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1. Introduction

In this paper we construct counterexamples to five related conjectures concerning the

rank and homology of finite free complexes over commutative noetherian rings, and, in

particular, over group algebras of elementary abelian groups.

Conjecture 1.1. Let k be a field of positive characteristic p, let E be an elementary

abelian p-group of rank r and let kE be the corresponding group algebra. If F is a

bounded complex of free kE-modules of finite rank and H(F ) 6=0, then rankkH(F )>2r.

Here, rankkH(F ) denotes
∑
i rankkHi(F ). Conjecture 1.1 is an algebraic gener-

alization of a conjecture in topology due to Carlsson, recalled in Remark 3.3; see [1,

Question 7.3], and [2, §2]. Carlsson proved Conjecture 1.1 when p=2 and r63; see [16,

Theorem 2]. Corollary 3.2 below provides a counterexample whenever p>3 and r>8.

The next conjecture concerns a graded polynomial ring R=k[t1, ..., td] over a field k,

on indeterminates t1, ..., td of upper degree 2. A differential graded (DG) R-module is a

graded R-module F equipped with an R-linear endomorphism d of F that has (upper)

degree 1 and satisfies d2=0. Such a DG module is semifree provided there is a chain of

graded submodules

0 =F (−1)⊆F (0)⊆F (1)⊆ ...⊆
⋃
i>0

F (i) =F

such that F (i)/F (i−1) is a graded free R-module and d(F (i))⊆F (i−1) for all i. In

particular, ignoring the differential, F itself is a graded free R-module; we write rankR F

for its rank. For further details, see, for example, [8, §1.3].

Conjecture 1.2. For R=k[t1, ..., td] as above, if F is a semifree DG R-module such

that rankkH(F ) is finite and non-zero, then rankR F>2d.
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This is a generalization of a topological conjecture due to Halperin; see Remark 4.8.

For d63 Conjecture 1.2 has been proved by Allday and Puppe [5, Proposition 1.1 and

Corollary 1.2]; see also [10, Theorem 5.2 and Remark 5.5]. Walker [27, Theorem 5.3]

proved it when char k 6=2 and H(F ) is concentrated in even degrees or in odd degrees.

Corollary 4.7 below describes counterexamples when char k 6=2 and d>8; the DG modules

constructed have cohomology in degrees 0 and 3.

A conjecture due to Buchsbaum and Eisenbud [14, Proposition 1.4], and Hor-

rocks [23, Problem 24] predicts that over a local ring R of Krull dimension d, any free

resolution F of a non-zero module of finite length satisfies rankR Fi>
(
d
i

)
for all i. In par-

ticular, rankR F>2d; this last inequality was conjectured by Avramov, see [18, pp. 63],

and proved by Walker [26, Theorem 1] when R is a complete intersection whose residual

characteristic is not 2, and also when R is any local ring containing a field of positive

characteristic not equal to 2.

Folklore has extended Avramov’s conjecture to all finite free complexes.

Conjecture 1.3. If R is a local ring and F is a complex of free R-modules with

lengthRH(F ) finite and non-zero, then rankR F>2d, where d is the Krull dimension

of R.

For d63 this was proved by Avramov, Buchweitz, and Iyengar [10, Theorem 5.2].

Theorem 4.1 below provides counterexamples; the simplest one occurs when R is a regular

local ring of dimension 8 and residual characteristic not two.

The next conjecture concerns differential modules. A differential module over a ring

R is an R-module F equipped with an R-linear endomorphism d satisfying d2=0. For

such an F , a free flag consists of a chain of submodules

0 =F (−1)⊆F (0)⊆F (1)⊆ ...⊆
⋃
i>0

F (i) =F

such that F (i)/F (i−1) is a free R-module and d(F (i))⊆F (i−1) for all i.

Conjecture 1.4. If R is a local ring and F is a differential R-module that admits a

free flag and has the property that lengthRH(F ) is finite and non-zero, then rankR F>2d,

where d is the Krull dimension of R.

Conjecture 1.4 is stated in [10, Conjecture 5.3] and proven there for d63. Given

any chain complex of R-modules, the direct sum of its components is a differential R-

module, called its compression. The compression of a free complex admits a free flag.

Thus, Conjecture 1.4 implies 1.3, so any counterexample to the latter yields one also to

the former; see Corollary 4.6.
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The final conjecture concerns the sequence of Betti numbers for modules over com-

plete intersection rings. The ith Betti number of a finitely generated module M over a

local ring R is the rank of the free R-module in degree i in a minimal free resolution

of M ; we denote it by βRi (M). A local ring is a complete intersection if its completion

is isomorphic to the quotient of a regular local ring by a regular sequence. Over such a

ring, the Betti numbers of any finitely generated R-module M are eventually given by

a quasi-polynomial of period 2; see [21, Corollary 4.2], and also [6, Theorem 4.1] and

[9, Theorem 7.3]. In detail, when the projective dimension of M is infinite, there is a

positive integer c, called the complexity of M , a positive real number β -degM , called

the Betti degree of M , and polynomials qev and qodd of degree at most c−2 such that,

for i�0, one has

βRi (M) =
β -degM

2c−1(c−1)!
ic−1+

{
qev(i), if i is even,

qodd(i), if i is odd.

In this notation [9, Conjecture 7.5] reads as follows.

Conjecture 1.5. For any finitely generated module M of complexity c>1 over a

complete intersection local ring R, one has β -degM>2c−1.

This conjecture was motivated by a relationship with Conjecture 1.3; see [9, Exam-

ple 7.4]. Avramov and Buchweitz [9, Remark 7.5.1] proved this conjecture when c62,

and it holds when qev=qodd, in particular when R is the localization of a graded ring

defined by quadrics [7, Theorem 2.3].

Corollary 4.4 provides counterexamples whenever R has defining relations of order at

least 3, Krull dimension zero, embedding dimension at least 8, and residual characteristic

not equal to 2.

The starting point of the construction of our examples is a result on the existence of

Lefschetz elements in exterior algebras, recalled in §2. This connection is present already

in the work of Allday and Halperin [3]; see also [4, Example 4.5] by Allday and Puppe,

and [19, Corollary 7.2.5] by Félix, Oprea, and Tanré.

2. Lefschetz elements in exterior algebras

In this section we recall a basic result concerning exterior algebras that underlies all

our constructions. The Hilbert series of a finite-dimensional Z-graded vector space W=

{Wi}i∈Z over a field k is the Laurent polynomial

HilbW (t) :=
∑
i∈Z

rankk(Wi)t
i
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with non-negative integer coefficients. Evidently HilbW (1)=rankkW , and

HilbΣnW (t) = tn HilbW (t),

where ΣnW is the graded k-vector space with (ΣnW )i=Wi−n for each i.

Proposition 2.1. Let k be a field and Λ be the exterior algebra of a k-vector space

with basis x1, ..., xn, y1, ..., yn, in lower degree 1. Thus Λi, the degree i part of Λ, is the

i-th exterior power of the given vector space. Set

w :=

n∑
i=1

xiyi ∈Λ2,

and let λw: Λ!Σ−2Λ be the morphism of graded Λ-modules where 1 7!w.

If char k=0 or char k> 1
2 (n+1), then the map

(λw)i: Λi−!Λi+2

is injective for i6n−1 and surjective for i>n−1. Moreover, we have

HilbCoker(λw)(t) =
h(t)

t2
and HilbKer(λw)(t) = t2nh

(
1

t

)
,

where

h(t) :=

n∑
i=0

((
2n

i

)
−
(

2n

i−2

))
ti,

and there is an equality

rankk Coker(λw)+rankk Ker(λw) =

(
2n+2

n+1

)
.

Proof. See [17, Proposition A.2] for a proof of the assertion concerning the injec-

tivity/surjectivity of multiplication by w. Given this, it is elementary to check that the

Hilbert series of Coker(λw) and Ker(λw) are as stated. It remains to note that

rankk Coker(λw)+rankk Ker(λw) =h(1)+h(1) =

(
2n+2

n+1

)
,

where the second equality can be verified as follows:

2h(1) =

n∑
i=0

((
2n

i

)
−
(

2n

i−2

))
+

2n∑
i=n

((
2n

i

)
−
(

2n

i+2

))
=

(
2n

n−1

)
+2

(
2n

n

)
+

(
2n

n+1

)
=

(
2n+1

n

)
+

(
2n+1

n+1

)
=

(
2n+2

n+1

)
.

This completes the proof.
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Remark 2.2. If char k=0, then the first assertion in Proposition 2.1 can be proved

using the representation theory of sl2(k), in a manner similar to an argument that appears

in the proof of the Hard–Lefschetz theorem found in [20, p. 122].

Indeed, let x∗1, ..., x
∗
n, y
∗
1 , ..., y

∗
n be the basis of Homk(Λ1, k) dual to the given basis

for Λ1. The elements x∗i and y∗i induce k-linear derivations of degree −1 on Λ. Set

c:=
∑
i y
∗
i x
∗
i ; this is an endomorphism of Λ of degree −2. The restriction of h:=[c, λw]

to Λj is multiplication by n−j. We also have [c, h]=−2c and [λw, h]=2λw, and thus the

operators λw, c and h endow Λ with the structure of a sl2(k)-representation such that

Λj has weight n−j. It follows that λjw: Λn−j!Λn+j is an isomorphism for all j>1; see

[25, Chapter IV, Theorem 4 (b)].

Corollary 2.3. Let k be a field with char k 6=2 and Λ an exterior algebra on a

k-vector space of rank d. If d>8, then there is an element w∈Λ2 such that

rankk Coker(λw)+rankk Ker(λw) = 2d−2d−6< 2d,

where λw: Λ!Σ−2Λ is multiplication by w.

Proof. Let X be a basis for Λ1. Select any 8-element subset

X ′= {x1, ..., x4, y1, ..., y4}

of X, and set w=
∑
i xiyi. There is an isomorphism of k-algebras Λ=Λ′⊗kΛ′′, where Λ′

is the algebra generated by X ′ and Λ′′ is the algebra generated by X\X ′. By Proposi-

tion 2.1,

rankk Coker(λ′w)+rankk Ker(λ′w) =

(
10

5

)
= 252 = (28−4),

where λ′w: Λ′!Σ−2Λ′ is, as before, multiplication by w. There are isomorphisms of

k-vector spaces

Coker(λw)∼= Coker(λ′w)⊗kΛ′′

Ker(λw)∼= Ker(λ′w)⊗kΛ′′

from which we deduce that

rankk Coker(λw)+rankk Ker(λw) = 2d−2d−6.

Remark 2.4. If char k=2, then for every w∈Λ>1 we have w2=0, and hence

rankk Coker(λw)+rankk Ker(λw)> 2d.

Thus, Corollary 2.3 does not extend to char k=2; this is why all our examples are in

characteristic not equal to 2.



148 s. b. iyengar and m. e. walker

Remark 2.5. The numbers
(
2n+2
n+1

)
, called central binomial coefficients, are related

to the Catalan numbers Cn by the formula
(
2n+2
n+1

)
=(n+2)Cn+1. Our counter-examples

involve values of n for which the inequality(
2n+2

n+1

)
< 22n (2.1)

holds. As seen in the proof of Corollary 2.3, it holds when n=4, and this is the smallest

value of n for which it does. It follows from Stirling’s formula that(
2n+2

n+1

)
< 22n

4√
π(n+1)

for all n>0; see [12, equation (1.5)]. In particular, (2.1) holds for all n>5 too.

Remark 2.6. In §4 we need versions of Proposition 2.1 and Corollary 2.3 in which

the xi’s and yi’s have lower degree −1. In this case, we switch to upper indexing: by

convention, for a graded object X, the component of upper degree i, written Xi, is

defined to be X−i. Note that (ΣnX)i=Xn+i. We define the Hilbert series of a graded

vector space W={W i}i∈Z satisfying W i=0 for i�0 to be HilbW (t)=
∑
i rankk(W i)ti.

When xi, yi∈Λ1 for all i, the map in Proposition 2.1 takes the form

λw: Λ−!Σ2Λ

The Hilbert series of the cokernel and kernel of this morphism are still the same:

HilbCoker(λw)(t) =
h(t)

t2
and HilbKer(λw)(t) = t2nh

(
1

t

)
,

where h(t) is as in Proposition 2.1. The equation in Corollary 2.3 remains valid.

3. Homology of finite free complexes

In this section, we construct counterexamples to Conjecture 1.1.

Let (R,m, k) be a (commutative, noetherian) local ring R, with maximal ideal m

and residue field k. The embedding dimension of R is the integer

emb dimR= rankk(m/m2)

and the codimension of R is the integer

codimR= emb dimR−dimR.
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The m-adic completion of R has the form Q/I, where (Q, n, k) is a regular local ring and

I⊆n2; see [13, §2.3]. For any such presentation, we have

emb dimR= dimQ and codimR= dimQ−dimR.

We say R is a complete intersection if codimR=rankk(I/nI) or, equivalently, if I can be

generated by a Q-regular sequence; see [13, Theorem 2.3.3].

In the sequel, given a complex X of R-modules with differential dX and an integer m,

the shifted graded module ΣmX is a complex with differential dΣmX=(−1)mdX . A finite

free complex of R-modules is a complex of the form

0−!Fb−! ...−!Fa−! 0,

with each Fi free of finite rank.

Theorem 3.1. Let (R,m, k) be a complete intersection of codimension r. If r>8

and char k 6=2, then there is a finite free complex of R-modules F with

lengthRH(F ) = 2r−2r−6.

Proof. Let K the Koszul complex on a minimal set of generators of m. Then, K is

a commutative DG R-algebra, H1(K) is a k-vector space of dimension r, and there is an

isomorphism of graded k-algebras

H(K)∼= Λk(H1(K)); (3.1)

see, for instance, [13, Theorem 2.3.1]. Set Λ=H(F ), let w∈H2(K) be an element as

in Corollary 2.3, and let z∈K2 be a cycle representing w. Since K is a DG algebra,

multiplication by z determines a morphism of DG K-modules

λz:K −!Σ−2K,

u 7−!uz.
(3.2)

Set F :=cone(λz), the mapping cone of the morphism λz. There is an exact sequence of

DG K-modules

0−!Σ−2K −!F −!ΣK −! 0.

Since K is a finite free R-complex so is F . The associated exact sequence in homology

has the form

...−!Hj(K)
λw−−−!Hj+2(K)−!Hj(F )−!Hj−1(K)

λw−−−!Hj+1(K)−! ... .
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Thus, there is an exact sequence of graded R-modules

0−!Coker(H(K)
λw−−−!Σ−2H(K))−!H(F )−!Ker(ΣH(K)

λw−−−!Σ−1H(K))−! 0.

It follows that

lengthRH(F ) = rankk Coker(λw)+rankk Ker(λw) = 2r−2r−6,

where the second equality is by the choice of w; see Corollary 2.3.

Corollary 3.2. Let p be an odd prime, k a field of characteristic p, and E an

elementary abelian p-group of rank r. If r>8, there is a finite complex F of free kE-

modules such that rankkH(F )<2r. Thus, Conjecture 1.1 fails when p is odd.

Proof. There is an isomorphism of k-algebras

kE∼=
k[t1, ..., tr]

(tp1, ..., t
p
r)

so that kE is a complete intersection of codimension r. The result thus follows from

Theorem 3.1, since rankkM=lengthkEM for every kE-module M .

Remark 3.3. Conjecture 1.1 is extrapolated from a conjecture by Carlsson [16, p. 333]

(also [15, Conjecture I.3]) predicting that, if a finite CW complex X admits a free,

cellular E-action, then the total rank of its singular homology with Z/p-coefficients,

H∗(X,Z/p), is at least 2r. In this situation, H∗(X,Z/p) is realized as the homology of

a complex F of kE-modules satisfying the hypotheses of Conjecture 1.1 with k=Z/p.
Thus, Conjecture 1.1 implies Carlsson’s conjecture, but we do not know whether the

complex F in Corollary 3.2 arises from a space with a free E-action.

4. Total rank and Betti degree of complexes

In this section we construct counterexamples to Conjectures 1.2–1.5.

For any local ring (R,m, k) one has an inequality

lengthR(R/m3)6

(
emb dimR+1

2

)
.

When equality holds, we say that the defining relations of R are of order at least 3. This

is equivalent to the condition that, in some presentation of the m-adic completion of R

as Q/I, for a regular local ring (Q, n, k), one has I⊆n3.

Henceforth, (R,m, k) will be a complete intersection; see the start of §3 for the

meaning. Let M be an R-complex with the R-module H(M) finitely generated. As for
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modules, the Betti numbers {βRi (M)}i∈Z of M are the ranks of the free modules in a

minimal free resolution of M (see [24, §1.1]), and can be computed as

βRi (M) = rankk ExtiR(M,k).

These numbers are finite for all i and are equal to zero for i�0. The Poincaré series of

M is the generating series

PRM (t) :=
∑
i∈Z

βRi (M)ti ∈Z[|t|][t−1].

There exist an integer 06c6codimR and a Laurent polynomial pM (t) with integer co-

efficients satisfying pM (1) 6=0 such that

PRM (t) =
pM (t)

(1−t2)c
. (4.1)

This result is due to Gulliksen [21, Corollary 4.2]; see also [8, Theorem 9.2.1]. The integer

c is the complexity of M ; Remark 4.3 reconciles this definition with the one given in the

introduction.

We are interested in the integer pM (1). If c=0, then

pM (1) = PRM (1) =
∑
i

βRi (M),

the total Betti number of M . In view of this, when codimR=0, the next result provides

counterexamples to Conjecture 1.3.

Theorem 4.1. Let (R,m, k) be a complete intersection whose defining relations have

order at least 3. If char k 6=2 and e:=emb dimR is at least 8, then there exists a complex

F with H0(F )∼=k∼=H1(F ) and Hi(F )=0 for all i 6=0, 1, with the property that

pF (1) = 2e−2e−6.

Moreover, when codimR>1, there exists a finitely generated R-module M with

pM (1) = 2e−2e−6.

Proof. Set c=codimR. Since the defining relations of R have order at least 3, there

is an isomorphism of k-algebras

ExtR(k, k)∼= Λ⊗kS, (4.2)
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where Λ is an exterior algebra generated by e elements of upper degree 1, and S is a poly-

nomial algebra generated by c elements of upper degree 2; see [8, Example 10.2.3]. Choose

w∈Λ2 as in Corollary 2.3; see also Remark 2.6. Viewed as an element in ExtR(k, k), the

element w⊗1 represents a morphism of R-complexes

ζ:Σ−2X −!X,

where X is a minimal R-free resolution of k. Let F=Σ cone(ζ), so there is an exact

sequence of R-complexes

0−!ΣX −!F −!X −! 0.

The induced exact sequence in homology

...−!Hi+1(X)−!Hi−1(X)−!Hi(F )−!Hi(X)−!Hi−2(X)−! ...

gives H0(F )∼=k∼=H1(F ) and Hi(F )=0 for all i 6=0, 1.

Under the isomorphism (4.2), the endomorphism ExtR(ζ, k) of ExtR(k, k) induced

by ζ corresponds to the map

λw⊗1: Λ⊗kS−!Σ2Λ⊗kS,

and thus there is an exact sequence of Λ⊗kS-modules

0−!Σ−2 Coker(λw)⊗kS−!ExtR(F, k)−!Σ−1 Ker(λw)⊗kS−! 0.

As a sequence of graded S-modules, this sequence splits and yields an isomorphism

ExtR(F, k)∼=W⊗kS

of graded S-modules, whereW is the graded k-vector space Σ−2 Coker(λw)⊕Σ−1 Ker(λw).

Since the generating series of S is 1/(1−t2)c, we have

PRF (t) =

∑
i rankk(W i)ti

(1−t2)c
. (4.3)

Evaluated at t=1, the numerator equals rankkW , which is non-zero because W is non-

zero. This justifies the first equality below; the second one is from Corollary 2.3:

pF (1) = rankkW = rankk Coker(λw)+rankk Ker(λw) = 2e−8(28−4).

This proves the first assertion.
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Assume c>1, so that R is not regular. From (4.3) it follows that the complexity of

F equals c and that

pF (t) =
∑
i

rankk(W i)ti.

Let G be a minimal free resolution of F and set M :=Coker(G2!G1). Since Hi(G)=

Hi(F )=0 for i>2, the complex Σ−1(G>1) is a minimal free resolution of M , and hence

PRM (t) =
PRF (t)−PRF (0)

t
=

PRF (t)−1

t
=

(pF (t)−(1−t2)c)t−1

(1−t2)c
. (4.4)

This implies that the complexity of M is also c, and, since c>1, this yields the first

equality below:

pM (1) = pF (1) = rankkW = 2e−2e−6.

The remaining equalities have already been justified.

Remark 4.2. In the course of the proof of the preceding result, we have in fact

calculated the Poincaré series of the complex F . It is

PRF (t) =
(1+t)e−8(1+8t+27t2+48t3+42t4+42t5+48t6+27t7+8t8+t9)

(1−t2)c
.

Using (4.4), one can also compute the Poincaré series of M .

Remark 4.3. Let R be a complete intersection, M an R-complex with H(M) finitely

generated, and c its complexity. If c>1, then from (4.1) one gets that there are polyno-

mials qev and qodd of degree at most c−2 such that, for i�0, one has

βRi (M) =
β -degM

2c−1(c−1)!
ic−1+

{
qev(i), if i is even,

qodd(i), if i is odd.

See also [9, Theorem 7.3]. It follows that the coefficient of ti in (1−t2)c−1 PRM (t) is

β -degM for i�0; that is to say, there are equalities

pM (t)

1−t2
= (1−t2)c−1 PRM (t) =

β -degM

1−t
+l(t)

for some Laurent polynomial l(t). In particular, there is an equality

pM (1) = 2β -degM.

In view of this equality, when dimR=0, that is to say, when emb dimR=codimR, The-

orem 4.1 specializes to the following statement.
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Corollary 4.4. Let R be a complete intersection with defining relations of order

at least 3 and dimR=0. If char k 6=2 and c:=codimR>8, then there exists a finitely

generated R-module M with β -degM<2c−1. Thus, Conjecture 1.5 fails.

Remark 4.5. Let n be a positive integer, (R,m, k) be a regular local ring of dimen-

sion 2n, and assume that char k> 1
2 (n+1). Then, ExtR(k, k) is the exterior algebra on

a k-vector space of rank 2n. Let w be as in Proposition 2.1 and G be the complex

constructed from w as in the proof of Theorem 4.1 above. A direct computation using

Proposition 2.1 yields

PRG(t) =h(t)+t2n+1h

(
1

t

)
.

Hence, the sequence of Betti numbers of G is palindromic. By construction of G, the

module M :=Coker(G2!G1) fits into an extension

0−! k−!M −!m−! 0.

The projective dimension of M equals 2n. The R-module M is locally free on the

punctured spectrum, and hence the same is true of its syzygy modules, ΩdR(M). The

Poincaré series of M is (PRG(t)−1)/t (see (4.4)), so the ranks of its syzygy modules are

rankR ΩdR(M) =


(

2n

d

)
−
(

2n

d−1

)
, for 06 d6n,(

2n

d

)
−
(

2n

d+1

)
, for n+16 d6 2n.

The projective dimension of ΩdR(M) is 2n−d and its depth is d. This computation has

a bearing on [23, Question 25]. Indeed, fix 16d62n−1 and set

s(d) := min
L
{rankR L},

where the minimum is taken over all the L that are finitely generated, of depth d, and

locally free on the punctured spectrum. For d=n, the computation above yields

s(n)6 rankR ΩnR(M) =

(
2n

n

)
−
(

2n

n−1

)
.

This is much better than the bound s(n)6
(
2n−1
n−1

)
given by the nth syzygy of k.

Corollary 4.6. Let (R,m, k) be a regular local ring of dimension d. If char k 6=2

and d>8, then there is a differential R-module D such that lengthRH(D) is non-zero

and finite, D admits a free flag and rankRD<2d. Thus, Conjecture 1.4 fails.
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Proof. Let D be the compression (see the introduction) of a minimal resolution G

of the complex F constructed in Theorem 4.1. Then, D is a differential R-module with

homology H(G)∼=H(F )∼=k2. In particular, the homology of D is non-zero and of finite

length. Moreover, D has a free flag because it is the compression of a free complex; see

[10, §2.8 (6)]. The minimality of G gives rankRD=rankR(G)=
∑
i β

R
i (F )<2d.

Corollary 4.7. Let R:=k[t1, ..., td] be the polynomial ring over a field k in inde-

terminates t1, ..., td of upper degree 2, viewed as a DG algebra with zero differential. If

char k 6=2 and d>8, then there is a semifree DG R-module G with H0(G)∼=k∼=H3(G)

and Hj(G)=0 for all j 6=0, 3 and such that rankRG<2d. Thus, Conjecture 1.2 fails.

Proof. We construct G by mimicking the argument of Theorem 4.1 in the setting of

DG-modules. In detail, let X be the Koszul resolution of k, given by the commutative

DG-R-algebra generated by elements e1, ..., ed of upper degree 1 and d(ei)=ti. Since

X is quasi-isomorphic to k as DG-R-modules, H(EndR(X)) is an exterior algebra on

d elements of upper degree −1. Let ζ:Σ2X!X be a degree-(−2) cycle in EndR(X)

that represents the degree-(−2) element w of the exterior algebra H(EndR(X)) given by

Corollary 2.3, and define F=Σ−3 cone(ζ), so that there is an exact sequence

0−!Σ−3X −!F −!X −! 0 (4.5)

of DG-R-modules. It follows that H3(F )∼=k∼=H0(F ) and Hi(F )=0 for i 6=0, 3. Now

take G to be a minimal DG-R-module associated with F . Evidently, G has the same

cohomology as F and, since it is minimal, rankRG=rankk(G⊗Rk). The exact sequence

(4.5) induces the exact sequence

...−!Hj+2(EndR(X))
λw−−−!Hj(EndR(X))−!Hj(HomR(F,X))

−!Hj+3(EndR(X))
λw−−−!Hj+1(EndR(X))−! ... .

Given this, Corollary 2.3 yields the inequality below

rankk(G⊗Rk) = rankkH(F⊗Rk) = rankkH(HomR(F,X))< 2d.

The first equality holds because the DG R-modules F and G are quasi-isomorphic and

semifree; the second one is by adjunction, as X and k are quasi-isomorphic.

Remark 4.8. Halperin’s toral rank conjecture [22, Problem 1.4] predicts that, for

any topological space X that is reasonable (say, a finite nilpotent CW complex) and that

admits a free action of a d-dimensional torus T , the rational homology of X satisfies∑
i

rankQHi(X,Q)> 2d.
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The validity of Conjecture 1.2 implies the toral rank conjecture: if X admits such an

action, then the relative minimal model of the corresponding Borel fibration is a semifree

DG module F over R:=Q[t1, ..., td] with rankQH(F ) being finite and non-zero, and

rankQ Hi(Q⊗RF )=rankQ Hi(X,Q); see [3, §6] or [19, §7.3.2]. Then, Conjecture 1.2 ap-

plied to a minimal DG R-module quasi-isomorphic to F would yield the desired lower

bound on
∑
i rankQHi(X,Q). However, our counterexamples do not affect the status

of the toral rank conjecture, because the complex G in Corollary 4.7 cannot be quasi-

isomorphic, even as a DG R-module, to any F that arises as above.

Indeed, such an F would come equipped with a morphism of DG algebras φ:R!F ,

and since H2(F )∼=H2(G)=0, by construction, a standard argument in the homotopy

theory of DG algebras (see [19, §2.2]) implies that φ is homotopic to morphism that

factors through Q, and hence that

rankQH(Q⊗RF )> rankQ TorR(Q,Q) = 2d.

This implies that rankRG>2d, contradicting the conclusion of Corollary 4.7.

Remark 4.9. In characteristic zero, Conjectures 1.2–1.5 admit families of counter-

examples in which the value of the appropriate invariants deviate from the predicted one

in an increasing fashion.

For example, for each n>1, if R is any regular local ring of dimension 2n whose

residue field k has characteristic zero, then the construction in the proof of Theorem 4.1

gives a minimal finite free complex G such that H0(G)∼=k∼=H1(G) and Hi(G)=0 for all

i 6=0, 1. Moreover, by Remark 2.5, one has

rankR(G) =

(
2n+2

n+1

)
< 22n

4√
π(n+1)

.

The difference 22n−
(
2n+2
n+1

)
tends to ∞ as n goes to ∞, but

(
2n+2
n+1

)1/2n
tends to 2. This

suggests the following question.

Is there a real number a>1 such that each finite free complex F of modules over a

regular local ring R with H(F ) non-zero and of finite length satisfies

rankR(F )> adimR?

The family of examples constructed here shows that such an a must satisfy

a6min
n

{(
2n+2

n+1

)1/2n}
< 1.9605.
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Remark 4.10. Let R be a regular local ring of dimension d>8 and F the complex in

Theorem 4.1. As mH(F )=0, one has that H(F ) is a module over R/m, and hence also

over R/(x), where x is any system of parameters for R. Since R is regular, x is a regular

sequence and the Koszul complex, say E, on x is a R-free resolution of R/(x). However,

there cannot be a DG E-module structure on F : if there were, then rankR F>2d by

[11, Theorem 5.1], contrary to the conclusion of Theorem 4.1. See also [11, Remarks 5.3

and 5.4].
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1980.

[25] Serre, J. P., Complex Semisimple Lie Algebras. Springer, New York, 1987.
[26] Walker, M. E., Total Betti numbers of modules of finite projective dimension. Ann. of

Math., 186 (2017), 641–646.
[27] — Total Betti numbers of modules of finite projective dimension. Preprint, 2017.

arXiv:1702.02560 [math.AC].

Srikanth B. Iyengar
Department of Mathematics
University of Utah
Salt Lake City, UT 84112
U.S.A.
iyengar@math.utah.edu

Mark E. Walker
Department of Mathematics
University of Nebraska
Lincoln, NE 68588
U.S.A.
mark.walker@unl.edu

Received June 7, 2017
Received in revised form February 17, 2018

http://arxiv.org/abs/1702.02560
mailto:Srikanth B. Iyengar <iyengar@math.utah.edu>
mailto:Mark E. Walker <mark.walker@unl.edu>

	1 Introduction
	2 Lefschetz elements in exterior algebras
	3 Homology of finite free complexes
	4 Total rank and Betti degree of complexes
	References

