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Modulus in Banach function spaces

Vendula Honzlová Exnerová, Jan Malý and Olli Martio

Abstract. Moduli of path families are widely used to mark curves which may be neglected
for some applications. We introduce ordinary and approximation modulus with respect to Banach
function spaces. While these moduli lead to the same result in reflexive spaces, we show that there
are important path families (like paths tangent to a given set) which can be labeled as negligible
by the approximation modulus with respect to the Lorentz Lp,1-space for an appropriate p, in
particular, to the ordinary L1-space if p=1, but not by the ordinary modulus with respect to the
same space.

1. Introduction

For p≥1 the Mp-modulus of a curve family Γ in R
n, n≥1, is defined as

Mp(Γ)= inf
∫
Rn

ρp dx

where the infimum is taken over all non-negative Borel functions ρ such that∫
γ

ρ ds≥ 1

for every curve γ∈Γ.
The Mp-modulus is used in the theory of function spaces. B. Fuglede [5] showed

that a function u in the Sobolev space W 1,p(Rn) is not only absolutely continuous
on almost every line segment parallel to a coordinate axis but satisfies

(1) |u(γ(b))−u(γ(a))| ≤
∫
γ

|∇u| ds
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Foundation.
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for every curve γ :[a, b]→R
n except for a family of Mp-modulus zero. In a metric

measure space X, the inequality (1) has been taken as a defining property to create
the Newtonian space N1,p(X), which has many properties similar to W 1,p(Rn), see
[2], [6] and [17]. Due to the conformal invariance, the Mn-modulus has turned out
to be a basic tool to study conformal and quasiconformal mappings in R

n.
The approximation modulus, AMp-modulus, is defined as

AMp(Γ)= inf
(ρi)

lim inf
i→∞

∫
Rn

ρpi dx

where the infimum is taken over all sequences (ρi) of Borel functions ρi :Rn→[0,∞]
such that

lim inf
i→∞

∫
γ

ρi ds≥ 1

for every γ∈Γ. The AM1-modulus was introduced in [14] to study functions of
bounded variation in R

n and in metric measure spaces, see also [15]. The pur-
pose of this paper is to study an analog of the Mp- and AMp-modulus in the more
general framework of Banach function spaces than in the Lp-spaces. We introduce
MF -modulus and AMF -modulus for an arbitrary Banach function space F . The
moduli in Lebesgue scale are obtained as Mp=Mp

Lp and AMp=AMp
Lp . The main

novelty is the investigation of the AMF -modulus. The MF -modulus has been al-
ready studied in an even broader generality by L. Malý [12]. Of course, we need
both moduli for comparison purposes.

Although we are mostly concerned in distinction between M - and AM -moduli,
we first study when they are equal.

Theorem 1. Let X be a metric measure space and F be a reflexive Banach

function space on X. Then

(2) MF (Γ)=AMF (Γ)

for every curve family Γ in X. In particular,

Mp(Γ)=AMp(Γ) if 1<p<∞.

To find situation in which M - and AM -moduli differ, we must turn our at-
tention to nonreflexive spaces. Besides L1 and L∞, the most important examples
of nonreflexive Banach function spaces are the Lorentz spaces Lp,1(Rn) and their
duals. Note that L1 is just the limiting case p=1, indeed L1,1(Rn)=L1(Rn). We
focus our attention to the Lorentz spaces Lp,1(Rn) rather than to their duals, as
the spaces Lp,1(Rn) are intimately connected with Hausdorff measures, see [8], [9]
and [10]. We prove the following theorem:
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Theorem 2. Let 1≤p≤n. Then there exists a curve family Γ in R
n such that

(3) AMLp,1(Γ)=0 but MLp,1(Γ)=∞.

In particular, if n≥1, then there exists a curve family Γ in R
n such that

(4) AM1(Γ)=0 but M1(Γ)=∞.

In the course of proofs of Theorem 2 and related results, we construct various
curve families which are self-interesting. Let E⊂R

n. We denote the family of
all curves γ which meet E by Γ(E). Already this family can distinguish between
AM - and M -moduli. However, to construct examples in which AMLk,1(Γ)=0<
MLk,1(Γ), we need slightly more sofisticated, but important families:

Definition 3. Let X be a metric space and E⊂X. We define Γi(E) as the
family of all rectifiable curves γ which meet E infinitely times, this means that the
set {t : γ(t)∈E} is infinite.

Definition 4. If E is an (n−k)-dimensional C1 surface in R
n, we say that γ is

right tangential to E if there exists t such that γ(t)∈E and γ′
+(t) belongs to the

tangent space Tγ(t)(E). The family of all right tangential curves to E is denoted by
Γt(E).

Then we can state the following theorem. Note that estimates (6) and (8) have
applications to the fine setting of the Stokes theorem, see [7].

Theorem 5. Let 1≤k≤n−1 and E⊂R
n be an (n−k)-dimensional C1 surface.

Then

(5) AMLk,1(Γt(E))= 0, but MLk,1(Γt(E))=∞.

In particular, if the dimension of E is n−1, then

(6) AM1(Γt(E))= 0, but M1(Γt(E))=∞.

If, moreover, the closure of E is contained in an (n−k)-dimensional C1 surface E′,

then

(7) AMLk,1(Γi(E))= 0, but MLk,1(Γi(E))=∞,

which for k=1 yields

(8) AM1(Γi(E))= 0, but M1(Γi(E))=∞.

Remark 6. Note that by definition, an (n−k) C1 surface is always nonempty.
The assumption on existence of the “supersurface” E′ is not much restrictive, we
need only to avoid some pathological surfaces like the one described in Remark 39.
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We prove our results in a broader generality than indicated in Theorems above.
Namely, we can formulate most results in the setting of metric measure spaces. Also,
there are other versions of tangential behavior and, in particular, we present versions
of tangential behavior in the setting of metric spaces.

The plan of the paper is following. After preliminaries, the properties of the
AMF -modulus in general Banach function spaces F are studied in Section 3. Sec-
tion 4 is devoted to the method of path truncation which plays a crucial role in
the differences between the AM - and M -moduli. The equivalence of these moduli
is proved in the reflexive function spaces in Section 5. Tangential type behavior
of paths and their AM -modulus is studied in Lorentz spaces in Section 6 and this
leads to the proof of the AM part of Theorem 5. We also introduce a closely re-
lated density tangential property for curves in Section 7 and in Section 8 we obtain
estimates for the M -modulus of tangential type paths and these, together with the
results in Section 9, lead to the proof of the M -modulus part of Theorem 5. Finally
in Section 10 a set in R

n with noninteger Minkowski dimension is constructed and
this completes the proof of Theorem 2 in the Lorentz spaces Lp,1.

Acknowledgment. We thank the referee for their careful reading of the ma-
nuscript.

2. Preliminaries

First, we introduce Banach function spaces as in [1].

Definition 7. Let (X, ν) be a measure space, let M+ be the cone of all ν-mea-
surable functions on X with values in [0,∞]. A mapping Ξ:M+→[0,∞] is called a
(Banach) function norm if, for all f, g, fn∈M+, for all a≥0 and for all ν-measurable
sets E⊂X, it holds

(1) Ξ(f)=0⇔f=0 ν-a.e.; Ξ(af)=aΞ(f); Ξ(f+g)≤Ξ(f)+Ξ(g);
(2) 0≤g≤f ν-a.e. ⇒Ξ(g)≤Ξ(f);
(3) 0≤fn↑f ν-a.e. ⇒Ξ(fn)↑Ξ(f);
(4) ν(E)<∞⇒Ξ(χE)<∞;
(5) ν(E)<∞⇒

∫
E
f dν≤CEΞ(f) for CE depending on E, ν and Ξ.

Definition 8. Let M be the set of all extended scalar-valued ν-measurable
functions on X. Let Ξ be a function norm. The collection F of all functions in M
for which Ξ(|f |)<∞ is called a Banach function space. We define a norm on F by

‖f‖F =Ξ(|f |).
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Important examples of Banach function spaces are provided by the scale of
Lorentz spaces.

Definition 9. Let (X, ν) be a σ-finite measure space and 1≤p<∞, 1≤q≤∞.
The Lorentz space Lp,q=Lp,q(X, ν) consists of all ν-measurable functions f with
finite values ν-a.e. for which the quantity

‖f‖Lp,q =

⎧⎨⎩
{∫∞

0 [t
1
p f∗(t)]q dt

t

} 1
q

, q∈[1,∞),

supt∈(0,∞)

{
t

1
p f∗(t)

}
, q=∞,

is finite. Here f∗ is the decreasing rearrangement

f∗(t)= inf {s> 0: ν({x∈X : |f(x)|>s})≤ t} .

We present there some basic properties of Lorentz spaces. For details, see [1,
Chapter 4.4].

The expression ‖·‖Lp,q is a genuine norm (after identifying functions which are
equal a.e.) if 1≤q≤p; for 1<p<q it is equivalent to a genuine norm.

The spaces Lp,1(X, ν) and Lp′,∞(X, ν) are in duality, in particular, the Hölder
type inequality

(9)
∫
X

fg dν≤‖f‖Lp,1 ‖g‖Lp′,∞

holds.
It is easy to compute that for a measurable set,

(10) ‖χE‖Lp,q = c ν(E)1/p with c= c(p, q)= (p/q)1/q.

For us, it is enough to remember that c(p, 1)=p.
In typical situations (like in R

n with the Lebesgue measure), the spaces
Lp,q(X, ν) are reflexive if and only if 1<p, q<∞; the reflexivity part follows from
the characterization of the dual space in [1, Corollary 4.4.7], the nonreflexivity part
can be derived from [1, Corollary 1.4.4] and [16, Theorem 9.5.]

The Lebesgue spaces Lp(X, ν) are included in the scale of Lorentz spaces as
Lp(X, ν)=Lp,p(X, ν), p∈[1,∞].

For 1≤p≤∞ and 1≤q≤s≤∞, we have the embedding

‖f‖Lp,s ≤C‖f‖Lp,q , f ∈Lp,q(X, ν).



110 Vendula Honzlová Exnerová, Jan Malý and Olli Martio

Definition 10. In what follows, we restrict ourselves to rectifiable curves, which
will be called paths. So, a path will be a non-constant Lipschitz continuous mapping
γ : [a, b]→X. Every path can be parametrized by its arclength and we assume that
it is done as so, if not specified otherwise. The domain of γ will be [0, �], where
�=�(γ) is the total length of γ.

Note that the curvelinear integral∫
γ

ρ ds=
∫ �(γ)

0
ρ(γ(t)) dt

is well defined whenever γ is a path and ρ is a non-negative Borel function on X.

Now, we can define a modulus and approximation modulus with respect to a
Banach function space F .

Definition 11. Let (X, ν) be a metric space with a Borel regular measure ν.
Let F be a Banach function space on X and Γ a family of paths in X. A Borel
measurable function ρ:X→[0,∞] is called admissible for Γ if

∫
γ
ρ ds≥1 for every

γ∈Γ. Define the MF -modulus of Γ as

MF (Γ)= inf{‖ρ‖F : ρ is admissible for Γ}

where the infimum is taken over all admissible functions for Γ.

Remark 12. In case of F=Lp(Rn), p>1, the MF -modulus and the standard
Mp-modulus are almost the same – the only difference is that the Mp-modulus
uses the p-th-power of the Lp-norm, i.e. Mp(Γ)=(MLp(Γ))p. In particular, the zero
families are the same. For p=1 the moduli are obviously exactly the same.

Definition 13. Let (X, ν) be a metric space with a Borel regular measure ν.
Let F be a Banach function space and Γ a family of paths in X. A sequence of
non-negative Borel functions ρi :X→[0,∞] is admissible for Γ if

lim inf
i→∞

∫
γ

ρi ds≥ 1

for every γ∈Γ. The approximation modulus with respect to F , shortly AMF -modu-
lus of Γ is defined as

AMF (Γ)= inf(lim inf
i→∞

‖ρi‖F )

where the infimum is taken over all admissible sequences (ρi) for Γ. Note that
AMp(Γ)=(AMLp(Γ))p.
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3. Basic properties

In this section, we show some basic properties of MF -modulus and AMF -modu-
lus. The ideas are analogous to [5] and [14].

Remark 14. It holds that AMF (Γ)≤MF (Γ). It is easy to see this inequality
because if ρ is admissible for Γ, then ρi=ρ, i=1, 2, ..., is admissible for Γ and

AMF (Γ)≤‖ρ‖F .

Taking infimum over all admissible ρ, the assertion follows.

Theorem 15. ([12]) The MF -modulus is an outer measure on the set of paths

in X, i.e.

MF (∅)= 0;(11)
Γ1 ⊂Γ2 =⇒MF (Γ1)≤MF (Γ2);(12)

MF (
∞⋃
j=1

Γj)≤
∞∑
j=1

MF (Γj).(13)

Theorem 16. The AMF -modulus is an outer measure on the set of paths

in X, i.e.

AMF (∅)= 0;(14)
Γ1 ⊂Γ2 =⇒AMF (Γ1)≤AMF (Γ2);(15)

AMF (
∞⋃
j=1

Γj)≤
∞∑
j=1

AMF (Γj).(16)

Proof. The property (14) is obvious since ρi=0 is admissible for the empty set.
Similarly, (15) follows from the fact that each admissible sequence for Γ2 is also
admissible for Γ1. To prove (16), assume that

∑∞
j=1 AMF (Γj)<∞. Then fix ε>0

and for each j=1, 2, ... pick an admissible sequence (ρji )∞i=1 for Γj such that

(17) ‖ρji‖F ≤AMF (Γj)+2−jε

for every i=1, 2, ....
Set ρi=

∑∞
j=1 ρ

j
i . Then ρi is admissible for Γ=

⋃∞
j=1 Γj as if γ∈Γ, then there

exists j0 such that γ∈Γj0 and

lim inf
i→∞

∫
γ

ρi ds= lim inf
i→∞

∫
γ

∞∑
j=1

ρji ds≥ lim inf
i→∞

∫
γ

ρj0i ds≥ 1.
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Now, using [1, Theorem 1.6] we can estimate

AMF (Γ)≤ lim inf
i→∞

‖ρi‖F = lim inf
i→∞

∥∥∥ ∞∑
j=1

ρji

∥∥∥
F
≤ lim inf

i→∞

∞∑
j=1

‖ρji‖F

≤
∞∑
j=1

(
AMF (Γj)+2−jε

)
=

∞∑
j=1

AMF (Γj)+ε.

Letting ε→0, we obtain (16). �

Definition 17. A set of paths Γ2 is minorised by Γ1 if for every path γ∈Γ2
there exists a subpath of γ in Γ1. It is denoted as Γ1<Γ2.

Proposition 18. If Γ1<Γ2, then MF (Γ2)≤MF (Γ1).

Proposition 19. If Γ1<Γ2, then AMF (Γ2)≤AMF (Γ1).

Proof. For both theorems, the proofs are easy and similar. If ρ∈F (ρi∈F
respectively) is admissible for Γ1, it is admissible for Γ2 too. Thus a set of admissible
functions for Γ2 is the same or larger then for Γ1 and the infimum over a larger set
is smaller or the same. �

Proposition 20. Let Γ be a family of paths in X. Then MF (Γ)=0 if and only

if there is an admissible sequence (ρi) for Γ such that

(18) lim inf
i→∞

‖ρi‖F =0.

Proof. If MF (Γ)=0, then there exist admissible functions ρi such that ‖ρi‖F≤ 1
i

for each i=1, 2, ... and this is the required sequence.
For the other direction, let (ρi) be as in (18). We can choose a subsequence

(ωi) of (ρi) such that ‖ωi‖F≤2−i−1ε for i=1, 2, ....
Now define ρ=

∑∞
i=1 ωi. Since (ωi) is admissible for Γ, there exists k∈N such

that for all i≥k it holds that
∫
γ
ωi ds≥ 1

2 . We can use the Lebesgue monotone
convergence theorem to infer that∫

γ

ρ ds=
∞∑
i=1

∫
γ

ωi ds=∞> 1

and thus ρ is admissible for Γ.
Using again [1, Theorem 1.6], we get

MF (Γ)≤‖ρ‖F ≤
∞∑
i=1

‖ωi‖F ≤ ε.

Letting ε→0, MF (Γ) is zero as desired. �
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Remark 21. The zero set of AMF -modulus can be a set of positive MF -modulus
only if (18) fails for any admissible sequence (ρi), i.e. there exists no minimizing
sequence (ρi).

The following lemma is a version of Fuglede’s theorem [5, Theorem 3(f)] adapted
to the setting of Banach functions spaces.

Lemma 22. If a sequence ρj∈F converges strongly in F to ρ, then there is a

subsequence ρj such that for almost every path

lim
j→∞

∫
γ

|ρ−ρj | ds=0

except for a set of paths of a zero MF -modulus.

Remark 23. Since the AMF -modulus is smaller, the lemma holds for the
AMF -modulus as well.

Proof. We can choose a subsequence ρj such that ‖ρ−ρj‖F<2−2j . Denote

Γj =
{
γ :

∫
γ

|ρ−ρj | ds> 2−j
}
,

Ψk =
⋃
j>k

Γj , Ψ=
⋂
k

Ψk.

The function 2j |ρ−ρj | is admissible for Γj , thus

MF (Γj)≤ 2j‖ρ−ρj‖F < 2−j .

By Theorem 15, for every k∈N, we have

MF (Ψ)≤MF (Ψk)≤
∑
j>k

MF (Γj)< 2−k.

Since the previous inequality holds for every k, MF (Ψ)=0. For every γ /∈Ψ there
exists an index k such that γ �∈Ψk, i.e.

∫
γ
|ρ−ρj | ds≤2−j for every j>k. Hence

lim
j→∞

∫
γ

|ρ−ρj | ds=0. �

The next theorem is also due to Fuglede [5, Theorem 2]. We omit the proof; it is
easy to observe that Fuglede’s argument holds also in the setting of Banach function
spaces. The idea is also clear from the (more complicated) proof of Theorem 25.
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Theorem 24. Let Γ be a family of paths in X. Then MF (Γ)=0 if and only if

there is a non-negative Borel function ρ∈F(X) such that

(19)
∫
γ

ρ ds=∞

for each γ∈Γ.

For the AMF -modulus, there is also a corresponding result.

Theorem 25. Let Γ be a family of paths in X. Then AMF (Γ)=0 if and only

if there is a sequence (ρ̃i) of non-negative Borel functions ρ̃i such that

(20) lim inf
i→∞

‖ρ̃i‖F <∞

and for each γ∈Γ

(21) lim
i→∞

∫
γ

ρ̃i ds=∞.

Proof. The conditions (20) and (21) are clearly sufficient to show that
AMF (Γ)=0. For the converse, suppose that AMF (Γ)=0 and let ε>0. For each
j∈N, we can choose a sequence (ρji )i such that (ρji )i is admissible for Γ and

(22) ‖ ρji ‖F≤ 2−j

for each i and j. For every i set

ρ̃i =
∞∑
j=1

ρji

Then [1, Theorem 1.6] and (22) yield

‖ ρ̃i ‖F≤
∞∑
j=1

‖ ρji ‖F≤
∞∑
j=1

2−j =1

and this gives (20).
It remains to show that (ρ̃i) satisfies (21). Fix a path γ∈Γ and let k∈N. Since

each sequence (ρji )i is admissible for Γ, there is i0 such that for i≥i0∫
γ

ρji ds> 1/2

for j=1, 2, ..., k. Now ∫
γ

ρ̃i ds≥
k∑

j=1

∫
γ

ρji ds≥ k/2
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for i≥i0 and hence
lim inf
i→∞

∫
γ

ρ̃i ds≥ k/2.

Letting k→∞ we obtain
lim
i→∞

∫
γ

ρ̃i ds=∞

as required. �

Remark 26. The left hand part of (20) can be made arbitrarily small.

4. Truncation

Here we consider a phenomenon which clarifies the difference between the MF -
and AMF -modulus.

Let Γ be a family of paths in X. We say that a family ΓT is a truncated family
associated with Γ if Γ⊂ΓT and for each γ∈Γ, ΓT contains some family of arbitrary
short subpaths of γ. Note that there are many truncated families associated with Γ.

Theorem 27. If Γ is a family of paths in X with MF (Γ)>0, then MF (ΓT )=∞
for every truncated family ΓT associated with Γ.

Proof. Assume that MF (Γ)<∞. Let ρ∈F(X) be admissible for ΓT . Then ρ

is admissible for Γ as well and hence there is a path γ∈Γ such that

(23)
∫
γ

ρ ds<∞

because if ∫
γ

ρ ds=∞

for every γ∈Γ, then MF (Γ)=0 by the Fuglede Theorem 24 which is a contradiction.
Now the absolute continuity of integral shows that ρ is not admissible for ΓT since
the path γ in (23) contains paths of arbitrary small length and we can find a subpath
γ̃ of γ such that

∫
γ̃
ρ ds<1. The theorem follows. �

Remark 28. Note that Theorem 27 is not true for the AMF -modulus in general.
This is an important difference between these two concepts. Consider the family
Γ of all segments connecting rz with z where r∈(0, 1) and z∈∂B(0, 1). Then the
sequence (ρi) defined as ρi=2iχB(0,1)\B(0,1−2−i) is admissible for Γ and shows that
the AM1-modulus of Γ is finite, although Γ is a truncated family associated with
itself and its AM1-modulus is strictly positive, see also [14, Example 3.14].
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Remark 29. As the following section shows, the MF - and AMF -modulus are the
same for every reflexive space F , and thus the property of Theorem 27 transmits to
the AMF -modulus in reflexive spaces. In particular, it holds for the AMp-modulus,
1<p<∞.

5. Equivalence of moduli in reflexive spaces

In this section, we will prove that MF -modulus and AMF -modulus are the
same if the space F is reflexive. In particular, Theorem 1 shows that Mp-modulus
and AMp-modulus are the same for 1<p<∞.

Proof of Theorem 1. Since AMF (Γ)≤MF (Γ) by Remark 14, it suffices to prove
the reverse inequality.

We may assume that AMF (Γ)<∞.
Let δ>0. Find an admissible sequence (ρi) for Γ such that

(24) lim inf
i→∞

‖ρi‖F ≤AMF (Γ)+δ.

Since the space F is reflexive and the sequence (ρi) is bounded, by [18, Section V.2,
Theorem 1], there exist ρ∈F and a subsequence of (ρi), denoted again by (ρi), such
that ρi→ρ weakly in F and satisfies (24). This subsequence is still admissible for Γ.
Since ρi→ρ weakly in F , by the Mazur lemma [18, Section V.1, Theorem 2], for
each k∈N, there exists a convex combination νk of ρk, ρk+1, ... such that

‖νk−ρ‖F < 1/k.

By Lemma 22, a subsequence, denoted again by (νk), satisfies∫
γ

νk ds−→
∫
γ

ρ ds

for every γ∈Γ⊂Γ, where MF (Γ\Γ)=0. Let γ∈Γ. Then by convexity,∫
γ

νk ds≥ inf
i≥k

∫
γ

ρi ds, k=1, 2, ...,

so that ∫
γ

ρ ds= lim
k→∞

∫
γ

νk ds≥ lim inf
i→∞

∫
γ

ρi ds=1.

It follows that ρ is admissible for Γ. Then by Fatou Lemma [1, Lemma 1.5],

MF (Γ)≤‖ρ‖F ≤ lim inf
i→∞

‖ρi‖F ≤AMF (Γ)+δ.

Letting δ→0, we obtain MF (Γ)≤AMF (Γ). Since MF (Γ\Γ)=0, we conclude that

MF (Γ)≤AMF (Γ). �



Modulus in Banach function spaces 117

6. Estimates of approximation modulus

In this section we assume that the measure ν is doubling.

Definition 30. For 0≤q let

coM q(E)= lim inf
t→0

ν({x∈X : d(x,E)<t})
tq

denote the lower Minkowski content of codimension q of a set E⊂X. By coHq(E)
we denote the Hausdorff measure of codimension q of E defined as

coH q(E)= sup
δ>0

coH q
δ(E)

where for δ>0

coH q
δ(E)= inf

{ ∞∑
j=1

ν(B(xj , rj))
rqj

: E⊂
∞⋃
j=1

B(xj , rj), sup
j

rj <δ
}

is the δ-content associated with coHq(E).

It easily follows from the 5-covering lemma, see e.g. [2, Lemma 1.7], that
coHq(E)≤c0 coM q(E) where c0 depends only on the doubling constant of ν.

Definition 31. We say that a path γ :[0, �(γ)]→X has a meeting of order α>0
with a set E⊂X if

lim
δ→0

|{s∈ [0, �(γ)] : d(γ(s), E)<δ}|
δ1/α =∞.

Here |A| stands for the Lebesgue measure of A⊂R.

Theorem 32. Suppose that coM q(E)<∞ and that Γ is a family of paths in X

such that each γ∈Γ has a meeting of order α with E. Then AMLp,1(Γ)=0 provided

that 1≤p≤αq.

Proof. Pick first a sequence 1≥δ1>δ2>... such that limi→∞ δi=0 and for some
M<∞

ν({x∈X : d(x,E)<δi})
δqi

≤M.

Let ε>0 and for i=1, 2, ... let

ρi = εδ
−1/α
i χE(δi)

where E(t)={x∈X :d(x,E)<t}. Then by (10),

‖ρi‖Lp,1(X) = εδ
−1/α
i p (ν(E(δi)))

1
p .

We show that the sequence (ρi) is admissible for Γ.
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To this end, fix γ∈Γ. Since γ has a meeting of order α with E, there is i0 such
that

ε |{s∈ [0, �(γ)] : d(γ(s), E)<δi}|≥ δ
1/α
i

for i≥i0. Now for i≥i0∫
γ

ρi ds= εδ
−1/α
i |{s∈ [0, �(γ)] : d(γ(s), E)<δi}|≥ 1,

and so the sequence (ρi) is admissible for Γ.
Since p/α≤q and since (ρi) is admissible for Γ, we can use the sequence (ρi)

to obtain

AMLp,1(Γ)≤ lim inf
i→∞

‖ρi‖Lp,1(X) ≤ ε lim inf
i→∞

p ν(E(δi))1/p

δ
1/α
i

≤ ε lim inf
i→∞

(
ν(E(δi))

δqi

)1/p
≤M1/pε.

Since M is independent of ε, we have AMLp,1(Γ)=0 as required. �

Remark 33. The above theorem is not true if the lower Minkowski content
of codimension q is replaced by the Hausdorff measure of codimension q. Easy
examples can be constructed by adding a countable set to the set E. This has no
effect on coHq(E) but the meeting property holds for a much larger family Γ of
paths than before and so the condition AMp(Γ)=0 need not hold for p≤αq.

Corollary 34. Let E⊂R
n be an (n−k)-dimensional C1 surface, k∈{1, 2, ..., n},

and Γ be a family of paths such that each γ∈Γ has a meeting of order 1 with a com-

pact part of E (depending on γ). Then AMLk,1(Γ)=0.

Proof. Obviously, for each compact part K of E, coM k(K)<∞. We can write
E as

⋃
j Wj=

⋃
j W j , where Wj are open in E and with compact closures in E. Then

Γ=
⋃

j Γj , where each γ∈Γj has a meeting of order 1 with the compact set W j⊂E.
Now, we can use the countable subadditivity of the approximation modulus (The-
orem 16). �

Proposition 35. Let E⊂X and Γi(E) be as in Definition 3. Then each γ∈
Γi(E) has a meeting of order 1 with E.

Proof. Choose m∈N and pick distinct points t1, ..., tm∈(0, �(γ)) such that
γ(ti)∈E, i=1, ...,m. Find δ>0 such that the intervals (ti−δ, ti+δ), i=1, ...,m, are
pairwise disjoint and contained in (0, �(γ)). Let 0<s<δ. Then for each i=1, ...,m
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and t∈(ti−s, ti+s) we have d(γ(t), E)<s due to the 1-Lipschitz property of γ.
Hence

|{t∈ [0, �(γ)] : d(γ(t), E)<s}|≥ 2ms.

Letting m→∞ we obtain the assertion. �

Corollary 36. Let E⊂X and coM p(E)<∞. Then AMLp,1(Γi(E))=0.

Remark 37. If we replace the assumption coM p(E)<∞ by coH p(E)<∞, it
can be proved that AMLp(Γi(E))=0, see [7]. Thus, for p=1 the conclusion of
Corollary 36 can be obtained under a weaker assumption, whereas for p>1 the
conclusion is also weaker (Lebesgue spaces instead of Lorentz spaces).

Corollary 38. Let k∈{1, ..., n−1}, E⊂R
n and 1≤p≤k. Suppose that there

exists an (n−k)-dimensional C1 surface E′ in R
n such that E⊂E′. Then

AMLp,1(Γi(E))= 0.

Proof. Let γ∈Γi(E). Then there exists an ball B which contains the locus of γ.
The set K=E∩B is a compact subset of E′ such that γ∈Γi(K). By Proposition 35,
γ has a meeting of order 1 with K. Therefore the assumptions of Corollary 34 are
satisfied. �

Remark 39. The set
E =

⋃
j

∂B(0, 1−2−j)

is a C1-surface. Consider the family Γ of all segments connecting points of ∂B(0, 1)
with the origin. Then by [14, 3.12], AM1(Γ)>0, although Γ⊂Γi(E). Hence we
cannot drop the assumption regarding the “supersurface” E′ in Corollary 38.

Definition 40. For E⊂X we define

Γτ (E)=
{
γ ∈Γ(E) : γ(0)∈E, lim

t→0+

d(γ(t), E)
t

=0
}
.

Remark 41. If γ is right tangential in the sense of Definition 4, then there is a
subpath of γ in Γτ (E).

Proposition 42. Let E⊂X and γ∈Γτ (E). Then γ has a meeting of order 1
with E.

Proof. Choose m∈N and find δ>0 such that

0<t<δ ==⇒ d(γ(t), E)≤ t

m
.
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Let s< δ
m . Then for each t∈(0,ms) we have t<δ and d(γ(t), E)≤s. Thus,

|{t∈ [0, �(γ)] : d(γ(t), E)<s}|≥ms.

Letting m→∞ we obtain the assertion. �

The converse of Proposition 42 is not true. For example, consider the set
E=(−∞,∞)×{0} in R2 and the curve γ with locus

[0, 1]×{0}∪∪∞
i=1{2−i}×[0, 2−i].

Corollary 43. Let coM q(E)<∞. Then AMLp,1(Γτ (E))=0 provided that 1≤
p≤q.

Corollary 44. Let k∈{1, ..., n−1}, E be an (n−k)-dimensional C1 surface in

R
n and 1≤p≤k. Then

AMLp,1(Γt(E))=AMLp,1(Γτ (E))= 0.

Proof. In view of Remark 41, AMLp,1(Γt(E))≤AMLp,1(Γτ (E)). Let γ∈Γτ (E).
If V is a neighborhood of γ(0) in E such that V ⊂E, then γ∈Γτ (V ) and by Proposi-
tion 42, γ has a meeting of order 1 with V . Therefore Γτ (E) satisfies the assumptions
of Corollary 34. �

7. Density-tangential curves

In this section, X will be a metric space with a doubling measure ν. We derive
an estimate which will be needed in applications (see [7]). We are able to handle
sets of finite Hausdorff measure, but the result does not seem to extend easily to
Lorentz spaces.

Definition 45. Let μ be a finite Borel measure on X, x∈X and τ>0. We denote

Rτ (x, μ)= inf{r > 0: rμ(B(x, r))≥ τν(B(x, r))}.

We say that γ is τ -density tangential to μ if

lim
t→0+

Rτ (γ(t), μ)
d(γ(t), γ(0)) = 0.

Remark 46. Typically μ is the Hausdorff measure of codimension 1 restricted
to some set E.

Theorem 47. Let Γμ,τ be the family of all paths which are τ -density tangential

to μ. Then AM1(Γμ,τ )=0.
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Proof. For each k∈N, consider the family of all balls B(x, r) with the properties
that rμ(B(x, r))≥τν(B(x, r)) and 0<r< 1

k . Using the Vitali type theorem, there
exists a pairwise disjoint subfamily {B(xk

i , r
k
i )}i of this family such that

Fk :=
{
x∈X : Rτ (x, μ)< 1

k

}
⊂
⋃
i

B(xk
i , 5rki ).

Set
ρk(x)=

∑
i

χB(xk
i ,6rki )

rki
.

Using the doubling property of ν we estimate∫
X

ρk dν =
∑
i

ν(B(xk
i , 6rki ))
rki

≤
∑
i

ν(B(xk
i , r

k
i ))

rki

≤ C

τ

∑
i

μ(B(xk
i , r

k
i ))≤ C

τ
μ(X).

Pick γ∈Γμ,τ . Choose m∈N and find δ>0 such that

(25) 0<t<δ ==⇒ Rτ (γ(t), μ)
d(γ(t), γ(0)) <

1
20m.

Choose T<δ such that d(γ(T ), γ(0))>0. Find km∈N such that 20m
km

<d(γ(T ), γ(0)).
Let k≥km. Find 0<t1<...<tm such that

d(γ(tj), γ(0))= 20j
k

, j =1, ...,m.

By (25),

Rτ (γ(tj), μ)< 1
20md(γ(tj), γ(0))= 20j

20mk
≤ 1

k
.

Thus, for each j it holds that γ(tj)∈Fk and there exists i(j) such that

γ(tj)∈B(xk
i(j), 5rki(j)).

Since rki ≤ 1
k and the mutual distance of γ(tj) is estimated below by 20

k , the indices
i(j) are distinct. The path γ travels in each B(xk

i(j), 6rki(j)) at least distance rki(j)
and thus ∫

γ

ρk ≥m, k≥ km.

By Theorem 25 it follows that AM1(Γμ,τ )=0. �
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8. Estimates of M-modulus

In this section we assume that X is locally compact and ν is doubling.
We first recall some notions from analysis on metric measure spaces, see [2]

and [6].

Definition 48. A Borel measurable function ρ : X→[0,∞] is said to be an upper
gradient to u : X→R if

|u(y)−u(x)| ≤
∫
γ

ρ ds

for each x, y∈X and each path γ connecting x to y.
Let B=B(z,R) be a ball and E⊂B. We say that a function u : X→R is a

cap-competitor for (E,B) if u≥1 on E and u=0 on X\B. The Dirichlet-Lorentz
DLp,1 seminorm of a ν-measurable function u : X→R is defined by

‖u‖DLp,1 := inf
{
‖ρ‖Lp,1 : ρ is an upper gradient to u

}
.

The Dirichlet-Lorentz DLp,1-capacity of a set E⊂B is defined as

capDLp,1(E;B)= inf
{
‖u‖pDLp,1 : u is a cap-competitor for (E,B)

}
.

Remark 49. The Dirichlet type seminorms provide a homogeneous counterpart
of more familiar Newtonian type norms, see [2], [6] and [12].

Theorem 50. Let p≥1 and let E be a subset of a relatively compact ball B⊂X

with capDLp,1(E,B)>0. Then MLp,1(Γi(E)∩Γτ (E))=∞.

Proof. (For a similar construction see [2, Lemma 5.25].) Let ρ∈Lp,1(B), ρ≥0,
be a lower semicontinuous function. We may assume that ρ is bounded away from 0.
For x∈B, let Γx be the family of all paths γ : [0, �]→B such that γ(0)=x, γ(�) /∈B
and γ((0, �))⊂B. Set

u(x)= inf
{∫

γ

ρ ds : γ ∈Γx

}
.

Let x, xi∈B be such that xi→x and supi u(xi)<∞. Consider a sequence (γi) such
that γi∈Γxi and ∫

γi

ρ ds<u(xi)+2−i.

Then, as ρ is bounded away from zero, the lengths of γi are bounded and we
can reparametrize these paths to be defined on the same interval with a bounded
Lipschitz constant. Then by the Arzela-Ascoli argument, we can find a subsequence
converging to a limit path γ such that (as ρ is lower semicontinuous)∫

γ

ρ ds≤ lim inf
i

∫
γi

ρ ds≤ lim inf
i

u(xi).
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Hence the function u is lower semicontinuous. Also we easily verify that ρ is an
upper gradient of u. Assume first that u=∞ on E∩B(z,R). Then all the functions
u/j serve as cap-competitors for (E,B) and it follows that capDLp,1(E,B)=0, a con-
tradiction. Thus, there exists y∈E such that, under the notation above, u(y)<∞.
We can find a path parametrized by its arc length γ : [0, �]→X such that γ∈Γy and∫
γ
ρ ds<∞.

Now, we can construct a path γ̃∈Γi(E)∩Γτ (E). The path γ̃ has the same
locus as the path γ but goes to γ(0) infinitely often and has, at the same time, the
required tangential property.

Find a sequence δm↘0 such that

δ1 = �,

and

(26)
∞∑

m=1
m

∫ δm

0
ρ(γ(t)) dt<∞.

Let qm be positive integers such that

(27) qm ≥ δm
δm+1

.

Set
tm =

∑
n>m

(2n+2)δn, m=0, 1, 2, ...,

hm = δm
qm

, m=1, 2, ...

Our plan is to find the new curve γ̃ as

γ̃(t)= γ(ξ(t)), t∈ [0, �̃],

where

�̃= t0 =
∞∑

n=1
(2n+2)δn

and ξ : [0, �̃]→[0, �] is defined as follows. Fix m∈N and set

ξ(tm−1−s)= s, 0≤ s≤ δm.

Now, we define ξ on [tm, tm−1−δm] to be linear on each

[tm+(i−1)hm, tm+ihm], i=1, ..., (2m+1)qm
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and attaining the values

ξ(tm+((k−1)(2m+1)+2j)hm)= (k−1)hm,

ξ(tm+((k−1)(2m+1)+(2j+1))hm)= khm,

}
j =1, ...,m,

k=1, ..., qm.

For completeness we set ξ(0)=0. Observe that |ξ′|=1 at all points except for the
partition ones, so that γ̃ is parametrized by its arclength.

Since γ̃(tm)=γ(0)=y for each m∈N, we verify that γ̃∈Γi(E).
Next, we want to show that γ̃ is tangential according to the definition of Γτ (E).

This reduces to the property

(28) lim
t→0+

ξ(t)
t

=0.

Let t∈[tm, tm−1] Then (using (27))

ξ(t)
t

≤
t−tm
2m+1 +hm

t−tm+(2m+3)δm+1
≤ 1

2m+1

which tends to 0 as m→∞ and (28) is verified.
By (26) ∫

γ̃

ρ ds=
∞∑

m=1
(2m+2)

∫ δm

0
ρ(γ(t)) dt<∞.

Making γ̃ shorter, we can achieve that
∫
γ̃
ρ ds<1 and still γ̃∈Γi(E)∩Γτ (E), so that

ρ is not admissible for Γi(E)∩Γτ (E). We have shown that there does not exist any
lower semicontinuous admissible function for Γi(E)∩Γτ (E) in Lp,1(X). Since ad-
missible functions for a curve family can be approximated by lower semicontinuous
admissible functions, it follows that

MLp,1(Γi(E)∩Γτ (E))=∞. �

Corollary 51. Let k∈{1, ..., n} and E⊂R
n be a (n−k)-dimensional C1 sur-

face. Then MLk,1(Γt(E)∩Γi(E))=∞.

Remark 52. In Euclidean spaces, the Dirichlet-Lorentz capacity capDLp,1 is
just the homogeneous Sobolev-Lorentz capacity. By [10, Theorem 8.19 and Corol-
lary 9.6],

(29) Hn−p
∞ (E)≤C capDLp,1(E), E⊂R

n.

A similar estimate holds also in metric measure spaces satisfying the (1, 1)-Poincaré
inequality [8], see also [13]. For the Newtonian-Lorentz capacity see also [3] and [11].
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9. Estimates of modulus: smooth tangential paths

In this section we provide an elementary proof of Corollary 51. In fact, we
prove a stronger assertion, as the paths considered in the proof of Theorem 50 are
not smooth. Since null sets for the modulus in consideration are obviously invariant
with respect to smooth deformations, we may consider that our surface is flat.

Definition 53. Let E⊂R
n be a C1 surface and Tx(E) denote the tangent space

to E at a point x∈E. Then Γs(E) is the family of all paths γ : [0, �]→R
n which are

C1-smooth in [0, �] and satisfy

γ′
+(0)∈Tγ(0)(E).

Definition 54. Let k∈{1, ..., n} and

Hn−k = {x=(x1, ..., xn)∈R
n : xn−k+1 = ...=xn =0}.

Define Dk=Hn−k∩Bn(0, 1).

Theorem 55. Let k∈{1, ..., n−1}. Then MLk,1(Γs(Dk))=∞.

Proof. Write x∈Rn as x=(y, z), where y∈Rn−k and z∈Rk. Denote

Bk =Bk(0, 1),
Bn−k =Bn−k(0, 1),

Sk−1 = ∂Bk,

P =Bn−k×Bk.

Then Dk=Bn−k×{0k},
|z|= d((y, z), Dk) in P

and a routine calculation shows that the function

(y, z) �−→ |z|1−k

belongs to Lk′,∞(P )=(Lk,1(P ))∗. Pick ρ∈Lk,1(Rn). Then the duality argument
(see (9)) yields ∫∫

P

ρ(y, z)|z|1−k dy dz <∞.

Find a continuous function f :[0,∞)→R such that

(30) lim
t→0+

f(t)
tk−1 =0,

and still

(31)
∫∫

P

ρ(y, z)
f(|z|) dy dz <∞.
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Further assume that

(32)
∫ 1

0

sk−1

f(s) ds<∞

and

(33) 0≤ f(t)≤ tk−1, t≥ 0.

Let β : [0, 1]→R be the positive solution of the initial value problem

(34)
β′(t)=

(
β(t)

)1−k
f(β(t)),

β(0)= 0.

The existence of such a solution is guaranteed by (32). By (33), we have 0≤β′(t)≤1.
Thus we may set

(35) α(t)=
∫ t

0

√
1−(β′(s))2 ds, t∈ [0, 1].

Given y∈Bn−k and ζ∈Sk−1, set

γy,ζ(t)= (y+α(t)e1, β(t) ζ), t∈ [0, 1],

where
e1 =(1, 0, ..., 0).

By (35), each γy,ζ is parametrized by its arclength and from (30) and (34) it follows
that γy,ζ∈Γs(Dk). We consider the transformation of variables

(ỹ, z̃)=Φ(y, z)= γy, z
|z|

(|z|),

so that

Φ(y, tζ)= (y+α(t)e1, β(t) ζ), y ∈Bn−k, ζ ∈Sk−1, t∈ (0, 1).

Then

Φ′(y, z)=
(
I, F

0, A

)
,

where I is the (n−k)×(n−k) unit matrix, F is a (n−k)×k matrix and A is the
derivative of the radial deformation

z �−→β(|z|) z

|z| .
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Now the Jacobian determinant JΦ of Φ has the form

JΦ(y, z)=det(A)=
(β(|z|)

|z|
)k−1

β′(|z|)

Using (34) we obtain

|z|1−k = JΦ(y, z)
f(|β(z)|) .

It follows∫
Bn−k

(∫
Sk−1

(∫
γy,ζ

ρ ds
)
dHk−1(ζ)

)
dy

=
∫
Bn−k

(∫
Sk−1

(∫ 1

0
ρ
(
y+α(t)e1, β(t)ζ

)
dt
)
dHk−1(ζ)

)
dy

=
∫
Bn−k

(∫ 1

0

(∫
Sk−1

ρ
(
y+α(t)e1, β(t)ζ

)
dHk−1(ζ)

)
dt
)
dy

=
∫
Bn−k

(∫ 1

0

(∫
∂Bk

ρ
(
Φ(y, tζ)

)
dHk−1(ζ)

)
dt
)
dy

=
∫
Bn−k

(∫ 1

0

(
t1−k

∫
∂Bk(0,t)

ρ
(
Φ(y, ξ)

)
dHk−1(ξ)

)
dt
)
dy

=
∫
Bn−k

(∫
Bk

|z|1−kρ
(
Φ(y, z)

)
dz

)
dy

=
∫
Bn−k

(∫
Bk

ρ
(
Φ(y, z)

) JΦ(y, z)
f(|β(z)|) dz

)
dy

=
∫∫

Bn−k×Bk

ρ(ỹ, z̃)
f(|z̃|) dỹ dz̃ <∞,

where the last integral is finite by (31). Therefore there must exist (y, z
|z| )∈Bn−k×

Sk−1 such that ∫
γy, z

|z|

ρ ds<∞.

If we truncate the domain of γy, z
|z|

, we obtain a subpath γ̃y, z
|z|

∈Γs(Dk) such that∫
γ̃y, z

|z|

ρ ds< 1.

Therefore there is no admissible function for Γs(Dk) in Lk,1(P ). We conclude that

MLk,1(Γs(Dk))=∞. �

Remark 56. In contrast to Corollary 51, this result does not hold for k=n.
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10. Comparison results

In this section, we show that in some instances, AM -modulus gives other re-
sults than the corresponding M -modulus. We prove Theorems 2 and 5 from the
introduction.

Proof of Theorem 5. The assertion is a mere combination of Corollaries 44, 38
and 51. �

To show examples for p noninteger, we seek for a fractal set E in R
n such that

0< capDLp,1(E) and coM p(E)<∞.

By (29), the capacitary inequality is verified whenever Hn−p(E)>0. (See Remark 52
which clarifies the situation.) On the other hand, for the simplest examples of sets
with

Hn−p(E)<∞

it also holds that coMp(E)<∞, but it is not easy to find a proof in literature. Thus,
we look for a fractal set K with

0<Hn−p(K)<∞

but the upper Hausdorff measure estimate must be refined to an estimate of the
Minkowski content.

Definition 57. Let 0<λ<1. Let K0 be the unit interval [0, 1]. If Km is a
disjointed union of 2m intervals Im1 , ...Im2m of length 2rm=

( 1
2 (1−λ)

)m, we produce
Km+1 by removing a concentric open interval of length 2λrm from each Imi . The
resulting fractal

K =
⋂
m

Km

is called the middle λ Cantor set.

Lemma 58. ([4, Example 4.5, Proposition 7.1]) Let K be the middle λ Cantor

set, Kn be the Cartesian product of n copies of K and

(36) s= log 2
log( 2

1−λ )
.

Then Hns(Kn)>0.

Lemma 59. Let K be the middle λ Cantor set and s be as in (36). Then

coMn−ns(Kn)<∞.
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Proof. Let 0<r<1 and find m such that rm+1≤r<rm. If xm
i are the centers

of Imi , then

{x∈R
n : d(x,Kn)<r}⊂

( 2m⋃
i=1

(xm
i −rm−r, xm

i +rm+r)
)n

and thus

|{x∈R
n : d(x,Kn)<r}|≤ (2m+1(rm+r))n ≤ (2m+2rm)n � (1−λ)nm,

whereas
rn−ns ≥ r

n(1−s)
m+1 �

( 1
2 (1−λ)

)nm(1−s) =(1−λ)nm.

Here symbols �, � mean inequalities up to a positive multiplicative constant inde-
pendent of m. Now

|{x∈R
n : d(x,Kn)<r}|
rn−ns

≤ c

where the constant c is independent of r and letting r→0 we see that
coMn−ns(Kn)<∞ as required. �

Proof of Theorem 2. Let K be the middle λ Cantor set and s be given by (36).
If λ is chosen so that ns=n−p and E=Kn, then coM p(E)<∞ and coH p(E)>0.
By Corollary 36, (29) and Theorem 50,

AMLp,1(Γi(E))= 0 but MLp,1(Γi(E))=∞. �
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