Graded PI-exponents of simple Lie superalgebras

Dušan Repovš and Mikhail Zaicev

Abstract

We study \mathbb{Z}_{2}-graded identities of simple Lie superalgebras over a field of characteristic zero. We prove the existence of the graded PI-exponent for such algebras.

1. Introduction

Let A be an algebra over a field F with char $F=0$. A natural way of measuring the polynomial identities satisfied by A is by studying the asymptotic behaviour of its sequence of codimensions $\left\{c_{n}(A)\right\}, n=1,2, \ldots$. If A is a finite dimensional algebra then the sequence $\left\{c_{n}(A)\right\}$ is exponentially bounded. In this case it is natural to ask the question about existence of the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)} \tag{1}
\end{equation*}
$$

called the PI-exponent of A. Such question was first asked for associative algebras by Amitsur at the end of 1980 's. A positive answer was given in [6]. Subsequently it was shown that the same problem has a positive solution for finite dimensional Lie algebras [14], for finite dimensional alternative and Jordan algebras [5] and for some other classes. Recently it was shown that in general the limit (1) does not exist even if $\left\{c_{n}(A)\right\}$ is exponentially bounded [15]. The counterexample constructed in [15] is infinite dimensional whereas for finite dimensional algebras the problem of the existence of the PI-exponent is still open. Nevertheless, if $\operatorname{dim} A<\infty$ and A is simple then the PI-exponent of A exists as it was proved in [8].

If in addition A has a group grading then graded identities, graded codimensions and graded PI-exponents can also be considered. In this paper we discuss

[^0]graded codimensions behaviour for finite dimensional simple Lie superalgebras. Graded codimensions of finite dimensional Lie superalgebras were studied in a number of papers (see for example, [11] and [12]). In particular, in [11] an upper bound of graded codimension growth was found for one of the series of simple Lie superalgebras.

In the present paper we prove that the graded PI-exponent of any finite dimensional simple Lie superalgebra always exists. All details concerning numerical PI-theory can be found in [7].

2. Main constructions and definitions

Let $L=L_{0} \oplus L_{1}$ be a Lie superalgebra. Elements from the component L_{0} are called even and elements from L_{1} are called odd. Denote by $\mathcal{L}(X, Y)$ a free Lie superalgebra with infinite sets of even generators X and odd generators Y. A polynomial $f=f\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \in \mathcal{L}(X, Y)$ is said to be a graded identity of Lie superalgebra $L=L_{0} \oplus L_{1}$ if $f\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)=0$ whenever $a_{1}, \ldots, a_{m} \in L_{0}, b_{1}, \ldots, b_{n} \in L_{1}$.

Denote by $\mathrm{Id}^{g r}(L)$ the set of all graded identities of L. Then $\mathrm{Id}^{g r}(L)$ is an ideal of $\mathcal{L}(X, Y)$. Given non-negative integers $0 \leq k \leq n$, let $P_{k, n-k}$ be the subspace of all multilinear polynomials $f=f\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n-k}\right) \in \mathcal{L}(X, Y)$ of degree k on even variables and of degree $n-k$ on odd variables. Then $P_{k, n-k} \cap \mathrm{Id}^{g r}(L)$ is the subspace of all multilinear graded identities of L of total degree n depending on k even variables and $n-k$ odd variables. Denote also by $P_{k, n-k}(L)$ the quotient

$$
P_{k, n-k}(L)=\frac{P_{k, n-k}}{P_{k, n-k} \cap \mathrm{Id}^{g r}(L)}
$$

Then the partial graded $(k, n-k)$-codimension of L is

$$
c_{k, n-k}(L)=\operatorname{dim} P_{k, n-k}(L)
$$

and the total graded nth codimension of L is

$$
\begin{equation*}
c_{n}^{g r}(L)=\sum_{k=0}^{n}\binom{n}{k} c_{k, n-k}(L) \tag{2}
\end{equation*}
$$

If the sequence $\left\{c_{n}^{g r}(L)\right\}_{n \geq 1}$ is exponentially bounded then one can consider the related bounded sequence $\sqrt[n]{e_{n}^{g r}(L)}$. The latter sequence has the following lower and upper limits

$$
\underline{\exp }^{g r}(L)=\liminf _{n \rightarrow \infty} \sqrt[n]{c_{n}^{g r}(L)} \quad \text { and } \quad \overline{\exp }^{g r}(L)=\limsup _{n \rightarrow \infty} \sqrt[n]{c_{n}^{g r}(L)}
$$

called the lower and upper PI-exponents of L, respectively. If the ordinary limit exists, it is called the (ordinary) graded PI-exponent of L,

$$
\exp ^{g r}(L)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{g r}(L)}
$$

Symmetric groups and their representations play an important role in the theory of codimensions. In particular, in the case of graded identities one can consider the $S_{k} \times S_{n-k}$-action on multilinear graded polynomials. Namely, the subspace $P_{k, n-k} \subseteq \mathcal{L}(X, Y)$ has a natural structure of $S_{k} \times S_{n-k}$-module where S_{k} acts on even variables x_{1}, \ldots, x_{k} while S_{n-k} acts on odd variables y_{1}, \ldots, y_{n-k}. Clearly, $P_{k, n-k} \cap \mathrm{Id}^{g r}(L)$ is the submodule under this action and we get an induced $S_{k} \times S_{n-k}$-action on $P_{k, n-k}(L)$. The character $\chi_{k, n-k}(L)=\chi\left(P_{k, n-k}(L)\right)$ is called ($k, n-k$) cocharacter of L. Since char $F=0$, this character can be decomposed into the sum of irreducible characters

$$
\begin{equation*}
\chi_{k, n-k}(L)=\sum_{\substack{\lambda+k \\ \mu \vdash-k-k}} m_{\lambda, \mu} \chi_{\lambda, \mu} \tag{3}
\end{equation*}
$$

where λ and μ are partitions of k and $n-k$, respectively. All details concerning representations of symmetric groups can be found in [9]. An application of S_{n}-representations in PI-theory can be found in [1], [3], [7].

Recall that an irreducible $S_{k} \times S_{n-k}$-module with the character $\chi_{\lambda, \mu}$ is the tensor product of S_{k}-module with the character χ_{λ} and S_{n-k}-module with the character χ_{μ}. In particular, the dimension $\operatorname{deg} \chi_{\lambda, \mu}$ of this module is the product $d_{\lambda} d_{\mu}$ where $d_{\lambda}=\operatorname{deg} \chi_{\lambda}, d_{\mu}=\operatorname{deg} \chi_{\mu}$. Taking into account multiplicities $m_{\lambda, \mu}$ in (3) we get the relation

$$
\begin{equation*}
c_{k, n-k}(L)=\sum_{\substack{\lambda \vdash k \\ \mu \vdash n-k}} m_{\lambda, \mu} d_{\lambda} d_{\mu} . \tag{4}
\end{equation*}
$$

A number of irreducible components in the decomposition of $\chi_{k, n-k}(L)$, i.e. the sum

$$
l_{k, n-k}(L)=\sum_{\substack{\lambda \vdash k \\ \mu \vdash n-k}} m_{\lambda, \mu}
$$

is called the $(k, n-k)$-colength of L. The total graded colength $l_{n}^{g r}(L)$ is

$$
l_{n}^{g r}(L)=\sum_{k=0}^{n} l_{k, n-k}(L)
$$

Now let L be a finite dimensional Lie superalgebra, $\operatorname{dim} L=d$. Then

$$
\begin{equation*}
c_{n}^{g r}(L) \leq d^{n} \tag{5}
\end{equation*}
$$

by the results of [2] (see also [4]). On the other hand, there exists a polynomial φ such that

$$
\begin{equation*}
l_{n}^{g r} \leq \varphi(n) \tag{6}
\end{equation*}
$$

for all $n=1,2, \ldots$ as it was mentioned in [11]. Note also that $m_{\lambda, \mu} \neq 0$ in (3) only if $\lambda \vdash k, \mu \vdash n-k$ are partitions with at most d components, that is $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right)$, $\mu=\left(\mu_{1}, \ldots, \mu_{q}\right)$ and $p, q \leq d=\operatorname{dim} L$.

Since all partitions under our consideration are of the height at most d, we will use the following agreement. If say, λ is a partition of k with $p<d$ components then we will write $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ anyway, assuming that $\lambda_{p+1}=\ldots=\lambda_{d}=0$.

For studying asymptotic behaviour of codimensions it is convenient to use the following function defined on partitions. Let ν be a partition of $m, \nu=\left(\nu_{1}, \ldots, \nu_{d}\right)$. We introduce the following function of ν :

$$
\Phi(\nu)=\frac{1}{\left(\frac{\nu_{1}}{m}\right)^{\frac{\nu_{1}}{m}} \ldots\left(\frac{\nu_{d}}{m}\right)^{\frac{\nu_{d}}{m}}} .
$$

The values $\Phi(\nu)^{m}$ and $d_{\nu}=\operatorname{deg} \chi_{\nu}$ are very close in the following sense.
Lemma 2.1. [8, Lemma 1] Let $m \geq 100$. Then

$$
\frac{\Phi(\nu)^{m}}{m^{d^{2}+d}} \leq d_{\nu} \leq m \Phi(\nu)^{m}
$$

Function Φ has also the following useful property. Let ν and ρ be two partitions of m with the corresponding Young diagrams D_{ν}, D_{ρ}. We say that D_{ρ} is obtained from D_{ν} by pushing down one box if there exist $1 \leq i<j \leq d$ such that $\rho_{i}=\nu_{i}-1, \rho_{j}=$ $\nu_{j}+1$ and $\rho_{t}=\nu_{t}$ for all remaining $1 \leq t \leq d$.

Lemma 2.2. (see [8, Lemma 3], [16, Lemma 2]) Let D_{ρ} be obtained from D_{ν} by pushing down one box. Then $\Phi(\rho) \geq \Phi(\nu)$.

3. Existence of graded PI-exponents

Throughout this section let $L=L_{0} \oplus L_{1}$ be a finite dimensional simple Lie superalgebra, $\operatorname{dim} L=d$. Then by (5) its upper graded PI-exponent exists,

$$
a=\overline{\exp }^{g r}(L)=\limsup _{n \rightarrow \infty} \sqrt[n]{c_{n}^{g r}(L)}
$$

Note that the even component L_{0} of L is not solvable since L is simple (see [13, Chapter 3, §2, Proposition 2]).

We shall need the following fact.

Remark 3.1. Let G be a non-solvable finite dimensional Lie algebra over a field F of characteristic zero. Then the ordinary PI-exponent of G exists and is an integer not less than 2.

Proof. It is known that $c_{n}(G)$ is either polynomially bounded or it grows exponentially not slower that 2^{n} (see [10]). The first option is possible only if G is solvable. On the other hand $\exp (G)$ always exists and is an integer [14] therefore we are done.

By the previous remark $P_{n, 0}(L) \gtrsim 2^{n}$ asymptotically and then

$$
\begin{equation*}
a \geq 2 \tag{7}
\end{equation*}
$$

The following lemma is the key technical step in the proof of our main result.
Lemma 3.2. For any $\varepsilon>0$ and any $\delta>0$ there exists an increasing sequence of positive integers n_{0}, n_{1}, \ldots such that
(i) $\sqrt[n]{c_{n}^{g r}(L)}>(1-\delta)(a-\varepsilon)$ for all $n=n_{q}, q=1,2, \ldots$,
(ii) $n_{q+1}-n_{q} \leq n_{0}+d$.

Proof. Fix $\varepsilon, \delta>0$. Since a is an upper limit there exist infinitely many indices n_{0} such that

$$
c_{n_{0}}^{g r}(L)>(a-\varepsilon)^{n_{0}} .
$$

Fixing one of n_{0} we can find an integer $0 \leq k_{0} \leq n_{0}$ such that

$$
\begin{equation*}
\binom{n_{0}}{k_{0}} c_{k_{0}, n_{0}-k_{0}}(L)>\frac{1}{n_{0}+1}(a-\varepsilon)^{n_{0}}>\frac{1}{2 n_{0}}(a-\varepsilon)^{n_{0}} \tag{8}
\end{equation*}
$$

(see (2)). Relation (6) shows that

$$
\sum_{\substack{\lambda \vdash k \\ \mu \vdash n-k}} m_{\lambda, \mu} \leq \varphi(n)
$$

for any $0 \leq k \leq n$ where $m_{\lambda, \mu}$ are taken from (3). Then (4) implies the existence of partitions $\lambda \vdash k_{0}, \mu \vdash n_{0}-k_{0}$ such that

$$
\begin{equation*}
\binom{n_{0}}{k_{0}} d_{\lambda} d_{\mu}>\frac{1}{2 n_{0} \varphi\left(n_{0}\right)}(a-\varepsilon)^{n_{0}} \tag{9}
\end{equation*}
$$

The latter inequality means that there exists a multilinear polynomial

$$
f=f\left(x_{1}, \ldots, x_{k_{0}}, y_{1}, \ldots, y_{n_{0}-k_{0}}\right) \in P_{k_{0}, n_{0}-k_{0}}
$$

such that $F\left[S_{k_{0}} \times S_{n_{0}-k_{0}}\right] f$ is an irreducible $F\left[S_{k_{0}} \times S_{n_{0}-k_{0}}\right]$-submodule $P_{k_{0}, n_{0}-k_{0}}$ with the character $\chi_{\lambda, \mu}$ and $f \notin \mathrm{Id}^{g r}(L)$. In particular, there exist $a_{1}, \ldots, a_{k_{0}} \in L_{0}$, $b_{1}, \ldots, b_{n_{0}-k_{0}} \in L_{1}$ such that

$$
A=f\left(a_{1}, \ldots, a_{k_{0}}, b_{1}, \ldots, b_{n_{0}-k_{0}}\right) \neq 0
$$

in L. First we will show how to find n_{1}, k_{1} which are approximately equal to $2 n_{0}, 2 k_{0}$, respectively, satisfying the same inequality as (8).

Since L is simple and $A \neq 0$ the ideal generated by A coincides with L. Clearly, every simple Lie superalgebra is centerless. Hence one can find $c_{1}, \ldots, c_{d_{1}} \in L_{0} \cup L_{1}$ such that

$$
\left[A, c_{1}, \ldots, c_{d_{1}}, A\right] \neq 0
$$

and $d_{1} \leq d-1$. Here we use the left-normed notation $[[a, b], c]=[a, b, c]$ for nonassociative products. It follows that a polynomial

$$
\left[f_{1}, z_{1}, \ldots, z_{d_{1}}, f_{2}\right]=g_{2} \in P_{2 k_{0}+p, 2 n_{0}-2 k_{0}+r}, \quad p+r=d_{1}
$$

is also a non-identity of L where $z_{1}, \ldots, z_{d_{1}} \in X \cup Y$ are even or odd variables, whereas f_{1} and f_{2} are copies of f written on disjoint sets of indeterminates,

$$
\begin{aligned}
& f_{1}=f\left(x_{1}^{1}, \ldots, x_{k_{0}}^{1}, y_{1}^{1}, \ldots, y_{n_{0}-k_{0}}^{1}\right) \\
& f_{2}=f\left(x_{1}^{2}, \ldots, x_{k_{0}}^{2}, y_{1}^{2}, \ldots, y_{n_{0}-k_{0}}^{2}\right)
\end{aligned}
$$

Consider the $S_{2 k_{0}} \times S_{2 n_{0}-2 k_{0}}$-action on $P_{2 k_{0}+p, 2 n_{0}-2 k_{0}+r}$ where $S_{2 k_{0}}$ acts on $x_{1}^{1}, \ldots, x_{k_{0}}^{1}, x_{1}^{2}, \ldots, x_{k_{0}}^{2}$ and $S_{2 n_{0}-2 k_{0}}$ acts on $y_{1}^{1}, \ldots, y_{n_{0}-k_{0}}^{1}, y_{1}^{2}, \ldots, y_{n_{0}-k_{0}}^{2}$. Denote by M the $F\left[S_{2 k_{0}} \times S_{2 n_{0}-2 k_{0}}\right]$-submodule generated by g_{2} and examine its character. It follows from Richardson-Littlewood rule that

$$
\chi(M)=\sum_{\substack{\nu \vdash 2 k_{0} \\ \rho \vdash 2 n_{0}-2 k_{0}}} t_{\nu, \rho} \chi_{\nu, \rho}
$$

where either $\nu=2 \lambda=\left(2 \lambda_{1}, \ldots, 2 \lambda_{d}\right)$ or ν is obtained from 2λ by pushing down one or more boxes of $D_{2 \lambda}$. Similarly, ρ is either equal to 2μ or ρ is obtained from 2μ by pushing down one or more boxes of $D_{2 \mu}$. Then by Lemma 2.2 we have

$$
\Phi(\nu) \geq \Phi(2 \lambda)=\Phi(\lambda) \quad \text { and } \quad \Phi(\rho) \geq \Phi(2 \mu)=\Phi(\mu)
$$

By Lemma 2.1 and (9) we have

$$
\begin{equation*}
\binom{n_{0}}{k_{0}}(\Phi(\lambda) \Phi(\mu))^{n_{0}}>\frac{1}{2 n_{0}^{3} \varphi\left(n_{0}\right)}(a-\varepsilon)^{n_{0}} \tag{10}
\end{equation*}
$$

Now we present the lower bound for binomial coefficients in terms of function Φ. Clearly, the pair ($k, n-k$) is a two-component partition of n if $k \geq n-k$. Otherwise $(n-k, k)$ is a partition of n. Since $x^{-x} y^{-y}=y^{-y} x^{-x}$ for all $x, y \geq 0, x+y=1$, we will use the notation $\Phi\left(\frac{k}{n}, \frac{n-k}{n}\right)$ in both cases $k \geq n-k$ or $n-k \geq k$. Then it easily follows from the Stirling formula that

$$
\frac{1}{n} \Phi\left(\frac{k}{n}, \frac{n-k}{n}\right)^{n} \leq\binom{ n}{k} \leq n \Phi\left(\frac{k}{n}, \frac{n-k}{n}\right)^{n}
$$

hence

$$
\begin{equation*}
\binom{q k_{0}}{q n_{0}}>\frac{1}{q n_{0}} \Phi\left(\frac{q k_{0}}{q n_{0}}, \frac{q n_{0}-q k_{0}}{q n_{0}}\right)^{q n_{0}}=\frac{1}{q n_{0}} \Phi\left(\frac{k_{0}}{n_{0}}, \frac{n_{0}-k_{0}}{n_{0}}\right)^{q n_{0}} \tag{11}
\end{equation*}
$$

for all integers $q \geq 2$ and also

$$
\begin{equation*}
\left(\Phi\left(\frac{k_{0}}{n_{0}}, \frac{n_{0}-k_{0}}{n_{0}}\right) \Phi(\lambda) \Phi(\mu)\right)^{n_{0}}>\frac{1}{2 n_{0}^{4} \varphi\left(n_{0}\right)}(a-\varepsilon)^{n_{0}} \tag{12}
\end{equation*}
$$

by virtue of (10).
Recall that we have constructed earlier a multilinear polynomial $g_{2}=\left[f_{1}, z_{1}, \ldots\right.$, $\left.z_{d_{1}}, f_{2}\right]$ which is not a graded identity of L and f_{1}, f_{2} are copies of f. Applying the same procedure we can construct a non-identity of the type

$$
g_{q}=\left[g_{q-1}, w_{1}, \ldots, w_{d_{q-1}}, f_{q}\right]
$$

of total degree $n_{q-1}=n_{q-2}+n_{0}+w_{1}+\ldots+w_{d_{q-1}}$ where $d_{q-1} \leq d$ and f_{q} is again a copy of f for all $q \geq 2$.

As in the case $q=2$ the $F\left[S_{q k_{0}} \times S_{q n_{0}-q k_{0}}\right]$-submodule of $P_{k, n-k}(L)$ (where $n=n_{q-1}=q n_{0}+p^{\prime}, k=k_{q-1}=q k_{0}+p^{\prime \prime}$) contains an irreducible summand with the character $\chi_{\nu, \rho}$ where $\nu \vdash q k_{0}, \rho \vdash q n_{0}-q k_{0}, \Phi(\nu) \geq \Phi(\lambda), \Phi(\rho) \geq \Phi(\mu)$. Moreover, for $n=n_{q-1}$ we have

$$
\begin{aligned}
c_{n}^{g r}(L) & \geq\binom{ q n_{0}}{q k_{0}} d_{\nu} d_{\rho}>\frac{1}{n^{2 d^{2}+2 d}}\binom{q n_{0}}{q k_{0}}(\Phi(\lambda) \Phi(\mu))^{q n_{0}} \\
& >\frac{1}{n^{2 d^{2}+2 d+1}}\left(\Phi\left(\frac{k_{0}}{n_{0}}, \frac{n_{0}-k_{0}}{n_{0}}\right) \Phi(\lambda) \Phi(\mu)\right)^{q n_{0}}
\end{aligned}
$$

by Lemma 2.1 and the inequality (11). Now it follows from (12) that

$$
c_{n}^{g r}(L)>\frac{1}{n^{2 d^{2}+2 d+1}} \frac{1}{\left(2 n_{0}^{4} \varphi\left(n_{0}\right)\right)^{q}}(a-\varepsilon)^{q n_{0}} .
$$

Note that $q n_{0} \leq n \leq q n_{0}+q d$. Hence $q / n \leq 1 / n_{0}$ and

$$
(a-\varepsilon)^{q n_{0}} \geq \frac{(a-\varepsilon)^{n}}{a^{q d}}
$$

since $a \geq 2$ (see (7)). Therefore

$$
\sqrt[n]{c_{n}^{g r}(L)}>\frac{(a-\varepsilon)^{n}}{n^{\frac{2 d^{2}+2 d+1}{n}}\left(2 a^{d} n_{0}^{4} \varphi\left(n_{0}\right)\right)^{\frac{1}{n_{0}}}}
$$

for all $n=n_{q-1}, q=1,2, \ldots$. Finally note that the initial n_{0} can be taken to be arbitrarily large. Hence we can suppose that

$$
n^{-\frac{2 d^{2}+2 d+1}{n}}\left(2 a^{d} n_{0}^{4} \varphi\left(n_{0}\right)\right)^{-\frac{1}{n_{0}}}>1-\delta
$$

for all $n \geq n_{0}$. Hence the inequality

$$
\sqrt[n]{c_{n}^{g r}(L)}>(1-\delta)(a-\varepsilon)^{n}
$$

holds for all $n=n_{q}, q=0,1, \ldots$. The second inequality $n_{q+1}-n_{q} \leq n_{0}+d$ follows from the construction of the sequence n_{0}, n_{1}, \ldots, and we have thus completed the proof.

Now we are ready to prove the main result of the paper.
Theorem 3.3. Let L be a finite dimensional simple Lie superalgebra over a field of characteristic zero. Then its graded PI-exponent

$$
\exp ^{g r}(L)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{g r}(L)}
$$

exists an is less than or equal to $d=\operatorname{dim} L$.
Proof. First note that, given a multilinear polynomial $h=h\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots\right.$, $\left.y_{n-k}\right) \in P_{k, n-k}$, the linear span M of all its values in L is a L_{0}-module since

$$
\begin{aligned}
{[h, z]=} & \sum_{i} h\left(x_{1}, \ldots,\left[x_{i}, z\right], \ldots, x_{k}, y_{1}, \ldots, y_{n-k}\right) \\
& +\sum_{j} h\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots,\left[y_{j}, z\right], \ldots, y_{n-k}\right)
\end{aligned}
$$

for any $z \in \mathcal{L}(X, Y)_{0}$. Hence $M L_{1} \neq 0$ in L and $0 \equiv[h, w]$ is not an identity of L for odd variable w as soon as $h \notin \mathrm{Id}^{g r}(L)$. It follows that

$$
c_{k, n-k+1}(L) \geq c_{k, n-k}(L)
$$

and then

$$
\begin{equation*}
c_{n}^{g r}(L) \geq c_{m}^{g r}(L) \tag{13}
\end{equation*}
$$

for $n \geq m$.
Fix arbitrary small $\varepsilon, \delta>0$. By Lemma 3.2 there exists an increasing sequence $n_{q}, q=1,2, \ldots$, such that $c_{n}^{g r}(L)>((1-\delta)(a-\varepsilon))^{n}$ for all $n=n_{q}, q=0,1, \ldots$, and $n_{q+1}-n_{q} \leq n_{0}+d$. Denote $b=(1-\delta)(a-\varepsilon)$ and take an arbitrary $n_{q}<n<n_{q+1}$. Then $c_{n}^{g r}(L) \geq c_{n_{q}}^{g r}(L)$ and $n-n_{q} \leq n_{0}+d$. Referring to (7) we may assume that $b>1$. Then $b^{n_{q}} \geq b^{n} \cdot b^{-\left(n_{0}+d\right)}$ and

$$
c_{n}^{g r}(L) \geq\left(b^{1-\frac{n_{0}+d}{n}}\right)^{n}
$$

for all $n_{q} \leq n \leq n_{q+1}$ and all $q=0,1, \ldots$, that is for all sufficiently large n. The latter inequality means that

$$
\liminf _{n \rightarrow \infty} \sqrt[n]{c_{n}^{g r}(L)} \geq(1-\delta) b=(1-\delta)^{2}(a-\varepsilon)
$$

Since ε, δ were chosen to be arbitrary, we have thus completed the proof of the theorem.

References

1. Bahturin, Yu. A., Identical Relations in Lie Algebras, VNU Science Press, Utrecht, 1987.
2. Bahturin, Yu. and Drensky, V., Graded polynomial identities of matrices, Linear Algebra Appl. 357 (2002), 15-34.
3. Drensky, V., Free Algebras and PI-algebras. Graduate Course in Algebra, Springer, Singapore, 2000.
4. Giambruno, A. and Regev, A., Wreath products and P.I. algebras, J. Pure Appl. Algebra 35 (1985), 133-149.
5. Giambruno, A., Shestakov, I. and Zaicev, M., Finite-dimensional non-associative algebras and codimension growth, Adv. in Appl. Math. 47 (2011), 125-139.
6. Giambruno, A. and Zaicev, M., On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998), 145-155.
7. Giambruno, A. and Zaicev, M., Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs 122, Am. Math. Soc., Providence, 2005.
8. Giambruno, A. and Zaicev, M., On codimension growth of finite-dimensional Lie superalgebras, J. Lond. Math. Soc. (2) 85 (2012), 534-548.
9. James, J. and Kerber, A., The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications 16, Addison-Wesley, London, 1981.
10. Mishchenko, S. P., Growth of varieties of Lie algebras, Uspekhi Mat. Nauk 45 (1990), 25-45 (Russian). English transl.: Russian Math. Surveys 45 (1990), 27-52.
11. Repovš, D. and Zaicev, M., Graded identities of some simple Lie superalgebras, Algebr. Represent. Theory 17 (2014), 1401-1412.
12. Repovš, D. and Zaicev, M., Graded codimensions of Lie superalgebra b(2), J. Algebra 422 (2015), 1-10.
13. Scheunert, M., The Theory of Lie Superalgebras; An Introduction, Lecture Notes in Math. 716, Springer, Berlin, 1979.
14. Zaitsev, M. V., Integrality of exponents of growth of identities of finite-dimensional Lie algebras, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), 23-48 (Russian). English transl.: Izv. Math. 66 (2002), 463-487.
15. Zaicev, M., On existence of PI-exponents of codimension growth, Electron. Res. Announc. Math. Sci. 21 (2014), 113-119.
16. Zaitsev, M. and Repovš, D., A four-dimensional simple algebra with fractional PIexponent, Mat. Zametki 95 (2014), 538-553 (Russian). English transl.: Math. Notes 95 (2014), 487-499.

Dušan Repovš
Faculty of Education, and
Faculty of Mathematics and Physics
University of Ljubljana
SI-1000 Ljubljana
Slovenia
dusan.repovs@guest.arnes.si

Mikhail Zaicev
Department of Algebra, Faculty of Mathematics and Mechanics Moscow State University
RU-119992 Moscow
Russia
zaicevmv@mail.ru

Received September 2, 2014
published online July 24, 2015

[^0]: The first author was supported by the SRA grants P1-0292-0101, J1-5435-0101 and J1-67210101. The second author was partially supported by RFBR grant 13-01-00234a. We thank the referees for comments and suggestions.

