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1. Introduction

Is a deformation of a smooth rational (or irrational) projective variety still rational (or

irrational)? The main goal of this paper is to show that rationality is not deformation-

invariant for families of smooth complex projective varieties of dimension 4. Examples

along these lines are known when singular fibers are allowed, e.g., smooth cubic threefolds

(which are irrational) may specialize to cubic threefolds with ordinary double points

(which are rational), while smooth cubic surfaces (which are rational) may specialize to

cones over elliptic curves. Totaro shows that specializations of rational varieties need

not be rational in higher dimensions if mild singularities are allowed [T2]. However,

de Fernex and Fusi [dFF] show that the locus of rational fibers in a smooth family of

projective complex threefolds is a countable union of closed subsets on the base.

Let S be a smooth projective rational surface over the complex numbers with func-

tion field K=C(S). A quadric surface bundle consists of a fourfold X and a flat projective

morphism π:X!S such that the generic fiber Q/K of π is a smooth quadric surface. We

assume that π factors through the projectivization of a rank-4 vector bundle on S such

that the fibers are (possibly singular) quadric surfaces; see §3 for relevant background.

Theorem 1. There exist smooth families of complex projective fourfolds φ:X!B
over connected varieties B, such that for every b∈B the fiber Xb=φ−1(b) is a quadric

surface bundle over P2, and satisfying the following properties:

(1) for very general b∈B the fiber Xb is not stably rational ;
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(2) the set of points b∈B such that Xb is rational is dense in B for the Euclidean

topology.

Concretely, we consider smooth hypersurfaces

X ⊂P2×P3

of bidegree (2, 2); projection onto the first factor gives the quadric surface bundle.

Our approach has two key elements. First, we apply the technique of the decompo-

sition of the diagonal [V2], [CTPa], [CTPo], [T1] to show that very general X⊂P2×P3

of bidegree (2, 2) fail to be stably rational. The point is to identify a degenerate quadric

surface fibration, with non-trivial second unramified cohomology and mild singularities.

The analogous degenerate conic bundles over P2 are the Artin–Mumford examples; de-

forming these allows one to show that very general conic bundles over P2 with large

degeneracy divisor fail to be stably rational [HKT]. Second, quadric surface bundles are

rational over the base whenever they admit a section, indeed, whenever they admit a

multisection of odd degree. If the base is rational, then the total space is rational as

well; this can be achieved over a dense set of the moduli space [H], [V3]. This technique

also yields rationality for a dense family of cubic fourfolds containing a plane; no cubic

fourfolds have been shown not to be stably rational.

Theorem 1 is proven in §7, which may serve as roadmap for the steps of our argument.

This paper is inspired by the approach of Voisin [V3], who also considers fourfolds

birational to quadric surface bundles. While our proof of rationality is similar, the

analysis of unramified cohomology relies on work of Pirutka [P] and Colliot-Thélène and

Ojanguren [CTO].
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2. The specialization method

We recall implications of the “integral decomposition of the diagonal and specialization”

method, following [V2], [CTPa], and [P].

A projective variety X over a field k is universally CH0-trivial if, for all field exten-

sions k′/k, the natural degree homomorphism from the Chow group of zero-cycles

CH0(Xk′)−!Z
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is an isomorphism. Examples include smooth k-rational varieties. More complicated

examples arise as follows.

Example 2. [CTPo, Lemmas 2.3 and 2.4] Let X=
⋃
iXi be a projective, reduced,

geometrically connected variety over a field k such that the following conditions hold:

• each irreducible component Xi is geometrically irreducible and k-rational, with

isolated singularities;

• each intersection Xi∩Xj is either empty or has a zero-cycle of degree 1.

Then, X is universally CH0-trivial.

A projective morphism

β: X̃ −!X

of k-varieties is universally CH0-trivial if for all extensions k′/k the push-forward homo-

morphism

β∗: CH0(X̃k′)−!CH0(Xk′)

is an isomorphism.

Proposition 3. ([CTPa, Proposition 1.8]) Let

β: X̃ −!X

be a projective morphism such that for every schematic point x of X, the fiber β−1(x),

considered as a variety over the residue field �(x), is universally CH0-trivial. Then, β

is universally CH0-trivial.

For example, if X is a smooth projective variety and

β: BlZ(X)−!X

is a blow up of a smooth subvariety Z⊂X, then β is a universally CH0-trivial morphism,

since all fibers over (schematic) points are projective spaces. More interesting examples

arise as resolutions of singularities of certain singular projective varieties.

Examples of failure of universal CH0-triviality are given by smooth projective vari-

eties X with non-trivial Brauer group Br(X), or more generally, by varieties with non-

trivial higher unramified cohomology [CTPa, §1]. The following specialization argument

is the key to recent advances in investigations of stable rationality.

Theorem 4. ([V2, Theorem 2.1] and [CTPa, Theorem 2.3]) Let

φ:X −!B
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be a flat projective morphism of complex varieties with smooth generic fiber. Assume that

there exists a point b∈B such that the fiber

X :=φ−1(b)

satisfies the following conditions:

• the group H2
nr(C(X)/C,Z/2Z) is non-trivial ;

• X admits a desingularization

β: X̃ −!X

such that the morphism β is universally CH0-trivial.

Then, a very general fiber of φ is not stably rational.

3. Quadric surface bundles

Let S be a smooth projective variety over C. Suppose that π:X!S is a quadric surface

bundle, i.e., a flat projective morphism from a variety such that the generic fiber Q is a

smooth quadric surface. We assume it admits a factorization

X
� � // P(V )−!S,

where V!S is a rank-4 vector bundle and the fibers of π are expressed as quadric surfaces

in the fibers of P(V )!S. There is a well-defined degeneracy divisor D⊂S corresponding

to where the associated quadratic form drops rank.

Trivializing V over an open cover of S, X may be expressed using a symmetric 4×4

matrix (aij):
4∑

i,j=1

aijxixj = 0.

The local equation for D is the determinant det(aij). Note that D has multiplicity >2

where the rank of fibers is less than 3. Indeed, the hypersurface

{det(aij) = 0}⊂P9
(aij)

is singular precisely where all the 3×3 minors vanish.

3.1. Rationality of quadric bundles

It is well known that Q is rational over K=C(S) if and only if Q(K) 6=∅, i.e., when π

admits a rational section. A theorem by Springer [S] implies that Q(K) 6=∅ provided

Q(K ′) 6=∅ for some extension K ′/K of odd degree, i.e., when π admits a rational multi-

section of odd degree. Thus, we obtain the following result.
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Proposition 5. Let π:X!S be a quadric surface bundle as above, with S rational.

Then, X is rational provided π admits a multisection of odd degree.

Our next step is to recast this in Hodge-theoretic terms.

Proposition 6. Let π:X!S be a quadric surface bundle as above, with X smooth

and S rational. Then, X is rational if it admits an integral (2, 2)-class meeting the fibers

of π in odd degree.

Remark 7. See [CTV, Corollary 8.2] for results on the integral Hodge conjecture for

quadric bundles over surfaces; these suffice for our application to quadric surface bundles

over P2.

Proof. Let F1(X/S)!S denote the relative variety of lines of π. Let S
�
⊂S denote

the largest open subset such that S
�
∩D is smooth and X

�
=X×SS�

. Then F1(X
�
/S

�
)!

S
�

factors

F1(X
�
/S

�
)

p−−!T
�
−!S

�
,

where the second morphism is a double cover branched along S
�
∩D and the first mor-

phism is an étale P1-bundle. In particular F1(X
�
/S

�
) is non-singular. Let α∈Br(T

�
)[2]

denote the Brauer class arising from p.

Let F be a resolution of the closure of F1(X
�
/S

�
) in F1(X/S) obtained by blowing

up over the complement of S
�
. The incidence correspondence between X and F1(X/S),

Γ′⊂X×SF1(X/S),

induces a correspondence Γ between X and F and a homomorphism

Γ∗: CH2(X)−!Pic(F ).

Let η denote the generic point of S; there is a quadratic map

Ξ: Pic(Fη)−!CH2(Xη)

given by

Ξ

(∑
i

aixi

)
=

1

2

(∑
i

ai`(xi)

)2
,

where `(xi)⊂Xη is the line which corresponds to the point xi∈Fη. In geometric terms,

consider Z⊂Fη a finite reduced subscheme with support on each component of Fη, e.g.,

a choice of n lines from each ruling. Take the union of the corresponding rulings in Xη

and set Ξ(Z)⊂Xη to be the n2 points where the rulings cross. This is compatible with
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rational equivalence and yields the desired mapping. Thus, a divisor with odd degree on

each geometric component of Fη gives rise to a rational multisection of odd degree.

The correspondence Γ and the mapping Ξ guarantee that the following conditions

are equivalent:

• α=0;

• F admits a divisor intersecting the generic fiber Fη with odd degree on each

component;

• X admits a rational multisection of odd degree.

As the correspondence Γ also acts at the level of Hodge classes we obtain the following

fact: If X admits an integral (2, 2)-class intersecting the fibers of π with odd degree, then

F admits an integral (1, 1)-class intersecting the generic fiber Fη with odd degree on each

component.

Applying the Lefschetz (1, 1) theorem to F and Proposition 5, we are done.

3.2. A key example

The generic fiber of π is a quadric surface, hence admits a diagonal form

Q= 〈1, a, b, abd〉, (3.1)

i.e., is given by the equation

s2+at2+bu2+abdv2 = 0,

where a, b, d∈K× and (s, t, u, v) are homogeneous coordinates in P3. Note that, since

k :=C⊂K, this form is equivalent to the form 〈1,−a,−b, abd〉.
Theorem 3.17 in [P] gives a general formula for the unramified H2 of the field K(Q),

in terms of the divisor of rational functions a, b, d∈K×, under the assumption that d is

not a square.

In §4 we will analyze the following special case.

Example 8. Consider the fourfold X⊂P2×P3 given by

yzs2+xzt2+xyu2+F (x, y, z)v2 = 0, (3.2)

where

F (x, y, z) =x2+y2+z2−2(xy+xz+yz).

Dehomogenize by setting z=1 to obtain a quadric surface over k(P2):

ys2+xt2+xyu2+F (x, y, 1)v2 = 0.
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Multiplying through by xy and absorbing squares into the variables yields

xS2+yT 2+U2+xyF (x, y, 1)V 2 = 0,

which is of the form (3.1).

We compute the divisor D⊂P2 parameterizing singular fibers of π:X!P2. This is

reducible, consisting of the coordinate lines (with multiplicty 2) and a conic tangent to

each of the lines:

D= {x2y2z2(x2+y2+z2−2(xy+xz+yz)) = 0}.

Remark 9. Hypersurfaces of bidegree (2, 2) in P2×P3 may also be regarded as conic

bundles over the second factor. The degeneracy surface in P3 has degree 6 and at least

eight nodes, corresponding to rank-1 fibers. As a byproduct of the proof of Theorem 1,

we obtain failure of stable rationality for very general conic bundles of this type.

4. The Brauer group of the special fiber

We refer the reader to [CTO, §1] and [CT] for basic properties of unramified cohomology.

Let K be a field. We write

Hn(K) =Hn(K,Z/2Z)

for its nth Galois cohomology with constant coefficients Z/2Z. Let K=k(X) be the

function field of an algebraic variety X over k=C, and let ν be a rank-1 discrete valuation

of K, trivial on k. For n>1, we have a natural homomorphism

∂nν :Hn(K)−!Hn−1(�(ν)),

where �(ν) is the residue field of ν. The group

Hn
nr(K/k) :=

⋂
ν

Ker(∂nν )

is called the nth unramified cohomology of K. It is a stable birational invariant [CTO,

Proposition 1.2] and vanishes if X is stably rational [CTO, Corollary 1.2.1]. Recall that,

for a smooth projective X, we have

Br(X)[2] =H2
nr(k(X)/k).

The following proposition is similar to the examples in [P, §3.5].
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Proposition 10. Let K=k(x, y)=k(P2), X!P2 be the quadric surface bundle de-

fined in Example 8,

α= (x, y)∈Br(K)[2],

and α′ be its image in H2(k(X)). Then, α′ is contained in H2
nr(k(X)/k) and is non-

trivial. In particular,

H2
nr(k(X)/k) 6= 0.

Proof. Let Q be the generic fiber of the natural projection π:X!P2. Since the

discriminant of Q is not a square, the homomorphism

H2(K)−!H2(K(Q))

is injective [A, p. 469], [K, Proposition 6.4.13]. Note that α 6=0, as the conic

xS2+yT 2 =U2

has no rational points over k(x, y); it follows that α′ is also non-trivial. It remains to

show that for every rank-1 discrete valuation ν on K(Q) that is trivial on k, we have

∂ν(α′)=0. (For simplicity, we write ∂ν for ∂2
ν .) We use standard coordinates x and y

(resp. y and z, or x and z) for the open charts of the projective plane. Let us first

investigate the ramification of α on P2; from the definition, we only have the following

non-trivial residues:

• ∂x(α)=y at the line Lx:x=0, where we write y for its class in the residue field

k(y) modulo squares;

• ∂y(α)=x at the line Ly: y=0;

• ∂z(α)=∂z(z, zy)=y at the line Lz: z=0, in coordinates y and z on P2.

Let oν be the valuation ring of ν in K(Q) and consider the center of ν in P2. If

oν⊃K, then the ∂ν(α′)=0; hence, there are two cases to consider:

• the center is the generic point of a curve Cν⊂P2; we denote the corresponding

residue map ∂Cν :H2(K)!H1(�(Cν));

• the center is a closed point pν∈P2.

Codimension 1. The inclusion of discrete valuation rings oP2,Cν⊂oν induces a com-

mutative diagram [CTO, p. 143]

H2(K(Q))
∂ν // H1(�(ν))

H2(K)
∂Cν //

OO

H1(�(Cν))

OO
(4.1)
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The right vertical arrow need not be the functorial homomorphism induced by inclusion

of the residue fields when there is ramification.

Hence, we have the following cases:

(1) Cν is different from Lx, Ly, and Lz. Then, ∂Cν (α)=0, so that ∂ν(α′) is zero

from the diagram above.

(2) Cν is one of the lines Lx, Ly, or Lz. Note that modulo the equation of Cν , the

element d:=F (x, y, z) is a non-zero square, so that [P, Corollary 3.12] gives ∂ν(α′)=0.

We deduce that, for any valuation ν of K(Q) having a codimension-1 point in P2
C as

center, the residue ∂ν(α′) vanishes.

Codimension 2. Let pν be the center of ν on P2. We have an inclusion of local rings

oP2,pν⊂oν inducing the inclusion of corresponding completions ÔP2,pν⊂ôν with quotient

fields Kpν⊂K(Q)ν , respectively. We have three possibilities:

(1) If pν /∈Lx∪Ly∪Lz, then α is a cup product of units in OP2,pν , and hence units

in ov, so that ∂ν(α′)=0.

(2) If pν lies on one curve, e.g., pν∈Lx\(pytpz), where py=(0, 1, 0) and pz=(0, 0, 1),

then the image of y in �(pν) is a non-zero complex number, and hence a square in ÔP2,pν ,

and y is also a square in ôν . (We are using Hensel’s lemma.) Thus, α′=(x, y)=0 in

H2(K(Q)ν ,Z/2Z), and ∂ν(α′)=0.

(3) If pν lies on two curves, e.g., pν=Lx∩Ly, then the image of F (x, y, 1) in �(pν)

is a non-zero complex number, and hence a square. By [P, Corollary 3.12], we have

∂ν(α′)=0.

5. Singularities of the special fiber

In this section we analyze the singularities of the fourfold introduced in Example 8 and

studied in §4. Our main result is the following.

Proposition 11. The fourfold X⊂P2×P3, with coordinates (x, y, z) and (s, t, u, v),

respectively, given by

yzs2+xzt2+xyu2+F (x, y, z)v2 = 0, (5.1)

with

F (x, y, z) =x2+y2+z2−2(xy+xz+yz), (5.2)

admits a universally CH0-trivial resolution of singularities.

We proceed as follows:

• identify the singular locus of X;

• construct a resolution of singularities β: X̃!X;

• verify universal CH0-triviality of β.
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5.1. The singular locus

Here we describe the singularities explicitly using affine charts on P2×P3. The equations

(5.1) and (5.2) are symmetric with respect to compatible permutations of {x, y, z} and

{s, t, u}. In addition, there is the symmetry

(s, t, u, v) 7−! (±s,±t,±u, v),

so altogether we have an action by the semidirect product (Z/2Z)3oS3.

Analysis in local charts

Let Lx, Ly, Lz⊂P2 be the coordinate lines given by

x= 0, y= 0, and z= 0,

respectively, and

px := (1, 0, 0), py := (0, 1, 0), and pz := (0, 0, 1)

be their intersections.

The quadrics in the family (5.1) drop rank over the coordinate lines Lx, Ly, and Lz,

and over the conic C⊂P2, with equation

F (x, y, z) = 0,

where F is defined in (5.2). This conic is tangent to the coordinate lines in the points

rx := (0, 1, 1), ry := (1, 0, 1), and rz := (1, 1, 0),

respectively.

By symmetry, and since no singular point satisfies s=t=u=0, it suffices to consider

just two affine charts:

Chart 1: z=u=1. Equation (5.1) takes the form

ys2+xt2+xy+F (x, y, 1)v2 = 0. (5.3)

Derivatives with respect to s, t, and v give

ys= 0, xt= 0, and vF (x, y, 1) = 0. (5.4)
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Hence, from (5.3), xy=0. Derivatives with respect to y and x give

s2+x+(2y−2x−2)v2 = 0 and t2+y+(2x−2y−2)v2 = 0. (5.5)

Since xy=0, we have two cases, modulo symmetries:

Case 1: y=0;

Case 2: x=0 and y 6=0.

We analyze each of these cases.

Case 1: y=0. Then vF (x, y, 1)=0 (from (5.4)) implies

v(x−1)2 = 0.

So either v=0 or x=1. If v=0, from (5.5) we obtain s2+x=t=0. Hence we obtain the

following equations for the singular locus:

y= v= t= s2+x= 0. (5.6)

If x=1 then (5.4) implies t=0, and the remaining equation from (5.5) gives

s2+1−4v2 = 0.

Hence we obtain the following equations:

x−1 = y= t= s2+1−4v2 = 0. (5.7)

Case 2: x=0 and y 6=0. From (5.4) the condition ys=0 implies s=0. There are two

more cases: v=0 or v 6=0. If v=0 the remaining equation (5.5) gives t2+y=0. Hence we

obtain equations for the singularity:

x= v= s= t2+y= 0. (5.8)

If v 6=0, then F (0, y, 1)=(y−1)2=0 from (5.4), hence y=1. The remaining equation

from (5.5) gives

t2+y+(2x−2y−2)v2 = t2+1−4v2 = 0.

So we obtain equations for the singular locus:

x= y−1 = s= t2+1−4v2 = 0. (5.9)

Chart 2: z=s=1. The equation of the quadric bundle is

y+xt2+xyu2+F (x, y, 1)v2 = 0.
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As above, derivatives with respect to t, u, and v give

xt= 0, xyu= 0, and vF (x, y, 1) = 0. (5.10)

Thus, from the equation, y=0. The conditions above and derivatives with respect to y

and x yield

xt= v(x−1)2 = 1+xu2+(−2x−2)v2 = t2+(2x−2)v2 = 0. (5.11)

The second equation implies that either x=1 or v=0. If x=1, we obtain

x−1 = y= t= 1+u2−4v2 = 0. (5.12)

If v=0, we obtain

y= t= v= 1+xu2 = 0. (5.13)

Collecting these computations, we obtain the following singularities:

(1) In Chart 1,

y= v= t= s2+x= 0,

x−1 = y= t= s2+1−4v2 = 0,

x= v= s= t2+y= 0,

x= y−1 = s= t2+1−4v2 = 0.

(2) In Chart 2,

x−1 = y= t= 1+u2−4v2 = 0,

y= t= v= 1+xu2 = 0.

Enumeration of strata

Using the symmetries, we deduce that the singular locus of X is a union of six conics.

We distinguish between horizontal and vertical conics.

• The horizontal conics Cx, Cy, Cz⊂X project onto the coordinate lines Lx, Ly, Lz⊂
P2. We express them using our standard coordinates on P2×P3:

Cy = {y= t= v= 0 and zs2+xu2 = 0},

Cx = {x= s= v= 0 and zt2+yu2 = 0},

Cz = {z=u= v= 0 and xt2+ys2 = 0}.



stable rationality 353

These conics intersect transversally over pz, px, py∈P2, respectively:

Cx∩Cy = {qz}, Cy∩Cz = {qx}, and Cx∩Cz = {qy},

where

qz := (0, 0, 1)×(0, 0, 1, 0), π(qz) = pz

qx := (1, 0, 0)×(1, 0, 0, 0), π(qx) = px

qy := (0, 1, 0)×(0, 1, 0, 0), π(qy) = py

• The vertical conics Ry, Rx, Rz⊂X project to the points ry, rx, rz∈P2:

Ry ={x−z= y= t= 0 and s2+u2−4v2 = 0}

Rx ={y−z=x= s= 0 and t2+u2−4v2 = 0}

Rz ={x−y= z=u= 0 and s2+t2−4v2 = 0}.

These conics intersect the corresponding horizontal conics transversally in two points:

Ry∩Cy = {ry+, ry−}, Rx∩Cx = {rx+, rx−}, and Rz∩Cz = {rz+, rz−},

where

ry± : = (1, 0, 1)×(±i, 0, 1, 0),

rx± : = (0, 1, 1)×(0, 1,±i, 0),

rz± : = (1, 1, 0)×(1,±i, 0, 0).

Local étale description of the singularities

The structural properties of the resolution become clearer after identifying étale normal

forms for the singularities.

We now provide a local-étale description of the neighborhood of qz. Equation (5.3)

takes the form

ys2+xt2+xy+F (x, y, 1)v2 = 0.

At qz we have F (x, y, 1) 6=0, so we can set

v0 = v
√
F (x, y, 1)
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to obtain

ys2+xt2+xy+v2
0 = 0.

Set x=m−n and y=m+n to get

(m+n)s2+(m−n)t2+m2−n2+v2
0 = 0

or

m(s2+t2)+n(s2−t2)+m2−n2+v2
0 = 0.

Then, let

m=m0− 1
2 (s2+t2) and n=n0+ 1

2 (s2−t2)

to obtain

m2
0−n2

0+v2
0 = 1

4 ((s2+t2)2−(s2−t2)2) = s2t2. (5.14)

We do a similar analysis in an étale-local neighborhood of either of the points ry±.

The singular strata for Cy and Ry are given in (5.6) and (5.7):

{y= t= v= s2+x= 0} and {y= t=x−1 = s2+1−4v2 = 0}.

We first introduce a new coordinate w=x−1. Thus, the singular stratum is the intersec-

tion of the monomial equations y=t=vw=0 with the hypersurface

s2+w+1−4v2.

We regard this as a local coordinate near ry±. Equation (5.3) transforms to

ys2+wt2+t2+wy+y+v2(−4y+(w−y)2) = 0.

Regroup terms to obtain

y(s2+w+1−4v2)+t2(1+w) =−v2(w−y)2.

Now, note that w 6=−1, because x 6=0 near ry±. Let t0=t
√

1+w, s0=s2+w+1−4v2, and

w0=w−y to obtain

ys0+t20 =−v2w2
0. (5.15)

The normal forms (5.14) and (5.15) are both equivalent to

a2
1+a2

2+a2
3 = (b1b2)2,

with ordinary threefold double points along the lines

`1 = {a1 = a2 = a3 = b1 = 0} and `2 = {a1 = a2 = a3 = b2 = 0}.
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A direct computation—which will be presented in §5.2—shows that this is resolved by

blowing up `1 and `2 in either order. The exceptional fibers over the generic points of `1

and `2 are smooth quadric surfaces, isomorphic to the Hirzebruch surface F0'P1×P1.

Over the origin, we obtain a copy

F0∪ΣF2,

where Σ'P1 is the (−2)-curve on F2 and has self-intersection 2 on F0.

By symmetry, this analysis is valid at all nine special points

qx, qy, qz, rx±, ry±, rz±,

where the components of the singular locus (the horizontal and vertical conics) intersect.

This explains why we can blow these conics up in any order.

5.2. Resolution of singularities

What we need to compute

We propose blowing up as follows:

(1) blow up Cy;

(2) blow up the proper transform of Cx;

(3) blow up the proper transform of Cz;

(4) blow up the union of the proper transforms of Rx, Ry, and Rz, which are disjoint.

Taking into account the symmetry, after the first step we must understand:

• What are the singularities along the proper transform of Cx?

• What are the singularities along the proper transform of Ry?

Of course, answering the first questions clarifies the behavior along the proper trans-

form of Cz. And Rx and Rz behave exactly the same as Ry.

Let X1 denote the blow up of Cy and E1,y the resulting exceptional divisor. We

shall see that

• E1,y is smooth, except where it meets the proper transforms of Cx, Cz, and Ry;

• since E1,y⊂X1 is Cartier, X1 is also smooth at any point of E1,y, except where

E1,y meets the proper transforms of Cx, Cz, and Ry;

• the fibers of E1,y!Cy are smooth quadric surfaces away from qx, qz, and ry±,

over which the fibers are quadric cones.

Since the quadric bundle E1,y!Cy admits sections, E1,y is rational over the function

field of Cy and all fibers of E1,y!Cy are rational as well.
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First blow up—local charts

We describe the blow up of Cy in charts. We start in Chart 1, where z=u=1. Local

equations for the center are given in (5.6), and we have a local chart for each defining

equation.

• Chart associated with y. Equations for the blow up of the ambient space take

the form

v= yv1, t= yt1, and s2+x= yw1.

The equation of the proper transform of the quadric bundle is

w1+xt21+F (x, y, 1)v2
1 = 0 and s2+x= yw1.

The exceptional divisor E1,y is given by y=0, i.e.,

w1+xt21+(x−1)2v2
1 = 0 and s2+x= 0.

The blow up is smooth at any point of the exceptional divisor in this chart, as the

derivative of the first equation with respect to w1 is 1 and the derivative of the second

equation with respect to w1 (resp. x) is 0 (resp. 1). (The proper transforms of Ry and

Cx do not appear in this chart.) We analyze E1,y!Cy: for any field �/C and a∈�, the

fiber above s=a, x=−a2, and y=v=t=0, is given by

w1−a2t21+(1+a2)2v2
1 = 0, (5.16)

which is smooth in this chart. Equation (5.16) makes clear that the exceptional divisor

is rational and admits a section over the center.

• Chart associated with s2+x. Equations for the blow up of the ambient space

take the form

y= (s2+x)y1, v= (s2+x)v1, and t= (s2+x)t1.

The proper transform of the quadric bundle has equation

y1+xt21+F (x, (s2+x)y1, 1)v2
1 = 0.

The exceptional divisor E1,y satisfies

y1+xt21+(x−1)2v2
1 = 0 and s2+x= 0.
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The blow up is smooth at any point of the exceptional divisor in this chart. (Again,

the proper transforms of Ry and Cx do not appear in this chart.) The fiber above s=a,

x=−a2, and y=v=t=0 is given by

y1−a2t21+(1+a2)2v2
1 = 0, (5.17)

which is smooth and rational in this chart.

• Chart associated with t. Equations for the blow up of the ambient space are

y= ty1, v= tv1, and s2+x= tw1

and the proper transform of the quadric bundle satisfies

y1w1+x+F (x, ty1, 1)v2
1 = 0 and s2+x= tw1.

The exceptional divisor is given by t=0, i.e.

y1w1+x+(x−1)2v2
1 = 0 and s2+x= 0.

The blow up is smooth along the exceptional divisor, except at the point

t= v1 = y1 = s=w1 =x= 0,

which lies over the point qz. Thus, the only singularity is along the proper transform

of Cx. The fiber above s=a, x=−a2, and y=v=t=0 is given by

y1w1−a2+(1+a2)2v2 = 0, (5.18)

which is smooth in this chart unless a=0.

• Chart associated with v. The equations are

y= vy1, t= vt1, and s2+x= vw1

and

y1w1+xt21+F (x, vy1, 1) = 0 and s2+x= vw1.

The exceptional divisor is given by v=0, i.e.

y1w1+xt21+(x−1)2 = 0 and s2+x= 0.

The blow up is smooth at any point of the exceptional divisor except for

y1 = v=w1 = t1 = 0, x= 1, and s=±i.

Thus, the only singularities are along the proper transform of ry. The fiber above

s=a, x=−a2, and y=v=t=0 is given by

y1w1−a2t21+(1+a2)2 = 0, (5.19)

which is smooth in this chart, unless a=±i.
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What is missed on restricting to Chart 1? For Cy, we omit only

Cy∩Cz = {qx},

with qx=(1, 0, 0)×(1, 0, 0, 0), but the symmetry exchanging x and z (and s and u) takes

this to qz, which lies over Chart 1. For Ry, we omit the locus

x−z= y= t=u= s2−4v2 = 0,

which equals (1, 0, 1)×(±2, 0, 0, 1). However, the same symmetry takes these to (1, 0, 1)×
(0, 0,±2, 1), which is over Chart 1. Thus, modulo symmetries, computations over Chart 1

cover these points as well.

Singularities above pz

Our goal is to show explicitly that the singularity of the blow up in the exceptional

divisor E1,y over (x, y, z)=(0, 0, 1)=pz is resolved on blowing up the proper transform of

Cx. It suffices to examine the chart associated with t, where we have equations

y1w1+x+F (x, ty1, 1)v2
1 = 0 and s2+x= tw1,

i.e.,

(y1+t)w1−s2+F (−s2+tw1, ty1, 1)v2
1 = 0 and s2+x= tw1, (5.20)

and the proper transform of Cx satisfies

y1+t= 0 and w1 = s= v1 = 0.

If we compute the singular locus for the equation (5.20) above, at the points of the

exceptional divisor t=0 and above x=0, we recover the equations for the proper transform

of Cx in this chart.

We analyze X2, the blow up along the proper transform of Cx. In any chart above

y1=t=0 we have F=1 so étale locally we can introduce a new variable v2=v1

√
F to

obtain

(y1+t)w1−s2+v2
2 = 0.

After the change of variables y2=y1+t,

y2w1−s2+v2
1 = 0,

the singular locus is y2=s=w1=v2=0. Here, t is a free variable corresponding to an

A1-factor. This is the product of an ordinary threefold double point with a curve, thus

is resolved on blowing up the singular locus. Note the exceptional divisor is a smooth

quadric surface bundle over the proper transform of Cx, over this chart. (There is a

singular fiber over the point where it meets the proper transform of Cz.)
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Singularities above ry=(1, 0, 1)∈P2

By the analysis above, we have only to consider the chart of the first blow up associated

with v. Recall that it is obtained by setting

y= vy1, t= vt1, and s2+x= vw1,

with equation

y1w1+xt21+F (x, vy1, 1) = 0.

The exceptional divisor is given by v=0. The proper transform R′y of the conic Ry

described by the equations

x−1 = y= t= 0 and s2+1−4v2 = 0

is then

x−1 = y1 = t1 = 0, w1−4v= 0, and s2+1−4v2 = 0. (5.21)

We obtain these equations by inverting the local equation for the exceptional divisor.

Eliminating x from the equation of X1 yields an equation that can be put in the form

y1(w1−4v)+(−s2+vw1)t21+(s2−vw1+vy1+1)2 = 0.

Writing w2=w1−4v, we obtain

y1w2+(−s2+vw2+4v2)t21+(s2−vw2−4v2+vy1+1)2 = 0.

The curve R′y may be expressed as a complete intersection

y1 =w2 = t1 = 0 and σ := (s2−4v2+1)+v(y1−w2) = 0.

The coefficient

c :=−s2+vw2+4v2

is non-vanishing along R′y in this chart so we may introduce an étale local coordinate

t2=t1
√
c. Then, our equation takes the form

y1w2+t22+σ2 = 0.

In other words, we have ordinary threefold double points along each point of R′y. Blowing

up R′y resolves the singularity, and the exceptional divisor over R′y is fibered in smooth

quadric surfaces.



360 b. hassett, a. pirutka and y. tschinkel

5.3. CH0-triviality of the resolution

Let E1,y denote the exceptional divisor after blowing up Cy. We have seen that the

projection E1,y!Cy is a quadric surface bundle. The fibers are smooth away from qx,

qz, and ry±; over these points the fibers are quadric cones.

Let E1,x denote the exceptional divisor after blowing up the proper transform C ′x
of Cx. The fibration E1,x!C

′
x is also a quadric surface bundle. The fibers are smooth

away from qy and rx±, where the fibers are quadric cones.

Let E1,z denote the exceptional divisor on blowing up the proper transform C ′z of

Cz, after the first two blow ups. Again, E1,z!C
′
z is a quadric surface bundle, smooth

away from rz±; the fibers over these points are quadric cones.

Finally, we blow up the proper transforms R′x, R′y, and R′z of the disjoint vertical

conics. The local computations above show that the resulting fourfold X̃ is smooth and

the exceptional divisors

E2,x!R′x, E2,y!R′y, and E2,z!R′z

are smooth quadric surface bundles with sections.

To summarize, fibers of β: X̃!X are one of the following:

• if x is not contained in any of the conics, then β−1(x) is a point;

• if x is contained in exactly one of the conics, then β−1(x) is a smooth quadric

surface isomorphic to F0; when x is a generic point of one of the conics, then β−1(x) is

rational over the residue field of x;

• if x is contained in two of the conics, then β−1(x)=F0∪ΣF2, where F2 is the proper

transform of a quadric cone appearing as a degenerate fiber, Σ⊂F2 is the (−2)-curve,

and Σ⊂F0 has self-intersection 2.

By Proposition 3 and Example 2, we conclude that β is universally CH0-trivial.

6. Analysis of Hodge classes

Our approach follows [V3, §2]. As explained in Proposition 6, a quadric surface bundle

over a rational surface π:X!S is rational, provided X admits an integral class of type

(2, 2) meeting the fibers of π in odd degree. Here, we analyze how these classes occur.

We start by reviewing the Hodge-theoretic inputs. Let Y!B be the family of

all smooth hypersurfaces in P2×P3 of bidegree (2, 2), i.e., B is the complement of the

discriminant in P(Γ(OP2×P3(2, 2))). For each b∈B, let Yb denote the fiber over b. The

Lefschetz hyperplane theorem gives Betti/Hodge numbers

• b2i+1(Yb)=0

• b2(Yb)=h1,1(Yb)=2 and b6(Yb)=h3,3(Yb)=2.



stable rationality 361

We compute b4(Yb) by analyzing Yb!P2; its degeneracy divisor is an octic plane

curve Db, of genus 21. Indeed, the fibers away from Db are smooth quadric surfaces, and

the fibers over Db are quadric cones, so we have

χ(Yb) =χ(P1×P1)χ(P2\Db)+χ(quadric cone)χ(Db) = 4(3−(−40))+3(−40) = 52.

It follows that b4(Yb)=46.

We extract the remaining Hodge numbers using techniques of Griffiths for hyper-

surfaces in projective space, extended to the toric case by Batyrev and Cox. Let F be

the defining equation of bidegree (2, 2) and consider the bigraded Jacobian ring :

Jac(F ) =C[x, y, z; s, t, u, v]/I(F ),

where I(F ) is the ideal of partial derivatives of F . Note these derivatives satisfy the

Euler relations

x
∂F

∂x
+y

∂F

∂y
+z

∂F

∂z
= 2F = s

∂F

∂s
+t

∂F

∂t
+u

∂F

∂u
+v

∂F

∂v
. (6.1)

Consider the vanishing cohomology

H4(Yb)van :=H4(Yb)/H
4(P2×P3),

i.e., we quotient by 〈h2
1, h1h2, h

2
2〉, where h1 and h2 are pull-backs of the hyperplane

classes of P2 and P3, respectively. Then, we have [BC, Theorem 10.13]

• H4,0(Yb)=H4,0(Yb)van=Jac(F )(−1,−2)=0;

• H3,1(Yb)=H3,1(Yb)van'Jac(F )(1,0)=C[x, y, z]1'C3;

• H2,2(Yb)van'Jac(F )(3,2)'C37;

• H1,3(Yb)=H1,3(Yb)van'Jac(F )(5,4)'C3.

The first two dimension computations imply the others by the formula

b4(Yb) =
∑
p+q=4

hp,q(Yb);

or one may compute the Hilbert function of an ideal generated by three forms of degree

(1, 2) and four forms of degree (2, 1), subject to the relations (6.1) but otherwise generic.

We recall the technique of Green [CHM, §5] and Voisin [V1, proof of §5.3.4], which

applies as our variation of Hodge structures is effective of weight 2 after a suitable Tate

twist.
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Proposition 12. Suppose that there exist b0∈B and γ∈H2,2(Yb0)van such that the

infinitesimal period map evaluated at γ,


∇(γ):TB,b0 −!H1,3(Yb0),

is surjective. Then, there exists a Zariski-dense set of b∈B such that, for any simply

connected Euclidean neighborhood B′ of b, the image of the natural map (composition of

inclusion with local trivialization)

τb:H2,2
R −!H4(Yb,R)van

contains an open subset Vb⊂H4(Yb,R)van. Here, H2,2
R is a vector bundle over B′ with

fiber

H2,2
R,u =H4(Yu,R)van∩F 2H4(Yu,C)van

over u∈B′.

Note that the image is the set of real degree-4 vanishing classes that are of type

(2, 2) for some b′∈B′.
The infinitesimal condition is easy to check here. Since

B⊂P(Γ(OP2×P3(2, 2))),

we may identify

TB,b0 = (C[x, y, z; s, t, u, v]/〈F0〉)(2,2),

where F0 is the defining equation of Yb0 . The infinitesimal period map

TB,b0 −!Hom(H2,2(Yb), H
1,3(Yb))

was interpreted by Carlson and Griffiths as a multiplication map

(C[x, y, z; s, t, u, v]/〈F0〉)(2,2)×Jac(F0)(3,2)−! Jac(F0)(5,4).

For fixed γ∈Jac(F0)(3,2), the differential in Voisin’s hypothesis is computed by multiply-

ing γ with the elements of bidegree (2, 2) [V1, Theorem 6.13].

Example 13. Consider the hypersurface Yb0⊂P2×P3 with equation

F0 = (u2+uv+ts)x2+(−t2+u2−v2−s2)xy+(t2+uv+ts)y2

+(−t2+u2−v2−s2)xz+(t2−16tu−u2+v2+s2)yz+(−3uv−3ts+s2)z2.

We computed the Jacobian ring using Macaulay2 [GS]. In particular, we verified that

• Jac(F0)(m1,m2)=0 for

(m1,m2)> (13, 2), (7, 3), (3, 5),

so, in particular, Yb0 is smooth;

• the monomials {xz4v4, yz4v4, z5v4} form a basis for Jac(F0)(5,4).
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Setting γ=z3v2, the multiples of γ generate Jac(F0)(5,4). Hence, this example sat-

isfies Voisin’s hypothesis on the differential of the period map.

Proposition 14. Consider the Noether–Lefschetz loci

{b∈B :Yb admits an integral class of type (2, 2)

meeting the fibers of Yb!P2 in odd degree}.

These are dense in the Euclidean topology on B.

Proof. We retain the set-up of Proposition 12. The intersection of the Noether–

Lefschetz loci with B′ may be expressed as

{u∈B′ :H2,2
R,u∩τ

−1
b H4(Yb,Q)van 6= 0}.

The density of the Noether–Lefschetz loci reflects the fact that

H4(Yb,Q)van⊂H4(Yb,R)van

is dense.

However, we are interested in vectors of H4(Yb,Q)van that are rational multiples

of those associated with odd degree multisections M of Yb!P2. Such multisections

exist because we can write a bidegree-(2, 2) hypersurface containing a constant section

of P2×P3
!P2. The parity condition corresponds to a congruence on the image of M

in H4(Yb,Z)van. Indeed, write Λ=H4(Yb,Z) and consider the natural inclusions and

homomorphisms

Λ⊃〈h2
1, h1h2, h

2
2〉⊥
� � // Λ/〈h2

1, h1h2, h
2
2〉=H4(Yb,Z)van;

the cokernel of the middle arrow is the discriminant group of the lattice 〈h2
1, h1h2, h

2
2〉⊥, a

finite abelian group. The class M yields an element of this group and the parity condition

translates into

M ·h2
1≡ 1 mod 2.

Note that rational multiples of the elements satisfying this condition remain dense

in H4(Yb,R)van, and so Proposition 12 gives the desired result.

The Noether–Lefschetz loci produced by this argument have codimension at most

3 in moduli; each is an algebraic subvariety of B⊂P(Γ(OP2×P3(2, 2)))'P59 [CDK]. Any

projective threefold in P59 will meet the closures of infinitely many of these loci.
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7. Proof of Theorem 1

We assemble the various ingredients developed above:

(1) Theorem 4 guarantees that a very general hypersurface of bidegree (2, 2) in

P2×P3 fails to be stably rational, provided we can find a special X satisfying its hy-

potheses.

(2) The candidate example is introduced in Example 8.

(3) In §4, we show that X has non-trivial unramified second cohomology. This

verifies the first hypothesis of Theorem 4.

(4) In §5, we analyze the singularities of X, checking that it admits a resolution

with universally CH0-trivial fibers.

(5) Proposition 6 gives a cohomological sufficient condition for rationality of (2, 2)-

hypersurfaces in P2×P3; Proposition 14 shows that this condition is satisfied over a dense

subset of the moduli space.

Consider a family φ:X!B of smooth (2, 2)-hypersurfaces in P2×P3 over a connected

base B. If the base meets both the locus parameterizing non-stably rational varieties

and the Noether–Lefschetz loci, then φ has both rational and irrational fibers.

Remark 15. Concrete examples of rational hypersurfaces Xrat⊂P2×P3 of bidegree

(2, 2) are easy to produce, e.g., those containing a constant section of the first projection.

Any very general pencil containing Xrat will have both rational and irrational fibers.
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