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Semistable modifications of families of curves
and compactified Jacobians

Eduardo Esteves and Marco Pacini

Abstract. Given a family of nodal curves, a semistable modification of it is another family

made up of curves obtained by inserting chains of rational curves of any given length at certain

nodes of certain curves of the original family. We give comparison theorems between torsion-

free, rank-1 sheaves in the former family and invertible sheaves in the latter. We apply them to

show that there are functorial isomorphisms between the compactifications of relative Jacobians of

families of nodal curves constructed through Caporaso’s approach and those constructed through

Pandharipande’s approach.

1. Introduction

Compactifications of (generalized) Jacobians of (reduced, connected, projec-

tive) curves have been considered by several authors. Igusa [16] was likely the

first to study the degeneration of Jacobians of smooth curves when these special-

ize to nodal curves. Later, Mayer and Mumford [20] suggested realizing Igusa’s

degenerations using torsion-free, rank-1 sheaves to represent boundary points of

compactifications of Jacobians. This was carried out by D’Souza [12] for irreducible

curves, and by Oda and Seshadri [23] for reducible, nodal curves. In full generality,

moduli spaces for torsion-free, rank-1 (and also higher rank) sheaves on curves were

constructed by Seshadri [27].

As far as families are concerned, Altman and Kleiman [2], [3], and [4], con-

structed relative compactifications of Jacobians for families of irreducible curves

(and also higher dimension varieties). The author [13] continued their work, con-

sidering relative compactifications for any family of curves. The most general work
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in this respect is that of Simpson’s [28], who constructed moduli spaces of coherent

sheaves for families of schemes.

It is also natural to ask whether a compactification of the relative Jacobian

can be constructed over the moduli space Mg of Deligne–Mumford stable curves of

genus g, for any g≥2. This is not a direct consequence of the works cited above for

families, as there is no universal family of curves over Mg . Such a compactification

was constructed by Caporaso [6].

Caporaso’s compactification represented a departure from the approach sug-

gested by Mayer and Mumford, as the boundary points did not correspond to

torsion-free, rank-1 sheaves on stable curves, but rather invertible sheaves on semi-

stable curves of a special type, called quasistable curves, where the exceptional

components are isolated. The connection with the then usual approach was estab-

lished one year later by Pandharipande [26], who constructed a compactification of

the relative Jacobian (and also moduli spaces of vector bundles of any rank) over

Mg using torsion-free, rank-1 sheaves, and showed that his compactification was

isomorphic to Caporaso’s.

More precisely, Caporaso produced a scheme P b
d,g coarsely representing the

functor Pb
d,g that associates to each scheme S the set of isomorphism classes of

pairs (Y/S,L) of a family Y/S of quasistable curves of (arithmetic) genus g, and

an invertible sheaf L on Y whose restrictions to the fibers of Y/S have degree

d and satisfy certain “balancing” conditions; see Section 6. On the other hand,

Pandharipande produced a scheme Jss
d,g coarsely representing the functor J ss

d,g that

associates to each scheme S the set of isomorphism classes of pairs (X/S, I) of a

family X/S of stable curves of genus g, and a coherent S-flat sheaf I on X whose

restrictions to the fibers ofX/S are torsion-free, rank-1 sheaves of degree d satisfying

certain “semistability” conditions; see Section 6.

Essentially, Pandharipande constructed in [26], 10.2, p. 465, a map of functors

Φb : Pb
d,g→J ss

d,g , and showed that the corresponding map of schemes φ : P b
d,g→Jss

d,g is

bijective in 10.3, p. 468. Then he used the normality of Jss
d,g , which he had proved in

Proposition 9.3.1, p. 464, to conclude that φ is an isomorphism in Theorem 10.3.1,

p. 470.

In the present article we prove that Φb is itself an isomorphism of functors, our

Theorem 6.3, which thus entails that φ is an isomorphism. We do so by describing

the inverse map. In fact, our Proposition 6.2 implies that Φb is the restriction

of a map Φ: Pd,g→Jd,g between “larger” functors, without the extra conditions

of “balancing” and “semistability.” And our Theorem 6.1 claims that Φ is an

isomorphism, describing its inverse.

We feel that these results are of interest, not only because they give another

proof of the existence of the isomorphism φ, but also because of the immediate
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application to stacks. The point of view of stacks was applied to the problem

of compactifying the relative Jacobian over Mg in [18] and in [7], the latter in

the special situation where Deligne–Mumford stacks arise, and in more generality

in [21]. See [22] as well, for compactifications over the stacks of pointed stable

curves. It is a natural point of view, and should be further studied. We give here a

small contribution to this study.

Furthermore, we go beyond showing that Φb is an isomorphism. More gener-

ally, we study families of semistable curves, and give comparison theorems between

torsion-free rank-1 sheaves on nodal curves and invertible sheaves on semistable

modifications of them; see Theorems 3.1, 3.2 and 4.1. Though technical, we believe

these are useful theorems to have when working in the field. Indeed, they have

already proved fundamental in our study of Abel maps; see [10], from which [1],

[11], [24] and [25] derive. In [10] we study the construction of degree-2 Abel maps

for nodal curves, and we need to deal with invertible sheaves on semistable curves

containing chains of two exceptional components; it is expected that longer chains

will occur in the study of higher degree Abel maps.

Some of the results in these notes may be well-known to the specialists. For

instance, Propositions 5.4 and 5.5, are essentially stated in [8], Proposition 4.2.2,

p. 3754, for whose proof the reader is mostly referred to [15] and [17]. However,

detailed statements and proofs are given here, together with generalizations and a

more global approach, which works over general base schemes.

In short, here is how the paper is structured. In Section 2 we describe our

basic objects, torsion-free, rank-1 sheaves on families of curves, present the notion

of stability, and give cohomological characterizations for the existence of certain

inequalities for degrees of invertible sheaves on chains of rational curves.

In Section 3, we prove our main result, Theorem 3.1, which gives necessary

and sufficient conditions under which the pushforward ψ∗L of an invertible sheaf

L under a map of curves ψ : Y →X contracting exceptional components is torsion-

free, rank-1. We give as well sufficient conditions for when two invertible sheaves

have the same pushforward. In Section 4, we prove Theorem 4.1, which compares

the various notions of stability for L with those for ψ∗L. In Section 5, we apply

these theorems in the special situation where the exceptional components of Y are

isolated. In addition, we show how to do the opposite construction, that is, how

to get an invertible sheaf L on Y from a torsion-free, rank-1 sheaf I on X in such

a way that I=ψ∗L. All the constructions apply to families of curves. Then, in

Section 6, we apply them to produce an inverse to Φb.

Acknowledgments. We would like to thank the anonymous referee for his care-

ful reading and his thoughtful suggestions. We would also like to thank Juliana
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Coelho for many conversations around the topic that helped us in giving the final

shape to this article.

2. Sheaves on curves

2.1. Curves

A curve is a reduced, connected, projective scheme of pure dimension 1 over

an algebraically closed field K. A curve may have several irreducible components,

which will be simply called components. We will always assume our curves to be

nodal, meaning that the singularities are nodes, that is, analytically like the origin

on the union of the coordinate axes of the plane A
2
K .

We say that a curve X has genus g if h1(X,OX)=g. This is in fact the so-called

arithmetic genus, but the geometric genus will play no role here.

A subcurve of a curve X is the reduced union of a nonempty collection of its

components. A subcurve is a curve if and only if it is connected. Given a proper

subcurve Y of X , we will let Y ′ denote the complementary subcurve, that is, the

reduced union of the remaining components of X . Also, we let kY denote the

number of points of Y ∩Y ′. Since X is connected, kY ≥1. A component E of a

curve X is called exceptional if E is smooth, rational, E �=X and kE≤2.

We will call a curve X semistable if all exceptional components E have kE=2;

quasistable if, in addition, no two exceptional components meet; and stable if there

are no exceptional components.

A chain of rational curves is a curve whose components are smooth and rational

and can be ordered, E1, ..., En, in such a way that #Ei∩Ei+1=1 for i=1, ..., n−1

and Ei∩Ej=∅ if |i−j|>1. If n is the number of components, we say that the chain

has length n. Two chains of the same length are isomorphic. The components E1

and En are called the extreme curves of the chain. A connected subcurve of a chain

is also a chain, and is called a subchain.

Let N be a collection of nodes of a curve X , and η : N→N a function. Denote

by ˜XN the partial normalization of X along N . For each P∈N , let EP be a chain

of rational curves of length η(P ). Let Xη denote the curve obtained as the union of
˜XN and the EP for P∈N in the following way: Each chain EP intersects no other

chain, but intersects ˜XN transversally at two points, the branches over P on ˜XN
on one hand, and nonsingular points on each of the two extreme curves of EP on

the other hand. There is a natural map μη : Xη→X collapsing each chain EP to

a point, whose restriction to ˜XN is the partial normalization map. The curve Xη

and the map μη are well-defined up to X-isomorphism.
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All schemes are assumed locally Noetherian. A point s of a scheme S is a map

Spec(K)→S, where K is a field, denoted k(s). If k(s) is algebraically closed, we

say that s is geometric.

A family of (connected) curves is a proper and flat morphism f : X→S whose

geometric fibers are connected curves. If s is a geometric point of S, put Xs :=

f−1(s). If T is a S-scheme, put XT :=X×ST ; the second projection XT →T is also

a family of curves.

If all the geometric fibers of f are (semistable, quasistable, stable) curves (of

genus g), we will say that f or X/S is a family of (semistable, quasistable, stable)

curves (of genus g).

If X is a curve over an algebraically closed field K, a regular smoothing of

X is the data (f, ξ) consisting of a generically smooth family of curves f : Y →S,

where Y is regular and S is affine with ring of functions K[[t]], the ring of formal

power series over K, and an isomorphism ξ : X→Y0, where Y0 is the special fiber

of f . A twister of X is an invertible sheaf on X of the form ξ∗OY (Z)|Y0 , where

(f : Y →S, ξ) is a regular smoothing of X , and Z is a Cartier divisor of Y supported

in Y0, so a formal sum of components of Y0. A twister has degree 0 by continuity

of the degree, since OY (Z) is trivial away from Y0.

If Z is a formal sum of the components of X , we define

OX(Z) := ξ∗OY

(

ξ(Z)
)

|Y0 .

This definition depends on the choices of f and ξ. However, for our purposes here,

the definition is good enough as it is.

2.2. Sheaves

Let f : X→S be a family of curves. Given a coherent sheaf F on X and a

geometric point s of S, we will let Fs :=F|Xs . More generally, given any S-scheme

T , denote by FT the pullback of F to XT under the first projection XT →X .

Let I be a S-flat coherent sheaf on X . We say that I is torsion-free on X/S

if, for each geometric point s of S, the associated points of Is are generic points

of Xs. We say that I is of rank 1 or rank-1 on X/S if, for each geometric point s of

S, the sheaf Is is invertible on a dense open subset of Xs. We say that I is simple

on X/S if, for each geometric point s of S, we have Hom(Is, Is)=k(s).

Since X is flat over S, with reduced and connected fibers, each invertible sheaf

on X is torsion-free, rank-1 and simple on X/S. In particular, so is the relative

dualizing sheaf of X/S.
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We say that I has degree d on X/S if Is has degree d for each s∈S, that is,

d=χ(Is)−χ(OXs)

for each s∈S.
Given a geometric point s of S and a subcurve Y of Xs, let IY denote the

restriction of I to Y modulo torsion. In other words, if ξ1, ..., ξm are the generic

points of Y , let IY denote the image of the natural map

I|Y −→
m
⊕

i=1

(I|Y )ξi .

Also, let degY (I) denote the degree of IY , i.e.

degY (I) :=χ(IY )−χ(OY ).

Let X be a (connected) curve over an algebraically closed field K and denote

by X1, ..., Xp its components. Fix an integer d. Since X is a proper scheme over

K, by [5], Theorem 8.2.3, p. 211, there is a scheme, locally of finite type over K,

parameterizing degree-d invertible sheaves on X ; denote it by Jd
X . It decomposes

as

(1) Jd
X =

∐

d=(d1,...,dp)

d1+...+dp=d

J
d
X ,

where J
d
X is the connected component of Jd

X parameterizing invertible sheaves L
such that deg(L|Xi)=di for i=1, ..., p. The J

d
X are quasiprojective varieties.

The scheme Jd
X is in a natural way an open subscheme of J

d

X , the scheme over

K parameterizing torsion-free, rank-1, simple sheaves of degree d on X ; see [13]

for the construction of J
d

X and its properties. The scheme J
d

X is universally closed

over K but, in general, not separated and only locally of finite type. Moreover, in

contrast to Jd
X , the scheme J

d

X is connected, hence not easily decomposable. Thus,

to deal with a manageable piece of it, we resort to polarizations.

Let E be a locally free sheaf on X of constant rank, and I a torsion-free, rank-1

sheaf on X . We say that I is semistable (resp. stable, resp. Xi-quasistable) with

respect to E if

1. χ(I⊗E)=0,

2. χ(IY ⊗E|Y )≥0 for each proper subcurve Y ⊂X (resp. with equality never,

resp. with equality only if Xi�Y ).
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Notice that it is enough to check Property 2 above for connected subcurves Y . Also,

Property 1 is equivalent to the numerical condition that

rk(E)
(

deg(I)+χ(OX)
)

+deg(E)= 0.

The Xi-quasistable sheaves are simple, what can be easily proved using for

instance [13], Proposition 1, p. 3049. Their importance is that they form an open

subscheme J
E,i
X of J

d

X that is projective over K.

Let f : X→S be a family of curves. Let E be a locally free sheaf on X of

constant rank and I a torsion-free, rank-1 sheaf on X/S. Let σ : S→X be a section

of f through its smooth locus. We say that I is semistable (resp. stable, resp. σ-

quasistable) with respect to E if, for each geometric point s of S, the sheaf Is is

semistable (resp. stable, resp. Xs,σ-quasistable) with respect to Es. Here, Xs,σ is

the component of Xs containing σ(s).

There is an algebraic space JX/S parameterizing torsion-free, rank-1, simple

sheaves on X/S, containing the locus JX/S parameterizing invertible sheaves as an

open subset. Remarkable facts are that, first, up to an étale base change, JX/S is

a scheme; second, the locus of JX/S parameterizing the sheaves on X/S which are

σ-quasistable with respect to E is an open subspace which is proper over S.

2.3. Chains of rational curves

If E is a chain of rational curves and L is an invertible sheaf on E, then L
is determined by its restrictions to the components of E, and thus by the degrees

of these restrictions. In particular, L∼=OE if and only if deg(L|F )=0 for each

component F⊆E. Also, L is the dualizing sheaf of E if its degree on each component

is zero, but for the extreme curves, where the degree is −1.

Lemma 2.1. Let E be a chain of rational curves of length n. Let E1 and En

denote the extreme curves. Let L be an invertible sheaf on E. Then the following

statements hold:

1. deg(L|F )≥−1 for every subchain F⊆E if and only if h1(E,L)=0.

2. deg(L|F )≤1 for every subchain F⊆E if and only if

h0
(

E,L(−P−Q)
)

=0

for any two points P∈E1 and Q∈En on the nonsingular locus of E.

Proof. Let E1, ..., En be the components of E, ordered in such a way that

#Ei∩Ei+1=1 for i=1, ..., n−1. We prove the statements by induction on n. If
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n=1 all the statements follow from the knowledge of the cohomology of the sheaves

OP
1
K
(j).

Suppose n>1. We show Statement 1. Assume that deg(L|F )≥−1 for every

subchain F⊆E. Consider the natural exact sequence

0→L|E1(−N)→L→L|E′
1
→ 0,

where E′
1 :=E−E1 and N is the unique point of E1∩E′

1. By induction, h1(E′
1,L|E′

1
)

=0. If degL|E1≥0 then h1(E1,L|E1(−N))=0 as well, and hence h1(E,L)=0 from

the long exact sequence in cohomology.

Suppose now that degL|E1<0. If degL|En≥0, we invert the ordering of the

chain, and proceed as above. Thus we may suppose degL|En<0 as well. Since

degL|E≥−1, there is i∈{2, ..., n−1} such that degL|Ei≥1. Let F1 :=E1∪...∪Ei−1

and F2 :=Ei+1∪...∪En. Consider the natural exact sequence

0→L|Ei(−N1−N2)→L→L|F1⊕L|F2 → 0,

where N1 and N2 are the two points of intersection of Ei with E′
i :=E−Ei.

By induction, h1(F1,L|F1)=h1(F2,L|F2)=0. Also, since degL|Ei≥1, we have

h1(Ei,L|Ei(−N1−N2))=0, and thus it follows from the long exact sequence in

cohomology that h1(E,L)=0 as well.

Assume now that h1(E,L)=0. Then h1(F,L|F )=0 for every subchain F⊆E.

By induction, deg(L|F )≥−1 for every proper subchain F�E. Since E is the union

of two proper subchains, it follows that deg(L)≥−2. Assume by contradiction that

deg(L)=−2. Then deg(L|F )=−1 for every proper subchain F�E containing E1

or En. It follows that

deg(L|Ei)=

{

0 if 1<i<n,

−1 otherwise.

But then L is the dualizing sheaf of E, and thus h1(E,L)=1, reaching a contradic-

tion. The proof of Statement 1 is complete.

Statement 2 is proved in a similar way. Alternatively, it is enough to observe

that OE(−P−Q) is the dualizing sheaf of E, and thus, by Serre Duality,

h0
(

E,L(−P−Q)
)

=h1
(

E,L−1
)

.

So Statement 2 follows from 1. �
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3. Admissibility

Let f : X→S be a family of curves. Let ψ : Y →X be a proper morphism such

that the composition fψ is another family of curves. We say that ψ is a semistable

modification of f if for each geometric point s of S there are a collection of nodes

Ns of Xs and a map ηs : Ns→N such that the induced map ψs : Ys→Xs is Xs-

isomorphic to μηs : (Xs)ηs→Xs. If ηs is constant and equal to 1 for every s, we say

that ψ is a small semistable modification of f .

Assume ψ is a semistable modification of f . Let L be an invertible sheaf on Y .

We say that L is ψ-admissible (resp. negatively ψ-admissible, resp. positively ψ-

admissible, resp. ψ-invertible) at a given geometric point s of S if the restriction of

L to every chain of rational curves of Ys over a node of Xs has degree −1, 0 or 1

(resp. −1 or 0, resp. 0 or 1, resp. 0). We say that L is ψ-admissible (resp. negatively

ψ-admissible, resp. positively ψ-admissible, resp. ψ-invertible) if L is so at every s.

Notice that, if L is negatively (resp. positively) ψ-admissible, for every chain of

rational curves of Ys over a node of Xs, the degree of L on each component of the

chain is 0 but for at most one component where the degree is −1 (resp. 1).

Theorem 3.1. Let f : X→S be a family of curves and ψ : Y →X a semistable

modification of f . Let L be an invertible sheaf on Y of relative degree d over S.

Then the following statements hold:

1. The points s of S at which L is ψ-admissible (resp. negatively ψ-admissible,

resp. positively ψ-admissible, resp. ψ-invertible) form an open subset of S.

2. L is ψ-admissible if and only if ψ∗L is a torsion-free, rank-1 sheaf on X/S

of relative degree d, whose formation commutes with base change. In this case,

R1ψ∗L=0.

3. If L is ψ-admissible then the evaluation map v : ψ∗ψ∗L→L is surjective if

and only if L is positively ψ-admissible. Furthermore, v is bijective if and only if L
is ψ-invertible, if and only if ψ∗L is invertible.

Proof. All of the statements and hypotheses are local with respect to the étale

topology of S. So we may assume S is Noetherian and that there is an invertible

sheaf A on X that is relatively ample over S. Let ̂A:=ψ∗A.

We prove Statement 1 first. For each geometric point s of S, let Es be the

subcurve of Ys which is the union of all the components contracted by ψs, and

let ˜Xs be the partial normalization of Xs obtained as the union of the remaining

components. Since ψ|
eXs

: ˜Xs→Xs is a finite map, it follows that ̂A|
eXs

is ample,

and thus

h1
(

˜Xs,
(

L⊗ ̂A⊗ms
)

|
eXs

(

−
∑

Pi

))

=0
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for every large enough integer ms, where the sum runs over all the branch points

of ˜Xs above Xs. Since S is Noetherian, a large enough integer works for all s, that

is, for every m
0,

(2) h1
(

˜Xs,
(

L⊗ ̂A⊗m
)

|
eXs

(

−
∑

Pi

))

=0 for each geometric point s of S.

Now, for each integer m consider the natural exact sequence

(3) 0−→
(

L⊗Â⊗m
)

|
eXs

(

−
∑

Pi

)

−→Ls⊗ ̂A⊗m
s −→

(

L⊗ ̂A⊗m
)

|Es −→ 0

and its associated long exact sequence in cohomology. If m is large enough that (2)

holds, then

(4) h1
(

Ys,Ls⊗ ̂A⊗m
s

)

=h1
(

Es,L⊗ ̂A⊗m|Es

)

.

On the other hand, since ̂A is a pullback from X , it follows that

(5) h1
(

Es,L⊗ ̂A⊗m|Es

)

=
∑

F h1(F,L|F ) for every integer m,

where the sum runs over all the maximal chains F of rational curves on Ys contracted

by ψs. Putting together (4) and (5), it follows now from Lemma 2.1 that

(6) h1
(

Ys,Ls⊗ ̂A⊗m
s

)

=0

if and only if deg(L|F )≥−1 for every chain F of rational curves on Ys contracted

by ψs. This is the case if L is ψ-admissible at s.

It follows from semicontinuity of cohomology that the geometric points s of

S such that Ls has degree at least −1 on every chain of rational curves of Ys

contracted by ψs form an open subset S1 of S. Likewise, for each integer n, the

geometric points s of S such that L⊗n
s has degree at least −1 on every chain of

rational curves of Ys contracted by ψs form an open subset Sn of S. Then S1∩S−1

parameterizes those s for which Ls is ψs-admissible, S1∩S−2 parameterizes those s

for which Ls is negatively ψs-admissible, S2∩S−1 parameterizes those s for which

Ls is positively ψs-admissible, and S2∩S−2 parameterizes those s for which Ls is

ψs-invertible.

We prove Statement 2 now. Assume for the moment that L is ψ-admissible. To

show that ψ∗L is flat over S, we need only show that f∗(ψ∗L⊗A⊗m) is locally free

for each m
0. By the projection formula, we need only show that g∗(L⊗ ̂A⊗m) is

locally free for each m
0, where g :=fψ. This follows from what we have already

proved: For each large enough integer m such that (2) holds, also (6) holds for each

geometric point s of S, because L is ψ-admissible.

Furthermore, taking the long exact sequence in higher direct images of ψs for

the exact sequence (3) with m=0, using (5) and that ψs|
eXs

: ˜Xs→Xs is a finite



Semistable modifications of families of curves and compactified Jacobians 65

map, it follows that R1ψs∗(Ls)=0 for every geometric point s of S. Since the fibers

of ψ have at most dimension 1, the formation of R1ψ∗(L) commutes with base

change, and thus R1ψ∗(L)=0.

Another consequence of (6) holding for each geometric point s of S is that the

formation of g∗(L⊗ ̂A⊗m) commutes with base change for m
0. We claim now

that the base-change map λ∗
Xψ∗L→ψT∗λ

∗
Y L is an isomorphism for each Cartesian

diagram of maps

YT

λY−−−−→ Y

ψT

⏐

⏐



ψ

⏐

⏐




XT

λX−−−−→ X

fT

⏐

⏐



f

⏐

⏐




T
λ

−−−−→ S.

Indeed, since A is relatively ample over S, it is enough to check that the induced

map

(7) fT∗
(

λ∗
Xψ∗L⊗λ∗

XA⊗m
)

−→ fT∗
(

ψT∗λ
∗
Y L⊗λ∗

XA⊗m
)

is an isomorphism for m
0. But, by the projection formula, the right-hand side

is simply fT∗ψT∗λ
∗
Y (L⊗ ̂A⊗m). Also, since ψ∗L is S-flat, the left-hand side is

λ∗f∗(ψ∗(L)⊗A⊗m) for m
0, whence equal to λ∗f∗ψ∗(L⊗ ̂A⊗m) by the projec-

tion formula. So, since the formation of g∗(L⊗Â⊗m) commutes with base change

for m
0, it follows that (7) is an isomorphism for m
0, as asserted.

To prove the remainder of Statement 2 and Statement 3 we may now assume

that S is a geometric point. For Statement 2, we need only show now that ψ∗L
is a torsion-free, rank-1 sheaf of degree d on X if and only if L is ψ-admissible.

Let F1, ..., Fe be the maximal chains of rational curves of Y contracted by ψ, to

P1, ..., Pe∈X . Let E be the union of the Fi and ˜X the union of the remaining com-

ponents. For each i=1, ..., e, let Pi,1, Pi,2∈Y be the points of intersection between

Fi and ˜X . Taking higher direct images under ψ in the natural exact sequences

(8)

0→L|
eX

(

−
∑

Pi,j

)

→L→L|E → 0,

0→L|E
(

−
∑

Pi,j

)

→L→L|
eX → 0,

and using that ψ|
eX is a finite map, we get

(9) R1ψ∗L=R1ψ∗L|E
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and the exact sequence

0→ψ∗L|E
(

−
∑

Pi,j

)

→ψ∗L→ψ∗L|
eX →R1ψ∗L|E

(

−
∑

Pi,j

)

→R1ψ∗L→ 0.

Since ψ|
eX is also birational, ψ∗L|

eX is a torsion-free, rank-1 sheaf of degree

degL|
eX+e. Since ψ∗L|E(−

∑

Pi) is supported at finitely many points, it follows

that ψ∗L is torsion-free if and only if h0(E,L|E(−
∑

Pi))=0. The latter holds if

and only if the degree of L on each chain of rational curves in E is at most 1, by

Lemma 2.1. Furthermore, if it holds, then R1ψ∗L|E(−
∑

Pi) has length 1−degL|Fi

at each Pi by the Riemann–Roch Theorem. Since degL|
eX+degL|E=d, it follows

that degψ∗L=d if and only if R1ψ∗L=0. By (9), the latter holds if and only if

h1(E,L|E)=0, thus if and only if the degree of L on each chain of rational curves

in E is at least −1, by Lemma 2.1. The proof of Statement 2 is complete.

Assume from now on that L is ψ-admissible. Then ψ∗L|E(−
∑

Pi,j)=0, and

thus it follows from the exact sequences in (8) that

(10) ψ∗

(

L|
eX

(

−
∑

Pi,j

))

⊆ψ∗L⊆ψ∗(L|
eX).

Furthermore, since R1ψ∗L=0 and since R1ψ∗L|E(−
∑

Pi,j) is supported with

length 1−degL|Fi at Pi, the rightmost inclusion is strict at Pi if degL|Fi=0, and

an equality if degL|Fi=1, for each i=1, ..., e. In particular, if ψ∗L is invertible,

then degL|Fi=0 for every i=1, ..., e.

Moreover, for each i=1, ..., e, we have the following natural commutative dia-

gram:

(11)

ψ∗L|Pi

v′
i−−−−→ ψ∗(L|Fi)

⏐

⏐



(ρi,1,ρi,2)

⏐

⏐




ψ∗(L|
eX)|Pi −−−−→ ψ∗(L|Pi,1⊕L|Pi,2)

where all the maps are induced by restriction. Then ψ∗L is invertible at Pi if and

only if degL|Fi=0 and the compositions

(12) ψ∗L→ψ∗(L|
eX)→ψ∗(L|Pi,j )

are nonzero for j=1, 2. This is the case only if the maps ρi,1 and ρi,2 are nonzero.

Now, if degL|Fi=0 then ρi,1 and ρi,2 are nonzero if and only if L|Fi=OFi .

Indeed, this is clear if L|Fi=OFi . On the other hand, suppose L|Fi �=OFi . Let

Fi,1, ..., Fi,�i be the ordered sequence of components of Fi such that Pi,1∈Fi,1 and

Pi,2∈Fi,�i . Since L|Fi �=OFi there is a smallest (resp. largest) integer j such that
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degL|Fi,j �=0; if ρi,1 �=0 (resp. ρi,2 �=0) then degL|Fi,j>0. However, since L is ψ-

admissible, both maps cannot be simultaneously nonzero.

To summarize, if ψ∗L is invertible then L is ψ-admissible. On the other hand,

observe that v′i is surjective for each i=1, ..., e. Indeed, it follows from applying ψ∗ to

the first exact sequence in (8) that the map ψ∗L→ψ∗(L|Fi) induced by restriction is

surjective, and thus so is v′i. Thus, if L|Fi=OFi , the maps ρi,1 and ρ1,2 are nonzero,

and thus, from Diagram (11), the composition (12) is nonzero for j=1, 2, whence

ψ∗L is invertible at Pi. So, the converse holds: If L is ψ-admissible then ψ∗L is

invertible.

Observe now that, for each i=1, ..., e, the restriction of the evaluation map

v : ψ∗ψ∗L→L to Fi is a map vi : H
0(Pi, ψ∗L|Pi)⊗OFi→L|Fi . Thus, if v is surjective

then L is positively ψ-admissible, and if v is an isomorphism then ψ∗L is invertible

and L is ψ-invertible.

Assume from now on that L is positively ψ-admissible. Note that each vi is

obtained by composing the base-change map v′i : ψ∗L|Pi→ψ∗(L|Fi) with the eval-

uation map v′′i : H
0(Fi,L|Fi)⊗OFi→L|Fi . Since L is positively ψ-admissible, it

follows from Lemma 2.1 that

h1(Fi,L|Fi)=h1
(

Fi,L|Fi(−Q)
)

=0,

and thus, by the Riemann–Roch Theorem, h0(Fi,L|Fi(−Q))<h0(Fi,L|Fi) for every

Q on the nonsingular locus of Fi. So v′′i is surjective. Since the v′i was already shown

to be surjective, so is vi for each i=1, ..., e, whence v is surjective.

Moreover, if ψ∗L is invertible then v is a surjective map between invertible

sheaves, whence an isomorphism. �

Theorem 3.2. Let X be a curve and ψ : Y →X a semistable modification of X .

Let L and M be ψ-admissible invertible sheaves on Y . Assume that M⊗L−1 is a

twister of Y of the form

OY

(

∑

cEE
)

, cE ∈Z,

where the sum runs over the components E of Y contracted by ψ. Then ψ∗L�ψ∗M.

Proof. Set T :=M⊗L−1. Let R be the set of smooth, rational curves contained

in Y and contracted by ψ. If R=∅, then T =OY and thus L∼=M. Suppose R�=∅.

Let K be the set of maximal chains of rational curves contained in R.

Claim: For every F∈K and every two components E1, E2⊆F such that E1∩
E2 �=∅, we have |cE1−cE2 |≤1. In addition, if E is an extreme component of F ,

then |cE |≤1.

Indeed, let E1, ..., En be the components of F , ordered in such a way that

#Ei∩Ei+1=1 for i=1, ..., n−1. Since L and M are admissible, | degG T |≤2 for
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every subchain G of F . Set cE0 :=cEn+1 :=0. We will reason by contradiction.

Thus, up to reversing the order of the Ei, we may assume that cEi−cEi+1≥2 for

some i∈{0, ..., n}. Then

cEi ≤ cEi−1 ≤ ...≤ cE1 ≤ cE0 =0,

because, if cEj>cEj−1 for some j∈{1, ..., i}, then

degEj∪...∪Ei
T = cEj−1−cEj+cEi+1−cEi <−2.

Similarly, cEi+1≥cEi+2≥...≥cEn≥cEn+1=0. But then

0≤ cEi+1 <cEi ≤ 0,

a contradiction that proves the claim.

Now, for each F∈K, let F † be the (possibly empty) union of components E⊆F

such that cE=0. For each connected component G of F−F † and irreducible com-

ponents E1, E2⊆G, it follows from the claim that cE1 ·cE2>0. Let K+ (resp. K−)

be the collection of connected components G of F−F † for F∈K such that cE>0

(resp. cE<0) for every irreducible component E⊆G.

Notice that, again by the claim,

(13) cE =

{

1 if E is an extreme component of some G∈K+
F

−1 if E is an extreme component of some G∈K−
F .

So, being L and M admissible,

(14) degG L=−degG M=

{

1 if G∈K+

−1 if G∈K−.

Define

W+ :=Y −∪G∈K+G, W− :=Y −∪G∈K−G, and W :=Y −∪G∈K−∪K+G.

For each G∈K+∪K−, let NG and N ′
G denote the points of G∩Y −G, and put

D+ :=
∑

G∈K+

(

NG+N ′
G

)

and D− :=
∑

G∈K−

(

NG+N ′
G

)

.

We may view D+ and D− as divisors of W . Thus, by (13),

(15) M|W �L|W
(

D+−D−).
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Consider the natural diagram

0
⏐

⏐




L|W (−D−)
⏐

⏐




0 −−−−→
⊕

G∈K+

L|G(−NG−N ′
G) −−−−→ L −−−−→ L|W+ −−−−→ 0

⏐

⏐




⊕

G∈K−
L|G

⏐

⏐




0

where the horizontal and vertical sequences are exact. By (14) and Lemma 2.1, and

using the Riemann–Roch Theorem,

Riψ∗L|G
(

−NG−N ′
G

)

=Hi
(

G,L|G
(

−NG−N ′
G

))

⊗Oψ(G) =0

for G∈K+ and i=0, 1, whereas

ψ∗L|G =H0(G,L|G)⊗Oψ(G) =0 for G∈K−.

Hence, it follows from the above diagram, by considering the associated long exact

sequences in higher direct images of ψ, that

(16) ψ∗L� (ψ|W )∗L|W
(

−D−).

Consider a second diagram, similar to the above, but with the roles of K+ and

K−, and thus of D+ and D−, reversed, and M substituted for L. As before,

Riψ∗M|G
(

−NG−N ′
G

)

=Hi
(

G,M|G
(

−NG−N ′
G

))

⊗Oψ(G) =0

for G∈K− and i=0, 1, whereas

ψ∗M|G �H0(G,M|G)⊗Oψ(G) =0 for G∈K+.

Hence, taking the associated long exact sequences,

(17) ψ∗M� (ψ|W )∗M|W
(

−D+
)

.

Combining (15), (16) and (17), we get ψ∗L�ψ∗M. �
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4. Stability

Theorem 4.1. Let X be a curve and ψ : Y →X a semistable modification of X .

Let P be a simple point of Y not lying on any component contracted by ψ. Let E
be a locally free sheaf on X and L an invertible sheaf on Y . Then L is semistable

(resp. P -quasistable, resp. stable) with respect to ψ∗E if and only if L is ψ-admissible

(resp. negatively ψ-admissible, resp. ψ-invertible) and ψ∗L is semistable (resp. ψ(P )-

quasistable, resp. stable) with respect to E .

Proof. Since ψ∗E has degree 0 on every component of Y contracted by ψ, and

P does not lie on any of these components, it follows from the definitions that a

semistable (resp. P -quasistable, resp. stable) sheaf has degree −1, 0 or 1 (resp. −1

or 0, resp. 0) on every chain of rational curves of Y contracted by ψ.

We may thus assume that L is ψ-admissible. Let W be any connected subcurve

of X . Set W ′ :=X−W and ΔW :=W∩W ′. Set δ :=#ΔW . Let V1 :=Y −ψ−1(W ′)

and V2 :=Y −ψ−1(W ). Let F1, ..., Fr be the maximal chains of rational curves con-

tained in ψ−1(ΔW ). Then 0≤r≤δ.

Claim: (ψ∗L)W ∼=ψ∗(L|Z) for a certain connected subcurve Z⊆Y such that:

1. V1⊆Z⊆ψ−1(W ).

2. For each connected subcurve U⊆Y such that V1⊆U⊆ψ−1(W ),

deg(L|U )≥deg(L|Z).

(Notice that Property 1 implies that P∈Z if and only if ψ(P )∈W .)

Indeed, ifW=X , let Z :=ψ−1(W ). Suppose W �=X . Then δ>0. LetM1, ...,Mδ

be the points of intersection of V1 with V ′
1 :=Y −V1 and N1, ..., Nδ those of V2 with

V ′
2 :=Y −V2.

Write Fi=Fi,1∪...∪Fi,ei , where Fi,j∩Fi,j+1 �=∅ for j=1, ..., ei−1 and Fi,1 in-

tersects V1. Up to reordering the Mi and Ni, we may assume that Fi,1 intersects V1

at Mi and Fi,ei intersects V2 at Ni for i=1, ..., r. (Thus Mi=Ni for i=r+1, ..., δ.)

Up to reordering the Fi, we may also assume that there are nonnegative integers u

and t with u≤t such that

deg(L|Fi)=

⎧

⎪

⎨

⎪

⎩

1 for i=1, ..., u

0 for i=u+1, ..., t

−1 for i=t+1, ..., r.

Up to reordering the Fi, we may assume there is an integer b with u≤b≤t such

that, for each i=u+1, ..., t, we have that i>b if and only if deg(L|Fi,j )=0 for every

j or the largest integer j such that deg(L|Fi,j ) �=0 is such that deg(L|Fi,j )=−1. Set

Gi :=Fi for i=b+1, ..., r. For each i=u+1, ..., b, let Gi :=Fi,1∪...∪Fi,j−1, where j is
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the largest integer such that deg(L|Fi,j )=1, let ̂Gi :=Fi−Gi and denote by Bi the

point of intersection of Gi and ̂Gi. (Notice that 1<j≤ei.) Let Bi :=Mi and ̂Gi :=Fi

for i=1, ..., u, and Bi :=Ni for i=b+1, ..., δ.

For i=u+1, ..., r, since the degree of L|Gi(Bi) on each subchain of Gi is at

most 1, it follows from Lemma 2.1 that

(18) h0
(

Gi,L|Gi(−Mi)
)

=0 for i=u+1, ..., r.

Furthermore, for i=1, ..., b, the total degree of L|
bGi

is 1; thus, by Lemma 2.1 and

the Riemann–Roch Theorem,

(19) h1
(

̂Gi,L|
bGi
(−Bi−Ni)

)

=0 for i=1, ..., b.

Set

Z :=V1∪Gu+1∪...∪Gr

and Z ′ :=Y −Z. Put ΔZ :=Z∩Z ′. Notice that ΔZ={B1, ..., Bδ}. Also, notice that

Z is connected, and

deg(L|U )≥deg(L|Z)=deg(L|V1)−(b−u)−(r−t)

for each connected subcurve U⊆Y such that V1⊆U⊆ψ−1(W ).

We have three natural exact sequences:

(20) 0→L|Z′

(

−
δ

∑

i=1

Bi

)

→L→L|Z → 0,

(21) 0→
b

⊕

i=1

L|
bGi
(−Bi−Ni)→L|Z′

(

−
δ

∑

i=1

Bi

)

→L|V2

(

−
δ

∑

i=b+1

Bi

)

→ 0,

(22) 0→
r

⊕

i=u+1

L|Gi(−Mi)→L|Z →L|V1 → 0.

Since L is ψ-admissible, so are L|V1 with respect to ψ|V1 : V1→W and L|V2 with

respect to ψ|V2 : V2→W ′. Then ψ∗(L|V1) is a torsion-free, rank-1 sheaf on W and

R1ψ∗(L|V2(−
∑

Bi))=0 by Theorem 3.1.

Since R1ψ∗(L|V2(−
∑

Bi))=0, from (19) and the long exact sequence of higher

direct images under ψ of (21) and (20) we get that R1ψ∗(L|Z′(−
∑

Bi))=0 and

the natural map ψ∗L→ψ∗(L|Z) is surjective. Also, it follows from (18) and the

long exact sequence of higher direct images under ψ of (22) that the natural map

ψ∗(L|Z)→ψ∗(L|V1) is injective. Thus, since ψ∗(L|V1) is a torsion-free, rank-1 sheaf
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on W , so is ψ∗(L|Z). And, since ψ∗L→ψ∗(L|Z) is surjective, we get an isomorphism

(ψ∗L)W ∼=ψ∗(L|Z), finishing the proof of the claim.

To prove the “only if” part, let W be any connected subcurve of X . Let Z

be as in the claim. Since L is admissible with respect to ψ, Theorem 3.1 yields

R1ψ∗L=0, and hence R1ψ∗(L|Z)=0 from the long exact sequence of higher direct

images under ψ of (20). Thus, by the claim and the projection formula,

(23) χ
(

(ψ∗L)W ⊗E|W
)

=χ
(

ψ∗(L|Z)⊗E|W
)

=χ
(

L|Z⊗
(

ψ∗E
)

|Z
)

.

If L is semistable (resp. P -quasistable, resp. stable) then χ(L|Z⊗(ψ∗E)|Z)≥0 (resp.

with equality only if Z=Y or Z ��P , resp. with equality only if Z=Y ). Now, if Z=Y

thenW=X . Also, P∈Z if and only if ψ(P )∈W . So (23) yields χ((ψ∗L)W ⊗E|W )≥0

(resp. with equality only if W=X or W ��ψ(P ), resp. with equality only if W=X).

As for the “if” part, let U be a connected subcurve of Y . If U is a union

of components of Y contracted by ψ, then U is a chain of rational curves of Y

collapsing to a node of X , and hence L|U has degree at least −1 (exactly 0 if L is

ψ-invertible). Thus

χ
(

L|U⊗ψ∗E|U
)

=rk(E)χ(L|U )≥ 0,

with equality only if L is not ψ-invertible.

Suppose now that U contains a component of Y not contracted by ψ. Then

W :=ψ(U) is a connected subcurve of X . Let ̂U be the smallest subcurve of Y

containing U and Y −ψ−1(W ′), where W ′ :=X−W . Then ̂U is connected and

contained in ψ−1(W ). Furthermore, χ(OU )−χ(O
bU ) is the number of connected

components of ̂U−U . Thus

(24) deg(L|U )+χ(OU )≥deg(L|
bU )+χ(O

bU ),

with equality only if L has degree 1 on every connected component of ̂U−U . Let Z

be as in the claim. Notice that χ(O
bU )=χ(OZ). Since deg(L|

bU )≥deg(L|Z) by the

claim, using (23) and (24) we get

χ
(

L|U⊗ψ∗E|U
)

=rk(E)
(

deg(L|U )+χ(OU )
)

+deg
(

ψ∗E|U
)

≥ rk(E)
(

deg(L|
bU )+χ(O

bU )
)

+deg
(

ψ∗E|
bU

)

=rk(E)
(

deg(L|
bU )+χ(OZ)

)

+deg
(

ψ∗E|Z
)

≥ rk(E)
(

deg(L|Z)+χ(OZ)
)

+deg
(

ψ∗E|Z
)

=χ
(

L|Z⊗
(

ψ∗E
)

|Z
)

=χ
(

(ψ∗L)W ⊗E|W
)

.
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Assume that ψ∗L is semistable (resp. ψ(P )-quasistable, resp. stable) with respect

to E . Then χ((ψ∗L)W ⊗E|W )≥0 (resp. with equality only if W=X or W ��ψ(P ),

resp. with equality only if W=X). So χ(L|U⊗ψ∗E|U )≥0. Suppose χ(L|U⊗
ψ∗E|U )=0. Then χ((ψ∗L)W ⊗E|W )=0 and equality holds in (24). If W ��ψ(P )

then U ��P . Suppose W=X . Then ̂U=Y . If U �=Y then L has degree 1 on each

connected component of Y −U , and thus L is not negatively ψ-admissible. �

5. Sheaves on quasistable curves

If X is a semistable curve, a stable curve ̂X may be obtained from X by

contracting all exceptional components. We say that ̂X is the stable model of X .

Let f : Y →S be a family of semistable curves. We call the pair (f̂ , ψ), consist-

ing of a family of stable curves f̂ : X→S and a S-map ψ : Y →X , a stable model of

f if ψ is a semistable modification of f̂ . So, for every geometric point s of S the

induced map ψs : Ys→Xs is the map contracting all exceptional components of Ys.

We will also call f̂ the stable model of f and ψ the contraction map.

Stable models always exist, and are unique up to unique isomorphism by the

following proposition.

Proposition 5.1. Let f : Y →S be a family of semistable curves. The following

statements hold:

1. The family f has a stable model.

2. If f̂ : X→S and f̂ ′ : X ′→S are stable models of f , with contraction maps

ψ : Y →X and ψ′ : Y →X ′, then there is a unique isomorphism u : X ′→X such that

f̂ ′=f̂u and ψ=uψ′.

3. For each stable model f̂ with contraction map ψ, the comorphism OX→
ψ∗OY is an isomorphism, R1ψ∗OY =0, and the pullback of the relative dualizing

sheaf of f̂ under ψ is the relative dualizing sheaf of f .

Proof. We will prove Statement 3 first. So, let f̂ : X→S be a stable model of f

with contraction map ψ : Y →X . Then R1ψ∗OY =0 by Theorem 3.1. Furthermore,

ψ∗OY is invertible and the evaluation map v : ψ∗ψ∗OY →OY is an isomorphism.

If ψ# : OX→ψ∗OY is the comorphism, since vψ∗(ψ#) is a natural isomorphism, it

follows that ψ∗(ψ#) is an isomorphism, and thus that ψ# is surjective. Since ψ#

is a surjection between invertible sheaves, it is an isomorphism.

Let ω̂ be the relative dualizing sheaf of f̂ . Then

(25)
R1f∗

(

ψ∗ω̂
)

=R1f̂∗ψ∗
(

ψ∗ω̂
)

=R1f̂∗(ω̂⊗ψ∗OY )

=R1f̂∗(ω̂)=OS .
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Indeed, the fourth equality in (25) is given by the trace map, an isomorphism be-

cause the fibers of f̂ are connected. The third equality follows from OX=ψ∗OY .

The projection formula, which holds because ω̂ is invertible, yields the second equal-

ity. Finally, the first equality holds because of the degeneration of the spectral

sequence associated to the composition f̂ψ, since

R1ψ∗
(

ψ∗ω̂
)

= ω̂⊗R1ψ∗OY =0.

Let ω be the relative dualizing sheaf of f . By [19], Theorem 21, p. 55, for each

coherent sheaf N on S, there is a functorial (on N ) isomorphism

(26) f∗Hom
(

ψ∗ω̂, ω⊗f∗N
)

→Hom
(

R1f∗
(

ψ∗ω̂
)

,N
)

.

Putting the isomorphisms (25) and (26) together, we get a functorial (on N ) iso-

morphism

(27) f∗Hom
(

ψ∗ω̂, ω⊗f∗N
)

→N .

In particular, replacing N by OS , we get a natural map h : ψ∗ω̂→ω, corresponding

to the constant function 1S . This map is fiberwise (over S) nonzero, a fact that can

be shown by replacing N by skyscraper sheaves and using the functoriality of (27).

Since both ω̂ and ω are invertible, we need only show that h is surjective, and

thus we may assume that S is the spectrum of an algebraically closed field. Now,

ω and ψ∗ω̂ restrict to isomorphic sheaves on each component Z of Y . In fact, it

follows from adjunction that

ω|Z ∼=L⊗OZ

(

∑

P∈Z∩Z′

P

)

∼=ψ∗ω̂|Z ,

where L is the dualizing sheaf of Z. In particular, ω and ψ∗ω̂ have the same

multidegree. Since h is nonzero, it follows that h is an isomorphism.

We will now prove Statement 1. Let ω be the relative dualizing sheaf of f and

consider the S-scheme:

X :=ProjS
(

OS⊕f∗ω⊕f∗
(

ω⊗2
)

⊕...
)

.

Let f̂ : X→S denote the structure map.

For each geometric point s of S, by adjunction, ωs has positive degree on each

nonexceptional component of Ys, and thus, by duality,

H1
(

Ys, ω
⊗n
s

)

=H0
(

Ys, ω
⊗1−n
s

)∗
=0 for each n≥ 2.

It follows that the direct image f∗(ω
⊗n) is locally free, with formation commuting

with base change, for each n≥2. Also, f∗ω is locally free, with formation commuting
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with base change, because R1f∗ω∼=OS , the trace map being an isomorphism. So,

f̂ is flat, and its formation commutes with base change, so

(28) Xs =Proj
(

H0(Ys,OYs)⊕H0(Ys, ωs)⊕H0
(

Ys, ω
⊗2
s

)

⊕...
)

for each geometric point s of S.

By [9], Theorem A, p. 68, the sheaf ω⊗n
s is globally generated for each integer

n≥2 and each geometric points s of S. Thus, the natural maps f∗f∗(ω
⊗n)→ω⊗n

are surjections for n≥2, and hence induce a globally defined S-map ψ : Y →X .

We need only show now that, for each geometric point s of S, the scheme Xs is

a stable model of Ys and ψs is a contraction map. Indeed, let Z be a stable model

of Ys, and let b : Ys→Z be a contraction map. Let L be the dualizing sheaf of Z.

Then b∗L∼=ωs by Statement 3. Since b∗OYs=OZ , it follows that

(29) H0
(

Z,L⊗n
)

=H0
(

Ys, ω
⊗n
s

)

for each integer n> 0.

On the other hand, since Z is stable, L is ample, and thus

Z =Proj
(

H0(Z,OZ)⊕H0(Z,L)⊕H0
(

Z,L⊗2
)

⊕...
)

.

It follows now from (28) and (29) that there is an isomorphism u : Z→Xs such that

ψs=ub. �

If X is a scheme and F is a coherent sheaf on X , let

Sym(F)=
⊕

n≥0

Symn(F) and PX(F) :=Proj
(

Sym(F)
)

,

where Symn(F) is the nth symmetric product of F , for each integer n≥0.

Proposition 5.2. Let X be a curve and I a torsion-free, rank-1 sheaf on X .

Set Y :=PX(I), and let ψ : Y →X be the structure map. Then ψ is a small semistable

modification of X . The exceptional components of Y contracted by ψ are the fibers

of ψ over the points of X where I is not invertible. In particular, if X is stable,

then Y is quasistable with stable model X and contraction map ψ.

Proof. Wherever I is invertible, ψ is an isomorphism. So, let us analyze ψ on

a neighborhood of a node P of X where I fails to be invertible. In fact, consider

the base change of ψ to the spectrum of the completion ̂OX,P . Since P is a node,

where I fails to be invertible, ̂IP ∼=mP , where mP is the maximal ideal of ̂OX,P .

Also, since P is a node,

̂OX,P
∼=

K[[u, v]]

(uv)
,
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where K is the base field of X . Now, under the above identification,

mP
∼=

̂OX,P ⊕ ̂OX,P

v ̂OX,P ⊕u ̂OX,P

as an ̂OX,P -module. So, locally analytically, Y is the subscheme of A2
K×P

1
K defined

by the equations uv=sv=tu=0, where u and v are the coordinates of A2
K and

s and t are homogeneous coordinates of P
1
K . Also, ψ is the restriction to Y of

the projection A2
K×P

1
K→A2

K onto the first factor. Then Y is the union of three

lines, the projective line given by u=v=0, and the affine lines given by u=s=0

and v=t=0, the latter two not meeting each other, but intersecting the former

transversally.

As the above reasoning applies to any node P ofX where I fails to be invertible,

it follows that the singularities of Y are nodes, that Y is a curve, and that ψ−1(P )

is a smooth, rational component of Y with kψ−1(P )=2 for any such P . �

Lemma 5.3. (E–Kleiman) Let p : X→S be a flat map and F a S-flat coherent

sheaf on X . Assume F is invertible at each associated point of X , and is every-

where locally generated by two sections. Set W :=PX(F), and let w : W→X be the

structure map. Then W is S-flat and Serre’s graded OX -algebra homomorphism

Sym(F)−→
⊕

n≥0

w∗OW (n)

is an isomorphism.

Proof. We refer to the proof of [14], Lemma 3.1, p. 491 and its notation. To

complement the proof, we need only observe that W is S-flat. First, notice that N
is S-flat, because of the first exact sequence in the proof. Second, notice that V is

S-flat, being a projective bundle over X . The structure map is denoted v : V →X .

Since N is flat, and v is a projective bundle map, it follows from the third exact

sequence in the proof that W is a subscheme of V with a S-flat sheaf of ideals.

Now, the formation of this third exact sequence commutes with base change. So W

is S-flat. �

Proposition 5.4. Let f : Y →S be a family of quasistable curves. Let L be an

invertible sheaf on Y of degree d on Y/S such that degE(L)=1 for every exceptional

component E of every geometric fiber of Y/S. Let f̂ : X→S be a stable model of

f and ψ : Y →X the contraction map. Let I :=ψ∗L. Then the following statements

hold:
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1. The direct image ψ∗L is a torsion-free, rank-1 sheaf on X/S of relative

degree d, whose formation commutes with base change.

2. For each geometric point s∈S and each node P of Xs, the sheaf Is is in-

vertible at P if and only if ψ is an isomorphism over a neighborhood of P .

3. The evaluation map e : ψ∗I→L is surjective.

4. There is an isomorphism u : Y →PX(I) over X such that u∗O(1)∼=L.

Proof. Statement 1 follows readily from Theorem 3.1, as well as Statement 3. It

follows from Statement 3 that e defines a X-map u : Y →PX(I) such that

u∗O(1)∼=L. Then, to prove Statement 4, since both Y and PX(I) are S-flat, the

latter by Lemma 5.3, and the formation of I commutes with base change by State-

ment 1, we need only check that us is an isomorphism for every geometric point s

of S.

So, for the remainder of the proof, we may now assume S is the spectrum of

an algebraically closed field.

The contraction map ψ factors as the composition of several maps, each con-

tracting a single exceptional component. Thus, to prove Statement 2 we may assume

that ψ contracts a single component. Then Statement 2 follows from Theorem 3.1

as well.

As for Statement 4, first observe that PX(I) is a quasistable curve isomorphic

to Y , by Proposition 5.2 and Statement 2. So, since u is an X-morphism, to check

that u is an isomorphism we need only check that, for each exceptional component

F⊂Y , the restriction u|F is an isomorphism onto the corresponding exceptional

component of P(I). But this is so, because, letting R∈X denote the point below

F , the restriction u|F is the map to P(I|R) given by the surjection e|F . So, u|F is

an isomorphism because e|F is the evaluation map of the degree-1 sheaf L|F . �

Proposition 5.5. Let f : X→S be a family of curves. Let I be a torsion-free,

rank-1 sheaf of degree d on X/S. Let Y :=PX(I), with structure map ψ : Y →X ,

and let L denote the tautological invertible sheaf on Y . Then ψ is a small semistable

modification of X/S. In particular, if X/S is a family of stable curves, then Y/S

is a family of quasistable curves, X/S is its stable model, and ψ is the contraction

map. Furthermore, L has degree d on Y/S, the degree of L on every exceptional

component contracted by ψ of every geometric fiber of Y/S is 1, and I=ψ∗L.

Proof. We apply Lemma 5.3 for F :=I. The hypotheses are verified because

the associated points of X are generic points of certain fibers of f , where I is

invertible, and I is everywhere locally generated by two sections, since X/S is a

family of nodal curves. So Y is S-flat.
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It follows from Lemma 5.3 as well that I=ψ∗L. Since the formation of PX(I)
commutes with base change, it follows from Proposition 5.2 that ψ is a semistable

modification of X/S.

By Proposition 5.2, the exceptional components contracted by ψ of the geo-

metric fibers of Y/S are the fibers of PX(I) over the nodes of the geometric fibers

of X/S where I is not invertible. Since L is the tautological sheaf of PX(I), its
restriction to a fiber over X is also tautological. So L has degree 1 on every excep-

tional component contracted by ψ of every geometric fiber of Y/S. Finally, that L
has relative degree d over S follows now from Statement 1 of Proposition 5.4. �

6. Functorial isomorphisms

Let Pd,g be the contravariant functor from the category of schemes to that

of sets defined in the following way: For each scheme S, let Pd,g(S) be the set of

equivalence classes of pairs (f,L), where f : Y →S is a family of quasistable curves

of genus g over S, and L is an invertible sheaf on Y of relative degree d over

S whose degree on every exceptional component of every geometric fiber of Y/S

is 1. Two such pairs, (f : Y →S,L) and (f ′ : Y ′→S,L′), are said to be equivalent

if there are an S-isomorphism u : Y →Y ′ and an invertible sheaf N on S such that

u∗L′∼=L⊗f∗N . We leave it to the reader to define the functor on maps.

On the other hand, let Jd,g be the contravariant functor from the category

of schemes to that of sets defined in the following way: For each scheme S, let

Jd,g(S) be the set of equivalence classes of pairs (f,L), where f : X→S is a family

of stable curves of genus g over S, and I is a torsion-free, rank-1 sheaf on X/S of

relative degree d. Two such pairs, (f : X→S, I) and (f ′ : X ′→S, I ′), are said to be

equivalent if there are an S-isomorphism u : X→X ′ and an invertible sheaf N on

S such that u∗I ′∼=I⊗f∗N . Again, we leave it to the reader to define the functor

on maps.

Finally, let Mg be the usual moduli functor of stable curves of genus g. There

are natural “forgetful” maps of functors Pd,g→Mg , defined by taking a pair (f : Y →
S,L) to the stable model X/S of Y/S, and Jd,g→Mg , defined by taking a pair

(f : X→S, I) to X/S. The former forgetful map is well-defined by Proposition 5.1.

Theorem 6.1. There is a natural isomorphism of functors

Φ: Pd,g −→Jd,g

over Mg . The isomorphism Φ takes a pair (f : Y →S,L) of a family of quasistable

curves f and an invertible sheaf L on Y to (X→S, ψ∗L), where X/S is the stable

model of Y/S and ψ : Y →X is the contraction map. Its inverse takes a pair (f : X→
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S, I) of a family of stable curves f and a torsion-free, rank-1 sheaf I on X/S to

(PX(I)→S,O(1)).

Proof. Just combine Propositions 5.4 and 5.5. �

Let g and d be integers with g≥2. Let Y be a curve of genus g, and ω a

dualizing sheaf of Y . The degree-d canonical polarization of Y is the sheaf

Ed :=O⊕2g−3
Y ⊕ω⊗g−1−d.

Let I be a torsion-free, rank-1 sheaf on Y of degree d. We say that I is semistable

(resp. stable) if I is semistable (resp. stable) with respect to Ed.
Since χ(I)=d+1−g, and thus

χ(IZ⊗Ed|Z)= (2g−2)χ(IZ)−χ(I) degZ(ω)

for every subcurve Z⊆Y , it follows that I is semistable (resp. stable) if and only if

(30) χ(IZ)≥
degZ(ω)

2g−2
χ(I)

for every subcurve Z⊆Y (resp. with equality only if Z=Y ).

If Y is stable, the above condition is the same as Seshadri’s in [27], Part 7,

Definition 9, p. 153, when the polarization chosen (in Seshadri’s sense) is the so-

called canonical: If Y1, ..., Yp denote the components of Y , the canonical polarization

is the p-tuple a:=(a1, ..., ap) where

ai :=
degYi

(ω)

2g−2
.

That a is indeed a polarization in Seshadri’s sense follows from the ampleness of ω,

by the stability of Y . That the above notion of (semi)stability is Seshadri’s follows

from the fact that the nonzero torsion-free quotients of I are the sheaves IZ for

subcurves Z of Y .

On the other hand, χ(IZ)=degZ(I)+χ(OZ) for each subcurve Z of Y . Also,

it follows from adjunction and duality that

degZ(ω)=deg(F)+kZ =χ(F)−χ(OZ)+kZ =−2χ(OZ)+kZ ,

where F is the dualizing sheaf of Z. Thus, (30) holds for each proper subcurve

Z⊂Y if and only if

(31) degZ(I)≥ d

(

degZ(ω)

2g−2

)

− kZ
2
,

with equality if and only if equality holds in (30).
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Let X/S be a family of stable curves. A torsion-free, rank-1 sheaf I on X/S is

said to be semistable (resp. stable) if Is is semistable (resp. stable) for each geometric

point s of S. Let J ss
d,g (resp. J s

d,g) denote the subfunctor of Jd,g parameterizing the

pairs (X/S, I) with I semistable (resp. stable) on X/S.

According to [8], Definition 5.1.1, p. 3756, if Y is quasistable, a degree-d invert-

ible sheaf L on Y is called balanced if degE(L)=1 for each exceptional component

E of Y and the “Basic Inequality” holds,

(32)

∣

∣

∣

∣

∣

degZ(L)−d

(

degZ(ω)

2g−2

)

∣

∣

∣

∣

∣

≤ kZ
2
,

for every proper subcurve Z⊂Y . Furthermore, L is called stably balanced if L is

balanced and equality holds in

(33) degZ(L)≥ d

(

degZ(ω)

2g−2

)

− kZ
2

only if Z ′ is a union of exceptional components of Y .

Notice that (32) for every proper subcurve Z⊂Y is equivalent to (33) for every

proper subcurve Z⊂Y , which is in turn equivalent to

(34) degZ(L)≤ d

(

degZ(ω)

2g−2

)

+
kZ
2

for every proper subcurve Z⊆Y . In addition, if degE(L)=1 for each exceptional

component E of Y , then equality holds in (33) (resp. (34)) if Z ′ (resp. Z) is a

union of exceptional components of Y . So, in a formulation analogous to that of

semistability and stability, L is balanced (resp. stably balanced) if degE(L)=1 for

each exceptional component E of Y and (33) holds for every proper subcurve Z⊂Y

(resp. with equality only if Z ′ is a union of exceptional components of Y ).

Let Y/S be a family of quasistable curves. An invertible sheaf L on Y is said to

be balanced (resp. stably balanced) on Y/S if Ls is balanced (resp. stably balanced)

on Ys for each geometric point s of S. Let Pb
d,g (resp. Psb

d,g) denote the subfunctor

of Pd,g parameterizing the pairs (Y/S,L) with L balanced (resp. stably balanced)

on Y/S.

Proposition 6.2. Let Y be a quasistable curve. Let X be its stable model

and ψ : Y →X the contraction map. Let L be an invertible sheaf on Y such that

degE(L)=1 for every exceptional component E⊂Y . Then L is balanced (resp. stably

balanced) if and only if ψ∗L is semistable (resp. stable).
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Proof. Let d be the degree of L and Ed the degree-d canonical polarization

on X . Let ω̂ be a dualizing sheaf of X . It follows from Proposition 5.1 that

ω :=ψ∗ω̂ is a dualizing sheaf of Y . Thus ψ∗Ed is the degree-d canonical polarization

of Y .

Since L is ψ-admissible, it follows from Theorem 3.1 that ψ∗L is torsion-free,

rank-1 and of degree d. Define the invertible sheaf

(35) I :=L⊗OY

(

∑

E
)

on Y , where E runs over the set of components of Y contracted by ψ. Then I is

negatively ψ-admissible. Furthermore, ψ∗I=ψ∗L by Theorem 3.2. We claim first

that L is balanced if and only if I is semistable. Furthermore, let X1, ..., Xp be all

the components of X , and Y1, ..., Yp those of Y such that ψ(Yi)=Xi for i=1, ..., p.

We have that ψ∗I is stable if and only if ψ∗I is Xi-quasistable with respect to Ed
for every i=1, ..., p. We claim as well that L is stably balanced if and only if I is

Yi-quasistable with respect to ψ∗Ed for every i=1, ..., p. Once the claims are proved,

an application of Theorem 4.1 finishes the proof of the proposition.

Let Z be a proper subcurve of Y . If Z is a union of exceptional components

of Y , then

degZ(L)=−degZ(I)= kZ/2,

whence equality holds in (31) whereas strict inequality holds in (33). On the other

hand, if Z ′ is a union of exceptional components of Y , then strict inequality holds

in (31) whereas equality holds in (33).

Assume now that neither Z nor Z ′ is a union of exceptional components of Y .

Let n (resp. n′) be the number of connected components of Z ′ (resp. Z) which are

exceptional components of Y . Let Z1 (resp. Z2) be the subcurve of Y obtained by

removing from (resp. adding to) Z all the exceptional components E of Y inter-

secting Z ′ (resp. Z) at exactly 1 or 2 points. Then Z1 and Z2 are proper subcurves

of Y such that

kZ1+2n′ = kZ2+2n= kZ

and

degZ1
(ω)=degZ(ω)=degZ2

(ω).

Furthermore,

degZ1
(L)−n′ ≤degZ(I) and degZ2

(I)−n≤degZ(L).

So (31) holds for Z replaced by Z2 only if (33) holds, whereas (33) holds for Z

replaced by Z1 only if (31) holds. Furthermore, equality holds in (33) only if

equality holds in (31) for Z replaced by Z2. Since Z2 contains some Yi, this is not



82 Eduardo Esteves and Marco Pacini

possible if I is Yi-quasistable for every i=1, ..., p. Also, equality holds in (31) only

if it holds in (33) for Z replaced by Z1. Since Z ′
1 is not a union of exceptional

components of Y , this is not possible if L is stably balanced. �

Theorem 6.3. The isomorphism of functors Φ of Theorem 6.1 restricts to

isomorphisms of functors

Φb : Pb
d,g −→J ss

d,g and Φsb : Psb
d,g −→J s

d,g.

Proof. Just combine Theorem 6.1 with Proposition 6.2. �
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Birkhäuser, Boston, 1982.

10. Coelho, J., Esteves, E. and Pacini, M., Degree-2 Abel maps for nodal curves, to
appear in Int. Math. Res. Not., available at the webpage: http://arxiv.org/
abs/1212.1123.

11. Coelho, J. and Pacini, M., Abel maps for curves of compact type, J. Pure Appl.
Algebra 214 (2010), 1319–1333.

12. D’Souza, C., Compactification of generalized Jacobians, Proc. Indian Acad. Sci. Sect.
A, Math. Sci. 88 (1979), 419–457. Ph.D. thesis, Tata Institute, Mumbai.

13. Esteves, E., Compactifying the relative Jacobian over families of reduced curves,
Trans. Amer. Math. Soc. 353 (2001), 3045–3095.

14. Esteves, E. and Kleiman, S., The compactified Picard scheme of the compactified
Jacobian, Adv. Math. 198 (2005), 484–503.

15. Faltings, G., Moduli stacks for principal bundles on semistable curves, Math. Ann.
304 (1996), 489–515.

http://arxiv.org/abs/1212.1123
http://arxiv.org/abs/1212.1123


Semistable modifications of families of curves and compactified Jacobians 83

16. Igusa, J., Fiber systems of Jacobian varieties, Amer. J. Math. 78 (1956), 171–199.
17. Jarvis, T., Torsion-free sheaves and moduli of generalized spin curves, Compos. Math.

110 (1998), 291–333.
18. Jarvis, T., Compactification of the universal Picard over the moduli of stable curves,

Math. Z. 235 (2000), 123–149.
19. Kleiman, S., Relative duality for quasi-coherent sheaves, Compos. Math. 41 (1980),

39–60.
20. Mayer, A. andMumford, D., Further comments on boundary points, in Amer.Math.

Soc. Summer Institute, Woods Hole, 1964.
21. Melo, M., Compactified Picard stacks over Mg , Math. Z. 263 (2009), 939–957.
22. Melo, M., Compactified Picard stacks over the moduli stack of stable curves with

marked points, Adv. Math. 226 (2011), 727–763.
23. Oda, T. and Seshadri, C. S., Compactifications of the generalized Jacobian variety,

Trans. Amer. Math. Soc. 253 (1979), 1–90.
24. Pacini, M., The degree-2 Abel–Jacobi map for nodal curves—I, Math. Nachr. 287

(2014), 2071–2101.
25. Pacini, M., The degree-2 Abel–Jacobi map for nodal curves—II, Preprint, available

at the webpage: http://arxiv.org/abs/1304.5288.
26. Pandharipande, R., A compactification over Mg of the universal moduli space of

slope-semistable vector bundles, J. Amer. Math. Soc. 9 (1996), 425–471.
27. Seshadri, C. S., Fibrés Vectoriels sur les Courbes Algébriques, Astérisque 96, Soc.
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