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Higher integrability for vector-valued parabolic
quasi-minimizers on metric measure spaces

Jens Habermann

Abstract. We establish local higher integrability estimates for upper gradients of vector-

valued parabolic quasi-minimizers in metric measure spaces, satisfying a doubling property and

supporting a weak Poincaré inequality.

1. Introduction

We are concerned with regularity issues for parabolic quasi-minimizers on

metric measure spaces. More precisely, we consider quasi-minimizers of integral

functionals which are related in the Euclidean setting to vector-valued functions

u : (0, T )×Ω→R
N , N>1, of the variational inequality

(1.1) −p

∫∫
〈u, ∂tΦ〉 dx dt+

∫∫
|Du|p dx dt≤Q

∫∫
|Du+DΦ|p dx dt,

for all testing-functions, or in the case of real minimizers (Q=1), to solutions of the

parabolic p-Laplace system

(1.2) ut−div
(
|Du|p−2Du

)
=0,

2n

n+2
<p<∞.

Here Ω⊂R
n, n≥2 is a bounded domain.

Replacing the Euclidean space R
n by a metric measure space (X , d, μ) with

metric d and measure μ, we can no longer speak of a gradient of a function u, but

we have to introduce the notion of upper gradients, which we denote by gu. The

manuscript at hand deals with parabolic quasi-minimizers on parabolic cylinders

ΩT :=(0, T )×Ω, with T>0, and Ω⊂X open, bounded, and where X denotes a metric

measure space with a doubling property of the measure and a suitable Poincaré

inequality. We refer to Chapter 2 for the exact setting and definitions of the relevant

http://crossmark.crossref.org/dialog/?doi=10.1007/s11512-015-0221-3&domain=pdf


86 Jens Habermann

spaces. Our aim is to establish integrability properties for upper gradients gu of

quasi-minimizers, and therefore to generalize results, which have recently by proven

in the Euclidean setting in [16], to this framework.

In the past fifteen years, doubling metric measure spaces have been investigated

quite intensively, see for example [9], [13], [17], [18], [20], [22], [32], [42] and [43] and

in particular [2] for an overview and further references. First regularity results for

elliptic minimizers and quasi-minimizers in the metric space setting were obtained

in 2000, by Kinnunen and Shanmugalingam [29]. They studied scalar problems and

adapted DeGiorgi’s method to prove maximum principles for p-harmonic functions

and quasi-minimizers and also local Hölder continuity. Later, Björn and Marola [3]

showed that also Moser’s iteration method is available in the metric setting. Further

contributions on regularity for elliptic problems were done in [34] and [43].

The investigation of parabolic problems on metric measure spaces started very

recently with a contribution of Kinnunen, Marola, Miranda and Paronetto [30]. The

authors study scalar parabolic quasi-minimizers in the sense of Definition 2.3 in the

case p=2 which corresponds to linear parabolic PDEs. Following the approaches

of DiBenedetto, Gianazza, Vespri [10], [11] and [12] and Wieser [44] they introduce

parabolic DeGiorgi classes of order 2 and prove a Harnack inequality for scalar

quasi-minimizers. Their contribution generalizes a previous result by Grigor’yan

[15] and Saloff-Coste [40] on Harnack inequalities for solutions to the heat equation

on Riemannian manifolds. The advantage of the approach in [30] is that it is a purely

variational technique which does not use any differential structure, such as Dirichlet

spaces or the Cheeger differential. In [37], Masson and Siljander generalized these

results to the super-quadratic case p≥2 and a very recent contribution of Marola

and Masson [35] is dedicated to Harnack estimates for parabolic minimizers.

Higher integrability properties for solutions of parabolic problems in the non-

linear case were first proven by Kinnunen and Lewis [27], who studied the model

case of the parabolic p-Laplace equation for p �=2. Later, Bögelein [6] and Bögelein

and Parviainen [8] generalized these results to higher-order parabolic systems, also

up to the parabolic boundary. In the metric measure space setting, there have also

been made some efforts very recently: Masson, Miranda, Paronetto and Parviainen

[38] and Masson and Parviainen [36] investigated parabolic quasi-minimizers with

quadratic growth p=2, and showed local and global higher integrability properties

for upper gradients.

Our aim is to prove local Lp+ε-regularity for the spatial minimal weak upper

gradient gu for parabolic Q-minimizers with general polynomial p-growth, p �=2.

Roughly speaking, we show that for a local parabolic quasi-minimizer of a functional

F [w,ΩT ] :=
1

p

∫∫
ΩT

f(gw) dμ dt,
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which satisfies a polynomial growth condition of the type

νζp−L1 ≤ f(ζ)≤Lζp+L1,

for all ζ∈[0,∞), with constants 0<ν≤L<∞ and L1≥0, and with growth exponent

p> 2n
n+2 , where n denotes the ‘dimension’ related to the doubling constant of the

measure space, see (2.2) and (3.1), there holds the implication

u∈Lp
loc

(
0, T ;N 1,p

loc (Ω)
)
==⇒u∈Lp+ε

loc

(
0, T ;N 1,p+ε

loc (Ω)
)
,

for some ε>0, depending only on the structural data of the problem. In this context,

gw denotes the minimal p-weak upper gradient of w and N 1,p
loc (Ω) denotes the local

Newtonian space. We refer the reader to Chapter 2 for the exact definitions of

the appearing objects, and in particular find the exact statement in Theorem 2.4.

Higher integrability for upper gradients is an important first step towards regularity

and stability discussions in the metric measure space setting.

For general p-growth functionals, higher integrability statements are much

more difficult to obtain than for functionals with quadratic growth. This is essen-

tially due to the non-linear structure of the problem. To come up with homogeneous

estimates, which are essential for higher integrability issues, we need to deal with

the intrinsic geometry, introduced by DiBenedetto and Friedman in the setting of

the degenerate p-Laplace equation. It turns out that the techniques, applied in [7]

and [16] to prove higher integrability in the framework of non-linear parabolic equa-

tions or parabolic quasi-minimizers on Euclidean spaces, respectively, are flexible

enough to be applied also in the setting of metric measure spaces.

On the other hand, additional difficulties are caused by the non-linear be-

haviour of upper gradients. In contrast to a ‘real’ gradient, upper gradients are

merely sub-linear, which leads to a series of difficulties in the estimates. In partic-

ular, smoothing procedures become much more involved and cannot be treated by

standard arguments. Instead, a careful analysis of the approximation arguments

and limit procedures has to be made.

2. Setting and statements of results

Let (X , d, μ) be a separable, connected metric measure space, which means

that (X , d) is a complete, separable and connected metric space and μ denotes a

Borel measure on X . The measure μ is assumed to fulfill a doubling property : There

exists a constant c≥1 such that

(2.1) 0<μ
(
B2r(x)

)
≤ c·μ

(
Br(x)

)
<+∞,
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for all radii r>0 and all x∈X . Here Br(x):={y∈X : d(y, x)<r} denotes the open

ball of radius r and center x with respect to the metric d. We define the doubling

constant

(2.2) cd := inf
{
c∈ (1,∞) : (2.1) holds

}
.

We follow the concept of Cheeger [9], Heinonen and Koskela [22], calling a

Borel-function g : X→[0,∞] an ‘upper gradient’ for an extended real-valued func-

tion u : X→[−∞,+∞], if for all rectifiable curves γ : [0, �γ ]→X there holds

(2.3)
∣∣u(γ(0)−u

(
γ(�γ)

)∣∣≤
∫
γ

g ds.

Moreover, if g is nonnegative and measurable on X and (2.3) holds for p-almost

every path, which means that it fails only for a path family of zero p-modulus, then

g is a p-weak upper gradient of u.

We define for 1≤p<∞ and for a fixed open subset Ω⊂X the vector space

Ñ 1,p(Ω) :=
{
u∈Lp(Ω): ∃ p-integrable p-weak upper gradient of u

}
.

This space can be endowed with a norm

‖u‖Ñ 1,p(Ω) := ‖u‖Lp(Ω)+inf
g
‖g‖Lp(Ω) = ‖u‖Lp(Ω)+‖gu‖Lp(Ω),

where the infimum is taken over all p-integrable p-weak upper gradients of u, and gu
denotes the minimal p-weak upper gradient. Introducing the equivalence relation

(2.4) u∼ v : ⇐==⇒ ‖u−v‖Ñ 1,p(Ω) =0,

we define the Newtonian space N 1,p(Ω) as the quotient space

(2.5) N 1,p(Ω) := Ñ 1,p(Ω)/∼ .

Obviously this definition depends on the metric d and the measure μ so it would be

more clear to write N 1,p(Ω, d, μ) instead of N 1,p(Ω). However, since the measure μ

and the metric d are fixed, we omit these two parameters in the notation. We refer

the reader to [2] for more details on Newtonian spaces.

According to [2], the Sobolev p-capacity of a set E⊂X with respect to the

space N 1,p(X ) is defined by

Cp(E) := inf
u

‖u‖pN 1,p ,

where the infimum is taken over all functions u∈N 1,p(X ) such that u|E≥1. We say

that a property holds p-almost everywhere on X or quasi everywhere on X , if the

subset E⊂X on which the property fails to hold is of p-capacity zero.
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We follow the method of [26] (see also [29]) and define for an arbitrary subset

E⊂X the space Ñ 1,p
o (E) as the set of all functions u : E→[−∞,+∞] for which

there exists a function ũ∈Ñ 1,p(X ) such that ũ=u μ-almost everywhere in E and

ũ=0 p-almost everywhere on X \E. Then, we define an equivalence relation on

Ñ 1,p
o (E) by saying that u∼v if u=v μ-almost everywhere on E and we set

N 1,p
o (E)= Ñ 1,p

o (E)/∼,

equipped with the norm

‖u‖N 1,p
o (E) = ‖ũ‖Ñ 1,p(X ).

Parabolic Newtonian spaces

Since we are dealing with time-dependent problems, we have to introduce the

parabolic Newtonian space Lp(0, T ;N 1,p(Ω)) or its local version, respectively. The

parabolic space

Lp
(
0, T ;N 1,p(Ω)

)

consists in all functions u : Ω×(0, T )→R for which u(·, ·) : (0, T )→N 1,p(Ω) is

strongly measurable and the function (0, T )�t �→‖u(·, t)‖N 1,p(Ω) is contained in

Lp((0, T )). Here, strongly measurable means that there exists a sequence of simple

functions uk : (0, T )→N 1,p(Ω) such that ‖u(·, t)−uk(·, t)‖N 1,p(Ω)→0 as k→∞ for

a.e. t∈(0, T ).
To define the local version of these parabolic Newtonian spaces, we first intro-

duce, according to [2, Chapter 2.6], the space Lp
loc(X ) as the set of all functions

u : X→R, such that for every x∈X there exists rx>0 such that u∈Lp(Brx(x)).

Similarly we can define N 1,p
loc (X ). If u∈N 1,p

loc (X ), then for every subset Ω�X there

holds u∈N 1,p
loc (Ω) and moreover, since X is doubling, the equivalence

u∈N 1,p
loc (Ω) ⇐==⇒ u∈N 1,p

(
Ω′) for all Ω′ �Ω,

holds true, for every open subset Ω⊂X . Once having these local spaces at hand,

we can understand the local parabolic space Lp
loc(0, T ;N

1,p
loc (Ω)) as the space of all

functions u, such that u(·, t)∈N 1,p
loc (Ω) for almost every t∈(0, T ) and

∫ t2

t1

∥∥u(·, t)∥∥pN 1,p
loc (Ω)

dt<∞,

for all 0<t1<t2<T .
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Vector-valued functions

We are studying vector-valued problems with u≡(u(1), ..., u(N)) : Ω→R
N , N≥1

having components u(i), i=1, ..., N . To define upper gradients for such functions u,

we follow the approach in [24], saying that g : X→[0,∞] is a p-weak upper gradient

for u : X→R
N , if for p-almost all rectifiable paths γ : [0, �γ ]→X there holds

(2.6)
∥∥u(γ(0))−u

(
γ(�γ)

)∥∥≤
∫
γ

g ds.

We may define the Newtonian space N 1,p(Ω;RN ) as the space of all equivalence

classes of Lp-functions u : Ω→R
N such that there exists a p-weak upper gradient

in the sense of (2.6) which is in Lp(Ω). Moreover, it is not difficult to see that this

is equivalent to the fact that every component function ui : Ω→R is in N 1,p(Ω). In

this way, we can also extend our definition of spaces with zero-boundary values and

the local Newtonian spaces to the vector-valued case, obtaining N 1,p
o (Ω,RN ) and

N 1,p
loc (Ω,R

N ).

Parabolic quasi-minimizers

Starting from a metric measure space (X , d, μ), we consider the product space

X×(0, T ), T>0, which we endow with the product measure ν :=μ⊗L1, where L1

denotes the 1-dimensional Lebesgue measure. Following the approach in [30], let us

denote K(Ω×(0, T )):={K⊂Ω×(0, T ) : K compact} and consider the functional

F : Lp
loc(0, T ;N

1,p
loc (Ω;R

N ))×K(Ω×(0, T ))→R,

F [w,K] :=
1

p

∫∫
K

f(gw) dμ dt,
(2.7)

where gw denotes the minimal p-weak upper gradient of w and the integrand

f : [0,∞]→R satisfies the growth condition

(2.8) νζp−L1 ≤ f(ζ)≤Lζp+L1,

for all ζ∈[0,∞), with constants 0<ν≤L<∞ and L1≥0 and with growth exponent

p> 2n
n+2 , where n:=log2 cd and cd denotes the doubling constant (2.2).

Remark 2.1. Since we are dealing with parabolic problems, the solution we are

handling with is a function u≡u(x, t) depending on the variable x in the metric space

X and on the time variable t in R. Therefore we have to understand the concept
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of weak upper gradients in the sense that for a function u∈Lp
loc(0, T ;N

1,p
loc (Ω;R

N ))

the parabolic minimal p-weak upper gradient of u is defined as

(2.9) gu(x, t) := gu(·,t)(x),

for ν-almost every (x, t)∈Ω×(0, T ).

Remark 2.2. (On the notation of upper gradients) In the course of this manu-

script, the symbol gu will always denote a minimal p-weak upper gradient of u. In

case we deal with p-weak upper gradients in general (not necessarily minimal ones),

we use the notation g̃u.

Let us now give the notion of a parabolic quasi-minimizer on a metric space:

Definition 2.3. For an open set Ω⊂X the function u∈Lp
loc(0, T ;N

1,p
loc (Ω;R

N )),

N≥1, is said to be a parabolic Q-minimizer, Q≥1, if

(2.10) −
∫∫

spt Φ

〈u, ∂tΦ〉 dμ dt+F
[
u, spt(Φ)

]
≤Q·F

[
u−Φ, spt(Φ)

]
,

for all Lipschitz functions Φ with compact support in Ω×(0, T ), Φ∈Lipc(Ω×(0, t);

R
N ). Here 〈·, ·〉 denotes the standard scalar product on R

N , and ∂tΦ≡ ∂Φ
∂t .

Poincaré inequality

We demand that the metric measure space (X , d, μ) supports a weak

(1, p)-Poincaré inequality in the sense that there exist constants cP>0 and Γ>1

such that for all open balls B�(xo)⊂BΓ�(xo)⊂X , for all p-integrable functions u on

X and all upper gradients g̃u of u there holds

(2.11) −
∫
B�(xo)

|u−u�,xo | dμ≤ cP �

[
−
∫
BΓ�(xo)

g̃pu dμ

] 1
p

,

where the symbol

u�,xo := −
∫
B�(xo)

u dμ :=
1

μ(B�(xo))

∫
B�(xo)

u dμ

denotes the mean value integral of the function u on the ball B�(xo) with respect

to the measure μ. In the sequel we will refer to this inequality simply as ‘Poincaré

inequality’, omitting the word ‘weak’. Poincaré inequalities on metric measure

spaces have been studied quite extensively in the literature, see for example [1], [4],

[23], [25], [28], [31], [33], [40] and [41].
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The main result

Our aim is to show a local higher integrability result for a parabolic quasi-

minimizer. Our main result is therefore the following:

Theorem 2.4. Let (X , d, μ) be a complete metric space with a doubling mea-

sure μ and doubling constant cd=:2n, which supports a weak (1, p)-Poincaré in-

equality with parameter Γ≥1, and let, for an open set Ω⊂X and p> 2n
n+2 , u∈

Lp
loc(0, T ;N

1,p
loc (Ω;R

N )), N≥1, be a vector-valued local parabolic Q-minimizer in

the sense of (2.10), where the functional F fulfills the growth condition (2.8).

Then there exists εo≡εo(n, N, L, ν, L1, p,Q,Γ)>0 such that

u∈Lp+εo
loc

(
0, T ;N 1,p+εo

loc

(
Ω;RN

))
.

Moreover, there exists a constant c≡c(n, N, L, ν, L1, p,Q,Γ) such that for every

ε∈(0, εo] and for every parabolic cylinder Qo with 2Qo⊂ΩT , the minimal upper

gradient gu of u satisfies the estimate

∫
−
∫
−
Qo

gp+ε
u dμ dt≤ c

[∫
−
∫
−
2Qo

(1+gu)
p dμ dt

]ε d
p
∫
−
∫
−
2Qo

gpu dμ dt,

where d denotes the parabolic deficit

(2.12) d≡
{

p
2 , if p≥2,

2p
p(n+2)−2n , if p<2.

Remark 2.5. The result of Theorem 2.4 requires merely the p-growth condition

(2.8) on the integrand and can therefore be easily generalized to functionals of the

type

F [v,K]≡
∫
K

f(z, v, gv) dμ,

with a Carathéodory integrand f : ΩT ×R
N×R≥0→R and a growth condition

νζp−L1 ≤ f(z, ξ, ζ)≤Lζp+L1,

for all z∈ΩT , ξ∈RN and ζ∈R≥0, and with constants 0<ν≤L<∞ and L1≥0 and

with growth exponent p> 2n
n+2 .

3. Preliminaries

In this chapter we collect some basic properties of metric measure spaces sup-

porting a Poincaré inequality, and we provide the tools which we need to prove our

main theorem.
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3.1. Properties of metric measure spaces

As a direct consequence of the doubling property (2.1) we have for every ball

BR(x)⊂X , y∈BR(x) and 0<r≤R<∞ that

(3.1)
μ(BR(x))

μ(Br(y))
≤C

(
R

r

)n

,

where n=log2 cd and C=c2d. Moreover, since X is connected there exists a constant

c̃ and an exponent σ>0, such that

μ(Br(x))

μ(BR(x))
≤ c̃

(
r

R

)σ

.

According to (3.1), the number n plays the role of a ‘dimension from below’, related

to the measure μ; however we point out that n in general is not an integer.

Since X is a doubling space, it supports the Vitali covering theorem and there-

fore also the differentiation theorem of Lebesgue, i.e. for every nonnegative locally

μ-integrable function on X we have that

lim
r→0

−
∫
Br(x)

f dμ= f(x),

for μ-almost all x∈X .

An important fact, which we will use later to construct suitable test functions,

is the following

Remark 3.1. ([2, Proposition 1.14]) If f : X→R is a locally Lipschitz continu-

ous function, then the pointwise dilation

lip f(x)= lim inf
r→0

sup
y∈Br(x)

|f(y)−f(x)|
r

is an upper gradient of f .

Now we collect some calculus rules for upper gradients in a metric measure

space. The proofs of the following facts can be found in [2], where they are formu-

lated for real-valued function on metric measure spaces. However, they also hold

true if we replace the target space by an arbitrary Banach space F , in particular

F=R
N with N≥1.
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Lemma 3.2. (p-weak upper gradients) Let u∈N 1,p(X ;RN ) and let g∈Lp(X )

be a p-weak upper gradient of u. Then for p-almost every curve γ : [0, �γ ]→X there

holds

(3.2)
∥∥(u◦γ)′(ξ)∥∥≤ g

(
γ(ξ)

)
, for almost every ξ ∈ [0, �γ ].

Conversely, if g≥0 is measurable, u∈N 1,p(X ;RN ) and (3.2) holds for p-almost

every curve γ : [0, �γ ]→X , then g is a p-weak upper gradient of u.

Lemma 3.3. (Leibniz rule [2, Theorem 2.15]) Let u, v∈N 1,p
loc (Ω;R

N ) and let

gu, gv∈Lp
loc(Ω) be p-weak upper gradients of u and v, respectively. Then the func-

tions gu+gv and |u|gv+|v|gu are p-weak upper gradients for u+v and uv, respec-

tively.

Remark 3.4. We note here that in [2, Theorem 2.15] the Leibniz-rule is for-

mulated for minimal p-weak upper gradients of u and v. However, a look at the

proof of the statement shows, that at no point the minimality of gu or gv is needed.

So the result applies also when we replace the minimal upper gradients gu and gv
by arbitrary p-weak upper gradients g̃u and g̃v . On the other hand, even in the

case where one takes the minimal weak upper gradients gu and gv in the above

statement, the function |u|gv+|v|gu is not necessarily minimal. Counter examples

can be found in the book [2].

Lemma 3.5. (Chain rule [2, Theorem 2.16]) Let u∈N 1,p(Ω;RN ) and ϕ : R→R

be locally Lipschitz. Then the function |ϕ′◦u|gu is a minimal p-weak upper gradient

of ϕ◦u.

A direct consequence of Lemmas 3.2 and 3.5 is the following rule which we will

use frequently when calculating upper gradients of test functions:

Lemma 3.6. ([2, Theorem 2.18]) Let u, v∈N 1,p(Ω;RN ) and η be Lipschitz

on Ω, such that 0≤η≤1. Set w :=u+η(v−u)=(1−η)u+ηv. Then

g := (1−η)gu+ηgv+|v−u|gη

is a p-weak upper gradient of w.

Remark 3.7. Note that all these rules can be understood also for time-depen-

dent functions u∈Lp(0, T ;N 1,p(Ω;RN )), if we define the (minimal) p-weak upper

gradients of a time-dependent function u(x, t) as in (2.9).
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Lemma 3.8. (Lp-convergence [2, Proposition 2.3]) Let fj∈N 1,p(X ) (j=1,

2, ...) be a sequence of functions with p-weak upper gradients gj∈Lp(X ), such that

fj→f and gj→g in Lp(X ). Moreover let f∈N 1,p(X ). Then g is a p-weak upper

gradient of f .

One very important property of minimal p-weak upper gradients is that they

are local in the sense that if two functions coincide on a set, then also their minimal

upper gradients coincide on this set. We will need this property at many stages of

our regularity proof, in particular when constructing suitable test functions. The

result is taken from [2, Chapter 2.4].

Lemma 3.9. Let u, v be functions on X with minimal upper gradients gu
and gv . Then is holds that

gu = gv almost everywhere on the set
{
x∈X : u(x)= v(x)

}
.

Moreover, if c∈R is a constant, then gu=0 almost everywhere on the set {x∈
X : u(x)=c}.

3.2. Poincaré inequalities and Sobolev embedding

By Hölder’s inequality it directly follows that if a metric space supports a

(1, p)-Poincaré inequality, then it supports a (1, q)-Poincaré inequality for all q≥p.

On the other hand it was shown in [25] that if a complete metric space is endowed

with a doubling measure and supports a (1, p)-Poincaré inequality, then it supports

also a (1, p−ε)-Poincaré inequality for some ε≡ε(cP ,Λ, cd, p)>0, and therefore also

a (1, q)-Poincaré inequality for all q∈[p−ε, p]. Moreover, from [20] we know that if

we assume a weak (1, p)-Poincaré inequality, then the Sobolev embedding theorem

holds and hence a weak (q, p)-Poincaré inequality holds for all q≤p∗, with

(3.3) p∗ :=

{
pn
n−p , p<n,

+∞, p≥n.

On the other hand it was shown in [29], see also [19], [20] and [22], that in this case for

every u∈N 1,p(B2Γ�(xo)) with B2Γ�(xo)⊂X the following Sobolev-type inequality

holds:

(3.4)

[
−
∫
B�(xo)

|u−u�,xo |q dμ
] 1

q

≤ c∗�

[
−
∫
B2Γ�(xo)

gpu dμ

] 1
p

, for all 1≤ q≤ p∗.

The constant c∗ in the above inequality depends only on cd and on the constant cP
in the weak (1, p)-Poincaré inequality.
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Poincaré and Sobolev inequalities hold also on more general domains. More

precisely, the Poincaré inequality holds on bounded measurable subsets E of the

metric space X such that the p-capacity of the complement X \E does not vanish.

In detail we have ∫
E

|u|p dμ≤CE

∫
E

gpu dμ,

for every function u∈N 1,p
o (E) and for every bounded measurable set E⊂X with

Capp(X \E)>0. The constant CE depends on cP , cd, p and E.

A consequence of the Poincaré and Sobolev inequality, respectively, is a

Gagliardo–Nirenberg type interpolation theorem on metric measure spaces. It is

not difficult to prove such a theorem, since it follows directly from the Sobolev

inequality by a standard Lp-interpolation argument.

Lemma 3.10. Let X be a doubling metric measure space with doubling con-

stant cd=2n, supporting a weak (1, p)-Poincaré inequality, with constant cP and

dilatation constant Γ≥1. Then for all exponents 1≤r≤σ≤τ∗ with 1≤τ<n and

τ∗ := nτ
n−τ denoting the Sobolev conjugate of τ according to (3.3), and for θ∈[0, 1]

such that

(3.5) −n

σ
≤ θ

(
1− n

τ

)
−(1−θ)

n

r
,

we have the interpolation estimate

(3.6) −
∫
B�(xo)

∣∣∣∣u−u�,xo

�

∣∣∣∣
σ

dμ≤ c

[
−
∫
B2Γ�(xo)

gτu dμ

] θσ
τ
[
−
∫
B�(xo)

∣∣∣∣u−u�,xo

�

∣∣∣∣
r

dμ

] (1−θ)σ
r

,

which holds for every u∈N 1,τ (B2Γ�(xo)). The constant c depends on n, τ , ϑ, σ

and cP .

Having in mind the discussion on upper gradients and arguing on component

functions, the Poincaré inequality can be extended to vector-valued functions in a

straight forward way and we obtain a Poincaré inequality for functions u : X→R
N :

−
∫
B�(x)

‖u−u�‖ dμ≤N ·cP �
[
−
∫
BΓ�(x)

gp dμ

] 1
p

,

for every p-weak upper gradient g of u. From this point it is obvious that also the

Sobolev inequality (3.4) can be extended to vector-valued functions, if we replace

the Sobolev constant c∗ by a constant c̃∗≡c̃∗(c∗, N, p).
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3.3. Smoothing procedures

Having a look at the previous definition of a parabolic Q-minimizer, we see that

we are faced with the same problem as in the Euclidean case: It is not possible to test

the inequality (2.10) by Φ≈u, since u is a priori not regular enough with respect to

time. However, since we deal with functions on the product space X×(0, T ), where

(0, T ) is endowed with the usual L1-measure, we can follow the standard strategy

by smoothing the test functions with respect to the time variable. In particular we

define for Φ: Ω×(0, T )→R the smoothed function

(3.7) Φε(x, t) :=

∫
R

Φ(x, t−s)ϕε(s) ds,

with a standard smoothing kernel ϕε with sptϕε⊂(−ε, ε). Using such a smoothed

function in the inequality (2.10), we obtain by a change of variable and Fubini’s

theorem the inequality

(3.8) −
∫∫

spt Φε

〈uε, ∂tΦε〉 dμ dt+F [u, sptΦε]≤Q·F [u−Φε, sptΦε],

where uε denotes the regularization of u with respect to time, according to (3.7).

The advantage of this concept is, that we can now proceed as in the Euclidean case,

testing (2.10) by Φ≈uε, then perform an integration by parts with respect to the

time variable in order to move the time derivative from Φ onto the function uε. By

the growth conditions on F and the properties of the smoothing kernel, one may

conclude strong convergence of the appearing integrals as ε→0. We will carry out

this argument later in the proofs.

One basic observation on smoothed functions with respect to time, which we

will need later at various points, is the following

Lemma 3.11. Let u∈Lp
loc(0, T ;N

1,p
loc (Ω;R

N )) and g̃u be a p-weak upper gra-

dient of u. Moreover let uε be the mollification of u(x, t) with respect to time in the

sense of (3.7) and let guε be a minimal p-weak upper gradient of uε. Then we have

guε(x, t)≤ (g̃u)ε(x, t)=

∫
R

g̃u(x, t−τ)ϕε(τ) dτ.

Proof. We fix a set K×(t1, t2) such that K�Ω and 0<t1<t2<T . First we

note that we can argue on upper gradients instead of p-weak upper gradients. This

is for the following reason. We fix δ>0. Then by Lemma 1.46 in [2] we find

g̃δu such that g̃δu(·, t) is an upper gradient for u(·, t) for almost all t∈(0, T ) and

‖g̃u−g̃δu‖Lp(K×(t1,t2))<δ. Hence, we can replace g̃u by g̃δu in our argument. (2.3)
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with the upper gradient g̃δu holds true for all curves γ : [0, �γ ]→X . By (3.7) and

Fubini’s theorem we then get

∥∥uε

(
γ(0), t

)
−uε

(
γ(�γ), t

)∥∥≤
∫
R

ϕε(τ)
∥∥u(γ(0), t−τ

)
−u

(
γ(�γ), t−τ

)∥∥ dτ

≤
∫
R

ϕε(τ)

∫ 
γ

0

g̃δu
(
γ(s), t−τ

)
ds dτ

=

∫ 
γ

0

∫
R

ϕε(τ)g̃
δ
u

(
γ(s), t−τ

)
dτ ds=

∫
γ

(
g̃δu

)
ε
(·, t) ds.

So (g̃δu)ε is an upper gradient of uε. The statement follows now with the

Lp-convergence of (g̃δu)ε→(g̃u)ε, since guε is a minimal p-weak upper gradient. �

The following lemma is a key ingredient for the smoothing procedure with

respect to time. It ensures that the upper gradient gu−uε tends to zero, when

ε↓0, if uε denotes the time-regularized function with parameter ε>0. The proof is

performed by Masson and Siljander in [37] and uses the Cheeger differential calculus

to deduce the strong Lp-convergence of gu−uε .

Lemma 3.12. Let u∈Lp
loc(0, T ;N

1,p
loc (Ω;R

N )) and let gu−uε be a minimal

p-weak upper gradient of u−uε, where uε denotes the mollification of u with re-

spect to the time variable. Then, as ε→0 we have that gu−uε→0 in Lp
loc(ΩT ) and

also pointwise μ⊗L1-almost everywhere on ΩT .

3.4. The parabolic geometry, cut-off functions and weighted means

We consider the product space X×R endowed with the product measure μ⊗L1

and denote the parabolic cylinder ΩT :=Ω×(0, T ). For a point zo=(xo, to)∈ΩT ,

a radius �>0 and a parameter λ>0 we write

Q(λ)
� (zo) :=B�(xo)×Λ(λ)

� (to), with Λ(λ)
� (to) :=

(
to−λ2−p�2, to+λ2−p�2

)
.

Here, B�(xo) is the open ball of radius � and center xo with respect to the metric d.

We define the parabolic distance between two points z=(x, t) and z̃=(x̃, t̃) in the

cylinder ΩT as

dpar(z, z̃) :=max
{
d(x, x̃),

√
|t− t̃|

}
.

Parabolic cylinders Q�(zo)⊂ΩT are the ‘balls’ with respect to the parabolic metric,

i.e.

Q�(zo)=
{
z ∈ΩT : dpar(z, zo)<�

}
.
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Moreover, we use the notation

(
μ⊗L1

)(
Q(λ)

� (zo)
)
≡μ

(
B�(xo)

)
·L1

(
Λ(λ)
� (to)

)
.

For a function ξ∈Lip(X ), a ball B�(xo)⊂X with ‖ξ‖L1(B�(xo)) �=0 we define the

weighted mean of u with respect to ξ by

uξ
�,xo

(t) :=
1

‖ξ‖L1(B�(xo))

∫
B�(xo)

ξ(x)u(x, t) dμ(x)

=

[∫
B�(xo)

ξ(x) dμ(x)

]−1 ∫
B�(xo)

ξ(x)u(x, t) dμ(x).

Moreover, we consider cut-off functions η of the type

(3.9) η(x, t) := ξ(x)ζ(t),

where ξ : X→R and ζ : R→R have the following properties: For a pair of parabolic

cylinders (Q
(λ)
σ (zo), Q

(λ)
τ (zo)) with radii �

2≤σ<τ≤�, center zo=(xo, to) and

Q
(λ)
� (zo)⊂ΩT we demand that

• ξ(x) is a cut-off function in space of the following form:

(3.10) ξ(x) :=min

{
τ−d(xo, x)

τ−σ
, 1

}
+

≡

⎧⎪⎨
⎪⎩

1 on Bσ(xo),
τ−d(xo,x)

τ−σ on Bτ (xo)\Bσ(xo)

0 on X \Bτ (xo).

This function is clearly an element of N 1,p
o (Bτ (xo)) and it is Lipschitz. Moreover,

by Remark 3.1, and the local nature of minimal upper gradients, Lemma 3.9, we

deduce that on Bσ(xo) and on X \Bτ (xo) the function g̃ξ≡0 is an upper gradient

for ξ, and on Bτ (xo)\Bσ(xo), an upper gradient is given by the Lipschitz constant

1/(τ−σ), so we have for the minimal p-weak upper gradient:

(3.11) gξ ≤
1

τ−σ
χBτ\Bσ

≡
{

1
τ−σ on Bτ (xo)\Bσ(xo)

0 on Bσ(xo) and X \Bτ (xo).

On the other hand we easily calculate that

−
∫
Bτ (xo)

ξ(x) dμ(x) =
1

μ(Bτ (xo))

[
μ
(
Bσ(xo)

)
+

∫
Bτ (xo)\Bσ(xo)

τ−d(xo, x)

τ−σ
dμ(x)

]

≥ μ(Bσ(xo))

μ(Bτ (xo))
≥ c−2

d

(
σ

τ

)n

≥ c−2
d 2−n = c−3

d .
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Here we first used that d(xo, x)≤τ for x∈Bτ \Bσ , thereafter the doubling property

(3.1) together with �
2≤σ<τ≤� and finally n=log2 cd. Since on the other hand we

obviously have supBτ (xo) ξ=1, we deduce

(3.12) sup
Bτ (xo)

ξ≤ c∗ −
∫
Bτ (xo)

ξ(x) dμ(x),

with c∗ :=c3d.

• ζ(t) is a smooth cut-off function in time with

(3.13) spt ζ ⊂Λ(λ)
τ (to), 0≤ ζ ≤ 1, ζ ≡ 1 on Λ(λ)

σ (to).

We recall that Λ
(λ)
τ (to)=(to−λ2−pτ2, to+λ2−pτ2)⊂(0, T ). Moreover we demand

(3.14) λ2−p|ζ ′| ≤ 2

(τ−σ)2
.

Defining

u�,xo(t) := −
∫
B�(xo)

u(x, t) dμ(x),

we have for weight functions ξ, which satisfy (3.12), the following

Lemma 3.13. For B�(xo)⊂Ω and u(·, t)∈Lp
loc(Ω), p≥1, radii 0<τ≤� and a

weight function ξ of the form (3.10), there exists a constant c≡c(p, c∗)≥1 such that

c−1 −
∫
Bτ (xo)

∣∣u(·, t)−uξ
τ,xo

(t)
∣∣p dμ ≤ −

∫
Bτ (xo)

∣∣u(·, t)−uτ,xo(t)
∣∣p dμ

≤ c−
∫
Bτ (xo)

∣∣u(·, t)−uξ
τ,xo

(t)
∣∣p dμ,

for almost all t∈(0, T ).

Proof. The proof follows line by line the argument in the Euclidean setting,

see [39]. �

Moreover, we note that we have a quasi-minimizing property of the mean value

in the following sense:

Lemma 3.14. ([2, Lemma 4.17]) For 1≤p<∞, A⊂X μ-measurable and

u∈Lp(X ) there holds

[
−
∫
A

|u−uA|p dμ
]1/p

≤ 2

[
−
∫
A

|u−a|p dμ
]1/p

,

for every a∈R.
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3.5. Technical lemmas

We will use the following two standard lemmas:

Lemma 3.15. For R1<R2 let Φ:[R1, R2]→[0,∞) be a bounded function. We

assume that for all radii R1≤σ<�≤R2 there holds

Φ(σ)≤ϑΦ(�)+
A

(�−σ)α
+

B

(�−σ)β
+C,

where ϑ∈(0, 1) and A,B,C≥0 are fixed parameters, and moreover α, β≥0. Then

there exists a constant c≡c(ϑ, α, β) such that

Φ(r)≤ c

[
A

(R−r)α
+

B

(R−r)β
+C

]
,

for all R1≤r<R≤R2.

Lemma 3.16. (see [14, Lemma 8.3]) Let ξ, η∈Rn. Then for any s>−1 and

r>0 there exist constants c1≡c1, c2≡c1, c2(s, r) such that

c1
(
1+|ξ|2+|η|2

)s/2 ≤
∫ 1

0

(1−t)r
(
1+

∣∣(1−t)ξ+tη
∣∣2)s/2 dt≤ c2

(
1+|ξ|2+|η|2

)s/2
.

4. Proof of the higher integrability property

4.1. Caccioppoli inequality

In the first step, we prove a (Pre-) Caccioppoli type inequality for quasi-

minimizers.

Proposition 4.1. (Preliminary Caccioppoli type inequality) On the metric

measure space (X , d, μ) from Theorem 2.4, let u∈Lp
loc(0, T ;N

1,p
loc (Ω;R

N )) be a local

parabolic Q-minimizer with Q≥1 in the sense of (2.10), under the growth assump-

tion (2.8). For fixed λ>0 we consider the parabolic cylinder Ω
(λ)
R ⊂Ω. Denoting

with gu the minimal upper gradient of u, there exists a constant c≡c(n, p)>0 such

that for every pair of radii (σ, τ) with �≤σ<τ≤R and every cut-off function η on

(Q
(λ)
σ (zo), Q

(λ)
τ (zo)) of the form (3.9), η(x, t)=ξ(x)ζ(t), with the properties (3.10)
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to (3.14) the following estimate holds true:

sup
t∈Λ

(λ)
σ (to)

∫
Bσ(xo)

∣∣u(·, t)−uξ
τ,xo

(t)
∣∣2 dμ+ν

∫∫
Q

(λ)
σ (zo)

gpu dμ dt

≤ cQL

∫∫
Q

(λ)
τ (zo)\Q(λ)

σ (zo)

gpu dμ dt+cL1(Q+1)
∣∣Q(λ)

τ (zo)
∣∣

cQL

∫∫
Q

(λ)
τ (zo)

∣∣∣∣u−uτ,xo(t)

τ−σ

∣∣∣∣
p

+λp−2

∣∣∣∣u−uτ,xo(t)

τ−σ

∣∣∣∣
2

dμ dt.(4.1)

Proof. We follow basically the proof in [16] in the Euclidean setting. However,

several difficulties have to be overcome due to the non-linear behaviour of upper gra-

dients. For a fixed time t1∈Λ(λ)
σ (to) let χ

h
0,t1 be the piecewise affine approximation

of the characteristic function χ[0,t1] with the following properties.

χh
0,t1(t) := 1 for h≤ t≤ t1−h, χh

0,t1(t)= 0 for t≤ h

10
, resp. t≥ t1−

h

10
.

and moreover

∣∣∂tχh
0,t1(t)

∣∣=
{

10
9h , for t∈( h

10 , h) and t∈(t1−h, t1− h
10 ),

0, else.

We use as test function in the formulation (3.8) of the parabolic Q-minimality

the function

Φh
ε (x, t)≡Φh

ε (x, t;xo) := η(x, t)
(
uε(x, t)−

(
uξ
τ,xo

)
ε
(t)

)
χh,ε
0,t1

(t),

where uε, (u
ξ
τ,xo

)ε and χh,ε
0,t1

denote the mollifications of the functions u, uξ
τ,xo

and

χh
0,t1 with respect to time, according to (3.7) with a parameter ε< h

50 . In particular

we have

(
uξ
τ,xo

)
ε
(t)=

∫
R

1

‖ξ‖Bτ (xo)

[
−
∫
Bτ (xo)

u(x, t−s)ξ(x) dμ(x)

]
ϕε(s) ds

=
1

‖ξ‖Bτ (xo)
−
∫
Bτ (xo)

[∫
R

u(x, t−s)ϕε(s) ds

]
ξ(x) dμ(x)= (uε)

ξ
τ,xo

(t).

Furthermore, η(x, t)=ξ(x)ζ(t) denotes the cut-off function defined in (3.9) on the

pair of cylinders (Q
(λ)
σ (zo), Q

(λ)
τ (zo)). We get on the left hand side of (3.8) the

expression

Lh
ε :=−

∫∫
spt Φh

ε

〈
uε, ∂tΦ

h
ε

〉
dμ dt.
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In a first step we write

Lh
ε =−

∫∫
spt Φh

ε

〈
uε−

(
uξ
τ,xo

)
ε
, ∂tΦ

h
ε

〉
dμ dt−

∫∫
spt Φh

ε

〈(
uξ
τ,xo

)
ε
, ∂tΦ

h
ε

〉
dμ dt.

We consider the second term on the right-hand side of the preceding identity. Since

∫
Bτ (xo)

η
(
uε(x, t)−

(
uξ
τ,xo

)
ε
(t)

)
dμ=0,

for almost all t∈(0, t1), an integration by parts gives

∫∫
spt Φh

ε

〈(
uξ
τ,xo

)
ε
, ∂tΦ

h
ε

〉
dμ dt

=−
∫ t1

0

〈
χh,ε
0,t1

∂t
(
uξ
τ,xo

)
ε
,

∫
Bτ (xo)

η
(
uε−

(
uξ
τ,xo

)
ε

)
dμ

〉
dt=0,

and hence the second term on the right-hand side of the above identity vanishes.

It remains to consider the first term on the right-hand side. By an integration by

parts we deduce

−
∫∫

spt Φh
ε

〈
uε−

(
uξ
τ,xo

)
ε
, ∂tΦ

h
ε

〉
dμ dt=−1

2

∫∫
spt Φh

ε

∣∣uε−
(
uξ
τ,xo

)
ε

∣∣2∂t(ηχh,ε
0,t1

)
dμ dt.

Now we use that χh,ε
0,t1

→χh
0,t1 uniformly as ε↓0 and moreover (u−uξ

τ,xo
)ε→u−uξ

τ,xo

strongly in Lp(0, t1;N 1,p(Bτ (xo);R
N )) and by the Sobolev-embedding also strongly

in L2(Bτ (xo)×(0, t1)) (note also that in order to see that u−uξ
τ,xo

∈L2 one first

replaces uξ
τ,xo

by uτ,xo with the help of Lemma 3.13 and may then use the Sobolev

embedding since u−uτ,xo∈N 1,p
o (Bτ (xo)) for almost every t∈(0, t1)). We conclude

that

(4.2) Lh
ε

ε↓0−→−1

2

∫∫
Bτ (xo)×(0,t1)

∣∣u−uξ
τ,xo

(t)
∣∣2∂t(ηχh

0,t1

)
dμ dt=:Lh.

In a next step, we consider the right hand side of (2.10), in particular the expression

Rh
ε :=QF

[
u−

(
Φh

ε

)
ε
, spt

(
Φh

ε

)
ε

]
−F

[
u, spt

(
Φh

ε

)
ε

]
.

Our aim is to perform the limit procedures ε↓0 and h↓0 and afterwards establish

an appropriate estimate for this expression. We first concentrate on the limit ε↓0
and therefore proceed as follows: In a first step we use the growth condition (2.8)
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to obtain

Rh
ε ≤ −ν

∫∫
spt(Φh

ε )ε

gpu dμ dt

+QL

∫∫
spt(Φh

ε )ε

gp
u−(Φh

ε )ε
dμ dt+L1(Q+1)

∣∣spt(Φh
ε

)
ε

∣∣,(4.3)

where gu−(Φh
ε )ε

denotes a minimal p-weak upper gradient to u−(Φh
ε )ε. Now we

focus on the second integral on the right-hand-side, which we abbreviate

I :=

∫∫
spt(Φh

ε )ε

gp
u−(Φh

ε )ε
dμ dt.

Here we are faced with the problem, that upper gradients of differences of functions

cannot be estimated by the difference of the upper gradients. Therefore, we will

perform the limit procedure in a series of steps. First we split the domain of

integration as follows:

spt
(
Φh

ε

)
ε
=Sh,2ε

t1 ∪CSh,2ε
t1 ,

with

Sh,2ε
t1 :=Bτ×(h+2ε, t1−h−2ε) and CSh,2ε

t1 =spt
(
Φh

ε

)
ε
\Sh,2ε.

and hence write

I ≤
∫∫

Sh,2ε
t1

gp
u−(Φh

ε )ε
dμ dt+

∫∫
CSh,2ε

t1

gp
u−(Φh

ε )ε
dμ dt=: I1+I2,

with the obvious labeling of the expressions I1 and I2. With the help of the subad-

ditivity of the upper gradient we then deduce for I1:

I1 ≤ c(p)

∫∫
Sh,2ε
t1

gpu−(uε)ε
dμ dt+c(p)

∫∫
Sh,2ε
t1

gp
(uε)ε−(Φh

ε )ε
dμ dt.

Now we observe the following: On the time interval [h+ε, t1−h−ε] we have χh,ε
0,t1

≡1

and therefore there holds uε−Φh
ε≡(1−η)uε+η(uξ

τ,xo
)ε. On the other hand, we

conclude that

(4.4) g̃uε−Φh
ε
≡ (1−η)guε+gη

∣∣uε−
(
uξ
τ,xo

)
ε

∣∣
is a p-weak upper gradient of uε−Φh

ε , not necessarily the minimal one. The rea-

son for this is the following: The function ζ(t) is Lipschitz and therefore, since
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η(x, t)=ξ(x)ζ(t), by Remark 3.1, gη is a p-weak upper gradient to η. Moreover, by

Lemma 3.9 we have g(uη
τ,xo )ε

≡0 since (uη
τ,xo

)ε is a function only in the time variable.

Consequently, the assertion (4.4) follows by Lemma 3.6. Applying Lemma 3.11, we

therefore conclude that
∫∫

Sh,2ε
t1

gp
(uε)ε−(Φh

ε )ε
dμ dt≤

∫∫
Sh,2ε
t1

(guε−Φh
ε
)pε dμ dt

≤
∫∫

Sh,ε
t1

gp
uε−Φh

ε
dμ dt

≤ c

∫∫
Sh,ε
t1

(1−η)pgpuε
+gpη

∣∣uε−
(
uξ
τ,xo

)
ε

∣∣p dμ dt.

To estimate I2, we first remark that

CSh,2ε
t1 ⊂Bτ×

([
h

10
−2ε, h+2ε

]
∪
[
t1−h−2ε, t1−

h

10
+2ε

])

and use the fact that by Lemma 3.3 holds

gu−(Φh
ε )ε

≤ gu+g(Φh
ε )ε

.

In order to estimate the integral containing the minimal upper gradient g(Φh
ε )ε

, we

want to show that

(4.5) g̃Φh
ε
:= gη

∣∣uε−
(
uη
τ,xo

)
ε

∣∣χh,ε
0,t1

+ηguεχ
h,ε
0,t1

is a p-weak upper gradient of Φh
ε . For this aim, we use Lemma 3.2. Let Ω′ be

an open set such that Ω′⊂Ω. First, we note that g̃Φh
ε
≥0 and moreover g̃Φh

ε
(·, t)∈

Lp(Ω′) for almost every t∈(0, T ), since uε(·, t)∈Lp
loc(Ω), guε∈L

p
loc(Ω), χ

h,ε
0,t1

≤1 and

gη≤2/(τ−σ). In order to conclude by Lemma 3.2 that g̃Φh
ε
is a p-weak upper

gradient of Φh
ε , we have to show that for almost every t and for p-almost every

curve γ : [0, �γ ]→Ω′, there holds

(4.6)
∣∣(Φh

ε ◦γ
)′
(s, t)

∣∣≤ g̃Φh
ε

(
γ(s), t

)
, for a.e. s∈ [0, �γ ].

We denote by gη(x, t) and guε(x, t) the minimal p-weak upper gradients of η and

uε, respectively. Then by Lemma 3.2 we know that for almost every t∈(0, T ) and

almost every curve γ : [0, �γ ]→Ω′ there holds

∣∣(η◦γ)′(s, t)∣∣≤ gη
(
γ(s), t

)
and

∣∣(uε◦γ)′(s, t)
∣∣≤ guε

(
γ(s), t

)
, for a.e. s∈ [0, �γ ],
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and, since both uε, η∈N 1,p(Ω′), the mappings uε◦γ and η◦γ are absolutely contin-

uous. Then, we calculate

(
Φh

ε ◦γ
)′
(s, t)=

d

ds

[
η
(
γ(s), t

)[
uε

(
γ(s), t

)
−
(
uξ
τ,xo

)
ε
(t)

]
χh,ε
0,t1

]

=χh,ε
0,t1

(t)
[
(η◦γ)′(s, t)

[
uε

(
γ(s), t

)
−
(
uξ
τ,xo

)
ε
(t)

]

+η
(
γ(s), t

)
(uε◦γ)′(s, t)

]
.

As a consequence we get

∣∣(Φh
ε ◦γ

)′
(s, t)

∣∣≤χh,ε
0,t1

(t)
[∣∣(η◦γ)′(s, t)∣∣∣∣(uε◦γ)(s, t)−

(
uξ
τ,xo

)
ε
(t)

∣∣
+
∣∣(η◦γ)(s, t)∣∣∣∣(uε◦γ)′(s, t)

∣∣]

≤χh,ε
0,t1

(t)
(
gη
∣∣uε−

(
uξ
τ,xo

)
ε

∣∣+ηguε

)
◦γ(s, t).

Hence, we conclude (4.6) and therefore (4.5) again by Lemma 3.2. Having this at

hand, we get by the properties of the mollification and with Lemma 3.11:
∫∫

CSh,2ε
t1

gp
u−(Φh

ε )ε
dμ dt

≤ c

∫∫
CSh,2ε

t1

(
gpu+gp

(Φh
ε )ε

)
dμ dt

≤ c

∫∫
CSh,2ε

t1

gpu dμ dt+c

∫∫
Bτ×[ h

10−4ε,h+4ε]

gp
Φh

ε
dμ dt

+c

∫∫
Bτ×[t1−h−4ε,t1− h

10+4ε]

gp
Φh

ε
dμ dt

≤ c

∫∫
CSh,2ε

t1

gpu dμ dt+c

∫∫
Bτ×([ h

10−4ε,h+4ε]∪[t1−h−4ε,t1− h
10+4ε])

gp
Φh

ε
dμ dt.

Now we combine all the estimates from before and additionally note that

spt
(
Φh

ε

)
ε
⊂Q(λ)

τ (zo)∩{h−2ε≤ t≤ t1−h+2ε}⊂Q(λ)
τ (zo)∩{t≤ t1},

to conclude that

−Lh
ε+ν

∫∫
Q

(λ)
σ (zo)∩{h−2ε≤t≤t1−h+2ε}

gpu dμ dt

≤L1(Q+1)
∣∣Q(λ)

τ (zo)∩{t≤ t1}
∣∣+c(p)LQ

∫∫
Sh,2ε
t1

gpu−(uε)ε
dμ dt
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+c(p)LQ
∫∫

Sh,ε
t1

(1−η)gpuε
+gpη

∣∣uε−
(
uξ
τ,xo

)
ε

∣∣p dμ dt

+c(p)LQ
∫∫

CSh,2ε
t1

gpu dμ dt

+c(p)LQ
∫∫

Bτ×([ h
10−4ε,h+4ε]∪[t1−h−4ε,t1− h

10+4ε])

g̃p
Φh

ε
dμ dt.(4.7)

The integral ∫∫
Sh,2ε
t1

gpu−(uε)ε
dμ dt

tends to zero in the limit ε↓0 since

0≤ gu−(uε)ε ≤ gu−uε+guε−(uε)ε ≤ gu−uε+(gu−uε)ε → 0,

in Lp(Bτ×(0, t1)), and here we have used the subadditivity of the upper gradient,

then Lemma 3.11 and finally Lemma 3.12. Next, we consider the second integral

on the right-hand-side of (4.7). Since η≡0 on Q
(λ)
τ (zo)\Q(λ)

σ (zo), we obtain by the

properties of the mollification end subsequently enlarging the domain of integration:

∫
Sh,ε
t1

(1−η)gpuε
dμ dt≤

∫∫
Sh,ε
t1

∩(Q
(λ)
τ (zo)\Q(λ)

σ (zo))

gpuε
dμ dt

≤
∫∫

Sh,ε
t1

∩(Q
(λ)
τ (zo)\Q(λ)

σ (zo))

(gu)
p
ε dμ dt

≤
∫∫

Sh
t1

∩(Q
(λ)
τ (zo)\Q(λ)

σ (zo))

gpu dμ dt,

where we introduced the short-hand notation Sh
t1≡Sh,0

t1 =Bτ (xo)×[h, t1−h]. More-

over, by the strong convergence uε→u, uη
τ,ε→uη

τ in Lp(Sh), we deduce

∫∫
Sh,ε
t1

gpη
∣∣uε−

(
uξ
τ,xo

)
ε

∣∣p dμ dt−→
∫
Sh
t1

gpη
∣∣u−uξ

τ,xo

∣∣p dμ dt,

as ε↓0 and hence, combining the last two observations, we get

lim sup
ε↓0

∫∫
Sh,ε
t1

(1−η)gpuε
+gpη

∣∣uε−
(
uξ
τ,xo

)
ε

∣∣p dμ dt

≤
∫
Sh
t1

∩(Q
(λ)
τ (zo)\Q(λ)

σ (zo))

gpu dμ dt+

∫∫
Sh
t1

gpη
∣∣u−uξ

τ,xo

∣∣p dμ dt.
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Finally we investigate the last term on the right-hand-side of (4.7). Therefore we

recall that

g̃Φh
ε
= gη

∣∣uε−
(
uξ
τ,xo

)
ε

∣∣χh,ε
0,t1

+ηguεχ
h,ε
0,t1

.

The first term converges strongly in Lp(Bτ (xo)×(0, t1)) to gη|u−uξ
τ,xo

|χh
0,t1 , since

uε−(uξ
τ,xo

)ε→u−uξ
τ,xo

strongly in Lp, and χh,ε
0,t1

→χh
0,t1 uniformly. Moreover, since

χh,ε
0,t1

≤1 and η≤1, we get for the second term, abbreviating for a short moment

B :=Bτ (xo)×([h/10−4ε, h+4ε]∪[t1−h−4ε, t1−h/10+4ε]):
∫∫

B
ηpgpuε

(
χh,ε
0,t1

)p
dμ dt≤

∫∫
B
gpuε

dμ dt

≤
∫∫

Bτ (xo)×([ h
10−5ε,h+5ε]∪[t1−h−5ε,t1− h

10+5ε])

gpu dμ dt,

so that

lim sup
ε↓0

∫∫
Bτ (xo)×([ h

10−4ε,h+4ε]∪[t1−h−4ε,t1− h
10+4ε])

g̃p
Φh

ε
dμ dt

≤
∫∫

Bτ (xo)×([ h
10 ,h]∪[t1−h,t1− h

10 ])

(
gpη
∣∣u−uξ

τ,xo

∣∣p+gpu
)
dμ dt.

Combining all these estimates and letting ε↓0, we therefore conclude the following

estimate:

Lh+ν

∫∫
Q

(λ)
σ (zo)∩{h≤t≤t1−h}

gpu dμ dt

≤ cLQ
∫∫

Sh
t1

∩(Q
(λ)
τ (zo)\Q(λ)

σ (zo))

gpu dμ dt

+cLQ
∫∫

Sh
t1

gpη
∣∣u−uξ

τ

∣∣p dμ dt

+cLQ
∫∫

Bτ (xo)×([ h
10 ,h]∪[t1−h,t1− h

10 ])

(
gpu+gpη

∣∣u−uξ
τ

∣∣p) dμ dt

+L1(Q+1)
∣∣Q(λ)

τ (zo)∩{t≤ t1}
∣∣,(4.8)

with c≡c(p). Finally we perform the limit h↓0. We first consider the term

Lh =− 1

2

∫∫
Bτ (xo)×(0,t1)

∣∣u−uξ
τ,xo

∣∣2∂tηχh
0,t1 dμ dt

− 1

2

∫∫
Bτ (xo)×(0,t1)

∣∣u−uξ
τ,xo

∣∣2η∂tχh
0,t1 dμ dt.
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For the first expression on the right-hand-side we get

−1

2

∫∫
Bτ (xo)×(0,t1)

∣∣u−uξ
τ,xo

∣∣2∂tηχh
0,t1 dμ dt

≥−1

2

∫∫
Bτ (xo)×(0,t1)

∣∣u−uξ
τ,xo

∣∣2|∂tη| dμ dt.

For the second expression we have

−1

2

∫∫
Bτ (xo)×(0,t1)

∣∣u−uξ
τ,xo

∣∣2η∂tχh
0,t1 dμ dt

=− 5

9h

∫ h

h
10

∫
Bτ (xo)

∣∣u−uξ
τ,xo

∣∣2η dμ dt+
5

9h

∫ t1− h
10

t1−h

∫
Bτ (xo)

∣∣u−uξ
τ,xo

∣∣2η dμ dt.

Since spt η⊂Q
(λ)
τ (zo), the first term is identically zero, if h is small enough. The

second term converges to

1

2

∫
Bτ (xo)

∣∣u(·, t1)−uξ
τ,xo

(t1)
∣∣2η(·, t1) dμ,

for almost all t1∈Λ(λ)
σ (to). Alltogether we have seen:

lim inf
h↓0

Lh ≥ −1

2

∫∫
Bτ (xo)×(0,t1)

∣∣u−uξ
τ,xo

∣∣2|∂tη| dμ dt

+
1

2

∫
Bτ (xo)

∣∣u(·, t1)−uξ
τ,xo

(t1)
∣∣2η(·, t1) dμ.

It remains to consider the right-hand-side of (4.8). Here we argue by the continuous

dependence on the domain of integration, since the integrands do not depend on h

and therefore we finally obtain∫
Bτ (xo)

∣∣u(·, t1)−uξ
τ,xo

(t1)
∣∣2η(·, t1) dμ+ν

∫∫
Q

(λ)
σ (zo)∩{t≤t1}

gpu dμ dt

≤ c(p)LQ
∫∫

(Q
(λ)
τ (zo)\Q(λ)

σ (zo))∩{t≤t1}
gpu dμ dt

+c(p)LQ
∫∫

Q
(λ)
τ (zo)

gpη
∣∣u−uξ

τ,xo

∣∣p dμ dt

+c(p)

∫∫
Q

(λ)
τ (zo)

|∂tη|p
∣∣u−uξ

τ,xo

∣∣2 dμ dt

+L1(Q+1)
∣∣Q(λ)

τ (zo)∩{t≤ t1}
∣∣,
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for almost all t1∈Λ(λ)
σ (to). Now we use the properties of the cut-off functions (3.11)

and (3.14) together with ξ, ζ≤1 to conclude the estimate
∫
Bτ (xo)

∣∣u(·, t1)−uξ
τ,xo

(t1)
∣∣2η(·, t1) dμ+ν

∫∫
Q

(λ)
σ (zo)∩{t≤t1}

gpu dμ dt

≤ c(p)LQ
∫∫

(Q
(λ)
τ (zo)\Q(λ)

σ (zo))

gpu dμ dt+L1(Q+1)
∣∣Q(λ)

τ (zo)
∣∣

+LQ
∫∫

Q
(λ)
τ (zo)

∣∣∣∣
u−uξ

τ,xo

τ−σ

∣∣∣∣
p

dμ dt+cλp−2

∫∫
Q

(λ)
τ (zo)

∣∣∣∣
u−uξ

τ,xo

τ−σ

∣∣∣∣
2

dμ dt,

which holds for almost every t1∈Λ(λ)
σ (to), with a constant c≡c(p). Since the right

hand side of the estimate does not depend on t1, we may pass on the left hand side

to the supremum over t1∈Λ(λ)
σ . On the other hand we may replace the weighted

mean values uη
τ (t) by the standard mean values uτ (t) with respect to the space

variable by Lemma 3.13, and this is the point where the dependence of the constant

on cd and therefore on n comes into play. Hence, the proof is complete. �

The Pre-Caccioppoli inequality implies a Caccioppoli inequality for weak upper

gradients. The proof of this consequence works exactly as in the Euclidean case and

we therefore refer the reader to [16].

Lemma 4.2. (Caccioppoli inequality) Under the assumptions of Proposi-

tion 4.1 there exist two constants c1≡c1(n, L/ν,Q) and c2≡c2(n, L/ν, L1/ν,Q) such

that for every concentric pair of scaled parabolic cylinders Q
(λ)
� (zo)⊂Q

(λ)
R (zo)⊂ΩT

with scaling parameter λ>0 such that the following estimate for every p-weak min-

imal upper gradient gu of u holds:
∫∫

Q
(λ)
� (zo)

gpu dμ dt

≤ c1

∫∫
Q

(λ)
R (zo)

∣∣∣∣u−uR(t)

R−�

∣∣∣∣
p

+λp−2

∣∣∣∣u−uR(t)

R−�

∣∣∣∣
2

dμ dt+c2
∣∣Q(λ)

R (zo)
∣∣.(4.9)

Secondly, Proposition 4.1 implies a Poincaré type inequality on intrinsic para-

bolic cylinders. However for this estimate to hold, it is necessary that the metric

measure space itself supports a (1, p)-Poincaré inequality.

Lemma 4.3. (Poincaré inequality on intrinsic cylinders) Under the hypothesis

of Proposition 4.1 on the metric measure space which supports a (1, p)-Poincaré

inequality, for every fixed ˇ≥1 there exists a constant c≡c(n, N, ν, L, L1, p,ˇ,Q,Λ)
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such that for every parabolic cylinder Q
(λ)
2Γ�⊂ΩT with scaling parameter λ>0, on

which

(4.10)

∫
−
∫
−
Q

(λ)
2Γ�(zo)

(1+gu)
p dμ dt≤ˇλp,

is satisfied, the estimate

(4.11) sup
t∈Λ

(λ)
� (to)

−
∫
B�(xo)

∣∣∣∣u(·, t)−u�(t)

�

∣∣∣∣
2

dμ≤ cλ2

holds true.

Proof. We basically follow the strategy in [16]. In the case p≥2, we apply the

estimate of Proposition 4.1 with the choices σ :=� and τ :=2� to obtain

sup
t∈Λ

(λ)
� (to)

∫
B�

∣∣u(·, t)−uξ
2�,xo

(t)
∣∣2 dμ

≤ c

∫∫
Q

(λ)
2� (zo)

(1+gu)
p dμ dt

+c

∫∫
Q

(λ)
2� (zo)

∣∣∣∣u−u2�,xo(t)

�

∣∣∣∣
p

+λp−2

∣∣∣∣u−u2�,xo(t)

�

∣∣∣∣
2

dμ dt.(4.12)

Now we recall that the metric space supports a weak (1, p)-Poincaré inequality, and

by the Sobolev embedding theorem also a weak (1, q)-Poincaré inequality for all

exponents 1≤q≤p∗= np
n−p . In particular, we have

−
∫
B2�(xo)

|u−u2�,xo |p dμ≤ cP �
p −
∫
B2Γ�(xo)

gpu dμ,

on every time slice t. Hence, using also (4.10), we can estimate the integral on the

right hand side above in the following way:

∫∫
Q

(λ)
2� (zo)

∣∣∣∣u−u2�,xo(t)

�

∣∣∣∣
p

dμ dt=

∫
Λ

(λ)
2� (to)

μ
(
B2�(xo)

)
−
∫
B2�(xo)

∣∣∣∣u−u2�,xo

�

∣∣∣∣
p

dμ dt

≤ cPμ
(
B2�(xo)

) ∫
Λ

(λ)
2� (to)

−
∫
B2Γ�(xo)

gpu dμ dt

≤ cPΓ
2
ˇ

(
μ⊗L1

)(
Q

(λ)
2� (zo)

)
λp.
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On the other hand we have, using Hölder’s inequality:

∫∫
Q

(λ)
2� (zo)

∣∣∣∣u−u2�,xo(t)

�

∣∣∣∣
2

dμ dt

≤
(
μ⊗L1

)(
Q

(λ)
2� (zo)

)[
−
∫
Q

(λ)
2� (zo)

∣∣∣∣u−u2�,xo(t)

�

∣∣∣∣
p

dμ dt

]2/p

≤ c
(
μ⊗L1

)(
Q

(λ)
2� (zo)

)
Γ4/p

ˇλ2,

with c≡c(N, p, cP ). Combining this with (4.12) we arrive at

sup
t∈Λ

(λ)
� (to)

∫
B�

∣∣u(·, t)−uξ
2�,xo

(t)
∣∣2 dμ≤ cˇ

(
μ⊗L1

)(
Q

(λ)
2� (zo)

)
λp

= cˇμ
(
B2�(xo)

)
�2λ2,

with a constant c which depends on N , cP , p, Q, L, L1 and Γ. Now, we use the

doubling property of the measure to get μ(B2�(xo))≤2nμ(B�(xo)). Moreover we use

the quasi-minimizing property of the mean value u�,xo(t) in terms of Lemma 3.14 to

replace uξ
2�,xo

(t) by u�,xo(t) on the left hand side of the preceding inequality, then

decide the resulting expression by μ(B�(xo))�
2 to conclude the desired estimate in

the case p≥2.

In the case p<2 the main additional ingredient for the proof is the Gagliardo–

Nirenberg inequality (3.10), which allows us to ‘reduce’ the L2-norm appearing on

the right hand side to the Lp-norm. We proceed as in the Euclidean case and there-

fore sketch only the basic steps. In a first step, the application of Proposition 4.1

for radii 0<�≤σ<τ≤2� and the quasi-minimizing property of the mean value uσ(t)

on every time slice t gives

sup
t∈Λ

(λ)
σ (to)

∫
Bσ(xo)

∣∣u(·, t)−uσ,xo(t)
∣∣ dμ≤ c

∫∫
Q

(λ)
2Γ�(zo)

(1+gu)
p dμ dt+cIp+cI2,

with

Iq :=λp−q

∫∫
Q

(λ)
τ (zo)

∣∣∣∣u−uτ,xo(t)

τ−σ

∣∣∣∣
q

dμ dt,

for q=p and q=2. For q=p the expression Ip is estimated with the help of the

Poincaré inequality and (4.10) as follows:

Ip =
τp

(τ−σ)p

∫∫
Q

(λ)
τ (zo)

∣∣∣∣u−uτ,xo(t)

τ

∣∣∣∣
q

dμ dt

≤ 2−pτp

(τ−σ)p

∫
Λ

(λ)
τ (to)

−
∫
Bτ (xo)

∣∣∣∣u−uτ,xo(t)

τ

∣∣∣∣
q

dμ dt
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≤ cP
2−pτp

(τ−σ)p
μ(Bτ (xo))

μ(BΓτ (xo))

(
μ⊗L1

)(
Q

(λ)
2Γτ (zo)

)
−
∫
Q

(λ)
2Γτ (zo)

gpu dμ dt

≤ cP
2−pτp

(τ−σ)p
2ncd2λ

2−p(2Γτ)2ˇλp

≤ cP
2−p+3+nτp+2

(τ−σ)p
μ
(
Bτ (xo)

)
ˇΓ2λ2 ≤ c

�p+2

(τ−σ)p
μ
(
B�(xo)

)
ˇΓ2λ2,

with c≡c(n, p, cP , N). Here we have also used twice the doubling property of the

measure.

For q=2, we apply the Gagliardo–Nirenberg estimate in the version of Lem-

ma 3.10 with the exponents (σ, τ, r, θ)=(2, p, 2, p/2) and arrive at

I2 =
τ2λp−2(μ⊗L1)(Q

(λ)
τ (zo))

(τ−σ)2
−
∫
Λ

(λ)
τ (to)

−
∫
Bτ (xo)

∣∣∣∣u−uτ,xo(t)

τ

∣∣∣∣
2

dμ dt

≤ c
τ2λp−2(μ⊗L1)(Q

(λ)
τ (zo))

(τ−σ)2

×−
∫
Λ

(λ)
τ (to)

[
−
∫
B2Γτ (xo)

gpu dμ

][
−
∫
Bτ (xo)

∣∣∣∣u−uτ,xo(t)

τ

∣∣∣∣
2

dμ

]1− p
2

dt

≤ c
τ2λp−2(μ⊗L1)(Q

(λ)
τ (zo))

(τ−σ)2
|Λ(λ)

2Γτ |
|Λ(λ)

τ |

[
sup

t∈Λ
(λ)
τ (to)

−
∫
Bτ (xo)

∣∣∣∣u−uτ,xo(t)

τ

∣∣∣∣
2

dμ

]1− p
2

ˇλp

≤ c
�p+2μ(Bτ (xo))

p/2

(τ−σ)2
Γ2

[
sup

t∈Λ
(λ)
τ (to)

∣∣u−uτ,xo(t)
∣∣2 dμ]1−

p
2

ˇλp

≤ 1

2
sup

t∈Λ
(λ)
τ (to)

∫
Bτ (xo)

∣∣u−uτ,xo(t)
∣∣2 dμ+c

�2+4/p

(τ−σ)4/p
Γ4/pμ(Bτ )ˇ

2/pλ2,

with a constant c≡c(n, N, p, cP ). Here we have used several times the doubling

property of the measure and �≤τ≤2�. Combining now the estimates for Ip and I2
and defining

Φ(s) := sup
t∈Λ

(λ)
s (to)

∫
Bs(xo)

∣∣u(·, t)−us,xo(t)
∣∣2 dμ,

we get

Φ(σ)≤ 1

2
Φ(τ)+c

μ(B�(xo))�
2+p

(τ−σ)p
λ2+c

μ(B�(xo))�
2+4/p

(τ−σ)4/p
λ2+cμ

(
B�(xo)

)
�2λ2.

The Iteration Lemma 3.15 and a subsequent division of the resulting inequality by

�2μ(B�) then provides the desired Poincaré inequality also in the case p<2. �
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4.2. Reverse Hölder inequality

We consider for parameters λ≥1 and ˇ≥1 concentric parabolic cylinders

Q
(λ)
� (zo)⊂Q

(λ)
4Γ�(zo)⊂ΩT =Ω×(0, T ), such that

(4.13) ˇ
−1λp ≤

∫
−
∫
−
Q

(λ)
� (zo)

(1+gu)
p dμ dt,

and

(4.14)

∫
−
∫
−
Q

(λ)
4Γ�(zo)

(1+gu)
p dμ dt≤ˇλp.

On cylinders on which this kind of intrinsic coupling holds true, we have the fol-

lowing reverse Hölder inequality:

Lemma 4.4. On the metric measure space (X , d, μ) from Theorem 2.4, let

p> 2n
n+2 and u∈Lp

loc(0, T ;N
1,p
loc (Ω;R

N )) be a parabolic Q-minimizer in the sense of

(2.10) under the growth condition (2.8). Let Q
(λ)
� (zo)⊂Q

(λ)
4Γ�(zo)⊂ΩT be concentric

parabolic cylinders for which the intrinsic coupling in terms of (4.13) and (4.14)

holds. Then there exists a constant c depending on n, N , L, ν, L1, p, Q, ˇ and Γ,

such that for all 0<ϑ≤ϑ1 :=min{2, p}n+2
2n the reverse Hölder estimate

∫
−
∫
−
Q

(λ)
� (zo)

gpu dμ dt≤ c

[∫
−
∫
−
Q

(λ)
4Γ�(zo)

gp/ϑu dμ dt+1

]ϑ

holds true.

Proof. We start with Lemma 4.2 applied with radii (�,R)≡(�, 2�), which pro-

vides after dividing the inequality by μ(B�(xo)) and using μ(B2�(xo))≤
2nμ(B�(xo)), the following estimate:

∫
−
∫
−
Q

(λ)
� (zo)

gpu dμ dt ≤ c

[∫
−
∫
−
Q

(λ)
2� (zo)

∣∣∣∣u−u2�,xo(t)

�

∣∣∣∣
p

+λp−2

∣∣∣∣u−u2�,xo(t)

�

∣∣∣∣
2

dμ dt+1

]

=: c(Ip+I2+1).(4.15)

Here we define

Iq :=λp−q

∫
−
∫
−
Q

(λ)
2� (zo)

∣∣∣∣u−u2�(t)

�

∣∣∣∣
p

dμ dt.

Now, we apply the Gagliardo–Nirenberg estimate with the choices (σ, τ, r, θ)≡
(q, p/ϑ, 2, p/(qϑ)) (which is possible by the restriction on ϑ1) and subsequently
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the Poincaré inequality in terms of Lemma 4.3 on the pair of cylinders (Q
(λ)
2� (zo),

Q
(λ)
4Γ�(zo)) to obtain

Iq ≤ cλp−q −
∫
Λ

(λ)
2� (to)

[
−
∫
B4Γ�(xo)

gp/ϑu dμ

][
−
∫
B2�(xo)

∣∣∣∣u−u2�,xo(t)

�

∣∣∣∣
2

dμ

] q
2 (1−

p
qϑ )

dt

≤ cλp−qλq(1− p
qϑ )

|Λ(λ)
4Γ�(to)|

|Λ(λ)
2� (to)|

∫
−
∫
−
Q

(λ)
4Γ�(zo)

gp/ϑu dμ dt

≤ cλp(1− 1
ϑ )

∫
−
∫
−
Q

(λ)
4Γ�(zo)

gp/ϑu dμ dt,

for a constant c≡c(n, N, L, L1, p,Q,ˇ,Γ). Inserting the estimate for Ip and I2 into

(4.15) and then applying Young’s inequality we arrive at

∫
−
∫
−
Q

(λ)
� (zo)

(1+gu)
p dμ dt≤ 1

2ˇ
λp+c

[∫
−
∫
−
Q

(λ)
4Γ�(zo)

gp/ϑu dμ dt+1

]ϑ
.

Using once again (4.13) and absorbing the term 1
2λ

p into the left hand side, the

proof of Lemma 4.4 is complete. �

4.3. Proof of the gradient estimate

Let us fix a cylinder Qo≡Q2r(z̄)⊂ΩT with radius r>0 and center z̄ and con-

sider concentric parabolic cylinders of the type

1

2
Qo(z̄)≡Qr(z̄)⊆Qr1(z̄)⊂Qr2(z̄)⊆Q2r(z̄)≡Qo(z̄)

with radii r≤r1<r2≤2r. Furthermore, we define the quantity λo by

(4.16) λ
p
d
o :=

∫
−
∫
−
Q2r(z̄)

(1+gu)
p dμ dt,

and note that λo≥1. Here we recall the definition of d from (2.12). In the sequel

we will often omit the center of the cylinders at points where this is clear from the

context. Let zo∈Qr1(z̄) be an arbitrary point and we consider now for a scaling

parameter λ≥1 parabolic cylinders Q
(λ)
s (zo)=Bs(xo)×Λ

(λ)
s (to) with radii

(4.17) s≤min
{
1, λ

p−2
2

}
(r2−r1).

With this restriction, we have Q
(λ)
s (zo)⊆Qr2(z̄), which we can check easily as fol-

lows: For any point z∈Q(λ)
s (zo) we have with the notation z≡(x, t) that

d(x, xo)<min
{
1, λ

p−2
2

}
(r2−r1) and |t−to|

1
2 <λ

2−p
2 min

{
1, λ

p−2
2

}
(r2−r1).
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In the case p≥2 we have that min{1, λ p−2
2 }=1 and λ

2−p
2 ≤1, because λ≥1, whereas

in the case p<2 it holds min{1, λ p−2
2 }=λ

p−2
2 and λ

p−2
2 ≤1. In turn we get in any

case p>1 that

dpar(z, zo)≤max
{
d(x, xo),

√
|t−to|

}
<r2−r1,

and thus

dpar(z, z̄)≤dpar(z, zo)+dpar(zo, z̄)<r2−r1+r1 = r2.

So, z∈Qr2(z̄).

We next have to find parabolic cylinders of the above type on which the intrinsic

coupling (4.13), (4.14) is satisfied. Since the measure μ is doubling, the Lebesgue

differentiation theorem holds on X×R and as gu∈Lp
loc(ΩT ) we have for μ-almost

every point zo∈Qr1(z̄) with gu(zo)>λ that

(4.18) lim
s↓0

∫
−
∫
−
Q

(λ)
s (zo)

(1+gu)
p dμ dt≥ lim

s↓0

∫
−
∫
−
Q

(λ)
s (zo)

gpu dμ dt= gu(zo)
p >λp.

To see the equality in (4.18), we have to use once again the doubling property of the

measure as follows: For τ :=max{λ 2−p
2 , 1} we have that Q

(λ)
s (zo)⊂Qτs(zo). Since

Qτs(zo) is a usual parabolic cylinder, the Lebesgue theorem holds on it and gives

lim
s↓0

∫
−
∫
−
Qτs(zo)

gpu dμ dt= gu(zo)
p.

Moreover we have

lim
s↓0

∫
−
∫
−
Q

(λ)
s (zo)

gpu dμ dt

≤ gu(zo)
p+lim

s↓0

∫
−
∫
−
Q

(λ)
s (zo)

∣∣gpu−gu(zo)
p
∣∣ dμ dt

≤ gu(zo)
p+lim

s↓0

(μ⊗L1)(Qτs(zo))

(μ⊗L1)(Q
(λ)
s (zo))

∫
−
∫
−
Qτs(zo)

∣∣gpu−gu(zo)
p
∣∣ dμ dt

≤ gu(zo)
p+lim

s↓0

(τs)2

s2λ2−p
·c2d

(
τs

s

)n ∫
−
∫
−
Qτs(zo)

∣∣gpu−gu(zo)
p
∣∣ dμ dt

= gu(zo)
p.

Now we define

(4.19) Bp/d := 22n
(

80Γr

r2−r1

)n+2

> 1.
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Then for pairs (λ, s) with λ>Bλo and

(4.20)
1

40Γ
min

{
λ

p−2
2 , 1

}
(r2−r1)≤ s≤ 1

2
min

{
λ

p−2
2 , 1

}
(r2−r1)

we estimate, using also the doubling property of the measure:∫
−
∫
−
Q

(λ)
s (zo)

(1+gu)
p dμ dt ≤ μ(B2r(xo))|Λ2r(to)|

μ(Bs(xo))|Λ(λ)
s (to)|

∫
−
∫
−
Q

(λ)
2r (zo)

(1+gu)
p dμ dt

≤ 22n
(
2r

s

)n+2

λp−2λ
p
d
o <λp.

Here we have used in the very last step the definition of λo as follows: In the case

p≥2 we have that d=p/2, therefore p/d=2 and min{λp−2, 1}=1. Thus, we get by

the definition of B and with the conditions on s and λ:

22n
(
2r

s

)n+2

λp−2λp/d
o ≤ 22n(2r)n+2λp−2λ2

o

(
40Γ

r2−r1

)n+2

≤B2λp−2λ2
o <λp.

In the case p<2, there holds p/d= p(n+2)
2 −n and min{λ p−2

2 , 1}=λ
p−2
2 and we there-

fore get

22n
(
2r

s

)n+2

λp−2λp/d
o ≤Bp/dλ

2−p
2 (n+2)λp−2λ

p
2 (n+2)−n
o <λn 2−p

2 +2λ
n p−2

2 +p−2
o <λp.

Combining this estimate with the estimate (4.18) above and having in mind that

the integral depends continuously on the radius of the cylinder, there must be at

least one radius 0<�zo<
1

40Γ min{λ p−2
2 , 1}(r2−r1) such that

(4.21)

∫
−
∫
−
Q

(λ)
�zo

(zo)

(1+gu)
p dμ dt=λp

holds. In case that there are several such radii we let �zo be the maximal one, which

means that for all radii �>�zo there holds ‘<’ instead of ‘=’ in (4.21). Hence,

the parabolic cylinder Q
(λ)
�zo

(zo) with λ>Bλo is one on which the intrinsic cou-

pling (4.13), (4.14) holds with ˇ=1 and consequently the reverse Hölder inequality

Lemma 4.4 holds on the pair (Q
(λ)
�zo

(zo), Q
(λ)
4Γ�zo

(zo)) of parabolic cylinders:

(4.22)

∫
−
∫
−
Q

(λ)
�zo

(zo)

gpu dμ dt≤ c

[∫
−
∫
−
Q

(λ)
4Γ�zo

(zo)

(1+gu)
p
ϑ dμ dt

]ϑ
,

for all ϑ≤ϑ1, with ϑ1=min{2, p}n+2
2n and for a constant c≡c(n, N, L, ν, L1, p,Q,Γ).

Introducing for s>0 and λ≥0 the levelset

S
s(λ) :=

{
z ∈Qs(z̄) : gu(z)>λ

}
,
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we have up to now shown that in the case λ>Bλo for almost all zo∈Sr1(λ) there

exists a parabolic cylinder Q
(λ)
�zo

(zo) on which the intrinsic couplings (4.13) and

(4.14) as well as the estimate (4.22) hold true. Moreover, by (4.20) and (4.17) we

have that Q
(λ)
20Λ�zo

(zo)⊂Qr2(z̄).

In a next step we want to estimate the Lp-norm of gu on the cylinder

Q
(λ)
20Γ�zo

(zo). For this aim, let η∈(0, 1) be a parameter which we fix later. We

abbreviate for a moment Q≡Q
(λ)
�zo

(zo) and αQ≡Q
(λ)
α�zo

(zo). Then, with (4.22) and

assuming that ηλ≥1, we obtain

∫
−
∫
−
Q

(1+gu)
p dμ dt≤ c

[∫
−
∫
−
4ΓQ

(1+gu)
p/ϑ1 dμ dt

]ϑ1

≤ c

[(
1

(μ⊗L1)(4ΓQ)

∫∫
4ΓQ∩Sr2 (ηλ)

gp/ϑ1
u dμ dt

)ϑ1

+(ηλ)p
]
,

with c≡c(n, N, L, ν, L1, p,Q,Γ). By the help of (4.21), choosing η≡η(n, N, L, ν, L1,

p,Q,Γ) in such a way that cηp≤ 1
2 , we may absorb the expression (ηλ)p into the

left hand side of the inequality and therefore obtain

∫
−
∫
−
Q

(1+gu)
p dμ dt≤

[
c

(μ⊗L1)(4ΓQ)

∫∫
4ΓQ∩Sr2 (ηλ)

gp/ϑ1
u dμ dt

]ϑ1

,

This estimate holds for λ>λ1 :=
1
η=(2c)−1/p, where c denotes the constant ap-

pearing above in the choice of η. Splitting the bracket on the right hand side

[...]ϑ1=[...][...]ϑ1−1 and using Hölder’s inequality to get

[
1

(μ⊗L1)(4ΓQ)

∫∫
4ΓQ∩Sr2 (ηλ)

gp/ϑ1
u dμ dt

]ϑ1−1

≤
[∫
−
∫
−
4ΓQ

gpu dμ dt

]1−1/ϑ1

≤ cλp(1−1/ϑ1),

we arrive at∫
−
∫
−
Q

(1+gu)
p dμ dt≤ c

(μ⊗L1)(4ΓQ)

∫∫
4ΓQ∩Sr2 (ηλ)

λp(1−1/ϑ1)gp/ϑ1
u dμ dt.

Finally, using the fact that we have ‘<’ in (4.21) for the cylinder Q
(λ)
20Γ�zo

(zo)≡20ΓQ

and therefore getting∫
−
∫
−
20ΓQ

(1+gu)
p dμ dt≤λp ≤

∫
−
∫
−
Q

(1+gu)
p dμ dt,

we conclude that

(4.23)

∫∫
20ΓQ

gpu dμ dt≤ c

∫∫
4ΓQ∩Sr2 (ηλ)

λp(1−1/ϑ1)gp/ϑ1
u dμ dt,
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for a constant c≡c(n, N, L, ν, L1, p,Q,Γ). Here, we have also used the doubling

property of the measure to have (μ⊗L1)(20ΓQ)≤22n5n+2(μ⊗L1)(4ΓQ).

Until now, we have proved the following: For scaling parameters λ>max{Bλo,

λ1} the levelset Sr1(λ) is covered by a family F={Q(λ)
4Γ�zo

(zo)} of parabolic cylin-

ders with centers zo∈Sr1(λ), on which (4.23) holds. A standard covering theorem

provides then a countable subfamily {Q(λ)
4Γ�zi

(zi)}∞i=1⊂F of pairwise disjoint cylin-

ders such that the 5-times enlarged cylinders Q
(λ)
20Γ�zi

(zi) still cover Sr1(λ), and

moreover all cylinders Q
(λ)
20Γ�zi

(zi) are contained in Qr2(z̄). As a consequence we

have

∫∫
Sr1 (λ)

gpu dμ dt≤
∞∑
i=1

∫∫
Q

(λ)
20Γ�zi

gpu dμ dt

≤ c

∞∑
i=1

∫∫
Q

(λ)
4Γ�zi

∩Sr2 (ηλ)

λp(1−1/ϑ1)gp/ϑ1
u dμ dt

≤ c

∫∫
Sr2 (ηλ)

λp(1−1/ϑ1)gp/ϑ1
u dμ dt.

Now, since the previous estimate holds trivially on the set Sr1(ηλ)\Sr1(λ), we

conclude that it holds also if we replace on the left hand side the integral over the

set Sr1(λ) by an integral over Sr1(ηλ). In a next step, we replace the values ηλ by

λ and we end up with the estimate

∫∫
Sr1 (λ)

gpu dμ dt≤ c

∫∫
Sr2 (λ)

λp(1−1/ϑ1)gp/ϑ1
u dμ dt,

which holds for every λ>max{Bηλo, ηλ1}=max{Bηλo, 1}=:λ2.

Now, the result would follow by multiplying both sides of the preceding inequal-

ity by λε and subsequently integrating the levelsets. However, as in the Euclidean

case, we are faced with the technical difficulty that the obtained expressions could

possibly not be finite. It is then a standard method to introduce truncations |Du|k
to the level k of the gradient—and therefore here truncations [gu]k of the upper

gradient. For the convenience of the reader, we will shortly sketch the final steps

of the proof, but we refer to [16] where the argument is carried out in detail in the

Euclidean case. The proof in the metric case does not differ from the Euclidean

one, since all higher integrability information is already contained in the previous

estimate and the remaining arguments are purely measure theoretic ones, such as

integral and convergence theorems. All these theorems hold also for integrals with

respect to general Borel regular measures.
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We introduce for k>λ2 the truncated upper gradient and the corresponding

levelset

[gu]k :=min{gu, k} and S
r
k(λ) :=

{
z ∈Qr : [gu]k >λ

}
.

With the notation q :=p/ϑ1<p, the previous estimate on the levelset implies
∫∫

S
r1
k (λ)

[gu]
p−q
k gqu dμ dt≤ c

∫∫
S

r2
k (λ)

λp−qgqu dμ dt.

Now we multiply both sides of the inequality with λε−1 for ε∈(0, 1) to be determined

later. Integration of the resulting estimate with respect to λ over the interval (λ2,∞)

then provides
∫ ∞

λ2

λε−1

∫∫
S

r1
k (λ)

[gu]
p−q
k gqu dμ dt≤ c

∫ ∞

λ2

λε−1

∫∫
S

r2
k (λ)

λp−qgqu dμ dt.

The integral on the left hand side can be calculated with the help of Fubini’s theorem

and we obtain∫ ∞

λ2

λε−1

∫∫
S

r1
k (λ)

[gu]
p−q
k gqu dμ dt=

1

ε

∫∫
S

r1
k (λ2)

[
[gu]

p−q+ε
k gqu−λε

2[gu]
p−q
k gqu

]
dμ dt.

Again with Fubini’s theorem we get for the right hand side the estimate
∫ ∞

λ2

λε−1

∫∫
S

r2
k (λ)

λp−qgqu dμ dt≤ 1

p−q

∫∫
S

r2
k (λ2)

[gu]
p−q+ε
k gqu dμ dt,

and we therefore conclude∫∫
S

r1
k (λ2)

[gu]
p−q+ε
k gqu dμ dt

≤
∫∫

S
r1
k (λ2)

λε
2[gu]

p−q
k gqu dμ dt+

ε

p−q

∫∫
S

r2
k (λ2)

[gu]
p−q+ε
k gqu dμ dt.

Since on Qr1(z̄)\Sr1
k (λ2) we have [gu]

p−q+ε
k gqu≤λε

2[gu]
p−q
k |gu|q , we eventually arrive

at∫∫
Qr1 (z̄)

[gu]
p−q+ε
k gqu dμ dt

≤ cε

p−q

∫∫
Qr2 (z̄)

[gu]
p−q+ε
k gqu dμ dt+λε

2

∫∫
Q2r(z̄)

[gu]
p−q
k gqu dμ dt,

for a constant c which depends only on n, N , L, ν, p, L1, Γ and Q. At this

point we choose ε≤εo :=
1
2c (q−p)= p(ϑ1−1)

2cϑ1
, where c denotes the constant in the

above estimate. Since ϑ1≡ϑ1(n, p), we have that εo depends only on the structural
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parameters n, N , L, ν, L1, p, Γ and Q. On the other hand we recall that λε
2=

max{Bηλo, 1}. Since B>1, η≤1, ε<1 and λo≥1, we have in any case that λε
2≤

1+(Bηλo)
ε≤2Bλε

o. Recalling now the definition of B in (4.19), we may apply the

standard iteration Lemma 3.15 to conclude
∫∫

Qr(z̄)

[gu]
p−q+ε
k gqu dμ dt≤ cλε

o

∫∫
Q2r(z̄)

[gu]
p−q
k gqu dμ dt.

Finally we note that [gu]k≤gu and gu∈Lp(Q2r(z̄)), so the result follows by applying

Fatou’s lemma on the left hand side, the dominant convergence theorem on the right

hand side and subsequently recalling the definition of λo in (4.16).
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