, we obtain corresponding statements for the averages S, (z, n)
when X is a locally maximal hyperbolic set (see Theorem 3.1). Here we describe
only a nontrivial application of Theorem 3.1 to the local entropies.

We recall that if p is a Gibbs measure of a continuous function ), assumed
without loss of generality to have zero topological pressure, then the limit

(1) hu(z):= lim —%logu(Bn(x,s)) = lim S_y(z,n)

n—oo n—oo
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exists for pu-almost every € X, where

Bn(.%',&‘) = n f_kB(fk(x)7E)

k=—n

and ¢ is any sufficiently small constant. This is an immediate consequence of the
invariance of the measure p and the Shannon-McMillan—Breiman theorem (that
usually is formulated for one-sided iterates). The number h,(z) (when defined) is
called the local entropy of u at the point x (with respect to f). For the definitions
and basic results of the theory we refer the reader to [2, Chapters 1-2].

The following result is a consequence of Theorem 3.1 and identity (1).

Theorem 1.2. If u is a Gibbs measure on a locally mazximal hyperbolic set,
then the set of points for which the local entropies do not exist, that is, the set

n—00 2n n—00 n

1 1
{m € X :liminf — — log p(By(z,€)) < limsup —5- log (B (z,¢€)) },
is either empty or residual.

We note that the irregular sets can also be very large from the point of view
of dimension theory. In particular, it was shown in [4] that for a locally maximal
hyperbolic set X of a C''*¢ map f that is topologically mixing and conformal on X
(this means that the derivative of f is a multiple of an isometry at each point of X),
if ¢ is Holder continuous and is not cohomologous to a constant, then the one-sided
irregular set

n—1 n—1
el i . 1 i
Y, = {xEX:hnHLg,}fﬁ ;ap(f (z)) <117rlris;}p - ZE:O o(f (:v))}

of the set X, is as large as the whole space from the points of view of topological
entropy and Hausdorff dimension, that is,

(2) M fIY,)=h(f|X) and dimpY,=dimygX,

where h(f|Z) is the topological entropy of f on the set ZCX and dimyZ is the
Hausdorff dimension of Z. Since the proof is based on the construction of nonin-
variant measures obtained from concatenating Gibbs measures, the same argument
applies with minor modifications to show that

h(f|X,)=h(f|X) and dimgX,=dimygX
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for the two-sided irregular set. Now let Y'={J_ Y, be the union over all Hélder
continuous functions. Under the same hypotheses, we have

(3) h(fIY)=h(f|X) and dimpgY =dimpgX.

The first identity in (3) was first established by Pesin and Pitskel in [10] for the full
shift on two symbols. In a related direction, Shereshevsky [11] proved that for a
generic C? surface diffeomorphism with a locally maximal hyperbolic set X and an
equilibrium measure u of a Holder continuous C°-generic function, the set of points
for which the pointwise dimension does not exist has positive Hausdorff dimension,
that is,

1 B 1 B
dimpgq z € X :liminf log pu(B(x,1)) < lim sup log p(B(z, 1)) >0.
0 logr 70 logr

It was shown in [4] that the identities in (2) also hold for topologically mixing
topological Markov chains and for repellers of C'*¢ maps. We refer the reader
to [1, Chapter 8] for a detailed discussion of some of these results.

For topological Markov chains, the first identity in (2) was extended by Fan,
Feng and Wu in [7] to arbitrary continuous functions. For repellers of C'**¢ confor-
mal maps, the second identity was extended by Feng, Lau and Wu in [8] to arbitrary
continuous functions. For further related work, we refer the reader to [3] for anal-
ogous results for hyperbolic flows, to [5] and [12] for the study of the entropy of
irregular sets of continuous functions for maps with the specification property and
to [9] for an extension of some of these results to the general case of the sets X;.

2. Main result

Let o be the shift map on X={1, ..., k}%, where k>2 is an integer. We equip ¥
with the distance d defined by

d(w,w') =2~ inf{|nlwntwn} o, = (wWi)iez, W' = (wg)iez.

Given a kx k matrix A=(a;;) with entries in {0, 1}, let
Sa={(..w_1wowr...) EX: auw,,, =1 for n€Z}.

The restriction of the shift map o|¥X4: X4 —X 4 is called the (two-sided) topological
Markov chain with transition matrix A. We recall that o|X 4 is topologically mixing
if and only if some power of A has only positive entries.

Given continuous functions ¢, 1: ¥4 —R, we consider the level sets

B_(a):{weEA: lim S;(w,n):a}

¥ n—00
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and
B;Z(a)z{wEZA:Ji_}n(}lOSJ(w,n):a},
where
1 & : 1 & .
@ Splem=gg 3 el @) Sfem=gy 3 el

Following arguments in [6], one can show that the sets
E;z{aeR:B;(a);ﬁ@} and ﬁl—Z:{O&ERiB;Z(OL)#@}

are nonempty closed intervals. For each w€¥4, we denote by A (w) and Ajp' (w),
respectively, the sets of accumulation points of the sequences

n— S, (w,n) and nr— SJ)'(w, n).
One can easily verify that

A (w)= {lim inf S (w, n), limsup S, (w, n)}

»
n—oo n—00

and
Al“;(w) = [lim inf S;Z (w,n),limsup S;Z (w, n)} .

n—oo n—00

The following is our main result.

Theorem 2.1. Let o|X4 be a topologically mizing topological Markov chain
and let @, X 4—R be continuous functions. Given closed intervals ICL, and
JC£$ that are not singletons, if the set

E?’ff ={weXa: A (w)=1 and A;}r(w) =J}

is nonempty, then it is residual.

Proof. We first introduce some notation. For each neN;, let
Sp = {(w,n...wo...wn) gy, = 1 for —n <i< n}

and let X*={J, oy Sn. Given w=(...w_jwowi...) €L 4, we write wt =(wow;...). More-
over, given w=(..w_jwows...)EX 4 and meN or given w=(w_,...w,) €S, and meN
with m<n, we write w|,,=w_m,...wn,. For each weS,,, we write |w|=2n+1 and we
define the cylinder set

wl={peXa:pln=w}.
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/

Given w=(w_p...wn)ES, and W' =W’ ,,...w},) €Sy, we write

ww' = (W, )

Since all entries of A7*! are positive, for any two admissible strings w, w’ €X* there
exists p=p(w,w’) €S; such that wpw’€X*. We say that p(w,w’) is a bridge between
w and w’, and we write wpw'=wixw’ (although we emphasize that p need not be
unique). Moreover, given sets W, W1, ..., W,,C¥* and a string we>*, we write

Wind...od W, = {w) Mwa 4. X wy, tw; €W, 1<i<n}

and
wxt W ={wan:neW},

where each symbol <t runs over all admissible bridges. Finally, we write
W =Wia...x W,

when Wi=...=W,=W.
We proceed with the proof of the theorem. It consists of constructing a dense
G5 set ECX 4 such that ECE?’}/’. Given a€R, e>0 and neN, let

L(a,n,e) ={w|p—1:w€ T4 and |S<;(w,n)foz| <e}

and
R(a,n,e)={wlp—1:we 4 and ‘S{Z(w,n)—a| <e},

with S (w,n) and Sjp'(w,n) as in (4). Clearly, for each £>0, we have
L(a,n,e)#@ and R(B,n,e)# 2

for ael,, B Eﬁlf and all sufficiently large n.
Now take k€N and choose ay 1, ..., % q, €1 and Bj 1, ..., Br,q, €J such that

qk 1 Ak 1
ICUB<O””"E>’ JCUB(ﬂk,iaE>
i=1 i=1

and
1

<

1
lokyipr— il < 75 kg, — k1,1
k
(5)

1 1
|Br,it1—Br.il < e 1Br.qr — Br+1,1| < z
for i=0,...,qr—1. Moreover, we consider a sequence of positive real numbers

€1,1 >€12> ... >€1,qy €21 >€22> ... >E€2,q5 > .-
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decreasing to zero and a sequence
N1<nNi2<..<Nigq <N21<N22<...<N2q, <...
of positive integers such that

Lii:= (i Nkis€xi) 79 and Ry = R(Br.i, Nkyis Eki) D

for keN and 1<i<qy.
Let Qo=X*. For each wey, we choose positive integers Nj ; =Ny ;(w) for
keN and i=1, ..., g; such that:
(1) Nl’iZle*“rl—i_T for 2§’L§ql—1,
Nj,,; >2mmintt7 for (>21<i<g,—1,
Ny g >2mMe+10HT for k>1;
(ii) Nk7i+1Z2|w|+7+N1,1(ml,l+T)+Nl,2(m1,2+7)+---+Nk,i(mk,i+7')7

Nit1 1>2|WI+T+N1,1(ml,1+7—)+N1,2(m1,2+7—)+--<+N}c,qk (mk,a, +7) for k> 1,
1<i<qy.
Here m; ;=2n;,—1 and 7 is some fixed integer such that A"t has only positive
entries. We define recursively sets Q, ; CYX* for k€N and i=1,...,q; by

|><1N >IN
Qa=J LT 1) g R,
wEeR

Q2= U LMN1 2(w) D7 MRNNI 2(w)
neEQ 1

Qqu — U LNNl,ql (‘-’J) Mn > RIX:NI,ql (W)7

1,q1 1,q1
NEN ¢1 -1
D<1N2 1(UJ D<1]\/2,1(“))
Q1= U Ly >an <R, ,
LIS
and so on. Finally, let
Bri= |J W]
WEN 4
and
o0 gk
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We note that E is a Gs set since each cylinder set [w] is open. Moreover, since
Qp=X", each set F},; is dense and so, it follows from Baire’s theorem that E' is also
dense.

Lemma 2.2. ECZ}":}”.

Proof. In order to prove that ECEf;}b, we must show that AZ(w)=1 and
A$ (w)=J for each we E. We only show that

(6) AL (w)=1,

since the identity Ag (w)=J can be proved in a similar manner.
We first show that

(7) ICA,(w).
Given aeIcU, B(ay,;, 1/k), take ir€{1, ..., q} such that a€B(ay;,,1/k). For

simplicity of the exposition we assume that i, &{1, g }. We recall that there exists
w?e€Qq such that

(8) WE . LT bl b Ry b
where N ;=Nj,;(w°). Let

a i
(9) Sk = || +74 D> Nuj(ma+7) 44 > Nij(mg j+7).

i=1 =1
We will prove that
(10) }S;(w, Sk,ik)*ak,ﬂ —0 when k£ — oo.
It then follows from (10) that

|, (w, ski,) = < |8, (w, ki) — ki, |+l ki, —
< ‘S;(w, sk7ik)—ak,i,€|—|—% —0

when k—oo. Therefore, a€ A (w) and (7) holds. Write

(11) Skix = Skyir Tk ik
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where ty, ;, =N, (Mg, +7). Since |y i, | <[], where ||¢||=max,ex , | (w)|, writ-
ing myg s, +7=r we obtain

Sk —1
Z @(07 (W) = Sk iy, Ok iy
i=0
Ship—1 Skyip—1
< Z @(Uﬁi(w))*gk,ikak,ik + Z @(Uﬁi(w))ftk,ikakvik
i=0 =50,
theyiy, —1
<25 llell+] Yo (o7 (07 (W) ~thi, ki,
i=0
<28k el +27 Nia Il
Niyiy, =1 Mk, —1
+ 3| Y elo (o Bt (W) — ki
q=0 j=0

= 25k, Il 427 Ni i, [l

Nigyi, =1 mup,ip, —1
(12) + Z ga((f*j (O’i(gk*ik Tk iy, 71+q7’)(w))) — M iy Ok iy |-
q=0 |j=—myp,;, +1

We introduce the number V,,(p)=2 Z;L;OI Var;(¢), where
Varg () = sup{|p(w) —p(w)] 1w, w' €Ta, wlp=w'lx}.

By (8) and the definition of Ly ;, , there exist @°, ..., ™" ~1€X 4 such that

(]_3) 0-_(§k,ik +ng,iy, —144qr) (w)|nk‘7‘,k*1 :wq‘nk,ikfl
and
(14) }S; (wq,nk,ik)*akﬂ'J < Ekip

for ¢=0, ..., Nj ;, —1.
It follows from (13) and (14) that

nkTikfl

Z (07 (o7 Crint i =14 (1)) —my i,

J=—Nk,ip +1

N,y —1 Ng,ip, —1

Yo (o (o Fratrea Tt @))) - N (o7 (@)

j:_nk,ik""l j:_nk,ik"rl

<
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nky,;k —1

Z QD(O'_j (wq))_mk*ikakfik

J=—Nk,ip, +1

+

< Vnk’l.h (‘p)—i_mk,ikgk,ik
for ¢g=0, ..., Ny ;,, —1. Together with (12) this implies that

SkTikfl

Z @(U_i(w)) — Skyin Xk, i

=0

< 2§k7ik H‘)OH +Nk’;ik (Vnk,ik (¢)+mk7ik Ek,ik) +2TNk?7ik H(pll
= 25’6,% H@” +Nk,ik Vnkzk (@)"‘Nkﬂ'k (mk,ik&:kﬂ;k +27—||90||)'

Using (9), (11) and condition (ii), we obtain

Sk.i
Sk i 'k
otk 1> (M, +7)
Skyig Skiig
and thus,

Sk,ik

Sk,ik

— +00 when k — co.

Moreover, it follows from the uniform continuity of ¢ on the compact set X 4 that
Var, (¢)—0 when n—oo. Hence, V,,(¢)/n—0 when n— oo and

Nk,ik Vnk% (QD) < anmk (30)

ki, T Mg,

—0 when k£ — oo.

By the definition of s; ;,, we have sy ;, >t 4, and

N i, < Ngiw 1

Sk,ik Lhyiy Mk, +T

Therefore,

< 25,5, |12l +Vnk,ik (‘p)_’_mk,ikf‘:k,ik +27|¢|| N

Sk, ik Mk iy, Nk,iy,

0

‘5; (W, Sk,ip ) — Qo i

when k— o0, which completes the proof of (10).
Now we show that

(15) Aj(w)Cl.

For each positive integer n>|w’|+7 there exist k€N, i e{1,2,...,qx} and 0<p<
Npip+1—1 such that

(16) Sk,iy TP(Mik i +1+7) <N <8k +(P+H1) (Mg iy 11 +7).
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We claim that
(17) ’S; (w,n) =g, | =0 when n—oo.

Again for simplicity of the exposition, we assume that i #qx. If (17) holds, then it
follows from (5) that

dist (S, (w,n), 1) < ’S’; (w,n) = i, | +dist(ag,i, . 1) =0

when n—oo (notice that k—oo when n—00). Since I is closed, we conclude that
A (w)CI and (15) holds.

Now we establish (17). Writing my, ;,+1+7=r, we obtain

Sk/‘ik —1

Z (p(o'_i(o.))) — Sk,i Ak, i

=0

<

n—1
Z go(a_i(w)) — N 4,
i=0

Sy TP 1

Y (o7 W) —prax,

1=8p, iy,

n—1

+ i p(07" (W) = (n—ski, —pr) ki,

1=Sk,ij, +PT

As in (13) and (14), one can choose @, ...,wP~1€X 4 such that

(18) o~ (ki +nk'i"‘ﬂ_1+qr)(w)‘nk,,;kﬂfl :wq|nk,7‘,k+1*1
and
(19) 1S5 (@9, Mkiy 1) = ki1 | < kit

for ¢=0,...,p—1. Tt follows from (5), (18) and (19) that

Mp,ip+1—1

Z @(07j (Ui(skvikJrqr)(w)))—mk,ikJrlOék,ik
=0

Mi,ip+1—1

< p(o™ (0’(8’“7%””(@)) — MM gy +1 0 i+ 1

=0

+ ‘mkvik"!‘lak:ik'i‘l T Mk,ip+10k iy, |
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Ngip+1—1 Nip+1—1
ST S () I e Tcn)
J=—TNk,i+1+1 J=—np,i, +1

N, +1—1 . e

+ D (o (@) —mkpeniaki +%

J=—npi+1+1

Mg i+1

SVnk,ik+1 (‘p)+mk7ik+1€k7ik+l+ k

for ¢=0,...,p—1. Therefore,

Sk,ip, +Pr—1
Y. el w) —prang,
i:Sk,ik
p—1| Mkip+1—1
<2l X el T W) — s aon, [+ 27 g
q=0lj=—np,ij+1+1
My
(20) <D (Voss Ot ) d2pr ol
Moreover, by (16), we have
n—1
Y. w07 W)~ (n=spi —pr)ak,
1=8k, i), +PT
(21) <2(n—sk,i, —pr)lloll < 2r[oll = 2(mpi41+7) o]

By (20) and (21), we obtain

Skiy

|S; (w,n) =0z, | < |S; (W, ki) — ki |

+ 2(mk,ik+71+7—)”(p” _’_pvmk,z-u (99)

PMjig+1 JrP(mk,ik+1<€k,ik+1+27||<,0||)

22
(22) + kn n

As in the proof of (10), one can show that the first term in the right-hand side of
(22) tends to zero when n—oo (notice that sy, <n). Moreover, using (16) and
condition (i), we obtain

2(mp,i )l _ 20mn1 7)ol 20me i+ 7)ol

< —0
n Skyin N i,
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when n—00. On the other hand, it follows from (16) that

pmk,ik-i-l

<
kn -

—0 when n— oo,

ENIEN

pvﬂk,q‘,k+1 (90) < Vnk,ik+1 (90)

n T M1

—0 when n— o0,

and

Pk 418k 1 H27 (101 _ Mk t18k,0041 27 4

n mk?,lkJrl

—0 when n— oo

(since k—o00 when n—o00). This shows that the right-hand side of (22) tends to
zero when n— o0, which establishes (17).

Property (6) follows now readily from (7) and (15) and the proof of Lemma 2.2
is complete. [J

This shows that the set E has the desired properties and the proof of the
theorem is complete. [

The following is a simple consequence of Theorem 2.1.

Theorem 2.3. Let o|¥4 be a topologically mizing topological Markov chain
and let ¢Y: X4 —R be a continuous function. Given a closed interval JC,C;Z that is
not a singleton, if the set

XY= {wEEA:A;r(w):I}
is nonempty, then it is residual.
Proof. 1t suffices to observe that E‘IP”}Z’CETZ; and apply Theorem 2.1. [J
As an application of Theorem 2.3, we obtain the following result.

Theorem 2.4. Let o|X 4 be a topologically mizing topological Markov chain
and let p: L 4—R be a continuous function. If the irregular set

¥ = {w €Y 4 :liminf S;‘(w, n) < lim sup S;(w, n)}

n—oo n—oo

is nonempty, then it is residual.
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Proof. If the set X% is nonempty, then there exists a closed interval I C L, with
Y7 4@ that is not a singleton. Otherwise, if ¥¥ =@ for any closed interval, then X¢
would be empty (since ¥ =@ when I is not a closed interval), and if for any closed
interval I such that 37 #@ this last set was a singleton, then again ¢ would be
empty. Since X¥ C X%, the desired result follows readily from Theorem 2.3. O

3. Results for hyperbolic sets

In this section we obtain corresponding results for the Birkhoff averages of a
continuous function on a locally maximal hyperbolic set.

Let f: M — M be a C! diffeomorphism on a smooth manifold M and let AC M
be a compact f-invariant set. We say that f is a hyperbolic set for f if there exist
7€(0,1), ¢>0 and a decomposition

T,.M =FE*(z)®E"(x)
for each x €A, such that

do fE*(z) = E*(f(2)), dofE"(x)=E"(f(z)),
|dof™ || <er™||v]|  whenever v e E*(x),

and
Hdg;f_"vH <er"||v|| whenever v e E*(x)

for every x€ A and neN. We say that A is locally mazimal if there exists an open
set U DA such that

A=) ).

neZ
Given continuous functions ¢,1: A—R and sets I, JCR, let

APy ={zeX A (z)=1, Af(z)=J},

)

where AZ(z) and Ajl:(x) are, respectively, the sets of accumulation points of the
sequences
n—— S, (z,n) and n+—— S;};(x, n),

with S (z,n) and S{Z(x,n) as in (4). Moreover, let
R;:{aeR:B;(a)#@} and RJ:{QQR;BJ(Q)¢@}7
where

B_(a):{:EEA: lim S;(m,n):a}

¥ n—oo
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and
B;}r(a): {meA: lim S:/f(x,n) :a}.

n—00

The following is a version of Theorem 2.1 for the Birkhoff averages on a locally
maximal hyperbolic set.

Theorem 3.1. Let A be a locally mazximal hyperbolic set for a topologically
mizing C diffeomorphism f. Given closed intervals ICR, and JCR?Z that are

not singletons, if the set A‘f)’ff is monempty, then it is residual.

Proof. Since A is a locally maximal hyperbolic set, there exists §>0 such that
the map
[ ] {(zy) e AxAcd(z,y) <6} — A

is well defined. We recall that a closed set RCA is called a rectangle if:

1. diam R<6 and R=int R, with the interior taken with respect to the induced
topology on A;

2. [z,y]€R whenever z,y€R.
Moreover, a collection of rectangles Ry, ..., R CA is called a Markov partition of A
(with respect to f) if:

1. int R;Nint R; =& whenever i#j;

2. if z€int R; and f(z)€int R;, then

(V@) DV (f(x) and [TV (f(2))) DV (a),
where
Ve (z)={y€B(z,e):d(f"(z), f*(y)) <e for n>0}NR;,
Vi'(z) ={y € B(x,e):d(f"(2), f"(y)) <e for n<O}NR;,

and where B(z,¢) is the ball of radius € centered at x (for some sufficiently small
e>0).

Any locally maximal hyperbolic set has Markov partitions of arbitrarily small di-
ameter (see for example [2]). Let A=(a;;) be a kxk matrix with entries a;;=1
if int f(R;)Nint R,;#@ and a,;;=0 otherwise. Writing X=X 4, we obtain a coding
map 7: X — A for the set A letting

W(w): ﬂ f_ann, w=(...w_1w0w1...).
nez

One can verify that 7 is continuous, onto and that moo=fow in X. This last
identity implies that £, =R and Lt :’R;Z.

o1
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Now let

k k
B=|J f”(U am-) - J U rmor.),
nez =1 nezZi=1

where OR; is the boundary of R;, be the set of points in A for which the coding is
not unique. We consider the sets

S=X\n"'B and A*=A\B.

Clearly, the map m: S—A* is bijective. Moreover, OR; is closed and has empty
interior. Since f is a diffecomorphism, each set f™(9R;) is closed and has empty
interior. Hence, B is an F, set and by Baire’s theorem it has empty interior.
Moreover, since 7 is continuous, S=7"'A* is a G set.

Now we show that S is dense. We proceed by contradiction. If S was not
dense, then it would exist a cylinder set [i_,...i,,] CX \S=n"!B. Therefore,

R:= ﬁ f_n-i-lRin:W([i,m...im])Cﬂ-(ﬂ_—lB):B7

n=—m

since 7 is onto. But by the properties of a Markov partition, this finite intersection
has nonempty interior (indeed, R=int R), which contradicts the fact that B has
empty interior. Hence, S is dense.

We note that ®=ponm and V=vyor are continuous functions on X. Let

ICR,=L; and JCR$:£$

be closed intervals. It follows from Theorem 2.1 that there exists a dense G set
ECX}I:Z}I'. To complete the proof, it suffices to show that the set F=n(ENS)CA*
satisfies the following properties:

1. FCADY;

2. F is dense in A;

3. Fis a G set.
It follows from the identity moo=fon that

Fcr(E)cn(Xpy))=A7Y.

Moreover, ENS is a dense Gy set since both E and S are dense Gg sets. In
particular,

A=7(X)=n(ENS)Crn(ENS)=F
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and F is dense in A. In order to show that F' is a Gs set, we observe that
A\F = (BUA*)\F =BU(A*\F) (since BNF =)
— BU(x(S)\r(ENS))
=BUn(S\(ENS)) (since 7 is bijective on S)
=m(X\S)ur(S\(ENS))
= ((X\S)U(S\(ENS)))
=7(X\(ENS)).

Finally, X\ (ENS) is an F, set (since NS is a G set) and writing X\ (ENS)=
(U, Fi as a countable union of closed sets F; C X, we obtain

AMF=r(X\(ENS)) = Jn(F),
where m(F;) is a closed set (since 7 is continuous and X is compact). This shows
that F is a Gy set and the proof of the theorem is complete. [
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