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1. Introduction and main result

We consider systems of N bosons in the 3-dimensional box Λ=
[
− 1

2 ,
1
2

]3
with periodic

boundary conditions. In the Gross–Pitaevskii regime, the Hamilton operator has the

form

HN =

N∑
j=1

−∆xj+

N∑
i<j

N2V (N(xi−xj)) (1.1)

and acts on the Hilbert space L2
s(Λ

N ), the subspace of L2(ΛN ) consisting of functions that

are symmetric with respect to permutations of the N particles. We require V ∈L3(R3)

to be non-negative, radial, compactly supported and to have scattering length a0.

Recall that the scattering length of the interaction potential is defined through the

zero-energy scattering equation

(
−∆+ 1

2V (x)
)
f(x) = 0 (1.2)

with the boundary condition f(x)!1, as |x|!∞. For |x| large enough (outside the

support of V ), we have

f(x) = 1− a0

|x|
(1.3)

for an appropriate constant a0, which is known as the scattering length of V . Equivalently,

a0 can be recovered by

8πa0 =

∫
V (x)f(x) dx. (1.4)
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By scaling, we obtain from (1.2) that[
−∆+ 1

2N
2V (Nx)

]
f(Nx) = 0,

and therefore that the scattering length of N2V (Nx) is given by a0/N .

It follows from the works of Lieb–Yngvason [24], of Lieb–Yngvason–Seiringer [21]

and, more recently, of Nam–Rougerie–Seiringer [25], that the ground state energy of the

Hamilton operator (1.1) is given, to leading order in N , by

EN = 4πa0N+o(N). (1.5)

In [19], Lieb and Seiringer also showed that the ground state of (1.1) exhibits complete

Bose–Einstein condensation. In other words, if γ
(1)
N denotes the 1-particle reduced density

associated with a normalized ground state wave function ψN∈L2
s(Λ

N ), then it was shown

in [19] that

γ
(1)
N ! |ϕ0〉〈ϕ0| (1.6)

as N!∞, where ϕ0(x)=1 for all x∈Λ is the 1-particle zero-momentum mode. This

convergence was then extended by Lieb–Seiringer [20] and, with different techniques, by

Nam–Rougerie–Seiringer [25], to sequences of approximate ground states, ie. states whose

energy satisfies (1.5) (more precisely, the results of [21], [19], [20], [25] were not restricted

to bosons moving in a box Λ=[0, 1]3 with periodic boundary conditions; they applied

instead to systems trapped by an external confining potential). The interpretation of

(1.6) is straightforward: all particles in the system, up to a fraction that vanishes in the

limit of large N , occupy the same 1-particle state ϕ0. It is, however, important to observe

that (1.6) does not mean that the factorized wave function ϕ⊗N0 is a good approximation

for the ground state of (1.1). In fact, a simple computation shows that

〈ϕ⊗N0 , HNϕ
⊗N
0 〉= 1

2 (N−1)V̂ (0), (1.7)

which is always much larger than (1.5), with an error of order N (as follows from (1.4),

because f<1 on the support of V , due to (1.3), to the subharmonicity of f and to the

maximum principle; see, for example, the proof of [14, Lemma D.1]). In contrast to

ϕ⊗N0 , the ground state of (1.1) is characterized by a correlation structure, varying on the

length scale N−1, which is responsible for lowering the energy to (1.5).

We recently improved (1.5) and (1.6) in [4], where we showed that

EN = 4πa0N+O(1) (1.8)

and that the 1-particle reduced density γ
(1)
N associated with the ground state of (1.1) is

such that

1−〈ϕ0, γ
(1)
N ϕ0〉6CN−1 (1.9)
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for a constant C>0 (we previously obtained these results in [2], for sufficiently small

interaction potentials). Equation (1.8) determines the ground state energy up to an

error of order 1, independent of N . As for equation (1.9), it shows that the number of

excitations of the Bose–Einstein condensate remains bounded, uniformly in N . Although

(1.8) and (1.9) substantially improve previous results, these bounds are still not enough

to resolve low-lying excited eigenvalues of (1.1), which play a fundamental role in the

understanding of the low-temperature physics of Bose gases.

In this paper, we go beyond (1.8), computing the ground state energy and the low-

lying excitation spectrum of (1.1), up to errors vanishing in the limit N!∞. This is the

content of our main theorem.

Theorem 1.1. Let V ∈L3(R3) be non-negative, spherically symmetric and compactly

supported. Then, in the limit N!∞, the ground state energy EN of the Hamilton

operator HN defined in (1.1) is given by

EN = 4π(N−1)a0+eΛa
2
0

− 1

2

∑
p∈Λ∗+

(
p2+8πa0−

√
|p|4+16πa0p2− (8πa0)2

2p2

)
+O(N−1/4).

(1.10)

Here we introduced the notation Λ∗+=2πZ3\{0}, and we defined

eΛ = 2− lim
M!∞

∑
p∈Z3\{0}

|p1|,|p2|,|p3|6M

cos(|p|)
p2

(1.11)

where, in particular, the limit exists. Moreover, the spectrum of HN−EN below a thresh-

old ζ consists of eigenvalues given, in the limit N!∞, by∑
p∈Λ∗+

np
√
|p|4+16πa0p2+O(N−1/4(1+ζ3)).

(1.12)

Here, np∈N for all p∈Λ∗+, and np 6=0 for finitely many p∈Λ∗+ only.

Remark. The term eΛa
2
0 in (1.10) arises as a correction to the scattering length a0

(defined in (1.2), through an equation on R3), due to the finiteness of the box Λ. For

small interaction potential, we can define a finite-volume scattering length aN through

the convergent Born series

8πaN = V̂ (0)+

∞∑
k=1

(−1)k

(2N)k

∑
p1,...,pk∈Λ∗+

V̂ (p1/N)

p2
1

( k−1∏
i=1

V̂ ((pi−pi+1)/N)

p2
i+1

)
V̂
(pk
N

)
.
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In this case, one can check that

lim
N!∞

4π(N−1)[a0−aN ] = eΛa
2
0.

Observe that, if we replace the potential V by a rescaled interaction VR(x)=R−2V (x/R)

with scattering length aR=a0R then, for large R (increasing R makes the effective den-

sity larger), the order-1 contributions to the ground state energy scale as eΛa
2
0R

2 and,

respectively, as

−1

2

∑
p∈2πZ3\{0}

(
p2+8πa0R−

√
|p|4+16πa0Rp2− (8πa0R)2

p2

)

=
R

2

∑
p∈(2π/

√
R)Z3\{0}

(
p2+8πa0−

√
|p|4+16πa0p2− (8πa0)2

p2

)

' R5/2

2(2π)3

∫
R3

(
p2+8πa0−

√
|p|4+16πa0p2− (8πa0)2

p2

)
dp

=
4πR5/2(16πa0)5/2

15(2π)3

= 4πa0 ·
128

15
√
π
a

3/2
0 R5/2.

(1.13)

In particular, letting R!∞ (independently of N), it follows that the finite-volume cor-

rection becomes subleading, compared with (1.13).

Theorem 1.1 gives precise information on the low-lying eigenvalues of (1.1). Our

approach, combined with standard arguments, also gives information on the correspond-

ing eigenvectors. In (6.6) and (6.7) we provide a norm approximation of eigenvectors

associated with the low-energy spectrum of (1.1) (we postpone the precise statement of

this result, because it requires additional notation that will be introduced in the next

sections). As an application, we can compute the condensate depletion, i.e. the expected

number of excitations of the condensate, in the ground state ψN of (1.1); if γ
(1)
N denotes

the 1-particle reduced density associated with ψN , we find

1−〈ϕ0, γ
(1)
N ϕ0〉=

1

N

∑
p∈Λ∗+

p2+8πa0−
√
p4+16πa0p2

2
√
p4+16πa0p2

+O(N−9/8). (1.14)

The proof of (1.14), which is based on the approximation (6.7) of the ground state vector

and on some additional bounds from §7, is deferred to Appendix A.

Multiplying lengths by N , it is easy to check that the Gross–Pitaevskii regime consid-

ered in this paper is equivalent (up to a trivial rescaling) to an extended gas of N particles
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moving in a box with volume Vol=N3 and interacting through a fixed potential V with

scattering length a0 of order 1, independent of N . In this sense, the Gross–Pitaevskii

regime describes an ultradilute gas of N particles, with density %=N/Vol=N−2 con-

verging to zero, as N!∞. It is interesting to compare the Gross–Pitaevskii regime

with the thermodynamic limit, where a Bose gas of N particles interacting through a

fixed potential with scattering length a0 is confined in a box with volume Vol so that

N,Vol!∞ while the density %=N/Vol is kept fixed. At low-density, we expect the

ground state energy E(N,Vol), divided by the number N of particles, to converge, in the

thermodynamic limit, towards the famous Lee–Huang–Yang formula

lim
N,Vol!∞
%=N/Vol

E(N,Vol)

N
= 4π%a0

(
1+

128

15
√
π

(%a3
0)1/2+o((%a3

0)1/2)

)
, (1.15)

where the error is of lower order in the density %, as %!0 (the order of the limit is

important: first, we let N,Vol!∞ keeping %=N/Vol fixed, and only afterwards we

focus on small %). With (1.13), we see that the second-order correction in the Lee–

Huang–Yang formula emerges from (1.10) as soon as the effective density is larger than

in the Gross–Pitaevskii regime.

To date, there is no mathematically rigorous proof of (1.15). There are, however,

some partial results. In [11], Dyson gave an upper bound to the ground state energy

matching the leading contribution 4π%a0 in (1.15) (for particles interacting through a

hard-sphere potential). About forty years later, Lieb and Yngvason showed in [24] the

corresponding lower bound, establishing the validity of the leading term on the right-hand

side of (1.15) (for general repulsive potentials). Yau and Yin proved in [33] an upper

bound for the ground state energy per particle in the thermodynamic limit coinciding

with (1.15) up to second order. They reached this goal by modifying a previous trial state

constructed in [13] by Erdős–Schlein–Yau, reproducing the Lee–Huang–Yang prediction

up to errors that are subleading for small potentials. Recently, Brietzke–Fournais–Solovej

established in [8] a lower bound for the ground state energy per particle valid up to

corrections of the same size as the second term in the Lee–Huang–Yang formula (1.15).

Equation (1.15) can be compared with our result (1.10) for the ground state energy

in the Gross–Pitaevskii regime where, as explained above, %=N−2 (and where the energy

has to be multiplied by an additional factor N2 to make up for rescaling lengths). To

leading order, the two formulas give the same result. The second-order corrections do not

agree. It should be observed, however, that if in (1.10) we replaced sums over discrete

momenta p∈Λ∗+ by integrals over continuous variables p∈R3, we would obtain exactly

(1.15). Theorem 1.1 establishes therefore the analogue of the Lee–Huang–Yang formula

for the ground state energy in the Gross–Pitaevskii regime.
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The properties of low-energy states in dilute Bose gases have already been studied

in the pioneering work of Bogoliubov; see [5]. Bogoliubov rewrote the Hamilton oper-

ator (1.1) in momentum space, using the formalism of second quantization. Since he

expected low-energy states to exhibit Bose–Einstein condensation, he replaced all cre-

ation and annihilation operators associated with the zero-momentum mode ϕ0 by factors

of N1/2. The resulting Hamiltonian contains constant terms (describing the interaction

among particles in the condensate), terms that are quadratic in creation and annihilation

operators associated with modes with momentum p 6=0 (describing the kinetic energy of

the excitations as well as the interaction between excitations and the condensate) and

terms that are cubic and quartic (describing interactions among excitations). Neglecting

all cubic and quartic contributions, Bogoliubov obtained a quadratic Hamiltonian that

he could diagonalize explicitly. At the end, he recognised (famously, with the help of

Landau) that certain expressions appearing in his formulas were just the first and second

Born approximations of the scattering length and he replaced them by a0. This procedure

led him essentially to the Lee–Huang–Yang formula (1.15) and to expressions similar to

(1.12) and to (1.14) (but with continuous momenta p∈R3, since he considered the ther-

modynamic limit rather than the Gross–Pitaevskii regime) for the excitation spectrum

and the condensate depletion of the dilute Bose gas.

Let us stress the fact that replacing first and second Born approximations with the

full scattering length, we produce an error to the ground state energy that is comparable

with the leading term in (1.15). In the Gross–Pitaevskii regime, we already discussed

this issue; the difference between (1.7) and (1.5) (where the first Born approximation

V̂ (0) is replaced by 8πa0) is of order N , i.e. of the same order as the full ground state

energy. The reason why Bogoliubov nevertheless ended up with correct results is that

his final replacement compensated exactly for all terms (cubic and quartic in creation

and annihilation operators) that he neglected in his analysis.

Mathematically, the validity of Bogoliubov’s approach in 3-dimensional Bose gases

has been first established by Lieb and Solovej for the computation of the ground state

energy of bosonic jellium in [22] and of the 2-component charged Bose gas in [23] (upper

bounds were later given by Solovej in [32]). Extending the ideas of [22], [23], Giuliani and

Seiringer established in [15] the validity of the Lee–Huang–Yang formula (1.15) for Bose

gases interacting through potentials scaling with the density to approach a simultaneous

weak coupling and high density limit. This result has been recently improved by Brietzke

and Solovej in [7] to include a certain class of weak coupling and low density limits.

In the regimes considered in [22], [23], [15] and [7], the difference between first and

second Born approximation and the full scattering length is small and it only gives negli-

gible contributions to the energy; this is crucial to make Bogoliubov’s approach rigorous.
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An ambitious long-term project consisting in proving Bose–Einstein condensation and

the validity of Bogoliubov theory for dilute Bose gases in the thermodynamic limit by

means of renormalization group analysis is currently being pursued by Balaban–Feldman–

Knörrer–Trubowitz; see [1] for recent progress.

In the last years, rigorous versions of Bogoliubov’s approach have been used to es-

tablish ground state energy and excitation spectrum for mean-field models describing

systems of N trapped bosons interacting weakly through a potential whose range is com-

parable with the size of the trap. The first results in this direction have been obtained

by Seiringer in [31] for the translation invariant case (where particles are confined in a

box with volume one and periodic boundary conditions are imposed). In [16], Grech and

Seiringer extended this result to mean-field systems confined by non-homogeneous exter-

nal potentials. In this paper, they also conjectured the form of the excitation spectrum

in the Gross–Pitaevskii regime (the expression in [16, Conjecture 1] coincides with (1.12)

in the translation-invariant case). Lewin, Nam, Serfaty and Solovej obtained in [18] an

alternative derivation of the low-energy spectrum of mean-field bosons (the techniques of

this paper play a central role in our analysis). A different approach, valid in a combined

mean-field and infinite volume limit, was proposed by Derezinski and Napiorkowski in

[10]. Furthermore, in [28], [29] and [30], Pizzo obtained an expansion of the ground

state energy and of the ground state function, for a mean field Hamiltonian, imposing

an ultraviolet cutoff.

Recently, these results have been extended in [3] to systems of N bosons in the box

Λ=
[
− 1

2 ,
1
2

]×3
, described by the Hamilton operator

Hβ
N =

N∑
j=1

−∆xj+
�

N

N∑
i<j

N3βV (Nβ(xi−xj)) (1.16)

for β∈(0; 1), a sufficiently small coupling constant �>0 and a short range potential

V >0. Hamilton operators of the form (1.16) interpolate between the mean-field regime

associated with β=0 and the Gross–Pitaevskii Hamiltonian (1.1) corresponding to β=1.

In [3], the dispersion law of the excitations has the form

εβ(p) =

√
|p|4+2�V̂ (0)p2, (1.17)

independently of β∈(0; 1), because the difference between the scattering length of the

interaction in (1.16) and its first Born approximation �V̂ (0) is of orderNβ−1 and vanishes

in the limit N!∞. Moreover, a simple computation shows that, in the regime described

by the Hamilton operator (1.16), replacing first and second Born approximations with the

scattering length produces an error in the ground state energy of order N2β−1. Hence,
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while Bogoliubov’s approximation can be rigorously justified in the mean field limit β=0

(as done in [31], [16], [18], [10]), for β> 1
2 it certainly fails, complicating the analysis of

[3].

Our goal here is to extend the results of [3] to the physically more interesting and

mathematically more challenging Gross–Pitaevskii regime, where β=1. The fact that

the dispersion relation of the excitations changes from (1.17) to ε(p)=
√
|p|4+16πa0p2

in (1.12) is a first hint to the fact that the step from 0<β<1 to β=1 is quite delicate;

as we will explain below, it requires completely new ideas and it makes the analysis

substantially more involved.

It is worth noticing that the expression (1.12) for the excitation spectrum of (1.1) has

important consequences from the point of view of physics. It shows that the dispersion

of bosons described by (1.1) is linear for small momenta, in sharp contrast with the

quadratic dispersion of free particles. This observation was used by Bogoliubov in [5] to

explain the emergence of superfluidity, via the so-called Landau criterion [17].

Let us now briefly sketch the main ideas in the proof of Theorem 1.1. We start with

the observation, due to Lewin, Nam, Serfaty and Solovej in [18], that every N -particle

wave function ψN∈L2
s(Λ

N ) can be decomposed uniquely as

ψN =

N∑
n=0

α(n)⊗sϕ⊗(N−n)
0 ,

where α(n)∈L2
⊥(Λ)⊗sn for all n=1, ..., N , L2

⊥(Λ) is the orthogonal complement of the

condensate wave function ϕ0, and where⊗s denotes the symmetric tensor product. Recall

that the symmetric tensor product of ψk∈L2(Λ)⊗k and ψ`∈L2(Λ)⊗` is defined by

ψk⊗sψ` (x1, ..., xk+`) =
1√

k!`!(k+`)!

∑
σ∈Sk+`

ψk(xσ(1), ..., xσ(k))ψ`(xσ(k+1), ..., xσ(k+`)).

This remark allows us to define a unitary map

UN :L2
s(Λ

N )−!F6N
+ =

N⊕
n=0

L2
⊥(Λ)⊗sn (1.18)

through UNψN={α(0), α(1), ..., α(N)}. Here F6N
+ is a truncated Fock space, constructed

on the orthogonal complement of ϕ0 in L2(Λ). The map UN factors out the condensate

and allows us to focus on its orthogonal excitations.

With the map UN , we can construct the excitation Hamiltonian LN=UNHNU
∗
N :

F6N
+ !F6N

+ . As we will discuss in §3, conjugation with UN is reminiscent of the Bogoli-

ubov approximation described above; it produces constant contributions and also terms
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that are quadratic, cubic and quartic in creation and annihilation operators a∗p and ap

associated with momenta p∈Λ∗+=2πZ3\{0}. In contrast with what Bogoliubov did and

in contrast with what was done in [18] in the mean-field regime, here we cannot neglect

cubic and quartic terms resulting from conjugation with UN ; they are large and they

have to be taken into account to obtain a rigorous proof of Theorem 1.1.

The reason why, in the Gross–Pitaevskii regime, cubic and quartic terms are still

important is that conjugation with UN factors out products of the condensate wave

function ϕ0, while it does not affect correlations. Hence, the correlation structure that,

as discussed around (1.7), carries an energy of order N and characterizes all low-energy

states ψN∈L2
s(Λ

N ) is left in the corresponding excitation vector UNψN∈F6N
+ . To extract

the large contributions to the energy that are still hidden in cubic and quartic terms,

we have to conjugate the excitation Hamiltonian LN with a unitary map generating the

correct correlation structure. To reach this goal, we will introduce so-called generalized

Bogoliubov transformations having the form

T = exp

(
1

2

∑
p∈Λ∗+

ηp(b
∗
pb
∗
−p−bpb−p)

)
, (1.19)

where, for p∈Λ∗+, b∗p and bp are modified creation and annihilation operators acting on

F6N
+ by creating and, respectively, annihilating a particle with momentum p while pre-

serving the total number of particles N (by removing or adding a particle in the conden-

sate). The normalization of the operators b∗p and bp is chosen so that, on states exhibiting

Bose–Einstein condensation, their action is close to that of the standard creation and

annihilation operators. Hence, although the action of T on creation and annihilation

operators is not explicit, we will show that

T ∗bpT = cosh(ηp)bp+sinh(ηp)b
∗
−p+dp,

T ∗b∗pT = cosh(ηp)b
∗
p+sinh(ηp)b−p+d∗p

(1.20)

for remainder operators dp that are small on states with few excitations.

Using the generalized Bogoliubov transformation T , we can define a new, renor-

malized, excitation Hamiltonian GN=T ∗LNT=T ∗UNHNU
∗
NT :F6N

+ !F6N
+ . With the

appropriate choice of the coefficients ηp (related with a modification of the solution of

the zero-energy scattering equation (1.2)), we find that

GN =EN+HN+∆N , (1.21)

where HN=K+VN is the Hamiltonian HN restricted on the excitation space F6N
+ , with

K=
∑
p∈Λ∗+

p2a∗pap and VN =
1

2N

∑
p,q∈Λ∗+
r∈Λ∗

r 6=−p,−q

V̂ (r)a∗p+ra
∗
qaq+rap,
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indicating the kinetic and, respectively, the potential energy operators, while ∆N is an

error term with the property that, for every δ>0 there exists C>0 with(1)

±∆N 6 δHN+C(N++1), (1.22)

where N+ is the number of particles operator on F6N
+ (it measures the number of exci-

tations).

It is important to notice that, before conjugation with T , the original excitation

Hamiltonian LN cannot be decomposed as in (1.21) and (1.22). In fact, LN gives the

wrong vacuum expectation 1
2NV̂ (0) (to leading order in N) and, furthermore, it contains

a pairing term of the form (see (3.3) and (3.4) for the precise expression for LN )∑
p∈Λ∗+

V̂
( p
N

)
(b∗pb

∗
−p+bpb−p), (1.23)

which cannot be bounded uniformly in N , neither by the number of particles opera-

tor (as ‖V̂ ( ·/N)‖'N3/2) nor by the kinetic energy operator (as ‖V̂ ( ·/N)‖H−1'N1/2).

Conjugation with T is the crucial step that allows us to decrease the vacuum expec-

tation to 4πa0N (to leading order), to get rid of the dangerous term (1.23) and to

prove (1.21) and (1.22). Let us quickly explain the mechanism. Writing T=eB , with

B= 1
2

∑
p∈Λ∗+

ηp(b
∗
pb
∗
−p−bpb−p), we observe that

GN =T ∗LNT = e−BLNeB 'LN+[LN , B]+ 1
2 [[LN , B], B]+... .

The commutator [LN , B] contains the contributions [K, B] and [VN , B]. Up to small

errors, we find

[K, B]'
∑
p∈Λ∗+

p2ηp(b
∗
pb
∗
−p+bpb−p) (1.24)

and

[VN , B]' 1

2N

∑
p,q∈Λ∗+

V̂
( q
N

)
ηq+p[b

∗
pb
∗
−p+bpb−p]. (1.25)

In fact, the commutator [VN , B] is approximately quartic in creation and annihilation

operators. Rearranging it in normal order, however, we obtain the quadratic contribution

(1.25) (the remaining, normally ordered, quartic term is negligible). With the appropriate

choice of the coefficients ηp, we can combine the (large) terms in (1.23)–(1.25), so that

(1) For a self-adjoint operator A and a positive operator B, the notation ±A6B means that

−〈ψ,Bψ〉6 〈ψ,Aψ〉6 〈ψ,Bψ〉

for all ψ in the domain of B.
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their sum can be estimated as in (1.22). At the same time, the second commutator

[[LN , B], B] produces new constant terms that, again with the correct choice of ηp, change

the vacuum expectation to its correct value 4πa0N .

While (1.21) and (1.22) are enough to show Bose–Einstein condensation with optimal

rate for sufficiently small potentials (because the constant C on the right-hand side of

(1.22) can be chosen proportionally to the size of the interaction), in general it is not.

So, a crucial ingredient in our proof of Theorem 1.1 is the additional estimate

GN−EN > cN+−C (1.26)

which follows from the analysis in [4], and also makes use of the result (1.6) from [19] and

[25]. Equation (1.26) controls the number of excitations in terms of the excess energy

GN−EN . Combined with (1.21), it also allows us to control the energy of the excitations,

showing that

GN−EN > cHN−C (1.27)

for appropriate constants C, c>0. In fact, combining (1.27) with a bound similar to

(1.21) for commutators of GN with N+, we can go one step further and show that, if

ψN∈L2
s(Λ

N ) is such that ψN=χ(HN−EN6ζ)ψN (i.e. if ψN belongs to a low-energy

spectral subspace of HN ), the corresponding excitation vector ξN=T ∗UNψN satisfies

the strong a-priori bound

〈ξN , [(HN+1)(N++1)+(N++1)3]ξN 〉6C(1+ζ3) (1.28)

uniformly in N .

Armed with this estimate, we can have a second look at the renormalized excitation

Hamiltonian GN , and we can prove that several terms contributing to GN are negligible

on low-energy states. We find that

GN =CGN +QGN +CN+HN+EGN , (1.29)

where CGN is a constant, QGN is quadratic in (generalized) creation and annihilation

operators, CN is the cubic term

CN =
1√
N

∑
p,q∈Λ∗+
q 6=−p

V̂
( p
N

)
[b∗p+qb

∗
−p(bq cosh(ηq)+b∗−q sinh(ηq))+h.c.] (1.30)

and EGN is an error term that can be estimated by

±EGN 6CN−1/2[(HN+1)(N++1)+(N++1)3] (1.31)
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and thus, by (1.28), is negligible on low-energy states.

The presence, in (1.29), of the cubic term CN and of the quartic interaction VN
(hidden in HN ) is one of the main new challenges, compared with our analysis in [3],

where we determined the ground state energy and the low-energy excitation spectrum

for the Hamiltonian (1.16), for 0<β<1 (and for sufficiently small interaction potentials).

For β<1, these terms were small (on low-energy states) and they could be included in

the error EGN . For β=1, this is no longer the case; it is easy to find normalized ξN∈F6N
+

satisfying (1.28), and with 〈ξN , CNξN 〉 and 〈ξN ,VNξN 〉 of order 1 (not vanishing in the

limit N!∞).

It is important to notice that cubic and quartic terms do not improve with different

choices of the coefficients ηp. This is related with the observation, going back to the

work of Erdős–Schlein–Yau in [13], and more recently to the papers [26] and [27] of

Napiorkowski–Reuvers–Solovej that quasi-free states can only approximate the ground

state energy of a dilute Bose gas in the Gross–Pitaevskii regime, up to errors of order

1 (to be more precise, [13], [26] and [27] study the ground state energy of an extended

dilute Bose gas in the thermodynamic limit, but it is clear how to translate those results

to the Gross–Pitaevskii regime).

To extract the missing energy from the cubic and quartic terms in (1.29), we are going

to conjugate the excitation Hamiltonian GN with a unitary operator of the form S=eA,

where A is an antisymmetric operator, cubic in (generalized) creation and annihilation

operators. Observe that a similar idea, formulated however with a different language and

in a different setting, was used by Yau–Yin in [33] to find an upper bound to the ground

state energy of a dilute Bose gas in the thermodynamic limit matching the Lee–Huang–

Yang prediction up to second order.

With S, we define yet another (cubically renormalized) excitation Hamiltonian

JN =S∗GNS=S∗T ∗UNHNU
∗
NTS:F6N

+ −!F6N
+ .

With the appropriate choice of A, we show that

JN =CJN +QJN +VN+EJN , (1.32)

where CJN and QJN are new constant and quadratic terms, while EJN is an error term,

satisfying an estimate similar to (1.31), and thus negligible on low-energy states. The

important difference with respect to (1.29) is that now, on the right-hand side of (1.32),

there is no cubic term! The quartic interaction term VN is still there, but this is a positive

operator, and therefore it can be ignored, at least for proving lower bounds.

Let us quickly explain the mechanism we use to eliminate the cubic term CN . Ex-

panding to second order, we find

JN =S∗GNS= e−AGNeA'GN+[GN , A]+ 1
2 [[GN , A], A]+... . (1.33)
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From the canonical commutation relations (ignoring the fact that A is cubic in gener-

alized, rather than standard, field operators), we conclude that [K, A] and [VN , A] are

cubic and quintic in creation and annihilation operators, respectively. Some of the terms

contributing to [VN , A] are not in normal order, i.e. they contain creation operators ly-

ing to the right of annihilation operators. When we rearrange creation and annihilation

operators to restore normal order, we generate an additional cubic contribution. There

are therefore two cubic contributions arising from the first commutator [GN , A] on the

right-hand side of (1.33). We choose A so that these two terms renormalize the cubic

operator (3.31) in GN , making it small on low-energy states. While the generalized Bo-

goliubov transformation T used in the definition of GN described scattering processes

involving two excitations with momenta p and −p and two particles in the condensate

(i.e. two particles with zero momentum), we find that the appropriate choice of the cubic

operator A corresponds to processes involving two excitations with large momenta p and

−p+v, an excitation with small momentum v and a particle in the condensate. It turns

out that, with this choice of A, the only other terms generated through conjugation with

S=eA that give a non-negligible contribution to JN are [CN , A] and the second commu-

tator [[HN , A], A]. These two terms produce constant and quadratic contributions that

transform CGN and QGN in (1.29) into CJN and QJN on the right-hand side of (1.32)

(in fact, QJN also absorbs the kinetic energy operator that was excluded from QGN ).

Conjugating JN with a last generalized Bogoliubov transformation R to diagonalize

the quadratic operator QJN , we obtain a final excitation Hamiltonian

MN =R∗JNR=R∗S∗T ∗UNHNU
∗
NTSR:F6N

+ −!F6N
+ ,

which can be written as

MN = 4π(N−1)a0+eΛa
2
0−

1

2

∑
p∈Λ∗+

(
p2+8πa0−

√
|p|4+16πa0p2− (8πa0)2

2p2

)
+
∑
p∈Λ∗+

√
|p|4+16πa0p2a∗pap+VN+EMN

,
(1.34)

with an error term EMN
which satisfies

±EMN
6CN−1/4((HN+1)(N++1)+(N++1)3),

and is therefore negligible on low-energy states. With (1.34), Theorem 1.1 follows com-

paring the eigenvalues ofMN with those of its quadratic part, by means of the min-max

principle. To prove lower bounds, we can ignore the quartic interaction VN . To prove

upper bounds, on the other hand, it is enough to control the values of VN on low-energy

eigenspaces of the quadratic operator; they turn out to be negligible.
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The plan of the paper is as follows. In §2, we briefly review the formalism of second

quantization. In particular, we define and study the properties of generalized Bogoliubov

transformations that play a very important role in our analysis. In §3 we introduce the

excitation Hamiltonian LN , the renormalized excitation Hamiltonian GN and the exci-

tation Hamiltonian JN with renormalized cubic term, and we study their properties.

In particular, Proposition 3.2 provides important bounds on GN , while Proposition 3.3

gives a precise description of JN . In §4, we prove estimates for the excitation vectors

associated with low-energy many-body wave functions. §5 is devoted to the diagonaliza-

tion of the quadratic part of JN and §6 applies the min-max principle to conclude the

proof of Theorem 1.1. Finally, §7 and §8 contain the proofs of Propositions 3.2 and 3.3,

respectively.

Acknowledgements. B. S. gratefully acknowledges support from the NCCR SwissMAP

and from the Swiss National Foundation of Science through the SNF Grant “Effective

equations from quantum dynamics” and the SNF Grant “Dynamical and energetic prop-

erties of Bose–Einstein condensates”.

2. Fock space

The bosonic Fock space over L2(Λ) is defined as

F =
⊕
n>0

L2
s(Λ

n) =
⊕
n>0

L2(Λ)⊗sn

where L2
s(Λ

n) is the subspace of L2(Λn) consisting of wave functions that are symmetric

with respect to permutations. The vacuum vector in F will be indicated by

Ω = {1, 0, ... }∈F .

For g∈L2(Λ), the creation operator a∗(g) and the annihilation operator a(g) are

defined by

(a∗(g)Ψ)(n)(x1, ..., xn) =
1√
n

n∑
j=1

g(xj)Ψ
(n−1)(x1, ..., xj−1, xj+1, ..., xn),

(a(g)Ψ)(n)(x1, ..., xn) =
√
n+1

∫
Λ

ḡ(x)Ψ(n+1)(x, x1, ..., xn) dx.

Observe that a∗(g) is the adjoint of a(g), and that the canonical commutation relations

[a(g), a∗(h)] = 〈g, h〉 and [a(g), a(h)] = [a∗(g), a∗(h)] = 0
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hold true for all g, h∈L2(Λ) (〈g, h〉 is the inner product on L2(Λ)).

Due to translation invariance of our system, it will be convenient to work in the

momentum space Λ∗=2πZ3. For p∈Λ∗, we consider the plane wave ϕp(x)=e−ip·x in

L2(Λ). We define the operators

a∗p = a∗(ϕp) and ap = a(ϕp)

creating and, respectively, annihilating a particle with momentum p.

For some parts of our analysis, we will switch to position space (where it is easier

to use the positivity of the potential V (x)). To this end, we introduce operator valued

distributions ǎx and ǎ∗x defined by

a(f) =

∫
f̄(x)ǎx dx and a∗(f) =

∫
f(x) ǎ∗x dx.

On F , we introduce the number of particles operator N defined by (NΨ)(n)=nΨ(n).

Notice that

N =
∑
p∈Λ∗

a∗pap =

∫
ǎ∗xǎx dx.

It is useful to notice that creation and annihilation operators are bounded by the square

root of the number of particles operator, i.e.

‖a(f)Ψ‖6 ‖f‖ ‖N 1/2Ψ‖ and ‖a∗(f)Ψ‖6 ‖f‖ ‖(N+1)1/2Ψ‖ (2.1)

for all f∈L2(Λ).

Recall that ϕ0 denotes the zero-momentum mode in L2(Λ), defined by ϕ0(x)=1 for

all x∈Λ. We define L2
⊥(Λ) to be the orthogonal complement of the 1-dimensional space

spanned by ϕ0 in L2(Λ). The Fock space over L2
⊥(Λ) will be denoted by

F+ =
⊕
n>0

L2
⊥(Λ)⊗sn.

This Hilbert space is generated by creation and annihilation operators a∗p and ap, with

p∈Λ∗+ :=2πZ3\{0}. On F+, the number of particles operator will be denoted by

N+ =
∑
p∈Λ∗+

a∗pap.

For N∈N, we also define the truncated Fock space

F6N
+ =

N⊕
n=0

L2
⊥(Λ)⊗sn.
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On F6N
+ , we introduce modified creation and annihilation operators. For f∈L2

⊥(Λ), we

set

b(f) =

√
N−N+

N
a(f) and b∗(f) = a∗(f)

√
N−N+

N
.

We have b(f), b∗(f):F6N
+ !F6N

+ . The interpretation of these fields becomes clear if we

conjugate them with the unitary map UN defined in (1.18). We find

UNa
∗(f)

a(ϕ0)√
N

U∗N = a∗(f)

√
N−N+

N
= b∗(f),

which means that b∗(f) excites a particle from the condensate into its orthogonal comple-

ment and, similarly, that bp annihilates an excitation back into the condensate. Compared

with the standard fields a∗ and a, the modified operators b∗ and b have an important

advantage; they create (or annihilate) excitations but, at the same time, they preserve

the total number of particles. As a consequence, again in contrast with the standard

fields a∗ and a, the modified operators b∗ and b leave the truncated Fock space F6N
+

invariant.

It is also convenient to define modified creation and annihilation operators in momen-

tum space and operator valued modified creation and annihilation operators in position

space, putting

bp =

√
N−N+

N
ap and b∗p = a∗p

√
N−N+

N
(2.2)

for all p∈Λ∗+, and

b̌x =

√
N−N+

N
ǎx and b̌∗x = ǎ∗x

√
N−N+

N

for all x∈Λ.

Modified creation and annihilation operators satisfy the commutation relations

[bp, b
∗
q ] =

(
1−N+

N

)
δp,q−

1

N
a∗qap,

[bp, bq] = [b∗p, b
∗
q ] = 0

(2.3)

and, in position space,

[b̌x, b̌
∗
y] =

(
1−N+

N

)
δ(x−y)− 1

N
ǎ∗yǎx,

[b̌x, b̌y] = [b̌∗x, b̌
∗
y] = 0.

Furthermore,

[b̌x, ǎ
∗
yǎz] = δ(x−y)b̌z and [b̌∗x, ǎ

∗
yǎz] =−δ(x−z)b̌∗y.
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It follows that [b̌x,N+]=b̌x and [b̌∗x,N+]=−b̌∗x, and, in momentum space, [bp,N+]=bp and

[b∗p,N+]=−b∗p. With (2.1), we obtain

‖b(f)ξ‖6 ‖f‖
∥∥∥∥N 1/2

+

(
N+1−N+

N

)1/2
ξ

∥∥∥∥6 ‖f‖ ‖N 1/2
+ ξ‖,

‖b∗(f)ξ‖6 ‖f‖
∥∥∥∥(N++1)1/2

(
N−N+

N

)1/2
ξ

∥∥∥∥6 ‖f‖ ‖(N++1)1/2ξ‖

for all f∈L2
⊥(Λ) and ξ∈F6N

+ . Since N+6N on F6N
+ , b(f), b∗(f) are bounded operators

with ‖b(f)‖, ‖b∗(f)‖6(N+1)1/2‖f‖.
Next, we introduce generalized Bogoliubov transformations and we discuss their

properties. For η∈`2(Λ∗+) with η−p=ηp for all p∈Λ∗+, we define

B(η) =
1

2

∑
p∈Λ∗+

(ηpb
∗
pb
∗
−p−η̄pbpb−p), (2.4)

and we consider

eB(η) = exp

(
1

2

∑
p∈Λ∗+

(ηpb
∗
pb
∗
−p−η̄pbpb−p)

)
. (2.5)

We refer to unitary operators of the form (2.5) as generalized Bogoliubov transformations,

in analogy with the standard Bogoliubov transformations

eB̃(η) = exp

(
1

2

∑
p∈Λ∗+

(ηpa
∗
pa
∗
−p−η̄papa−p)

)
, (2.6)

defined by means of the standard creation and annihilation operators. In this paper, we

will work with (2.5), rather than (2.6), because the generalized Bogoliubov transforma-

tions, in contrast with the standard transformations, leave the truncated Fock space F6N
+

invariant. The price we will have to pay is the fact that, while the action of standard

Bogoliubov transformation on creation and annihilation operators is explicitly given by

e−B̃(η)ape
B̃(η) = cosh(ηp)ap+sinh(ηp)a

∗
−p, (2.7)

there is no such formula describing the action of generalized Bogoliubov transformations.

An important part of our analysis is therefore devoted to the control of the action of (2.5).

A first important observation in this direction is the following lemma, whose proof can

be found in [6, Lemma 3.1] (a similar result has been previously established in [31]).

Lemma 2.1. For every n∈N there exists a constant C>0 such that, on F6N
+ ,

e−B(η)(N++1)neB(η) 6CeC‖η‖(N++1)n (2.8)

for all η∈`2(Λ∗).
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Unfortunately, controlling the change of the number of particles operator is not

enough for our purposes. To obtain more precise information we expand, for any p∈Λ∗+,

e−B(η)bpe
B(η) = bp+

∫ 1

0

ds
d

ds
e−sB(η)bpe

sB(η)

= bp−
∫ 1

0

ds e−sB(η)[B(η), bp]e
sB(η)

= bp−[B(η), bp]+

∫ 1

0

ds1

∫ s1

0

ds2 e
−s2B(η)[B(η), [B(η), bp]]e

s2B(η).

Iterating m times, we find

e−B(η)bpe
B(η) =

m−1∑
n=1

(−1)n
ad

(n)
B(η)(bp)

n!

+

∫ 1

0

ds1

∫ s1

0

ds2 ...

∫ sm−1

0

dsm e
−smB(η) ad

(m)
B(η)(bp)e

smB(η),

(2.9)

where we recursively defined

ad
(0)
B(η)(A) =A and ad

(n)
B(η)(A) = [B(η), ad

(n−1)
B(η) (A)].

We are going to expand the nested commutators ad
(n)
B(η)(bp) and ad

(n)
B(η)(b

∗
p). To this

end, we need to introduce some additional notation. We follow here [6], [2] and [3]. For

f1, ..., fn∈`2(Λ∗+), ]=(]1, ..., ]n), [=([0, ..., [n−1)∈{· , ∗}n, we set

Π
(2)
],[ (f1, ..., fn)

=
∑

p1,...,pn∈Λ∗

b[0α0p1a
]1
β1p1

a[1α1p2a
]2
β2p2

a[2α2p3 ... a
]n−1

βn−1pn−1
a[n−1
αn−1pnb

]n
βnpn

n∏
`=1

f`(p`),
(2.10)

where, for `=0, 1, ..., n, we define α`=1 if [`=∗, α`=−1 if [`=·, β`=1 if ]`= · and β`=−1

if ]`=∗. In (2.10), we require that, for every j=1, ..., n−1, we have either ]j= · and

[j=∗ or ]j=∗ and [j= · (so that the product a]`β`p`a
[`
α`p`+1

always preserves the number

of particles, for all `=1, ..., n−1). With this assumption, we find that the operator

Π
(2)
],[ (f1, ..., fn) maps F6N

+ into itself. If, for some `=1, ..., n, [`−1= · and ]`=∗ (i.e. if the

product a
[`−1
α`−1p`a

]`
β`p`

for `=2, ..., n, or the product b[0α0p1a
]1
β1p1

for `=1, is not normally

ordered) we require additionally that f`∈`1(Λ∗+). In position space, the same operator

can be written as

Π
(2)
],[ (f1, ..., fn) =

∫
b̌[0x1

ǎ]1y1 ǎ
[1
x2
ǎ]2y2 ǎ

[2
x3
... ǎ]n−1

yn−1
ǎ[n−1
xn b̌]nyn

n∏
`=1

f̌`(x`−y`) dx` dy`. (2.11)
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An operator of the form (2.10), (2.11) with all the properties listed above, will be called

a Π(2)-operator of order n.

For g, f1, ..., fn∈`2(Λ∗+), ]=(]1, ..., ]n)∈{· , ∗}n, [=([0, ..., [n)∈{· , ∗}n+1, we also de-

fine the operator

Π
(1)
],[ (f1, ..., fn; g)

=
∑

p1,...,pn∈Λ∗

b[0α0,p1a
]1
β1p1

a[1α1p2a
]2
β2p2

a[2α2p3 ... a
]n−1

βn−1pn−1
a[n−1
αn−1pna

]n
βnpn

a[n(g)

n∏
`=1

f`(p`),

(2.12)

where α` and β` are defined as above. Also here, we impose the condition that, for all

`=1, ..., n, either ]`= · and [`=∗, or ]`=∗ and [`= · . This implies that Π
(1)
],[ (f1, ..., fn; g)

maps F6N
+ back into F6N

+ . Additionally, we assume that f`∈`1(Λ∗+) if [`−1= · and ]`=∗
for some `=1, ..., n (i.e. if the pair a

[`−1
α`−1p`a

]`
β`p`

is not normally ordered). In position

space, the same operator can be written as

Π
(1)
],[ (f1, ..., fn; g) =

∫
b̌[0x1

ǎ]1y1 ǎ
[1
x2
ǎ]2y2 ǎ

[2
x3
... ǎ]n−1

yn−1
ǎ[n−1
xn ǎ]nyn ǎ

[n(g)

n∏
`=1

f̌`(x`−y`) dx` dy`.

(2.13)

An operator of the form (2.12), (2.13) will be called a Π(1)-operator of order n. Operators

of the form b(f), b∗(f), for a f∈`2(Λ∗+), will be called Π(1)-operators of order zero.

The next lemma gives a detailed analysis of the nested commutators ad
(n)
B(η)(bp) and

ad
(n)
B(η)(b

∗
p) for n∈N; the proof can be found in [2, Lemma 2.5] (it is a translation to

momentum space of [6, Lemma 3.2]).

Lemma 2.2. Let η∈`2(Λ∗+) be such that ηp=η−p for all p∈`2(Λ∗). To simplify the

notation, assume also η to be real-valued (as it will be in applications). Let B(η) be

defined as in (2.4), n∈N and p∈Λ∗. Then, the nested commutator ad
(n)
B(η)(bp) can be

written as the sum of exactly 2nn! terms, with the following properties.

(i) Possibly up to a sign, each term has the form

Λ1Λ2 ...ΛiN
−kΠ

(1)
],[ (ηj1 , ..., ηjk ; ηspϕαp) (2.14)

for some i, k, s∈N, j1, ..., jk∈N\{0}, ]∈{· , ∗}k, [∈{· , ∗}k+1 and α∈{±1} chosen so that

α=1 if [k= · and α=−1 if [k=∗ (recall here that ϕp(x)=e−ip·x). In (2.14), each oper-

ator Λw:F6N
!F6N , w=1, ..., i, is either a factor of the type (N−N+)/N , a factor of

the type (N+1−N+)/N , or an operator of the form

N−hΠ
(2)
]′,[′(η

z1 , ηz2 , ..., ηzh) (2.15)
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for some h, z1, ..., zh∈N\{0}, ], [∈{· , ∗}h.

(ii) If a term of the form (2.14) contains m∈N factors of the type (N−N+)/N

or (N−(N+−1))/N and j∈N factors of the form (2.15) with Π(2)-operators of order

h1, ..., hj∈N\{0}, then we have

m+(h1+1)+...+(hj+1)+(k+1) =n+1.

(iii) If a term of the form (2.14) contains (considering all Λ-operators and the Π(1)-

operator) the arguments ηi1 , ..., ηim and the factor ηsp for some m, s∈N, and i1, ..., im∈
N\{0}, then

i1+...+im+s=n.

(iv) There is exactly one term of the form (2.14) with k=0 and such that all Λ-

operators are factors of the type (N−N+)/N or (N+1−N+)/N . It is given by

(
N−N+

N

)n/2(
N+1−N+

N

)n/2
ηnp bp

if n is even, and by

−
(
N−N+

N

)(n+1)/2(
N+1−N+

N

)(n−1)/2

ηnp b
∗
−p

if n is odd.

(v) If the Π(1)-operator in (2.14) is of order k∈N\{0}, it has either the form

∑
p1,...,pk

b[0α0p1

k−1∏
i=1

a]iβipia
[i
αipi+1

a∗−pkη
2r
p ap

k∏
i=1

ηjipi

or the form ∑
p1,...,pk

b[0α0p1

k−1∏
i=1

a]iβipia
[i
αipi+1

apkη
2r+1
p a∗p

k∏
i=1

ηjipi

for some r∈N, j1, ..., jk∈N\{0}. If it is of order k=0, then it is either given by η2r
p bp,

or by η2r+1
p b∗−p, for some r∈N.

(vi) For every non-normally ordered term of the form∑
q∈Λ∗

ηiqaqa
∗
q ,

∑
q∈Λ∗

ηiqbqa
∗
q ,

∑
q∈Λ∗

ηiqaqb
∗
q , or

∑
q∈Λ∗

ηiqbqb
∗
q

appearing either in the Λ-operators or in the Π(1)-operator in (2.14), we have i>2.
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With Lemma 2.2, it follows from (2.9) that, if ‖η‖ is sufficiently small, then

e−B(η)bpe
B(η) =

∞∑
n=0

(−1)n

n!
ad

(n)
B(η)(bp),

e−B(η)b∗pe
B(η) =

∞∑
n=0

(−1)n

n!
ad

(n)
B(η)(b

∗
p),

(2.16)

where the series converge absolutely (the proof is a translation to momentum space of

[6, Lemma 3.3]).

In our analysis, we will use the fact that, on states with N+�N , the action of the

generalized Bogoliubov transformation (2.5) can be approximated by the action of the

standard Bogoliubov transformation (2.6), which is explicitly given by (2.7) (from the

definition (2.2), we expect that bp'ap and b∗p'a∗p on states with N+�N). To make this

statement more precise we define, under the assumption that ‖η‖ is small enough, the

remainder operators

dq =
∑
m>0

1

m!
(ad

(m)
−B(η)(bq)−η

m
q b

]m
αmq) and d∗q =

∑
m>0

1

m!
(ad

(m)
−B(η)(b

∗
q)−ηmq b]m+1

αmq ),

(2.17)

where q∈Λ∗+, (]m, αm)=( · ,+1) if m is even and (]m, αm)=(∗,−1) if m is odd. It follows

then from (2.16) that

e−B(η)bqe
B(η) = γqbq+σqb

∗
−q+dq and e−B(η)b∗qe

B(η) = γqb
∗
q+σqb−q+d∗q , (2.18)

where we introduced the notation γq=cosh(ηq) and σq=sinh(ηq). It will also be useful to

introduce remainder operators in position space. For x∈Λ, we define the operator valued

distributions ďx and ď∗x through

e−B(η)b̌xe
B(η) = b(γ̌x)+b∗(σ̌x)+ďx and e−B(η)b̌∗xe

B(η) = b∗(γ̌x)+b(σ̌x)+ď∗x,

where γ̌x(y)=
∑
q∈Λ∗ cosh(ηq)e

iq·(x−y) and σ̌x(y)=
∑
q∈Λ∗ sinh(ηq)e

iq·(x−y).

The next lemma confirms the intuition that remainder operators are small, on states

with N+�N . This lemma is the result that will be used in the rest of the paper (in

particular in §7) to control the action of generalized Bogoliubov transformations.

Lemma 2.3. Let η∈`2(Λ∗+), n∈Z. Let the remainder operators be defined as in

(2.17). Then, if ‖η‖ is small enough, there exists C>0 such that

‖(N++1)n/2dpξ‖6
C

N
(|ηp|‖(N++1)(n+3)/2ξ‖+‖bp(N++1)(n+2)/2ξ‖),

‖(N++1)n/2d∗pξ‖6
C

N
‖(N++1)(n+3)/2ξ‖

(2.19)
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for all p∈Λ∗+ and, in position space, such that

‖(N++1)n/2ďxξ‖6
C

N
(‖(N++1)(n+3)/2ξ‖+‖ǎx(N++1)(n+2)/2ξ‖)

‖(N++1)n/2ǎyďxξ‖6
C

N
(‖ǎx(N++1)(n+1)/2ξ‖+(1+|η̌(x−y)|)‖(N++1)(n+2)/2ξ‖

+‖ǎy(N++1)(n+3)/2ξ‖+‖ǎxǎy(N++1)(n+2)/2ξ‖)

‖(N++1)n/2ďxďyξ‖6
C

N2
(‖(N++1)(n+6)/2ξ‖+|η̌(x−y)|‖(N++1)(n+4)/2ξ‖

+‖ǎx(N++1)(n+5)/2ξ‖+‖ǎy(N++1)(n+5)/2ξ‖

+‖ǎxǎy(N++1)(n+4)/2ξ‖)
(2.20)

for all x, y∈Λ, in the sense of distributions.

Proof. To prove the first bound in (2.19), we notice that, from (2.17) and from the

triangle inequality (for simplicity, we focus on n=0, powers ofN+ can be easily commuted

through the operators dp),

‖dqξ‖6
∑
m>0

1

m!
‖(ad

(m)
−B(η)(bq)−η

m
q b

]m
αmp)ξ‖. (2.21)

From Lemma 2.2, we can bound the norm ‖(ad
(m)
−B(η)(bq)−η

m
q b

]m
αmp)ξ‖ by the sum of one

term of the form∥∥∥∥((N−N+

N

)(m+(1−αm)/2)/2(
N+1−N+

N

)(m−(1−αm)/2)/2

−1

)
ηmp b

]m
αmpξ

∥∥∥∥ (2.22)

and of exactly 2mm!−1 terms of the form

‖Λ1 ...Λi1N
−k1Π

(1)
],[ (ηj1 , ..., ηjk1 ; η`1p ϕα`1p)ξ‖, (2.23)

where i1, k1, `1∈N, j1, ..., jk1∈N\{0}, and each Λr-operator is either a factor (N−N+)/N ,

a factor (N+1−N+)/N , or a Π(2)-operator of the form

N−hΠ
(2)
],[ (ηz1 , ..., ηzh), (2.24)

with h, z1, ..., zh∈N\{0}. Furthermore, since we are considering the term (2.22) sepa-

rately, each term of the form (2.23) must have either k1>0, or it must contain at least

one Λ-operator having the form (2.24). Since (2.22) vanishes for m=0, it is easy to bound∥∥∥∥((N−N+

N

)(m+(1−αm)/2)/2(
N+1−N+

N

)(m−(1−αm)/2)/2

−1

)
ηmp b

]m
αmpξ

∥∥∥∥
6Cm‖η‖m−1N−1|ηp| ‖(N++1)3/2ξ‖.
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On the other hand, distinguishing the cases `1=0 and `1>0, we can bound

‖Λ1 ...Λi1N
−k1Π

(1)
],[ (ηj1 , ..., ηjk1 ; η`1p ϕα`1p)ξ‖

6Cm‖η‖m−1N−1(|ηp|‖(N++1)3/2ξ‖+‖bp(N++1)ξ‖).

Inserting the last two bounds in (2.21) and summing over m under the assumption that

‖η‖ is small enough, we arrive at the first estimate in (2.19). The second estimate in (2.19)

can be proven similarly (notice that, when dealing with that estimate, contributions of

the form (2.23) with `1=0, can only be bounded by ‖b∗p(N++1)ξ‖6‖(N++1)3/2ξ‖). Also

the bounds in (2.20) can be shown analogously, using [3, Lemma 7.2].

3. Excitation Hamiltonians

Recall the definition (1.18) of the unitary operator UN :L2
s(Λ

N )!F6N
+ , first introduced

in [18]. In terms of creation and annihilation operators, UN is given by

UN ψN =

N⊕
n=0

(1−|ϕ0〉〈ϕ0|)⊗n
a(ϕ0)N−n√

(N−n)!
ψN

for all ψN∈L2
s(Λ

N ) (on the right-hand side we identify the function ψN∈L2
s(Λ

N ) with

{0, ..., 0, ψN , 0, ... }∈F). The map U∗N :F6N
+ !L2

s(Λ
N ) is given, on the other hand, by

U∗N {α(0), ..., α(N)}=

N∑
n=0

a∗(ϕ0)N−n√
(N−n)!

α(n).

It is instructive to compute the action of UN on products of a creation and an

annihilation operator (products of the form a∗paq can be thought of as operators mapping

L2
s(Λ

N ) to itself). For any p, q∈Λ∗+=2πZ3\{0}, we find (see [18]) that

UNa
∗
0a0U

∗
N =N−N+,

UNa
∗
pa0U

∗
N = a∗p

√
N−N+,

UNa
∗
0apU

∗
N =

√
N−N+ap,

UNa
∗
paqU

∗
N = a∗paq.

(3.1)

Writing (1.1) in momentum space and using the formalism of second quantization, we

find

HN =
∑
p∈Λ∗

p2a∗pap+
1

2N

∑
p,q,r∈Λ∗

V̂
( r
N

)
a∗p+ra

∗
qapaq+r, (3.2)



242 c. boccato, c. brennecke, s. cenatiempo and b. schlein

where

V̂ (k) =

∫
R3

V (x)e−ik·x dx

is the Fourier transform of V , defined for all k∈R3. With (3.1), we can compute the

excitation Hamiltonian LN=UNHNU
∗
N :F6N

+ !F6N
+ . We obtain

LN =L(0)
N +L(2)

N +L(3)
N +L(4)

N , (3.3)

with

L(0)
N =

N−1

2N
V̂ (0)(N−N+)+

V̂ (0)

2N
N+(N−N+),

L(2)
N =

∑
p∈Λ∗+

p2a∗pap+
∑
p∈Λ∗+

V̂
( p
N

)(
b∗pbp−

1

N
a∗pap

)

+
1

2

∑
p∈Λ∗+

V̂
( p
N

)
(b∗pb

∗
−p+bpb−p)

L(3)
N =

1√
N

∑
p,q∈Λ∗+
p+q 6=0

V̂
( p
N

)
(b∗p+qa

∗
−paq+a∗qa−pbp+q)

L(4)
N =

1

2N

∑
p,q∈Λ∗+
r∈Λ∗

r 6=−p,−q

V̂
( r
N

)
a∗p+ra

∗
qapaq+r.

(3.4)

Conjugation with UN extracts, from the original quartic interaction, some constant

and quadratic contributions, collected in L(0)
N and L(2)

N . In the Gross–Pitevskii regime,

however, this is not enough; there are still important (order-N) contributions to the

ground state energy and to the energy of low-lying excitations that are hidden in the

cubic and quartic terms. In other words, in contrast with the mean-field regime, here we

cannot expect L(3)
N and L(4)

N to be small. To extract the relevant contributions from L(3)
N

and L(4)
N , we are going to conjugate LN with a generalized Bogoliubov transformation of

the form (2.5).

To choose the function η∈`2(Λ∗+) entering the generalized Bogoliubov transformation

(2.5), we consider the ground state solution of the Neumann problem

[
−∆+ 1

2V
]
f` =λ`f` (3.5)

on the ball |x|6N` (we omit the N -dependence in the notation for f` and for λ`; notice

that λ` scales as N−3), with the normalization f`(x)=1 if |x|=N`. It is also useful
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to define w`=1−f` (so that w`(x)=0 if |x|>N`). By scaling, we observe that f`(N.)

satisfies the equation (
−∆+ 1

2N
2V (Nx)

)
f`(Nx) =N2λ`f`(Nx)

on the ball |x|6`. We choose 0<`< 1
2 , so that the ball of radius ` is contained in the box

Λ=
[
− 1

2 ,
1
2

]3
. We then extend f`(N.) to Λ, by choosing f`(Nx)=1 for all |x|>`. Then,(

−∆+ 1
2N

2V (Nx)
)
f`(Nx) =N2λ`f`(Nx)χ`(x) (3.6)

where χ` is the characteristic function of the ball of radius `. It follows that the functions

x 7!f`(Nx) and also x 7!w`(Nx)=1−f`(Nx) can be extended as periodic functions on

the torus Λ. The Fourier coefficients of the function x 7!w`(Nx) are given by∫
Λ

w`(Nx)e−ip·xdx=
1

N3
ŵ`

( p
N

)
,

where

ŵ`(p) =

∫
R3

w`(x)e−ip·x dx

is the Fourier transform of the (compactly supported) function w`. The Fourier coeffi-

cients of x!f`(Nx) are then given by

f̂`,N (p) :=

∫
Λ

f`(Nx)e−ip·xdx= δp,0−
1

N3
ŵ`

( p
N

)
(3.7)

for all p∈Λ∗. From (3.6), we derive

−p2ŵ`

( p
N

)
+
N2

2

∑
q∈Λ∗

V̂
(p−q
N

)
f̂`,N (q) =N5λ`

∑
q∈Λ∗

χ̂`(p−q)f̂`,N (q). (3.8)

In the next lemma we collect some important properties of w` and f`. The proof of

the lemma can be found in Appendix B.

Lemma 3.1. Let V ∈L3(R3) be non-negative, compactly supported and spherically

symmetric. Fix `>0 and let f` denote the solution of (3.5).

(i) We have

λ` =
3a0

(`N)3

(
1+

9

5

a0

`N
+O

(
a2

0

(`N)2

))
. (3.9)

(ii) We have 06f`, w`61, and there exists a constant C>0 such that∣∣∣∣∫
R3

V (x)f`(x) dx−8πa0

(
1+

3

2

a0

`N

)∣∣∣∣6 Ca3
0

(`N)2
(3.10)
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for all `∈
(
0, 1

2

)
, N∈N.

(iii) There exists a constant C>0 such that

w`(x)6
C

|x|+1
and |∇w`(x)|6 C

x2+1
. (3.11)

for all x∈R3, `∈
(
0, 1

2

)
and N∈N large enough. Moreover,∣∣∣∣ 1

(N`)2

∫
R3

w`(x) dx− 2

5
πa0

∣∣∣∣6 Ca2
0

N`
(3.12)

for all `∈
(
0, 1

2

)
and N∈N large enough.

(iv) There exists a constant C>0 such that∣∣∣ŵ`( p
N

)∣∣∣6 CN2

p2

for all p∈Λ∗+, `∈
(
0, 1

2

)
and N∈N large enough.

We define η: Λ∗!R through

ηp =− 1

N2
ŵ`

( p
N

)
. (3.13)

From (3.8), we find that these coefficients satisfy the relation

p2ηp+
1

2
V̂
( p
N

)
+

1

2N

∑
q∈Λ∗

V̂
(p−q
N

)
ηq =N3λ`

∑
q∈Λ∗

χ̂`(p−q)f̂`,N (q), (3.14)

or equivalently, expressing also the right-hand side through the coefficients ηp,

p2ηp+
1

2
V̂
( p
N

)
+

1

2N

∑
q∈Λ∗

V̂
(p−q
N

)
ηq =N3λ`χ̂`(p)+N2λ`

∑
q∈Λ∗

χ̂`(p−q)ηq. (3.15)

With Lemma 3.1, we can bound

|ηp|6
C

p2
(3.16)

for all p∈Λ∗+=2πZ3\{0}. Equation (3.16) implies that η∈`2(Λ∗+), with norm bounded

uniformly in N . In fact, denoting by η̌∈L2(Λ) the function with Fourier coefficients ηp,

and using the first bound in (3.11), we even find

‖η‖2 = ‖η̌‖2 = ‖Nw`(N ·)‖=N2

∫
|x|6`

|w`(Nx)|2 dx=

∫
|x|6`

1

|x|2
dx6C`, (3.17)

which implies that ‖η‖ can be made arbitrarily small, by choosing `∈
(
0, 1

2

)
small enough

(this remark will allow us to use the expansions (2.16) and the bounds in Lemma 2.3).
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Notice that η̌(x) has a singularity of the form |x|−1 at x=0, regularized only on the scale

N−1. In particular, from (3.11), we obtain that

‖η̌‖∞6CN (3.18)

and that

‖∇η̌‖22 =
∑
p∈Λ∗+

p2|ηp|2 6CN. (3.19)

We will mostly use the coefficients ηp with p 6=0. Sometimes, however, it will also

be useful to have an estimate for η0 (because the equation (3.15) involves η0). From

Lemma 3.1 (iii), we find that

|η0|6N−2

∫
R3

w`(x) dx6C`2.

By (2.18), it will also be useful to have bounds for the quantities σq=sinh(ηq) and

γq=cosh(ηq), and, in position space, for

σ̌(x) =
∑
q∈Λ∗

sinh(ηq)e
iq·x and γ̌(x) =

∑
q∈Λ∗

cosh(ηq)e
iq·x = δ(x)+ř(x),

with ř(x)=
∑
q∈Λ∗(cosh(ηq)−1) eiq·x. In momentum space, we find the pointwise bounds

|σq|6C|q|−2, |σq−ηq|6C|q|−6, |γq|6C, |γq−1|6C|q|−4 (3.20)

for all q∈Λ∗+. In position space, we obtain from (3.18) the estimates

‖σ̌‖2 6C, ‖σ̌‖∞6CN, ‖σ̌∗γ̌‖∞6CN. (3.21)

With η∈`2(Λ∗+), we construct the generalized Bogoliubov transformation eB(η) :

F6N
+ !F6N

+ , defined as in (2.5). Furthermore, we define a new, renormalized, excitation

Hamiltonian GN :F6N
+ !F6N

+ by setting

GN = e−B(η)LNeB(η) = e−B(η)UNHNU
∗
Ne

B(η):F6N
+ !F6N

+ . (3.22)

In the next proposition, we collect some important properties of the renormalized

excitation Hamiltonian GN . Here and in the following, we will use the notation

K=
∑
p∈Λ∗+

p2a∗pap and VN =
1

2N

∑
p,q∈Λ∗+
r∈Λ∗

r 6=−p,−q

V̂
( r
N

)
a∗p+ra

∗
qaq+rap (3.23)

for the kinetic and potential energy operators, restricted on F6N
+ . Furthermore, we will

write HN=K+VN .
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Proposition 3.2. Let V ∈L3(R3) be non-negative, compactly supported and spher-

ically symmetric. Let GN be defined as in (3.22), with `∈
(
0, 1

2

)
small enough. Let EN

be the ground state energy of the Hamilton operator (3.2).

(a) We have

GN−EN =HN+∆N , (3.24)

where the error term ∆N is such that, for every δ>0, there exists C>0 with

±∆N 6 δHN+C(N++1). (3.25)

Furthermore, for every k∈N, there exists C>0 such that

±ad
(k)
iN+

(GN ) =± ad
(k)
iN+

(∆N ) =±[iN+, ... [iN+,∆N ] ... ]6C(HN+1). (3.26)

(b) For p∈Λ∗+, we use the notation, already introduced in (2.18), σp=sinh ηp and

γp=cosh ηp. Let

CGN =
N−1

2
V̂ (0)+

∑
p∈Λ∗+

(
p2σ2

p+V̂
( p
N

)
(σpγp+σ2

p)
)

+
1

2N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp +

1

N

∑
p∈Λ∗

(
p2η2

p+
1

2N

(
V̂
( ·
N

)
∗η
)
p
ηp

)
− 1

N

∑
q∈Λ∗

V̂
( q
N

)
ηq
∑
p∈Λ∗+

σ2
p.

(3.27)

For every p∈Λ∗+, let

Φp = 2p2σ2
p+V̂

( p
N

)
(γp+σp)

2+
2

N
γpσp

∑
q∈Λ∗

V̂
(p−q
N

)
ηq

−(γ2
p+σ2

p)
1

N

∑
q∈Λ∗

V̂
( q
N

)
ηq,

(3.28)

and

Γp = 2p2σpγp+V̂
( p
N

)
(γp+σp)

2+(γ2
p+σ2

p)
1

N

∑
q∈Λ∗

V̂
(p−q
N

)
ηq

−2γpσp
1

N

∑
q∈Λ∗

V̂
( q
N

)
ηq.

(3.29)

Using Φp and Γp, we construct the operator

QGN =
∑
p∈Λ∗+

Φpb
∗
pbp+

1

2

∑
p∈Λ∗+

Γp(b
∗
pb
∗
−p+b∗pb

∗
−p). (3.30)
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Moreover, we define

CN =
1√
N

∑
p,q∈Λ∗+
q 6=−p

V̂
( p
N

)
(b∗p+qb

∗
−p(γqbq+σqb

∗
−q)+h.c.). (3.31)

Then, we have

GN =CGN +QGN +HN+CN+EGN (3.32)

with an error term EGN satisfying, on F6N
+ , the bound

±EGN 6
C√
N

(HN+N 2
+ +1)(N++1). (3.33)

For the Hamilton operator (1.16) with parameter β∈(0; 1), a result similar to Propo-

sition 3.2 has been recently established in Theorem 3.2 of [3]. The main difference between

Proposition 3.2 and previous results for β<1 is the emergence, in (3.32), of a cubic and a

quartic term in the generalized creation and annihilation operators (the quartic term VN
is included in the Hamiltonian HN ). As explained in the introduction, for β<1, the cu-

bic and the quartic parts of GN were negligible and could be absorbed in the error EGN .

In the Gross–Pitaevskii regime, on the other hand, this is not possible. It is easy to

find normalized ξ∈F6N
+ with bounded expectation of (N++1)(HN+N 2

+ +1) such that

〈ξ, CNξ〉 and 〈ξ,VNξ〉 are of order 1 and do not tend to zero, as N!∞.

To extract the important contributions that are still hidden in the cubic and in the

quartic terms on the right-hand side of (3.32), we conjugate the renormalized excitation

Hamiltonian GN with a unitary operator obtained by exponentiating a cubic expression

in creation and annihilation operators.

More precisely, we define the skew-symmetric operator A:F6N
+ !F6N

+ by

A=
1√
N

∑
r∈PH
v∈PL

ηr(σvb
∗
r+vb

∗
−rb
∗
−v+γvb

∗
r+vb

∗
−rbv−h.c.) =:Aσ+Aγ−h.c., (3.34)

where PL={ p∈Λ∗+ :|p|6N1/2} corresponds to low momenta and PH=Λ∗+\PL to high mo-

menta (by definition, r+v 6=0). The coefficients ηp are defined in (3.13); they are the same

as those used in the definition of the generalized Bogoliubov transformation exp(B(η))

appearing in GN . We then define the cubically renormalized excitation Hamiltonian

JN := e−Ae−B(η)UNHNU
∗
Ne

B(η)eA = e−AGNeA:F6N
+ !F6N

+ . (3.35)

In the next proposition, we collect important properties of JN .
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Proposition 3.3. Let V ∈L3(R3) be non-negative, compactly supported and spher-

ically symmetric. Let JN be defined as in (3.35). For p∈Λ∗+, we use again the notation

σp=sinh(ηp) and γp=cosh(ηp), and we recall the notation f̂`,N from (3.7). Let

CJN : =
N−1

2
V̂ (0)+

∑
p∈Λ∗+

(
p2σ2

p+V̂
( p
N

)
σpγp+

(
V̂
( ·
N

)
∗f̂`,N

)
p
σ2
p

)
+

1

2N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp+

1

N

∑
p∈Λ∗

(
p2η2

p+
1

2N

(
V̂
( ·
N

)
∗η
)
p
ηp

)
.

(3.36)

Moreover, for every p∈Λ∗+ we define

Fp : = p2(σ2
p+γ2

p)+
(
V̂
( ·
N

)
∗f̂`,N

)
p
(γp+σp)

2,

Gp : = 2p2σpγp+
(
V̂
( ·
N

)
∗f̂`,N

)
p
(γp+σp)

2.
(3.37)

With the coefficients Fp and Gp, we construct the operator

QJN :=
∑
p∈Λ∗+

(
Fpb
∗
pbp+

1

2
Gp(b

∗
pb
∗
−p+bpb−p)

)
quadratic in the b, b∗-fields. Then, we have

JN =CJN +QJN +VN+EJN

for an error term EJN satisfying, on F6N
+ ,

±EJN 6CN−1/4((HN+1)(N++1)+(N++1)3). (3.38)

The proof of Proposition 3.2 is deferred to §7. Proposition 3.3 will then be proved

in §8. In the next three sections, on the other hand, we show how to use these two

propositions to complete the proof of Theorem 1.1.

4. Bounds on excitations vectors

To make use of the bounds (3.33) and (3.38), we need to prove that excitation vectors

associated with many-body wave functions ψN∈L2
s(Λ

N ) with small excitation energy,

defined either as eB(η)UN ψN (if we want to apply (3.33)) or as eAeB(η)UN ψN (if we want

to apply (3.38)) have finite expectations of the operator (HN+1)(N++1)+(N++1)3.

This is the goal of this section.

We start with estimates on the excitation vector ξN=eB(η)UN ψN , that are relevant

to bound errors arising before conjugation with the cubic exponential exp(A).
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Proposition 4.1. Let V ∈L3(R3) be non-negative, compactly supported and spher-

ically symmetric. Let EN be the ground state energy of the Hamiltonian HN defined in

(3.2) (or, equivalently, in (1.1)). Let ψN∈L2
s(Λ

N ) with ‖ψN‖=1 belong to the spectral

subspace of HN with energies below EN+ζ, for some ζ>0, i.e.

ψN =1(−∞,EN+ζ](HN )ψN . (4.1)

Let ξN=e−B(η)UNψN be the renormalized excitation vector associated with ψN . Then,

for any k∈N, there exists a constant C>0 such that

〈ξN , (N++1)k(HN+1)ξN 〉6C(1+ζk+1). (4.2)

Remark. As shown in [4], the bound 〈ξN ,N+ξN 〉6C(ζ+1) which follows from (4.2)

taking k=0 (because N+6CHN ), immediately implies that normalized many-body wave

functions ψN∈L2
s(Λ

N ) satisfying (4.1) exhibit complete Bose–Einstein condensation in

the zero-momentum mode ϕ0 with optimal rate. In other words, it implies that the

1-particle reduced density γ
(1)
N =tr2,...,N |ψN 〉〈ψN | associated with ψN is such that

1−〈ϕ0, γ
(1)
N ϕ0〉6

C(ζ+1)

N
. (4.3)

Proof. Let Qζ=ran 1(−∞;EN+ζ](GN ). We claim that, for every k∈N, there exists a

constant Dk>0 with

sup
ξN∈Qζ\{0}

〈ξN , (N++1)2k(HN+1)ξN 〉
‖ξN‖2

6Dk(1+ζ)2k+1 (4.4)

for all ζ>0. Clearly, (4.4) implies (4.2) for even k. In fact, by interpolation, it implies

(4.2) for arbitrary k∈N (we thank the anonymous referee for this remark, which allows

us to simplify this proof). We prove (4.4) by induction over k∈N. Let us first consider

k=0. To show (4.4) with k=0 we combine (3.24) and (3.25) with the results of [4]. In

[4], we consider the excitation Hamiltonian GN,`=e−B(ηH)UNHNU
∗
Ne

B(ηH), renormalized

through a generalized Bogoliubov transformation with coefficients ηH(p)=ηpχ(|p|>`−α)

for all p∈Λ∗+, where ηp is defined as in (3.13) (and ` is, as in (3.5), the radius of the ball

on which we solve the Neumann problem used to define η). Using [4, Proposition 6.1]

and the observation EN64πa0N+C (which follows from (3.24) and (3.25), taking the

vacuum expectation), we conclude that, for each α>3 and `∈
(
0, 1

2

)
small enough, there

exist constants c, C>0 with

GN,`>EN+cN+−C.
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Using Lemma 2.1 (and the fact that ‖ηH‖6‖η‖6C, uniformly in N), we can translate

this bound to an analogous estimate for the excitation Hamiltonian GN defined in (3.22).

We obtain

GN = e−B(η)eB(ηH)GN,`e−B(ηH)eB(η) >EN+cN+−C

with new constants c, C>0. Combining the last equation with (3.24) and (3.25), we also

find constants c, C>0 such that

GN−EN > cHN−C (4.5)

for all N large enough. Thus, for any ξN∈Qζ , we have

〈ξN , (HN+1)ξN 〉6C〈ξN , (GN−EN )ξN 〉+C‖ξN‖2 6C(1+ζ)‖ξN‖2

which implies (4.4), for k=0.

Let us now consider the induction step. We assume that (4.4) holds true for a k∈N
and we show it for k replaced by k+1. We use the shorthand notation G′N=GN−EN .

Let ξN∈Qζ . From (4.5), we find

〈ξN , (N++1)2k+2(HN+1)ξN 〉= 〈ξN , (N++1)k+1(HN+1)(N++1)k+1ξN 〉

6C〈ξN , (N++1)k+1(G′N+C)(N++1)k+1ξN 〉

=C〈ξN , (N++1)2k+2(G′N+C)ξN 〉

+C〈ξN , (N++1)k+1(G′N , (N++1)k+1)ξN 〉

=: I + II .

(4.6)

For any ξN∈Qζ , we can bound the first term by

I6C〈ξN , (N++1)2k+2ξN 〉1/2〈(G′N+C)ξN , (N++1)2k+2(G′N+C)ξN 〉1/2

6C〈ξN , (N++1)2k+1(HN+1)ξN 〉1/2

×〈(G′N+C)ξN , (N++1)2k+1(HN+1)(G′N+C)ξN 〉1/2

6C‖ξN‖ ‖(G′N+C)ξN‖ sup
ξ̃N∈Qζ\{0}

〈ξ̃N , (N++1)2k+1(HN+1)ξ̃N 〉
‖ξ̃N‖2

6C(1+ζ)‖ξN‖2 sup
ξ̃N∈Qζ

〈ξ̃N , (N++1)2k+1(HN+1)ξ̃N 〉
‖ξ̃N‖2

,
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where we used he fact that (G′N+C)ξN∈Qζ with ‖(G′N+C)ξN‖6(ζ+C)‖ξN‖ for all ξN∈
Qζ . By interpolation, we conclude from the induction assumption that

I6
1

4
‖ξN‖2 sup

ξ̃N∈Qζ

〈ξ̃N , (N++1)2k+2(HN+1)ξ̃N 〉
‖ξ̃N‖2

+C(1+ζ)2 sup
ξ̃N∈Qζ

〈ξ̃N , (N++1)2k(HN+1)ξ̃N 〉
‖ξ̃N‖2

6
1

4
‖ξN‖2 sup

ξ̃N∈Qζ

〈ξ̃N , (N++1)2k+2(HN+1)ξ̃N 〉
‖ξ̃N‖2

+CDk(1+ζ)2k+3‖ξN‖2

(4.7)

for every ξN∈Qζ . To bound the second term on the right-hand side of (4.6), we use the

identity (which can be proven by induction over k)

[G′N , (N++1)k+1] =−
k+1∑
j=1

(
k+1

j

)
ad

(j)
N+

(G′N ) (N++1)k+1−j

to write

II =−
k+1∑
j=1

(
k+1

j

)
〈ξN , (N++1)k+1 ad

(j)
N+

(G′N ) (N++1)k+1−jξN 〉.

From (3.26) in Proposition 3.2 we know that Aj :=(HN+1)−1/2 ad
(j)
iN+

(G′N )(HN+1)−1/2

is a self-adjoint operator on F6N
+ , with norm bounded uniformly in N . Hence, we obtain

|II|6Ck‖(HN+1)1/2(N++1)k+1ξN‖‖(HN+1)1/2(N++1)kξN‖

for a constant Ck depending on k (but not on N). With the induction assumption we

conclude that

|II|6 1
4 〈ξN , (N++1)2k+2(HN+1)ξN 〉+C2

kDk(1+ζ)2k+1‖ξN‖2. (4.8)

Inserting (4.7) and the last bound in (4.6), we obtain

〈ξN , (N++1)2k+2(HN+1)ξN 〉6Dk+1(1+ζ)2k+3‖ξN‖2

for all ξN∈Qζ and for an appropriate constant Dk+1 (one can take Dk+1=2(C+C2
k)Dk,

if C and Ck are as on the right-hand side of (4.7) and (4.8)). We conclude that

sup
ξN∈Qζ\{0}

〈ξN , (N++1)2k+2(HN+1)ξN 〉
‖ξN‖2

6Dk+1(1+ζ)2k+3.

This completes the proof of (4.4).
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Next, we control the growth of powers of N+ and of the product

(N++1)(HN+1)

under conjugation with the operator exp(A). These bounds are needed to apply Propo-

sition 3.3. First, we focus on the growth of powers of the number of particles operator.

Proposition 4.2. Suppose that A is defined as in (3.34). For any k∈N, there exists

C>0 such that, on F6N
+ , we have the operator inequality

e−A(N++1)keA6C(N++1)k.

Proof. Let ξ∈F6N
+ and define ϕξ:R!R by

ϕξ(s) := 〈ξ, e−sA(N++1)kesAξ〉.

Then we have, using the decomposition A=Aσ+Aγ−h.c. from (3.34),

∂sϕξ(s) = 2 Re〈ξ, e−sA[(N++1)k, Aσ]esAξ〉+2 Re〈ξ, e−sA[(N++1)k, Aγ ]esAξ〉.

We start by controlling the commutator with Aσ. We find

〈ξ, e−sA[(N++1)k, Aσ]esAξ〉

=
1√
N

∑
r∈PH ,v∈PL

ηrσv〈esAξ, b∗r+vb∗−rb∗−v[(N++4)k−(N++1)k]esAξ〉.

With the mean value theorem, we find a function θ:N!(0; 3) such that

(N++4)k−(N++1)k = k(N++θ(N+)+1)k−1.

Since bpN+=(N++1)bp and b∗pN+=(N+−1)b∗p, we obtain, using the Cauchy–Schwarz

inequality and the boundedness of θ,

|〈ξ, e−sA[(N++1)k, Aσ]esAξ〉|

6
C√
N

∑
r∈PH
v∈PL

|ηr| |σv| ‖(N++1)−3/4+(k−1)/2br+vb−rb−ve
sAξ‖

×‖(N++1)3/4+(k−1)/2esAξ‖

6
C√
N
‖η‖2 ‖σ‖2 ‖(N++1)3/4+(k−1)/2esAξ‖2

6
C√
N
〈esAξ, (N++1)k+1/2esAξ〉

6C〈esAξ, (N++1)kesA〉

(4.9)
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for a constant C>0 depending on k. Similarly, the commutator with Aγ is bounded by

|〈ξ, e−sA[(N++1)k, Aγ ]esAξ〉|

6
C√
N

∑
r∈PH
v∈PL

|ηr|‖(N++1)−1/4+(k−1)/2br+vb−re
sAξ‖

×‖(N++1)1/4+(k−1)/2b−ve
sAξ‖

6
C√
N
‖η‖2‖(N++1)3/4+(k−1)/2esAξ‖2

6C〈ξ, e−sA(N++1)kesAξ〉.

(4.10)

This proves that

∂sϕξ(s)6Cϕξ(s)

so that, by Gronwall’s lemma, we find a constant C (depending on k) with

〈ξ, e−A(N++1)keAξ〉=C〈ξ, (N++1)kξ〉.

To control the growth of the product (HN+1)(N++1) with respect to conjugation

by eA, we will use the following lemma.

Lemma 4.3. Let V ∈L3(R3) be non-negative, compactly supported and spherically

symmetric. Let A and HN be defined as in (3.34) and, respectively, after (3.23). Then,

[HN , A] =

9∑
j=0

Θj+h.c., (4.11)

where

Θ0 = Θ
(1)
0 +Θ

(2)
0 =− 1√

N

∑
r∈PH
v∈PL

V̂
( r
N

)
b∗r+vb

∗
−r(γvbv+σvb

∗
−v)

Θ1 = Θ
(1)
1 +Θ

(2)
1 =

2√
N

∑
r∈PH
v∈PL

ηrb
∗
r+vb

∗
−r [r·v γv bv+(v2+r·v)σvb

∗
−v]

Θ2 = Θ
(1)
2 +Θ

(2)
2 =

1

N3/2

∑
r∈PH
v∈PL

∑
q∈Λ∗+
u∈Λ∗

u6=−q,−r−v

V̂
( u
N

)
ηrb
∗
r+v+ub

∗
−ra

∗
qaq+u(γvbv+σvb

∗
−v)

Θ3 = Θ
(1)
3 +Θ

(2)
3 =

1

N3/2

∑
r∈PH
v∈PL

∑
q∈Λ∗+
u∈Λ∗

u6=−q,r

V̂
( u
N

)
ηrb
∗
r+vb

∗
−r+ua

∗
qaq+u(γvbv+σvb

∗
−v)

Θ4 = Θ
(1)
4 +Θ

(2)
4 =

1

N3/2

∑
r∈PH
v∈PL

∑
q∈Λ∗+
u∈Λ∗

u6=−q,r

V̂
( u
N

)
ηrb
∗
r+vb

∗
−r

×(−γva∗qaq+ub−u+v+σvb
∗
−v+ua

∗
qaq+u)
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and

Θ5 = Θ
(1)
5 +Θ

(2)
5 =− 1

N3/2

∑
p∈PH
v∈PL

∑
r∈PL

V̂
(p−r
N

)
ηrb
∗
p+vb

∗
−p(γvbv+σvb

∗
−v)

Θ6 = Θ
(1)
6 +Θ

(2)
6 =− 1

N3/2

∑
p∈PH
v∈PL

V̂
( p
N

)
η0b
∗
p+vb

∗
−p(γvbv+σvb

∗
−v)

Θ7 = Θ
(1)
7 +Θ

(2)
7 =

1

N3/2

∑
r∈PH
v∈PL

∑
p∈PL:p 6=−v

V̂
(p−r
N

)
ηrb
∗
p+vb

∗
−p(γvbv+σvb

∗
−v)

Θ8 = Θ
(1)
8 +Θ

(2)
8 = 2N2

√
Nλ`

∑
r∈PH
v∈PL

χ̂`(r) b
∗
r+vb

∗
−r(γvbv+σvb

∗
−v)

Θ9 = Θ
(1)
9 +Θ

(2)
9 = 2N

√
Nλ`

∑
r∈PH
v∈PL

∑
q∈Λ∗

χ̂`(r−q)ηqb∗r+vb∗−r(γvbv+σvb
∗
−v).

We have

|〈ξ1,Θ(i)
j ξ2〉|6C(〈ξ1, (HN+(N++1)2)ξ1〉+〈ξ2, (HN+(N++1)2)ξ2〉) (4.12)

for a constant C>0, all ξ1, ξ2∈F6N
+ , i=1, 2 and all j=0, 1, ..., 9, and

±(Θ
(i)
j +h.c.)6CN−1/4((N++1)(K+1)+(N++1)3) (4.13)

for i=1, 2 and all j=1, ..., 9 (but not for j=0).

Proof. We use the formulas

[a∗paq, b
∗
r ] = δqrb

∗
p and [a∗paq, br] =−δprbq (4.14)

to compute

[K, A] =
1√
N

∑
p∈Λ∗+

∑
r∈PH
v∈PL

ηrp
2(δp,r+vb

∗
pb
∗
−r(γvbv+σvb

∗
−v)+δp,−rb

∗
r+vb

∗
p(γvbv+σvb

∗
−v)

−γvδv,pb∗r+vb∗−rbp+σvδ−v,pb
∗
r+vb

∗
−rb
∗
p)+h.c.

=
1√
N

∑
r∈PH
v∈PL

2r2ηrb
∗
r+vb

∗
−r(γvbv+σvb

∗
−v)+Θ1+h.c. . (4.15)

Writing

a∗p+ua
∗
qaq+uap = a∗p+uapa

∗
qaq+u−δp,qa∗p+uap+u , (4.16)
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using (4.14) to commute the right-hand side of (4.16) with b∗r+v, b
∗
−r, bv and, respectively,

with b∗−v, and normal ordering the operators appearing to the left of the factor

γvbv+σvb
∗
−v

leads to

[VN , A] =
1

N3/2

∑
r∈PH
v∈PL
u∈Λ∗

u 6=−r,−r−v

V̂
( u
N

)
ηrb
∗
r+v+ub

∗
−r−u(γvbv+σvb

∗
−v)+

4∑
j=2

Θj+h.c. . (4.17)

The first term on the right-hand side of the last equation can be further decomposed as

1

N3/2

∑
r∈PH
v∈PL
u∈Λ∗

u 6=−r,−r−v

V̂
( u
N

)
ηrb
∗
r+v+ub

∗
−r−u(γvbv+σvb

∗
−v)

=
1

N3/2

∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=−v

V̂
(p−r
N

)
ηrb
∗
p+vb

∗
−p(γvbv+σvb

∗
−v)

=
1

N3/2

∑
r∈PH
v∈PL

∑
p∈PH

V̂
(p−r
N

)
ηrb
∗
p+vb

∗
−p(γvbv+σvb

∗
−v)

+
1

N3/2

∑
r∈PH
v∈PL

∑
p∈PL
p 6=−v

V̂
(p−r
N

)
ηrb
∗
p+vb

∗
−p(γvbv+σvb

∗
−v)

=
1

N3/2

∑
p∈PH
v∈PL

∑
r∈Λ∗

V̂
(p−r
N

)
ηrb
∗
p+vb

∗
−p(γvbv+σvb

∗
−v)+

7∑
j=5

Θj .

(4.18)

The first term on the right-hand side of (4.18) can be combined with the first term on

the right-hand side of (4.15); with the relation (3.15), we obtain

1√
N

∑
r∈PH
v∈PL

2r2ηrb
∗
r+vb

∗
−r(γvbv+σvb

∗
−v)

+
1

N3/2

∑
p∈PH
v∈PL

∑
r∈Λ∗

V̂
(p−r
N

)
ηrb
∗
p+vb

∗
−p(γvbv+σvb

∗
−v) = Θ0+Θ8+Θ9.

Combining (4.15), (4.17) and (4.18) with the last equation, we obtain the decomposition

(4.11). Now, we prove the bounds (4.12) and (4.13). First of all, using (3.16), we observe
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that

|〈ξ1,Θ(1)
1 ξ2〉|6

2√
N

∑
r∈PH
v∈PL

|ηr| |r| |v| ‖b−rbr+vξ1‖ ‖bvξ2‖

6CN−1/2‖(K+1)1/2(N++1)1/2ξ1‖ ‖(K+1)1/2ξ2‖.

The term Θ
(2)
1 can be estimated similarly as

|〈ξ1,Θ(2)
1 ξ2〉|6

2√
N

∑
r∈PH
v∈PL

|ηr| |σv| |v| |r+v| ‖b−rbr+vbv(N++1)−1ξ1‖ ‖(N++1)ξ2‖

6CN−1/2

( ∑
r∈PH
v∈PL

|ηr|2 |σv|2 |v|2
)1/2
‖(K+1)1/2ξ1‖ ‖(N+1)ξ2‖

6CN−1/2‖(K+1)1/2ξ1‖ ‖(N+1)ξ2‖.

This implies, on the one hand, that

|〈ξ1,
(
Θ

(1)
1 +Θ

(2)
1

)
ξ2〉|6C(〈ξ1, (K+1)ξ1〉+〈ξ2, (K+1)ξ2〉)

and, on the other hand, taking ξ1=ξ2, that

±(Θ
(1)
1 +Θ

(2)
1 +h.c.)6CN−1/2(K+1)(N++1).

Next, we consider the quintic terms Θ2, Θ3 and Θ4. Switching to position space, we

find

〈ξ1,Θ(i)
2 ξ2〉=

∫
dx dy N3/2V (N(x−y))〈ξ1, b̌∗xb∗(η̌H,x)ǎ∗yǎyb

]i(µ̌L,x)ξ2〉. (4.19)

Here η̌H,x(z)=η̌H(z−x), with η̌H being the function with Fourier coefficients ηH(p)=

ηpχ(p∈PH). Moreover, we set µ=γ and ]i= · , if i=1, and µ=σ and ]i=∗, if i=2, with

γ̌L and σ̌L defined similarly as η̌H (but in this case, with the characteristic function

of the set PL). From (4.19), and using that, by definition of the sets PH and PL,

‖ηH‖26CN−1/4, ‖γL‖26CN3/4, ‖σL‖26‖σ‖26C, we obtain that

|〈ξ1,Θ(i)
2 ξ2〉|6C

∫
dx dy N2V (N(x−y))‖ǎxǎyξ1‖ ‖ǎy(N++1)ξ2‖

6Cδ〈ξ1,VNξ1〉+Cδ−1N−1〈ξ2, (N++1)3ξ2〉

for all δ>0 and for i=1, 2. Choosing δ=1 and δ=N−1/2, we obtain (4.12) and, respec-

tively, (4.13), with j=2 and i=1, 2. The bounds (4.12) and (4.13), for j=3, 4, can be

proven analogously.
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As for the terms Θ5, Θ6 and Θ7, we can proceed as follows:

|〈ξ1,Θ(1)
5 ξ2〉|6

1

N3/2

∑
p∈PH
r,v∈PL

∣∣∣V̂ (p−r
N

)∣∣∣ |ηr| ‖bp+vb−pξ1‖ ‖bvξ2‖
6

1

N3/2

( ∑
p∈PH
r,v∈PL

|ηr|p2‖b−pbp+vξ1‖2
)1/2

×
( ∑

p∈PH
r,v∈PL

|V̂ ((p−r)/N)|2 |ηr|
p2

‖bvξ2‖2
)1/2

6
1√
N
‖(K+1)1/2(N++1)1/2ξ1‖ ‖(N++1)1/2ξ2‖,

which immediately implies (4.12) and (4.13), for j=5 and i=1. The contribution Θ
(2)
5

can be bounded analogously, replacing ‖bvξ2‖ by |σv| ‖(N++1)1/2ξ2‖. The term Θ
(i)
6 can

be bounded similarly. As for Θ
(1)
7 (a similar bound holds for Θ

(2)
7 ), we find

|〈ξ1,Θ(1)
7 ξ2〉|6

1

N3/2

( ∑
r∈PH
p,v∈PL

∣∣∣V̂ (p−r
N

)∣∣∣ |ηr|p2‖b−pbp+vξ1‖2
)1/2

×
( ∑

r∈PH
p,v∈PL

|V̂ ((p−r)/N)| |ηr|
p2

‖bvξ2‖2
)1/2

6N−1/4‖(K+1)1/2(N++1)1/2ξ1‖ ‖(N++1)1/2ξ2‖.

Finally, let us consider the terms Θ8 and Θ9. Since ‖χ̂`‖26C (for a constant C

depending only on `), we have

|〈ξ1,Θ(1)
8 ξ2〉|6

1√
N

∑
r∈PH
v∈PL

|χ̂`(r)| ‖br+vb−rξ1‖ ‖bvξ2‖

6
1√
N
‖(N++1)ξ1‖ ‖(N++1)1/2ξ2‖,

which implies (4.12) and (4.13) for j=8 and i=1. The bounds for j=8 and i=2 follow as

usual replacing ‖bvξ2‖ by |σv|‖(N++1)1/2ξ2‖, and using the boundedness of ‖σ‖2. Also

the estimates for j=9 can be proven analogously, since also

‖χ̂`∗η‖2 = ‖χ`η̌‖2 6 ‖η̌‖2 = ‖η‖2

is finite, uniformly in N .
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To conclude the proof of the lemma, we still have to show that Θ
(i)
0 satisfies (4.12),

for i=1, 2. To this end, we observe that

|〈ξ1,Θ(1)
0 ξ2〉|6

1√
N

∑
r∈PH
v∈PL

∣∣∣V̂ ( r
N

)∣∣∣ ‖br+vb−rξ1‖ ‖bvξ2‖
6C

( ∑
r∈PH
v∈PL

r2‖br+vb−rξ1‖2
)1/2(

1

N

∑
r∈PH
v∈PL

|V̂ (r/N)|2

r2
‖bvξ2‖2

)1/2

6 ‖(K+1)1/2(N++1)1/2ξ1‖ ‖(N++1)1/2ξ2‖

and that a similar estimate holds for Θ
(2)
0 . Here, we used the fact that

1

N

∑
r∈PH

|V̂ (r/N)|2

r2
6

1

N

∑
r∈Λ∗+

|V̂ (r/N)|2

r2
6C

uniformly in N .

With the bounds on the commutator [HN , A] established in Lemma 4.3, we can now

control the growth of (HN+1)(N++1) under the action of the eA.

Proposition 4.4. Let V ∈L3(R3) be non-negative, compactly supported and spher-

ically symmetric. Let A and HN be defined as in (3.34) and, respectively, after (3.23).

Then, there exists a constant C>0 such that, for all s∈[0, 1], we have on F6N
+ the

operator inequality

e−sA(N++1)(HN+1)esA6C(N++1)(HN+1)+C(N++1)3.

Proof. For a fixed ξ∈F6N
+ , we define ϕξ:R!R through

ϕξ(s) := 〈ξ, e−sA(N++1)(HN+1)esAξ〉.

Then, we have

∂sϕξ(s) = 〈ξ, e−sA[(N++1)(HN+1), A]esAξ〉

= 〈ξ, e−sA(N++1)[HN , A]esAξ〉+〈ξ, e−sA[N+, A](HN+1)esAξ〉

=:P1+P2.

(4.20)

We start by analysing P1. From Lemma 4.3, we have

P1 =

9∑
j=0

2∑
i=1

〈esAξ, (N++1)Θ
(i)
j esAξ〉

=

9∑
j=0

2∑
i=1

〈esAξ, (N++1)1/2Θ
(i)
j (N++1+`ij)

1/2esAξ〉
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for appropriate `ij∈{±1,±2,±3}. With (4.12) and Proposition 4.2, we conclude that

|P1|6C〈ξ, e−sA(N++1)(HN+1)esAξ〉+C〈ξ, e−sA(N++1)3esAξ〉

6C〈ξ, e−sA(N++1)(HN+1)esAξ〉+C〈ξ, (N++1)3ξ〉.
(4.21)

Next, we analyze P2. From (4.9) and (4.10), we have

|P2|6C〈ξ, (N++1)ξ〉+|〈esAξ, [N+, A]HNesAξ〉|. (4.22)

With

[N+, A] =
1√
N

∑
r∈PH
v∈PL

ηr(3σvb
∗
r+vb

∗
−rb
∗
−v+γvb

∗
r+vb

∗
−rbv+h.c.) = 3Aσ+Aγ+h.c.,

we write

[N+, A]HN = 3AσHN+AγHN+3A∗σHN+A∗γHN

= (3AσHN+h.c.)+(AγHN+h.c.)+[A∗γ ,HN ]+3[A∗σ,HN ]

=:P21+P22+[A∗γ ,HN ]+3[A∗σ,HN ].

(4.23)

Here, we introduced the normally ordered operators

P21 =P211+P212 and P22 =P221+P222,

where

P211 : =
1√
N

∑
p∈Λ∗+
r∈PH
v∈PL

p2ηrσvb
∗
r+vb

∗
−rb
∗
−va

∗
pap+h.c.,

P221 : =
1√
N

∑
p∈Λ∗+
r∈PH
v∈PL

p2ηrγvb
∗
r+vb

∗
−ra

∗
papbv+

1√
N

∑
r∈PH
v∈PL

v2ηrγvb
∗
r+vb

∗
−rbv+h.c.,

(4.24)
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and, switching to position space,

P212 : =
1

2N3/2

∑
r∈PH
v∈PL

∑
p,q,u∈Λ∗+
u 6=−p,−q

V̂
( u
N

)
ηrσvb

∗
r+vb

∗
−rb
∗
−va

∗
p+ua

∗
qapaq+u+h.c.

=
1

2

∫
Λ3

dx dy dz N3/2V (N(x−y))b̌∗xb̌
∗
y b̌
∗
za
∗(η̌H,z)a

∗(σ̌L,z)ǎxǎy+h.c.,

P222 : =
1

2N3/2

∑
r∈PH
v∈PL

∑
p,q,u∈Λ∗+
u 6=−p,−q

V̂
( u
N

)
ηrγvb

∗
r+vb

∗
−ra

∗
p+ua

∗
qapaq+ubv

+
1

2N3/2

∑
r∈PH
v∈PL

∑
p,u∈Λ∗+
u 6=−p,−v

V̂
( u
N

)
ηrγvb

∗
r+vb

∗
−r(a

∗
p+uapbv+u+a∗−pav+ub−p−u)+h.c.

=
1

N1/2

∑
r∈PH
v∈PL

ηrγvb
∗
r+vb

∗
−rVNbv

+

∫
Λ3

dx dy dz N3/2V (N(x−y))γ̌L(x−z)b̌∗zb∗(η̌H,z)ǎ∗yǎxb̌y+h.c., (4.25)

where, as we did in (4.19) in the proof of Lemma 4.3, we introduced the notation η̌H and

γ̌L to indicate functions on Λ, with Fourier coefficients given by ηχH and, respectively,

by γχL, with χH and χL being characteristic functions of high (|p|>N1/2) and low

(|p|<N1/2) momenta. Since, with the notation introduced in Lemma 4.3 after (4.11),

[
A∗γ ,HN

]
=

9∑
j=0

(Θ
(1)
j )∗,

[
A∗σ,HN

]
=

9∑
j=0

(Θ
(2)
j )∗ ,

it follows from (4.12) that

|〈esAξ,
[
A∗γ ,HN

]
esAξ〉|6C〈esAξ,

(
HN+(N++1)2

)
esAξ〉

|〈esAξ,
[
A∗σ,HN

]
esAξ〉|6C〈esAξ,

(
HN+(N++1)2

)
esAξ〉.

(4.26)

Finally, we estimate the expectations of the operators (4.24) and (4.25). The term

P211 defined in (4.24) is bounded by

|〈esAξ, P211e
sAξ〉|6 1√

N

( ∑
p,r,v∈Λ∗+

p2‖br+vb−rb−vap(N++1)−1esAξ‖2
)1/2

×
( ∑
p,r,v∈Λ∗+

η2
rσ

2
vp

2‖ap (N++1)esAξ‖2
)1/2

6C〈esAξ, (N++1)(K+1)esAξ〉,

(4.27)
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because ‖η‖2 and ‖σ‖2 are finite, uniformly in N . Similarly (using v262(r+v)2+2r2),

we find

|〈esAξ, P221e
sAξ〉|6C〈esAξ, (N++1)(K+1)esAξ〉. (4.28)

The expectation of the operator P212 in (4.25) can be bounded using its expression in

position space by

|〈esAξ, P212e
sAξ〉

∣∣∣∣
6
∫

Λ3

dx dy dz N3/2V (N(x−y))‖a(η̌H,z)ǎzǎxǎye
sAξ‖ ‖a∗(σ̌L,z)ǎxǎyesAξ‖

6
∫

Λ3

dx dy dz N5/4V (N(x−y))‖ǎzǎxǎy(N++1)1/2esAξ‖ ‖ǎxǎy(N++1)1/2esAξ‖

6CN−1/4〈esAξ, (N++1)VNesAξ〉, (4.29)

where we used the estimates ‖η̌H,z‖26CN−1/4 and ‖σ̌L,z‖26C. As for the operator P222

in (4.25), the expectation of the first term is controlled by∣∣∣∣ 1

N1/2

∑
r∈PH
v∈PL

ηrγv〈esAξ, b∗r+vb∗−rVNbvesAξ〉
∣∣∣∣

6
C

N

∑
r,v∈Λ∗+

‖V1/2
N ar+va−re

sAξ‖2+
∑

r,v∈Λ∗+

|ηr|2 ‖V1/2
N ave

sAξ‖2

6
C

N

∫
Λ2

dx dy
∑

r,v∈Λ∗+

N2V (N(x−y))‖avarǎxǎyesAξ‖2

+C

∫
Λ2

dx dy
∑
v∈Λ∗+

N2V (N(x−y))‖avǎxǎyesAξ‖2

6C〈ξ, e−sA(N++1)(VN+1)esAξ〉,

(4.30)

while the expectation of the second term is bounded in position space by∣∣∣∣∫
Λ3

dx dy dz N3/2V (N(x−y))γ̌L(x−z)〈esAξ, b̌∗zb∗(η̌H,z)ǎ∗yǎxb̌yesAξ〉
∣∣∣∣

6

(∫
Λ3

dx dy dz N3/2V (N(x−y))‖η̌H,z‖22 ‖ǎyǎz(N++1)1/2esAξ‖2
)1/2

×
(∫

Λ3

dx dy dz N3/2V (N(x−y))|γ̌L(x−z)|2 ‖ǎxǎyesAξ‖2
)1/2

6CN−1‖γ̌L‖2 ‖η̌H‖2〈ξ, e−sA(N++1)3esAξ〉1/2〈ξ, e−sAVNesAξ〉1/2

6C〈ξ, e−sAVNesAξ〉+C〈ξ, (N++1)2ξ〉,

(4.31)
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because ‖γ̌L‖26CN3/4 and ‖η̌H,z‖2=‖η̌H‖26CN−1/4 for all z∈Λ. From (4.30) and

(4.31), we obtain that

〈esAξ, P222e
sAξ〉6C〈esAξ, (HN+1)(N++1)esAξ〉. (4.32)

Combining (4.22) with (4.23)–(4.29) and (4.32), we conclude that

|P2|6C〈ξ, e−sA(N++1)(HN+1)esAξ〉+C〈ξ, (N++1)3ξ〉.

Applying (4.21) and the last bound on the right-hand side of (4.20), we arrive at

∂sϕξ(s)6Cϕξ(s)+C〈ξ, (N++1)3ξ〉

for some constant C>0, independent of ξ∈F6N
+ . By Gronwall’s lemma, we conclude

that there exists another constant C>0 such that, for all s∈[0, 1],

〈esAξ, (N++1)(HN+1)esAξ〉=ϕξ(s)

6Cϕξ(0)+C〈ξ, (N++1)3ξ〉

=C〈ξ, (N++1)(HN+1)ξ〉+C〈ξ, (N++1)3ξ〉.

This concludes the proof of the proposition.

We summarize the results of this section in the following corollary, which is a simple

consequence of Propositions 4.1, 4.2 and 4.4.

Corollary 4.5. Let V ∈L3(R3) be non-negative, compactly supported and spher-

ically symmetric. Let EN be the ground state energy of HN , defined in (1.1). Let

ψN∈L2
s(Λ

N ) with ‖ψN‖=1 belong to the spectral subspace of HN with energies below

EN+ζ, for some ζ>0, i.e.

ψN =1(−∞,EN+ζ](HN )ψN .

Let ξN=e−Ae−B(η)UNψN be the cubically renormalized excitation vector associated with

ψN . Then, there exists a constant C>0 such that

〈ξN , [(N++1)(HN+1)+(N++1)3]ξN 〉6C(1+ζ3).

5. Diagonalization of the quadratic Hamiltonian

From Proposition 3.3 we can decompose the cubically renormalized excitation Hamilton-

ian JN defined in (3.35) as

JN =CJN +QJN +VN+EJN , (5.1)
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with the constant CJN given in (3.36), the quadratic part

QJN =
∑
p∈Λ∗+

(
Fpb
∗
pbp+

1

2
Gp(b

∗
pb
∗
−p+bpb−p)

)
(5.2)

with the coefficients Fp and Gp as in (3.37) and the error term EJN satisfying

±EJN 6CN−1/4(HN+(N++1)2)(N++1)

as an operator inequality on F6N
+ .

Our goal in this section is to diagonalize the quadratic operator QJN . To reach this

goal, we first need to establish some bounds for the coefficients Fp and Gp in (5.2).

Lemma 5.1. Let V ∈L3(R3) be non-negative, compactly supported and spherically

symmetric. Let Fp and Gp be defined as in (3.37). Then there exists a constant C>0

such that

(i)
p2

2
6Fp6C(1+p2), (ii) |Gp|6

C

p2
, (iii) |Gp|<Fp

for all p∈Λ∗+.

Proof. We first show the lower bound in (i). For p∈Λ∗+ with |p|6N1/2 we use∣∣∣(V̂ ( ·
N

)
∗f̂`,N

)
(p)−

(
V̂
( ·
N

)
∗f̂`,N

)
(0)
∣∣∣6 C

N
|p|.

Since γ2
p+σ2

p>1, we have

Fp> p2+
(
V̂
( ·
N

)
∗f̂`,N

)
(0)(γp+σp)

2−CN−1/2 > p2−CN−1/2 >
p2

2

for all p∈Λ∗+ such that |p|6N1/2, ifN is large enough. On the other side, for |p|>N1/2 the

inequality is clear, being |(V̂ ( ·/N)∗f̂`,N )p|6C. The upper bound Fp6C(1+p2) follows

easily from the definition, from the boundness of (V̂ ( ·/N)∗f̂`,N )p and from the fact that

|σp|, γp6C for all p∈Λ∗+.

The proof of part (ii) makes use of the relation (3.15) for the coefficients ηp. For

any p∈Λ∗+ we have

Gp = 2p2ηp+V̂
( p
N

)
+

1

N

∑
q∈Λ∗

V̂
(p−q
N

)
ηq+G̃p, (5.3)

where |G̃p|6Cp−2 for all p∈Λ∗+. Here we used the fact that |ηp|6Cp−2, which implies

|σpγp−ηp|6C|p|−6 and |(σp+γp)
2−1|6C|p|−2.
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With the relation (3.15), we obtain

Gp = 2N3λ`χ̂`(p)+2N2λ`
∑
q∈Λ∗

χ̂`(p−q)ηq+G̃p. (5.4)

From Lemma 3.1 (i), we have N3λ`6C. A simple computation shows that

χ̂`(p) =

∫
|x|6`

e−ip·x dx=
4π

|p|2

(
sin(`|p|)
|p|

−` cos(`|p|)
)
, (5.5)

which, in particular, implies that |χ̂`(p)|6C|p|−2. Similarly, we find

N2λ`
∑
q∈Λ∗

χ̂`(p−q)ηq =−N3λ`

∫
Λ

χ`(x)w`(Nx)e−ip·x dx=−N3λ`

∫
|x|6`

w`(Nx)e−ip·x dx.

Switching to spherical coordinates and integrating by parts, we find (abusing slightly the

notation by writing w`(Nr) to indicate w`(Nx) for |x|=r),∫
|x|6`

w`(Nx)e−ip·x dx= 2π

∫ `

0

dr r2w`(Nr)

∫ π

0

dθ sin θ e−i|p|r cos θ

=
4π

|p|

∫ `

0

dr rw`(`r) sin(|p|r)

=− 4π

|p|2
lim
r!0

rw`(Nr)+
4π

|p|2

∫ `

0

dr
d

dr
(rw`(Nr)) cos(|p|r).

With (3.11) and using again the bound N3λ`6C, we conclude that there is a constant

C>0 such that ∣∣∣∣N2λ`
∑
q∈Λ∗

χ̂`(p−q)ηq
∣∣∣∣6C|p|−2 (5.6)

for all p∈Λ∗+.

Finally, we show (iii). To this end, we notice that

Fp−Gp = p2(γp−σp)2> 0, (5.7)

because γp 6=σp for all p∈Λ∗+. Furthermore, arguing as we did in the proof of part (i) to

show that Fp> 1
2p

2, we find that

Fp+Gp = (γp+σp)
2
(
p2+

(
V̂
( ·
N

)
∗f̂`,N )p

)
> (γp+σp)

2 p
2

2
(5.8)

for all p∈Λ∗+. Since γp 6=−σp, we conclude that Fp+Gp>0 for all p∈Λ∗+; (5.7) and (5.8)

give |Gp|<Fp for all p∈Λ∗+, as claimed.
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Lemma 5.1 shows that, |Gp|/Fp<1 for all p∈Λ∗+. Hence, we can introduce coefficients

τp∈R such that

tanh(2τp) =−Gp
Fp

(5.9)

for all p∈Λ∗+. Equivalently,

τp =
1

4
log

1−Gp/Fp
1+Gp/Fp

.

Using these coefficients, we define the generalized Bogoliubov transformation

eB(τ):F6N
+ −!F6N

+

by

B(τ) :=
1

2

∑
p∈Λ∗+

τp(b
∗
−pb
∗
p−b−pbp).

We are going to conjugate the excitation Hamiltonian JN defined in (5.1) with eB(τ) to

diagonalize its quadratic component QJN . In the next lemma we show that, up to small

errors, the other terms in JN are left unchanged by this transformation. Here, we use

the fact that, from Lemma 5.1, |τp|6C|p|−4 for some constant C>0 and all p∈Λ∗+.

Lemma 5.2. Let V ∈L3(R3) be non-negative, compactly supported and spherically

symmetric. Let τp be defined as in (5.9), with Fp and Gp as in (3.37), and VN and HN
be as defined in (3.23). Then, there exists a constant C>0 such that

e−B(τ)(N++1)(HN+1)eB(τ) 6C(N++1)(HN+1) (5.10)

and

±(e−B(τ)VNeB(τ)−VN )6CN−1/2(HN+1)(N++1). (5.11)

Proof. The proof of (5.10) is similar to the one of [3, Lemma 5.4]; the only difference

is the fact that, here, the potential energy VN scales differently with N . We review

therefore the main steps of the proof, focusing on terms involving VN .

We are going to apply Gronwall’s lemma. For ξ∈F6N
+ and s∈R, we compute

∂s〈ξ, e−sB(τ)(HN+1)(N++1)esB(τ)ξ〉=−〈ξ, e−sB(τ)[B(τ), (HN+1)(N++1)]esB(τ)ξ〉.

By the product rule, we have

[B(τ), (HN+1)(N++1)]

= (HN+1)[B(τ),N+]+[B(τ),K](N++1)+[B(τ),VN ](N++1).
(5.12)
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The first term on the right-hand side of (5.12) can be written as

〈ξ, e−sB(τ)(HN+1)[B(τ),N+]esB(τ)ξ〉

=
∑

p,q∈Λ∗+

τpq
2〈ξ, e−sB(τ)a∗qaq(bpb−p+b∗pb

∗
−p)e

sB(τ)ξ〉

+
∑
p∈Λ∗+

τp〈ξ, e−sB(τ)VN (bpb−p+b∗pb
∗
−p)e

sB(τ)ξ〉

=: I + II .

(5.13)

From the proof of [3, Lemma 5.4], we have

|I|6C〈esB(τ)ξ, (N++1)(K+1)esB(τ)ξ〉.

To estimate II, we switch to position space. We find

|II|6
∑
p∈Λ∗+

|τp|
∫
dx dy N2V (N(x−y))|〈ǎxǎyesB(τ)ξ, ǎxǎy(bpb−p+b∗pb

∗
−p)e

sB(τ)ξ〉|

6
∑
p∈Λ∗+

|τp|
∫
dx dy N2V (N(x−y))‖ǎxǎy(N++1)1/2esB(τ)ξ‖

×(‖(bpb−p+b∗pb
∗
−p)(N++1)−1/2ǎxǎye

sB(τ)ξ‖+‖ǎyesB(τ)ξ‖+‖ǎxesB(τ)ξ‖+‖ξ‖)

6C〈ξ, e−sB(τ)(VN+1)(N++1)esB(τ)ξ〉,

since τ∈`1(Λ∗+), uniformly in N . From (5.13), we obtain that

|〈ξ, e−sB(τ)(HN+1)[B(τ),N+]esB(τ)ξ〉|6C〈ξ, e−sB(τ)(HN+1)(N++1)esB(τ)ξ〉. (5.14)

The second term on the right-hand side of (5.12) can be bounded as in [3] by

|〈ξ, e−sB(τ)[B(τ),K](N++1)esB(τ)ξ〉|6C〈ξ, e−sB(τ)(HN+1)(N++1)esB(τ)ξ〉. (5.15)

Finally, we analyze the third term on the right-hand side of (5.12). Again, it is

convenient to switch to position space. We find

[B(τ),VN ](N++1) =
1

2

∫
Λ×Λ

dx dy N2V (N(x−y))τ̌(x−y)(b̌∗xb̌
∗
y+b̌xb̌y)(N++1)

+

∫
Λ×Λ

dx dy N2V (N(x−y))(b∗xb
∗
ya
∗(τ̌y)ǎx+h.c.)(N++1),

(5.16)

where τ̌(x)=
∑
p∈Λ∗+

τpe
ip·x. Using ‖τ̌‖∞6‖τ‖16C<∞ and ‖τ̌y‖=‖τ̌‖=‖τ‖6C<∞ in-

dependently of y∈Λ and of N , it is then simple to check that

|〈ξ, e−sB(τ)[B(τ),VN ](N++1)esB(τ)ξ〉|6C〈ξ, e−sB(τ)(VN+N++1)(N++1)esB(τ)ξ〉.
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Combining this bound with (5.14) and (5.15), we obtain

|∂s〈ξ, e−sB(τ)(HN+1)(N++1)esB(τ)ξ〉|6C〈ξ, e−sB(τ)(HN+1)(N++1)esB(τ)ξ〉.

By Gronwall’s inequality and integrating over s∈[0, 1], we conclude (5.10).

To prove (5.11), on the other hand, we write

e−B(τ)VNeB(τ)−VN =

∫ 1

0

ds e−sB(τ)[VN , B(τ)]esB(τ).

With (5.16), it is simple to check that

±[B(τ),VN ]6N−1/2(VN+N++1)(N++1).

By (5.10) and N+6K, the last bound immediately implies

±(e−B(τ)VNeB(τ)−VN )6CN−1/2(HN+1)(N++1).

The next lemma shows that the generalized Bogoliubov transformation eB(τ) di-

agonalizes the quadratic operator QJN , up to errors that are negligible in the limit of

large N . A similar result was established in [3, Lemma 5.2], but only under the addi-

tional assumption of small interaction potential, which guaranteed ‖τ‖ to be sufficiently

small, and therefore allowed us to use the identity (2.18) and the bounds in Lemma 2.3

to control the action of eB(τ). Below, we provide a new proof which does not require

smallness of ‖τ‖.

Lemma 5.3. Let V ∈L3(R3) be non-negative, compactly supported and spherically

symmetric. Let QJN be defined as in (5.2) and τp be as in (5.9) with the coefficients Fp

and Gp as in (3.37). Then,

e−B(τ)QJN eB(τ) =
1

2

∑
p∈Λ∗+

(
−Fp+

√
F 2
p−G2

p

)
+
∑
p∈Λ∗+

√
F 2
p−G2

pa
∗
pap+δN ,

where the operator δN is such that, on F6N
+ ,

±δN 6CN−1(K+1)(N++1). (5.17)
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Proof. Using the commutation relations (2.3), we expand

e−B(τ)bpe
B(τ) = bp+

∫ 1

0

ds e−sB(τ)[bp, B(τ)]esB(τ)

= bp+

∫ 1

0

ds e−sB(τ)τpb
∗
−pe

sB(τ)

−
∫ 1

0

ds e−sB(τ)

(
τp
N+

N
b∗−p+

1

N

∑
q∈Λ∗+

b∗qa
∗
−qapτq

)
esB(τ)

= bp+τpb
∗
−p+

∫ 1

0

ds1

∫ s1

0

ds2 e
−s2B(τ)τ2

p bpe
s2B(τ)

−
∫ 1

0

ds e−sB(τ)

(
τp
N+

N
b∗−p+

1

N

∑
q∈Λ∗+

b∗qa
∗
−qapτq

)
esB(τ)

−
∫ 1

0

ds1

∫ s1

0

ds2 e
−s2B(τ)

(
τ2
p

N+

N
bp+

τp
N

∑
q∈Λ∗+

τqa
∗
−pa−qbq

)
es2B(τ).

Iterating the expansion, and using Lemma 2.1 to control the error term, we get

e−B(τ)bpe
B(τ) = cosh(τp)bp+sinh(τp)b

∗
−p+Dp, (5.18)

with the remainder operator

Dp =
∑
n>0

∫ 1

0

ds1...

∫ s2n

0

ds2n+1

×e−s2n+1B(τ)

(
−τ2n+1

p

N+

N
b∗−p−

1

N
τ2n
p

∑
q∈Λ∗+

b∗qa
∗
−qapτq

)
es2n+1B(τ)

+
∑
n>1

∫ 1

0

ds1...

∫ s2n−1

0

ds2n

×e−s2nB(τ)

(
−τ2n

p bp
N+

N
− 1

N
τ2n−1
p

∑
q∈Λ∗+

a∗−pa−qbqτq

)
es2nB(τ).

From ‖τ‖16C and Lemma 2.1, it follows that

‖(N+1)n/2Dpξ‖6
C

N
|τp| ‖(N++1)(n+3)/2ξ‖+ C

N

∫ 1

0

ds ‖ap(N++1)(n+2)/2esB(τ)ξ‖.

(5.19)

With (5.18), and using the shorthand notation γ̃p=cosh τp and σ̃p=sinh τp, we can

write

e−B(τ)QJN eB(τ) =
∑
p∈Λ∗+

(Fpσ̃
2
p+Gpγ̃pσ̃p)+

∑
p∈Λ∗+

(Fp(γ̃
2
p+σ̃2

p)+2Gpσ̃pγ̃p)b
∗
pbp

+
1

2

∑
p∈Λ∗+

(2Fpγ̃pσ̃p+Gp(γ̃
2
p+σ̃2

p))(bpb−p+b∗pb
∗
−p)+δN ,

(5.20)
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where

δN =
∑
p∈Λ∗+

FpD
∗
pe
−B(τ)bpe

B(τ)+
∑
p∈Λ∗+

Fp(γ̃pb
∗
p+σ̃pbp)Dp

+
1

2

∑
p∈Λ∗+

Gp(D
∗
pe
−B(τ)b∗−pe

B(τ)+h.c.)+
1

2

∑
p∈Λ∗+

Gp((γ̃pb
∗
p+σ̃pb−p)D

∗
−p+h.c.).

(5.21)

With (5.9), a lengthy but straightforward computation leads to

e−B(τ)QJN eB(τ) =
1

2

∑
p∈Λ∗+

(
−Fp+

√
F 2
p−G2

p

)
+
∑
p∈Λ∗+

√
F 2
p−G2

pb
∗
pbp+δN .

From the bound Fp6C(1+p2) in Lemma 5.1, we obtain∣∣∣∣ ∑
p∈Λ∗+

√
F 2
p−G2

p(〈ξ, b∗pbp ξ〉−〈ξ, a∗papξ〉)
∣∣∣∣= ∣∣∣∣ 1

N

∑
p∈Λ∗+

√
F 2
p−G2

p〈ξ, a∗pN+apξ〉
∣∣∣∣

6
C

N

∑
p∈Λ∗+

(p2+1)‖ap(N++1)1/2ξ‖2

=
C

N
〈ξ, (N++1)(K+1)ξ〉

for all ξ∈F6N
+ . Hence, the claim follows if we can show that the operator δN defined in

(5.21) satisfies (5.17). Consider first the expectation of the first term on the right-hand

side of (5.21). Using (5.19), the bounds |Fp|6C(1+p2) and |τp|6C|p|−4, Lemma 2.1 and

then also Lemma 5.2, we arrive at∣∣∣∣ ∑
p∈Λ∗+

Fp〈Dpξ, e
−B(τ)bpe

B(τ)ξ〉
∣∣∣∣

6
C

N

∑
p∈Λ∗+

|Fp| ‖(N++1)−1/2Dpξ‖ ‖(N++1)1/2e−B(τ)bpe
B(τ)ξ‖

6
C

N

∑
p∈Λ∗+

(1+p2)|τp| ‖(N++1)ξ‖ ‖ap(N++1)1/2eB(τ)ξ‖

+
C

N

∑
p∈Λ∗+

(1+p2)

∫ 1

0

ds ‖ap(N++1)1/2esB(τ)ξ‖ ‖ap(N++1)1/2eB(τ)ξ‖

6
C

N
〈ξ, (HN+1)(N++1)ξ〉.
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The expectation of the second term on the right-hand side of (5.21) can be bounded

similarly. As for the third term on the right-hand side of (5.21), we estimate∣∣∣∣ ∑
p∈Λ∗+

Gp〈ξ,D∗pe−B(τ)b∗−pe
B(τ)ξ〉

∣∣∣∣
=
∑
p∈Λ∗+

|Gp| ‖(N++1)−1/2Dpξ‖ ‖(N++1)1/2e−B(τ)b∗−pe
B(τ)ξ‖

6
C

N

∑
p∈Λ∗+

|Gp|
(
|τp| ‖(N++1)ξ‖+

∫ 1

0

ds ‖bp(N++1)1/2esB(τ)ξ‖
)
‖(N++1)ξ‖

6
C

N
‖(N++1)ξ‖2,

where we used Lemma 2.1 and the bound |G(p)|6C|p|−2 from Lemma 5.1. The last term

on the right-hand side of (5.21) can be controlled similarly.

It follows from Lemmas 5.2 and 5.3 that the new excitation HamiltonianMN :F6N
+ !

F6N
+ defined by

MN = e−B(τ)JNeB(τ) = e−B(τ)e−Ae−B(η)UNHNU
∗
Ne

B(η)eAeB(τ)

can be decomposed as

MN =CMN
+QMN

+VN+EMN
,

where

CMN
:=CJN +

1

2

∑
p∈Λ∗+

(
−Fp+

√
F 2
p−G2

p

)
and QMN

:=
∑
p∈Λ∗+

√
F 2
p−G2

pa
∗
pap, (5.22)

with CJN as in (3.36), Fp and Gp as in (3.37), and where the error EMN
is such that

±EMN
6CN−1/4((HN+1)(N++1)+(N++1)3).

To conclude this section, we are going to compute the constant CMN
and the di-

agonal coefficients (F 2
p−G2

p)
1/2 appearing in the quadratic operator QMN

, up to errors

that are negligible in the limit N!∞. To this end, we introduce the notation

EBog :=
1

2

∑
p∈Λ∗+

(√
p4+16πa0p2−p2−8πa0+

(8πa0)2

2p2

)
. (5.23)

Lemma 5.4. Let V ∈L3(R3) be non-negative, compactly supported and spherically

symmetric.

(i) The constant CMN
in (5.22) is given by

CMN
= 4π(N−1)a0+eΛa

2
0+EBog+O(N−1 logN),
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where

eΛ = 2− lim
M!∞

∑
p∈Z3\{0}

|p1|,|p2|,|p3|6M

4 cos(|p|)
p2

. (5.24)

In particular, we will show that the limit exists.

(ii) The quadratic operator QMN
in (5.22) is given by

QMN
=
∑
p∈Λ∗+

√
p4+16πa0p2a∗pap+δ̃N ,

where the error δ̃N is bounded by

±δ̃N 6CN−1(K+1).

Proof. To show (i) we recall from (5.22) that CMN
is explicitly given by

CMN
=
N−1

2
V̂ (0)− 1

N

∑
p∈Λ∗+

(
V̂
( ·
N

)
∗η
)
p
γpσp−

∑
p∈Λ∗+

(V̂ ( ·/N)∗f̂`,N )2
p

4p2

+
1

2N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σpγpσqγq

+
1

N

∑
p∈Λ∗+

(
p2η2

p+
1

2N

(
V̂
( ·
N

)
∗η
)
p
ηp

)
+EBog,N ,

(5.25)

with

EBog,N : =
1

2

∑
p∈Λ∗+

(√
p4+2p2

(
V̂
( ·
N

)
∗f̂`,N

)
p
−p2

−
(
V̂
( ·
N

)
∗f̂`,N

)
p
+

(V̂ ( ·/N)∗f̂`,N )2
p

2p2

)
.

(5.26)

First, we compare EBog,N with its limiting value (5.23). From (5.26), we write

EBog,N =−1

2

∑
p∈Λ∗+

eN,p,

with

eN,p = p2+
(
V̂
( ·
N

)
∗f̂`,N

)
p
−
√
p4+2p2

(
V̂
( ·
N

)
∗f̂`,N

)
p
−

(V̂ ( ·/N)∗f̂`,N )2
p

2p2
.
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Taylor expanding the square root, we easily check that |eN,P |6C/|p|4, for a constant

C>0, independent of N and of p, if |p| is sufficiently large with respect to(
V̂
( ·
N

)
∗f̂`,N

)
p
.

On the other side, replacing (V̂
(
·
N

)
∗f̂`,N )p by (V̂

(
·
N

)
∗f̂`,N )0 and then, using Lemma

3.1 (ii), by 8πa0, we produce an error that can be estimated by∣∣∣∣eN,p−(p2+8πa0−
√
|p|4+16πa0p2− (8πa0)2

2p2

)∣∣∣∣6 C

N |p|3
.

Using this bound for |p|<N and |eN,p|6C/|p|4 for |p|>N , we obtain

|EBog,N−EBog|6CN−1 logN. (5.27)

Hence, let us analyze the remaining terms on the right-hand side of (5.25). First,

using the scattering equation (3.15) and the approximation (3.10), we find that

−1

2
V̂ (0)+

1

N

∑
p∈Λ∗+

(
p2η2

p+
1

2N

(
V̂
( ·
N

)
∗η`
)
p
ηp

)

=−1

2
V̂ (0)− 1

N

∑
p∈Λ∗+

V̂
( p
N

)
ηp+O(N−1) =−4πa0+O(N−1).

Moreover, using that |σpγp−ηp|6C/p6, we have

− 1

N

∑
p∈Λ∗+

(
V̂
( ·
N

)
∗η
)
p
σpγp

=− 1

N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
ηqσpγp−

1

N

∑
p∈Λ∗+

V̂
( p
N

)
ηpη0+O(N−1)

and, writing σqγqσpγp=(σqγq−ηq+ηq)(σpγp−ηp+ηp) and expanding the product,

1

2N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp

=
1

N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
ηqσpγp−

1

2N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
ηqηp+O(N−1).

Summing up the different contributions from above, we arrive at

CMN
=
N

2
V̂ (0)−4πa0+EBog+O(N−1 logN)

− 1

2N

∑
p∈Λ∗+

(
V̂
( ·
N

)
∗η
)
p
ηp−

∑
p∈Λ∗+

(V̂ ( ·/N)∗f̂`,N )2
p

4p2
− 1

2N

∑
p∈Λ∗+

V̂
( p
N

)
ηpη0.
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Writing (recall from (3.7) that f̂`,N (p)=δp,0+N−1ηp)

− 1

2N

∑
p∈Λ∗+

(
V̂
( ·
N

)
∗η
)
p
ηp =−1

2

∑
p∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
p
ηp+

1

2

∑
p∈Λ∗

V̂
( p
N

)
ηp−

1

2
V̂ (0)η0,

and noticing that

N

2
V̂ (0)+

1

2

∑
p∈Λ∗

V̂
( p
N

)
ηp =

N

2

(
V̂
( ·
N

)
∗f̂`,N

)
0
,

we arrive at

CMN
=
N

2

(
V̂
( ·
N

)
∗f̂`,N

)
0

(
1− η0

N

)
−4πa0+EBog+O(N−1 logN)

−
∑
p∈Λ∗+

(V̂ ( ·/N)∗f̂`,N )p
2p2

(
p2ηp+

1

2

(
V̂
( ·
N

)
∗f̂`,N

)
p

)
.

With Lemma 3.1, we compute(
V̂
( ·
N

)
∗f̂`,N

)
0

=πa0

(
1+

3a0

2`N

)
+O(N−2),

η0 =−N−2ŵ`(0) =−N−2

∫
w`(x) dx=−2

5
πa0`

2+O(N−1).

Hence, with the scattering equation (3.14), we obtain

CMN
= 4πa0(N−1)+EBog+6πa2

0`
−1

(
1+

4π

15
`3
)

+O(N−1 logN)

−
∑
p∈Λ∗+

N3λ`χ̂`(p)
(V̂ ( ·/N)∗f̂`,N )p

2p2

= 4πa0(N−1)+EBog+6πa2
0

(
1

`
+

4π

15
`2− 2

`3

∑
p∈Λ∗+

χ̂`(p)

p2

)
+O(N−1 logN),

(5.28)

because |(V̂
(
·
N

)
∗f̂`,N )p−8πa0|6C|p|/N and |χ̂`(p)|6C|p|−2 by (5.5). To finish the

proof of (i), we evaluate the expression in the parenthesis, showing that it is actually

independent of `, for `∈
(
0, 1

2

)
. Again by (5.5), we find

− 2

`3

∑
p∈Λ∗+

χ̂`(p)

p2
=−8π`2 lim

M!∞

∑
p∈Λ∗+

|pi|62πM

sin(`|p|)−`|p| cos(`|p|)
(|p|`)5

,

because the sum converges absolutely, since |χ̂`(p)|/|p|26C/|p|4 for all p∈Λ∗+. With

̂(χ`| · |2)(q) =

∫
R3

χ`(x)x2e−iqx dx

= 4π`5
(
−6 sin(`|q|)

(`|q|)5
+

6 cos(`|q|)
(`q)4

+
3 sin(`|q|)

(`|q|)3
− cos(`|q|)

(`q)2

) (5.29)
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and (5.5), we conclude that

− 2

`3

∑
p∈Λ∗+

χ̂`(p)

p2

=−8π`2 lim
M!∞

∑
p∈Λ∗+

|pi|62πM

sin(`|p|)−`|p| cos(`|p|)
(|p|`)5

=−8π`2 lim
M!∞

∑
p∈Λ∗+

|pi|62πM

[
1

3

cos(`|p|)
(`p)2

+
1

2

(
sin(`|p|)
(`|p|)3

− cos(`|p|)
(`p)2

)

− 1

6

(
−6

sin(`|p|)
(`|p|)5

+6
cos(`|p|)
(`|p|)4

+3
sin(`|p|)
(`|p|)3

− cos(`|p|)
(`p)2

)]

=−8π`2

3
lim
M!∞

∑
p∈Λ∗+

|pi|62πM

cos(`|p|)
(`p)2

−2`2 lim
M!∞

∑
p∈Λ∗+

|pi|62πM

(
1

2`3
χ̂`(p)−

1

6`5
̂(χ`| · |2)(p)

)

=−8π

3
lim
M!∞

∑
p∈Λ∗+

|pi|62πM

cos(`|p|)
p2

− 1

`
(χ`(0)−χ̂`(0))− 1

3`3
(χ̂`| · |2)(0),

(5.30)

because square partial sums for the Fourier series of x 7!χ`(x) and of x 7!x2χ`(x) converge

at x=0; see [9]. With (5.5) and (5.29), we obtain

χ̂`(0) = 4
3π`

3 and ̂(χ`| · |2)(0) = 4
5π`

5.

Thus,

− 2

`3

∑
p∈Λ∗+

χ̂`(p)

p2
= I`−

1

`
− 4π`2

15
, (5.31)

where

I` =
4π`2

3
− 8π

3
lim
M!∞

∑
p∈Λ∗+
|pi|62πM

cos(`|p|)
p2

. (5.32)

We claim now that I` is independent of the choice of `∈
(
0, 1

2

)
. This implies that, for

example,

I` = I1/2π =
1

3π
− 2

3π
lim
M!∞

∑
p∈Z3

|pi|6M

cos(|p|)
p2

.
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Inserting in (5.31), and then in (5.28), we obtain

CMN
= 4πa0(N−1)+EBog+2a2

0

(
1−2 lim

M!∞

∑
p∈Z3

|pi|6M

cos(|p|)
p2

)
+O(N−1 logN),

which concludes the proof of part (i) (notice that, in particular, our analysis shows the

existence of the limit M!∞ in the parenthesis). It remains to show that I`, defined as

in (5.32), is independent of `. To this end, we observe that

(̂
χ`
| · |

)
(q) =

∫
R3

χ`(x)
1

|x|
e−iqx dx= 4π

(
1

q2
− cos(`|q|)

q2

)
. (5.33)

Hence, for `1, `2∈
(
0, 1

2

)
, we find

I`1−I`2 =
4π

3
(`21−`22)− 8π

3
lim
M!∞

∑
p∈Λ∗+

|pi|62πM

cos(`1|p|)−cos(`2|p|)
p2

=
4π

3
(`21−`22)− 2

3
lim
M!∞

∑
p∈Λ∗+

|pi|62πM

ĥ(p),

where h(x)=(χ`2(x)−χ`1(x))/|x|. By [9], we find

I`1−I`2 = 4
3π(`21−`22)− 2

3 (h(0)−ĥ(0)) = 0,

because h(0)=0 and, with (5.33), ĥ(0)=−2π(`21−`22); hence I`1 =I`2 , as claimed.

Finally, we prove part (ii). Here, we use the two bounds∣∣∣∣√p4+2p2
(
V̂
( ·
N

)
∗f̂`,N

)
p
−
√
p4+2p2

(
V̂
( ·
N

)
∗f̂`,N

)
0

∣∣∣∣6CN−1|p|,

as well as ∣∣∣∣√p4+2p2
(
V̂
( ·
N

)
∗f̂`,N

)
0
−
√
p4+16πa0p2

∣∣∣∣6CN−1.

It follows immediately that

QMN
=
∑
p∈Λ∗+

√
p4+2p2

(
V̂
( ·
N

)
∗f̂`,N

)
p
a∗pap =

∑
p∈Λ∗+

√
p4+16πa0p2a∗pap+δ̃N ,

where the operator δ̃N is bounded by ±δ̃N6CN−1(K+1). This concludes the proof of

the lemma.
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Combining Proposition 3.3 with the results of the last two sections, we obtain the

following corollary, which will be used in the next section to show Theorem 1.1.

Corollary 5.5. Let V ∈L3(R3) be non-negative, compactly supported and spheri-

cally symmetric. Then, there exists a constant C>0 such that the excitation Hamiltonian

MN = e−B(τ)e−Ae−B(η)UHNU
∗eB(η)eAeB(τ):F6N

+ −!F6N
+

can be written as

MN = 4π(N−1)a0+eΛa
2
0+

1

2

∑
p∈Λ∗+

(
−p2−8πa0+

√
p4+16πa0p2+

(8πa0)2

2p2

)
+
∑
p∈Λ∗+

√
p4+16πa0p2a∗pap+VN+EMN

,
(5.34)

with eΛ as in (5.24) and where

±EMN
6CN−1/4((HN+1)(N++1)+(N++1)3).

Furthermore, let ψN∈L2
s(R3N ), with ‖ψN‖=1, belong to the spectral subspace of HN

with energies below EN+ζ, where EN is the ground state energy of HN and ζ>0. In

other words, assume that

ψN =1(−∞,EN+ζ](HN )ψN .

Let ξN=e−B(τ)e−Ae−B(η)UψN∈F6N
+ be the excitation vector associated with ψN . Then,

there exists a constant C>0 such that

〈ξN , ((HN+1)(N++1)+(N++1)3)ξN 〉6C(1+ζ3). (5.35)

Proof. Equation (5.34) follows from Proposition 3.3, Lemmas 5.2–5.4. Equation

(5.35) is, on the other hand, a consequence of Corollary 4.5.

6. Proof of Theorem 1.1

We define

EMN
:= 4π(N−1)a0+eΛa

2
0+

1

2

∑
p∈Λ∗+

(
−p2−8πa0+

√
p4+16πa0p2+

(8πa0)2

2p2

)
.

To prove Theorem 1.1, we compare the eigenvalues ofMN−EMN
below a threshold ζ>0

with those of the diagonal quadratic operator

D :=
∑
p∈Λ∗+

εpa
∗
pap (6.1)
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with the dispersion εp=(|p|4+16πa0p
2)1/2 for all p∈Λ∗+. For m∈N, we denote by λm

the mth eigenvalue of MN−EMN
and by νm the mth eigenvalue of D (in both cases,

eigenvalues are counted with multiplicity). To show Theorem 1.1, we prove that

|λm−νm|6CN−1/4(1+ζ3) (6.2)

for all m∈N\{0} such that λm<ζ. Using (6.2), Theorem 1.1 can be proven as follows.

Taking the expectation of (5.34) in the vacuum, we conclude that λ16CN−1/4. Hence,

forN large enough, we have λ16ζ and we can apply (6.2) to show that |λ1−ν1|6CN−1/4.

Since ν1=0, we conclude that |λ1|6CN−1/4 and therefore that

|EN−EMN
|6CN−1/4, (6.3)

where EN is the ground state energy of HN , as defined in (1.1). This proves (1.10). Equa-

tion (1.12), on the other hand, follows from (6.2), from (6.3) and from the observation

that the eigenvalues of D have the form

νj =
∑
p∈Λ∗+

n(j)
p εp

for every j∈N\{0}. Here the coefficients n
(j)
p belong to N, for all j∈N and all p∈Λ∗+.

Notice that the eigenvector of D associated with the eigenvalue νj is given by

ξj =Cj
∏
p∈Λ∗+

(a∗p)
n(j)
p Ω (6.4)

for an appropriate normalization constant Cj>0 (if νj is degenerate, the choice of ξj is

not unique; we will always use eigenvectors of the form (6.4)).

To show (6.2), we will combine a lower and an upper bound for λm in terms of νm.

Since VN>0, we can ignore the potential energy operator appearing on the right-hand

side of (5.34) when proving the lower bound. For the upper bound, on the other hand, we

make use of the following lemma, where we control the expectation of VN on low-energy

eigenspaces of the quadratic operator D.

Lemma 6.1. Let V ∈L3(R3) be non-negative, compactly supported and spherically

symmetric and let VN be defined as in (3.23). Let ζ>0 and m∈N such that νm<ζ. Let

ξ1, ..., ξm be defined as in (6.4) (ξj is an eigenvector of D associated with the eigenvalue

νj) and Y mD be the subspace spanned by ξ1, ..., ξm. Then, there exists C>0 such that

〈ξ,VNξ〉6
C(ζ+1)7/2

N

for all normalized ξ∈Y mD .
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Proof. The bounds εp>p2 and ν16...6νm6ζ imply that aqξj=0 for all q∈Λ∗+ with

|q|>ζ1/2. This also implies that aqξ=0 for all ξ∈Y mD . Hence,

〈ξ,VNξ〉6
1

N

∑
p,q,u∈Λ∗+

∣∣∣V̂ ( u
N

)∣∣∣‖aq+uapξ‖ ‖ap+uaqξ‖
6
C

N

∑
p,q,u∈Λ∗+

|p|,|q|,|u|6Cζ1/2

‖aq+uapξ‖ ‖ap+uaqξ‖

6
Cζ3/2

N
‖(N++1)ξ‖2.

Since N+6CD, we find

〈ξ,VNξ〉6
Cζ3/2

N
‖(D+1)ξ‖2 6 C(ζ+1)7/2

N
.

In addition to Lemma 6.1, we will need the following result which is an extension of

Lemma 7.3 in [3] to the Gross–Pitaevskii regime.

Lemma 6.2. Let V ∈L3(R3) be non-negative, compactly supported and spherically

symmetric, and let K and VN be defined as in (3.23). Then, there exists C>0 such that,

on F6N
+ ,

VN 6CN+K.

Proof. We bound

〈ξ,VNξ〉6
1

N

∑
p,q∈Λ∗+
u∈Λ∗

u6=−p,−q

∣∣∣V̂ ( u
N

)∣∣∣‖ap+uaqξ‖ ‖aq+uapξ‖

6
1

N

∑
p,q∈Λ∗+
u∈Λ∗

u6=−p,−q

|V̂ (u/N)|
(q+u)2

(p+u)2‖ap+uaqξ‖2

6

(
sup
q∈Λ∗+

1

N

∑
u∈Λ∗

u6=−q

|V̂ (u/N)|
(u+q)2

)
‖K1/2N 1/2ξ‖2

6C‖K1/2N 1/2ξ‖2.

With the help of Lemmas 6.1 and 6.2, we are now ready to prove (6.2).

Let us first prove a lower bound for λm, under the assumption that λm<ζ. From

the min-max principle, we have

λm = inf
Y⊂F6N

+

dimY=m

sup
ξ∈Y
‖ξ‖=1

〈ξ, (MN−EMN
)ξ〉.
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From the assumption λm<ζ, we obtain

λm = inf
Y⊂Pζ(F6N

+ )

dimY=m

sup
ξ∈Y
‖ξ‖=1

〈ξ, (MN−EMN
)ξ〉,

where Pζ is the spectral projection of MN−EMN
associated with the interval (−∞; ζ].

Hence, with (5.34), VN>0 and (5.35) we find

λm> inf
Y⊂Pζ(F6N

+ )

dimY=m

sup
ξ∈Y
‖ξ‖=1

〈ξ,Dξ〉−CN−1/4(1+ζ3)

> inf
Y⊂F6N

+

dimY=m

sup
ξ∈Y
‖ξ‖=1

〈ξ,Dξ〉−CN−1/4(1+ζ3)

= νm−CN−1/4(1+ζ3).

Let us now prove an upper bound for λm. From the assumption λm<ζ and from the

lower bound proven above, it follows that νm6ζ+1 (without loss of generality, we can

assume N−1/4ζ361, since otherwise the statement of the theorem is trivially satisfied).

The min-max principle implies that

λm = inf
Y⊂F6N

+

dimY=m

sup
ξ∈Y
‖ξ‖=1

〈ξ, (MN−EMN
)ξ〉6 sup

ξ∈YmD
‖ξ‖=1

〈ξ, (MN−EMN
)ξ〉, (6.5)

where Y mD denotes the subspace spanned by the m vectors ξ1, ..., ξm defined in (6.4).

From Lemma 6.2 and the inequalities N6CK6CD6Cνm6C(ζ+1) on Y mD , we find

that

〈ξ, ((HN+1)(N++1)+(N++1)3)ξ〉6C〈ξ, (N++1)2(K+1)ξ〉6C(1+ζ3)

for all normalized ξ∈Y mD . Inserting the last inequality and the bound from Lemma 6.1

in (5.34), we obtain that

〈ξ, (MN−EMN
)ξ〉6 〈ξ,Dξ〉+CN−1/4(1+ζ3)

for all ξ∈Y mD . From (6.5), we conclude that

λm6 sup
ξ∈YmD
‖ξ‖=1

〈ξ,Dξ〉+CN−1/4(1+ζ3)6 νm+CN−1/4(1+ζ3).

Combining lower and upper bound, we showed that |λm−νm|6CN−1/4(1+ζ3), for

all m∈N such that λm<ζ. This completes the proof of Theorem 1.1.
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To conclude this section, we come back to the remark after Theorem 1.1, concerning

the eigenvectors of the Hamilton operator HN introduced in (1.1). Theorem 1.1 shows

that the eigenvalues of HN can be approximated in terms of the eigenvalues of the di-

agonal quadratic operator D defined in (6.1). Following standard arguments, one can

also approximate the eigenvectors of HN through the (appropriately transformed) eigen-

vectors of D. More precisely, let θ16θ26... denote the ordered eigenvalues of HN (i.e.

θj=λj+EMN
, with the notation introduced after (6.1)) and let 0=ν16ν26... denote

the eigenvalues of the diagonal quadratic operator D defined in (6.1). Fix j∈N\{0} with

νj<νj+1. From (6.2) we obtain that also θj<θj+1, if N is large enough. We denote

by Pj the spectral projection onto the eigenspace of HN associated with the eigenvalues

θ16...6θj , and by Qj the orthogonal projection onto the eigenspace of D associated with

the eigenvalues 0=ν16...6νj . Then, we find

‖e−B(τ)e−Ae−B(η)UNPjU
∗
Ne

B(η)eAeB(τ)−Qj‖2HS 6
C(j+1)(1+ν3

j )

νj+1−νj
N−1/4. (6.6)

In particular, if ψN denotes a ground state vector of the Hamiltonian HN , there

exists a phase ω∈[0, 2π) such that

∥∥ψN−eiωU∗NeB(η)eAeB(τ)Ω
∥∥2

6
C

θ1−θ0
N−1/4. (6.7)

The proof of (6.6) and (6.7) can be obtained, using the results of Theorem 1.1, analo-

gously as in [16, §7]. We omit the details.

7. Analysis of GN

In this section, we prove Proposition 3.2, devoted to the properties of the excitation

Hamiltonian GN defined in (3.22). In particular, we will show part (b) of Proposition

3.2, since part (a) was proven already in [2, Proposition 3.2]. In fact, the bound (3.25) is

a bit more precise than the estimate appearing in [2, Proposition 3.2], but it can be easily

obtained, combining the results of Propositions 4.2–4.5 and 4.7 in [2], taking always �=1.

Notice that, in these propositions from [2], the assumption that �>0 is sufficiently small

is only used to guarantee that ‖η‖ is small enough, so that we can apply the expansion

from [2, Lemma 2.6] (which corresponds to (2.16) above). Here, we do not assume that

the size of the potential is small, but nevertheless we make sure that ‖η‖ is small enough

by requiring that `∈
(
0, 1

2

)
is sufficiently small (because of the bound (3.17)).

As for the bound (3.26), it was not explicitly shown in [2]; however, it follows

from the analysis in [2] by noticing that the commutator [iN+,∆N ] is given by the
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sum of the same monomials in creation and annihilation operators contributing to ∆N ,

multiplied with a constant λ (given by the difference between the number of creation

and the number of annihilation operators in the monomial). To be more precise, it

follows from [2] that ∆N can be written as a sum ∆N=
∑∞
k=0 ∆

(k)
N , where the errors

∆
(k)
N , k∈N, are sums of monomials of creation and annihilation operators that satisfy

±∆
(k)
N 6(C‖η‖)k(HN+1) for some constant C>0, independent of N . Moreover, the

commutator of a given monomial in ∆
(k)
N with N+ is given by the same monomial,

multiplied by some constant λ(k) which is bounded by |λ(k)|6(2k+1)6Ck (if, without

loss of generality, the constant C is sufficiently large). Hence, terms in [iN+,∆N ], and

analogously in higher commutators of ∆N with iN+, can be estimated exactly like terms

in ∆N (up to an unimportant additional constant), leading to (3.26). From now on, we

will therefore focus on part b) of Proposition 3.2.

Using (3.3), we write

GN =G(0)
N +G(2)

N +G(3)
N +G(4)

N , (7.1)

with G(j)
N =e−B(η)L(j)

N eB(η), for j=0, 2, 3, 4. In the rest of this section, we will compute

the operators on the right-hand side of (7.1), up to errors that are negligible in the limit

of large N (on low-energy states). To quickly discard some of the error terms, it will be

useful to have a rough estimate on the action of the Bogoliubov transformation e−B(η);

this is the goal of the next lemma.

Lemma 7.1. Let B(η) be defined as in (2.4), with η as in (3.13). Let V ∈L3(R3) be

non-negative, compactly supported and spherically symmetric. Let K and VN be defined

as in (3.23). Then, for every j∈N, there exists a constant C>0 such that

e−B(η)K(N++1)jeB(η) 6CK(N++1)j+CN(N++1)j+1,

e−B(η)VN (N++1)jeB(η) 6CVN (N++1)j+CN(N++1)j .

Proof. To prove the bound for the kinetic energy operator, we apply Gronwall’s

inequality. For ξ∈F6N
+ and s∈R, we define Φs=esB(η)ξ and we consider

∂s〈Φs,K(N++1)jΦs〉= 〈Φs, [K(N++1)j , B(η)]Φs〉

= 〈Φs, [K, B(η)](N++1)jΦs〉+〈Φs,K[(N++1)j , B(η)]Φs〉.
(7.2)

With

[K, B(η)] =
∑
p∈Λ∗+

p2ηp(bpb−p+b∗pb
∗
−p),
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the first term on the right-hand side of (7.2) can be bounded by

|〈Φs, [K, B(η)](N++1)jΦs〉|

6C
∑
p∈Λ∗+

p2|ηp| ‖bp(N++1)j/2Φs‖ ‖(N++1)(j+1)/2Φs‖

6C〈Φs,K(N++1)jΦs〉+CN〈ξ, (N++1)j+1ξ〉.

(7.3)

Here, we used the Cauchy–Schwarz ineqaulity, the estimate (3.19) and Lemma 2.1 to

replace, in the second term on the right-hand side, Φs by ξ. As for the second term on

the right-hand side of (7.2), we have

〈Φs,K[(N++1)j , B(η)]Φs〉

=

j−1∑
k=0

∑
p∈Λ∗+

ηp〈Φs,K(N++1)j−k−1(b∗pb
∗
−p+bpb−p)(N++1)kΦs〉.

Writing K=
∑
q∈Λ∗+

q2a∗qaq and normal ordering field operators, we arrive at

|〈Φs,K[(N++1)j , B(η)]Φs〉|

6C
∑

p,q∈Λ∗+

q2|ηp|‖aqap(N++1)(j−1)/2Φs‖‖aq(N++1)j/2Φs‖

+C
∑
p∈Λ∗+

p2|ηp|‖ap(N++1)(j−1)/2Φs‖‖(N++1)j/2Φs‖

6C〈Φs,K(N++1)jΦs〉+CN〈ξ, (N++1)jξ〉.

Inserting the last bound and (7.3) into the right-hand side of (7.2) and applying Gronwall,

we obtain the bound for the kinetic energy operator.

To show the estimate for the potential energy operator, we proceed similarly. Using

again the notation Φs=esB(η)ξ, we compute

∂s〈〈Φs,VN (N++1)jΦs〉

= 〈Φs, [VN , B(η)](N++1)jΦs〉+〈Φs,VN [(N++1)j , B(η)]Φs〉.
(7.4)

Using the identity

[VN , B(η)] =
1

2N

∑
q∈Λ∗+
r∈Λ∗

r 6=−q

V̂
( r
N

)
ηq+rb

∗
qb
∗
−q+

1

N

∑
p,q∈Λ∗+
r∈Λ∗

r 6=p,−q

V̂
( r
N

)
ηq+rb

∗
p+rb

∗
qa
∗
−q−rap+h.c.
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and switching to position space, we can bound the expectation of the first term on the

right-hand side of (7.4) by

|〈Φs, [VN , B(η)](N++1)jΦs〉|

6

∣∣∣∣12
∫

Λ2

dx dy N2V (N(x−y))η̌(x−y)〈Φs, b̌∗xb̌∗y(N++1)jΦs〉
∣∣∣∣

+

∣∣∣∣∫
Λ2

dx dy N2V (N(x−y))〈Φs, b̌∗xb̌∗ya∗(η̌y)ǎx(N++1)jΦs〉
∣∣∣∣

6C

∫
Λ2

dx dy N3V (N(x−y))‖(N++1)j/2b̌xb̌yΦs‖ ‖(N++1)j/2Φs‖

+C

∫
Λ2

dx dy N2V (N(x−y))‖η̌y‖2 ‖(N++1)j/2b̌xb̌yΦs‖ ‖ǎx(N++1)(j+1)/2Φs‖

6C〈Φs,VN (N++1)jΦs〉+CN〈ξ, (N++1)jξ〉,

where we used the Cauchy–Schwarz inequality, the bound ‖η̌y‖26C, the fact that N+6N

on F6N
+ and, in the last step, Lemma 2.1 to replace Φs by ξ in the second term. As for

the second term on the right-hand side of (7.4), it can be controlled similarly, using the

identity

VN [(N++1)j , B(η)] =

j∑
k=1

∑
p∈Λ∗+

ηp(N++1)j−k−1VN (bpb−p+b∗pb
∗
−p)(N++1)k,

and expressing VN in position space. We conclude that

|∂s〈〈Φs,VN (N++1)jΦs〉|6C〈Φs,VN (N++1)jΦs〉+CN〈ξ, (N++1)jξ〉.

Gronwall’s lemma gives the desired bound.

7.1. Analysis of G(0)
N =e−B(η)L(0)

N eB(η)

From (3.4), recall that

L(0)
N =

N−1

2N
V̂ (0)(N−N+)+

V̂ (0)

2N
N+(N−N+).

With Lemma 2.1, we immediately obtain that

G(0)
N = 1

2 (N−1)V̂ (0)+E(0)
N ,

where the error operator E(0)
N is such that, on F6N

+ ,

±E(0)
N 6

C

N
(N++1)2. (7.5)
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7.2. Analysis of G(2)
N =e−B(η)L(2)

N eB(η)

We define the error operator E(2)
N by the identity

G(2)
N =G(2,K)

N +G(2,V )
N +E(2)

N , (7.6)

where we set

G(2,K)
N =K+

∑
p∈Λ∗+

(
p2σ2

p

(
1+

1

N
−N+

N

)
+p2σpγp(bpb−p+b∗pb

∗
−p)+2p2σ2

pb
∗
pbp

)

+
∑
p∈Λ∗+

1

N
p2σ2

p

∑
q∈Λ∗+

((γ2
q+σ2

q )b∗qbq+σ2
q )

+
∑
p∈Λ∗+

1

N
p2σ2

p

∑
q∈Λ∗+

(γqσqb−qbq+h.c.)

+
∑
p∈Λ∗+

(p2ηpb−pdp+h.c.)

(7.7)

and G(2,V )
N is defined as in

G(2,V )
N =

∑
p∈Λ∗+

(
V̂
( p
N

)
σ2
p+V̂

( p
N

)
σpγp

(
1−N+

N

))
+
∑
p∈Λ∗+

V̂
( p
N

)
(γp+σp)

2b∗pbp

+
1

2

∑
p∈Λ∗+

V̂
( p
N

)
(γp+σp)

2(bpb−p+b∗pb
∗
−p)

+
∑
p∈Λ∗+

(
1

2
V̂
( p
N

)
(γpbp+σpb

∗
−p)dp+

1

2
V̂
( p
N

)
dp(γpbp+σpb

∗
−p)

)
+h.c. .

(7.8)

The goal of this subsection consists in proving the following lemma, where we bound the

error term E(2)
N .

Lemma 7.2. Let E(2)
N be as defined in (7.6). Then, under the same assumptions as

in Proposition 3.2, we find C>0 such that

±E(2)
N 6CN−1/2(K+N 2

+ +1)(N++1). (7.9)

Proof. From (3.4), we have L(2)
N =K+L(2,V )

N , with

L(2,V )
N =

∑
p∈Λ∗+

V̂
( p
N

)(
b∗pbp−

1

N
a∗pap

)
+

1

2

∑
p∈Λ∗+

V̂
( p
N

)
(b∗pb

∗
−p+bpb−p). (7.10)
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We consider first the contribution of the kinetic energy operator K. We write

K=
N−1

N

∑
p∈Λ∗+

p2b∗pbp+
∑
p∈Λ∗+

p2b∗pbp
N+

N
+K (N+−1)2

N2
.

Writing N+=
∑
p∈Λ∗+

(
b∗pbp+N−1 a∗pN+ap

)
in the second term, we find

e−B(η)KeB(η) =
∑
p∈Λ∗+

p2e−B(η)b∗pbpe
B(η)+

1

N

∑
p,q∈Λ∗+

p2e−B(η)b∗pb
∗
qbqbpe

B(η)+Ẽ1, (7.11)

where, with Lemma 7.1,

±Ẽ1 6CN−2e−B(η)K(N++1)2eB(η) 6CN−1K(N++1)+CN−1(N++1)3. (7.12)

Next, we study the first term on the right-hand side of (7.11). We claim that

∑
p∈Λ∗+

p2e−B(η)b∗pbpe
B(η) =K+

∑
p∈Λ∗+

p2σ2
p

(
1−N+

N

)
+
∑
p∈Λ∗+

(p2σpγp
(
bpb−p+b∗pb

∗
−p
)
+2p2σ2

pb
∗
pbp)

+
∑
p∈Λ∗+

(p2ηpb−pdp+h.c.)+Ẽ2,

(7.13)

with the error operator Ẽ2 such that

±Ẽ2 6CN−1/2(K+1)(N++1). (7.14)

To prove (7.14), we use (2.18) to decompose∑
p∈Λ∗+

p2e−B(η)b∗pbpe
B(η) = E1+E2+E3,

with

E1 : =
∑
p∈Λ∗+

p2(γpb
∗
p+σpb−p)(γpbp+σpb

∗
−p),

E2 : =
∑
p∈Λ∗+

p2((γpb
∗
p+σpb−p)dp+d∗p(γpbp+σpb

∗
−p)),

E3 : =
∑
p∈Λ∗+

p2d∗pdp.
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The term E1 can be rewritten as

E1 =K+
∑
p∈Λ∗+

p2σ2
p

(
1−N+

N

)
+
∑
p∈Λ∗+

(p2σpγp
(
bpb−p+b∗pb

∗
−p
)
+2p2σ2

pb
∗
pbp)+Ẽ3,

where

Ẽ3 =
1

N

∑
p∈Λ∗+

p2(a∗pN+ap+σ2
pa
∗
pap)

is such that, for any ξ∈F6N
+ ,

|〈ξ, Ẽ3ξ〉|6
1

N

∑
p∈Λ∗+

(p2‖apN 1/2
+ ξ‖2+p2σ2

p‖apξ‖2)6CN−1〈ξ,K(N++1)ξ〉. (7.15)

The term E2 can be split as

E2 =
∑
p∈Λ∗+

(p2ηpb−pdp+h.c.)+Ẽ4,

where

|〈ξ, Ẽ4ξ〉|6
∑
p∈Λ∗+

p2|σp−ηp| |〈ξ, b−pdpξ〉|+
∑
p∈Λ∗+

p2|γp| |〈ξ, b∗pdpξ〉|

6
1

N

∑
p∈Λ∗+

p2|ηp|3 ‖(N++1)ξ‖2

+
1

N

∑
p∈Λ∗+

p2‖bp(N++1)1/2ξ‖ (|ηp| ‖(N++1)ξ‖+‖bp(N++1)1/2ξ‖)

6CN−1/2‖K1/2(N++1)1/2ξ‖2.

As for the term E3, we estimate

|〈ξ,E3ξ〉|6
∑
p∈Λ∗+

p2‖dpξ‖2

6
C

N2

∑
p∈Λ∗+

p2(|ηp|2‖(N++1)3/2ξ‖2+‖bp(N++1)ξ‖2)

6CN−1‖(N++1)3/2ξ‖2+CN−1‖(K+1)1/2(N++1)1/2ξ‖2

for any ξ∈F6N
+ . This concludes the proof of (7.13), with the estimate (7.14).

Next, we consider the second term on the right-hand side of (7.11). We claim that

1

N

∑
p,q∈Λ∗+

p2e−B(η)b∗pb
∗
qbqbpe

B(η)

=
1

N

∑
p∈Λ∗+

p2σ2
p+

1

N

∑
p,q∈Λ∗+

p2σ2
pσ

2
q+

1

N

∑
p,q∈Λ∗+

p2σ2
p(γ2

q+σ2
q )b∗qbq

+
1

N

∑
p,q∈Λ∗+

p2σ2
pγqσq(b

∗
qb
∗
−q+h.c.)+Ẽ5,

(7.16)
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with an error term Ẽ5 such that

±Ẽ5 6CN−1/2(K+N 2
+ +1)(N++1). (7.17)

To prove (7.17), we consider first the operator

D =
∑
q∈Λ∗+

e−B(η)b∗qbqe
B(η)

=
∑
q∈Λ∗+

(γqb
∗
q+σqb−q+d∗q)(γqbq+σqb

∗
−q+dq)

=
∑
q∈Λ∗+

[(γ2
q+σ2

q )b∗qbq+σqγq(b
∗
qb
∗
−q+bqb−q)+σ2

q ]+Ẽ6,

where the error Ẽ6 is such that

±Ẽ6 6CN−1(N++1)2, (7.18)

as can be easily checked using the commutation relations (2.3) and the bound (2.19). We

go back to (7.16), and we observe that

1

N

∑
p,q∈Λ∗+

p2e−B(η)b∗pb
∗
qbqbpe

B(η)

=
1

N

∑
p∈Λ∗+

p2e−B(η)b∗pe
B(η)De−B(η)bpe

B(η)

=
1

N

∑
p∈Λ∗+

p2(γpb
∗
p+σpb−p+d∗p)D(γpbp+σpb

∗
−p+dp)

=
1

N

∑
p∈Λ∗+

p2σ2
pbpDb

∗
p+Ẽ7,

(7.19)

where

Ẽ7 =
1

N

∑
p∈Λ∗+

p2σp(γpb
∗
p+d∗p)Db

∗
−p+

1

N

∑
p∈Λ∗+

p2σpb−pD(γpbp+dp)

+
1

N

∑
p∈Λ∗+

p2(γpb
∗
p+d∗p)D(γpbp+dp)
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can be bounded using (2.19) and the fact that, by Lemma 2.1, D6C(N++1), by

|〈ξ, Ẽ7ξ〉|6
2

N

∑
p∈Λ∗+

p2|σp| (‖D1/2bpξ‖+‖D1/2dpξ‖) ‖D1/2b∗pξ‖

+
1

N

∑
p∈Λ∗+

p2(‖D1/2bpξ‖+‖D1/2dpξ‖)(‖D1/2bpξ‖+‖D1/2dpξ‖)

6
C

N

∑
p∈Λ∗+

p2|ηp| (‖bp(N++1)1/2ξ‖+N−1/2|ηp|‖(N++1)3/2ξ‖) ‖(N++1)ξ‖

+
C

N

∑
p∈Λ+∗

p2(‖bp(N++1)1/2ξ‖2+N−1|ηp|2 ‖(N++1)3/2ξ‖2)

6CN−1/2‖(K+N 2
+ +1)1/2(N++1)1/2ξ‖2.

As for the other term on the right-hand side of (7.19), we have, by (7.18),

1

N

∑
p∈Λ∗+

p2σ2
pbpD b∗p =

1

N

∑
p,q∈Λ∗+

p2σ2
p(γ2

q+σ2
q )bpb

∗
qbqb

∗
p+

1

N

∑
p,q∈Λ∗+

p2σ2
pσ

2
qbpb

∗
p

+
1

N

∑
p,q∈Λ∗+

p2σ2
pγqσqbp(b

∗
qb
∗
−q+h.c.)b∗p+Ẽ8,

(7.20)

where, using (7.18), it is easy to check that ±Ẽ86CN−1(N++1)2. Rearranging the

other terms on the right-hand side of (7.20) in normal order and using the commutator

relations (2.3), we obtain (7.16) with an error term satisfying (7.17).

Finally, we focus on the contribution of (7.10). We claim that

e−B(η)L(2,V )
N eB(η)

=
∑
p∈Λ∗+

(
V̂
( p
N

)
σ2
p+V̂

( p
N

)
σpγp

(
1−N+

N

))

+
∑
p∈Λ∗+

V̂
( p
N

)
(γp+σp)

2b∗pbp+
1

2

∑
p∈Λ∗+

V̂
( p
N

)
(γp+σp)

2(bpb−p+b∗pb
∗
−p)

+
∑
p∈Λ∗+

(
1

2
V̂
( p
N

)
(γpb−p+σpb

∗
p)dp+

1

2
V̂
( p
N

)
dp(γpb−p+σpb

∗
p)

)
+h.c.

+Ẽ9,

(7.21)

where

±Ẽ9 6CN−1/2(K+N 2
+ +1)(N++1). (7.22)
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To prove (7.21) and (7.22), we start from (7.10) and decompose

e−B(η)L(2,V )
N eB(η) =

∑
p∈Λ∗+

V̂
( p
N

)
e−B(η)b∗pbpe

B(η)

− 1

N

∑
p∈Λ∗+

V̂
( p
N

)
eB(η)a∗pape

−B(η)

+
1

2

∑
p∈Λ∗+

V̂
( p
N

)
e−B(η)(bpb−p+b∗pb

∗
−p)e

B(η)

=: F1+F2+F3.

(7.23)

The operators F1 and F2 can be handled exactly as in the proof [3, Proposition 7.6]

(notice that the bounds are independent of β∈(0; 1) and they can be readily extended

to the case Gross–Pitaevskii case β=1). We obtain that

F1 =
∑
p∈Λ∗+

V̂
( p
N

)
(γpb

∗
p+σpb−p)(γpbp+σpb

∗
−p)+Ẽ10,

where

±Ẽ10 6CN−1(N++1)2,

and that

±F2 6CN−1(N++1).

Let us consider the last term on the right-hand side of (7.23). With (2.18), we obtain

F3 =
1

2

∑
p∈Λ∗+

V̂
( p
N

)
(γpbp+σpb

∗
−p)(γpb−p+σpb

∗
p)

+
1

2

∑
p∈Λ∗+

V̂
( p
N

)
[(γpbp+σpb

∗
−p) d−p+dp (γpb−p+σpb

∗
p)]

+Ẽ11+h.c.,

where the error term Ẽ11= 1
2

∑
p∈Λ∗+

V̂ (p/N)dpd−p can be bounded, using (2.19), by

|〈ξ, Ẽ11ξ〉|6C
∑
p∈Λ∗+

∣∣∣V̂ ( p
N

)∣∣∣‖d∗pξ‖ ‖d−pξ‖
6

C

N2

∑
p∈Λ∗+

∣∣∣V̂ ( p
N

)∣∣∣‖(N++1)3/2ξ‖ (|ηp|‖(N++1)3/2ξ‖+‖bp(N++1)ξ‖)

6CN−1/2‖(N++1)3/2ξ‖2,

since ‖V̂ ( ·/N)‖26CN3/2. This concludes the proof of (7.21) and (7.22). Comparing

(7.6), (7.7) and (7.8) with (7.11). (7.13), (7.16) and (7.21), we conclude that the bounds

(7.12), (7.14), (7.15), (7.17) and (7.22) imply the desired estimate (7.9).
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7.3. Analysis of G(3)
N =e−B(η)L(3)

N eB(η)

From (3.4), we have

G(3)
N =

1√
N

∑
p,q∈Λ∗+
p+q 6=0

V̂
( p
N

)
e−B(η)b∗p+qa

∗
−paqe

B(η)+h.c..

We define the error operator E(3)
N through the identity

G(3)
N =

1√
N

∑
p,q∈Λ∗+
p+q 6=0

V̂
( p
N

)
(b∗p+1b

∗
−p(γqbq+σqb

∗
−q)+h.c.)+E(3)

N . (7.24)

The goal of this subsection is to prove the next lemma, where we estimate E(3)
N .

Lemma 7.3. Let E(3)
N be as defined in (7.24). Then, under the same assumptions as

in Proposition 3.2, we find C>0 such that

±E(3)
N 6CN−1/2(VN+N++1)(N++1). (7.25)

Proof. With

a∗−paq = b∗−pbq+N−1a∗−pN+aq,

we obtain

G(3)
N =

1√
N

∑
p,q∈Λ∗+
p+q 6=0

V̂
( p
N

)
e−B(η)b∗p+qb

∗
−pbqe

B(η)+Ẽ1+h.c., (7.26)

where

Ẽ1 =
1

N3/2

∑
p,q∈Λ∗+
p+q 6=0

V̂
( p
N

)
e−B(η)b∗p+qa

∗
−paqe

B(η)

can be bounded, switching to position space, by

|〈ξ, Ẽ1ξ〉|

6
∫

Λ2

dx dy N3/2V (N(x−y)) ‖ǎxǎy(N++1)1/2eB(η)ξ‖ ‖ǎx(N++1)1/2eB(η)ξ‖

6CN−3/2〈ξ, e−B(η)VN (N++1)eB(η)ξ〉+CN−1/2〈ξ, e−B(η)(N++1)2eB(η)ξ〉.

With Lemmas 2.1 and 7.1, we conclude that

|〈ξ, Ẽ1ξ〉|6CN−1/2〈ξ, (VN+N++1)(N++1)ξ〉. (7.27)
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To control the first term on the right-hand side of (7.26), we use (2.18) to decompose

1√
N

∑
p,q∈Λ∗+
p+q 6=0

V̂
( p
N

)
e−B(η)b∗p+qb

∗
−pbqe

B(η) = M0+M1+M2+M3, (7.28)

where

M0 : =
1√
N

∗∑
p,q

V̂
( p
N

)
(γp+qγpb

∗
p+qb

∗
−p+γp+qσpb

∗
p+qbp+σp+qσpb−p−qbp

+σp+qγpb
∗
−pb−p−q−N−1σp+qγpa

∗
−pa−p−q)(γqbq+σqb

∗
−q)

(7.29)

and

M1 : =
1√
N

∗∑
p,q

V̂
( p
N

)
(γp+qb

∗
p+qd

∗
−p+σp+qb−p−qd

∗
−p+γpd

∗
p+qb

∗
−p+σpd

∗
p+qbpd

∗
p+q)

×(γqbq+σqb
∗
−q),

+
1√
N

∗∑
p,q

V̂
( p
N

)
(γp+qγpb

∗
p+qb

∗
−p+γp+qσpb

∗
p+qbp+σp+qσpb−p−qbp

+σp+qγpb
∗
−pb−p−q−N−1σp+qγpa

∗
−pa−p−q)dq,

M2 : =
1√
N

∗∑
p,q

V̂
( p
N

)
(γp+qb

∗
p+qd

∗
−p+σp+qb−p−qd

∗
−p+γpd

∗
p+qb

∗
−p+σpd

∗
p+qbp)dq

+
1√
N

∗∑
p,q

V̂
( p
N

)
d∗p+qd

∗
−p(γqbq+σqb

∗
−q),

M3 : =
1√
N

∗∑
p,q

V̂
( p
N

)
d∗p+qd

∗
−pdq.

Here, we introduced the shorthand notation

∗∑
p,q

≡
∑

p,q∈Λ∗+
p+q 6=0

,

and we used the identity

b−p−qb
∗
−p = b∗−pb−p−q−N−1a∗−pa−p−q,

for all q∈Λ∗+. Notice that the index i in Mi counts the number of d-operators it contains.
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Let us start by analysing M3. Switching to position space we find, using (2.20) and

the bound ‖η̌‖∞6CN (as follows from (3.11) since, by the definition (3.13), we have

η̌(x)=−Nw`(Nx)),

|〈ξ,M3ξ〉|6
∫
dx dy N5/2V (N(x−y))‖(N++1)−1ďxďyξ‖ ‖(N++1)ďxξ‖

6
C

N3

∫
dx dy N5/2V (N(x−y))(‖(N++1)5/2ξ‖+‖ǎx(N++1)2ξ‖)

×(N‖(N++1)ξ‖+‖ǎx(N++1)3/2ξ‖

+‖ǎy(N++1)3/2ξ‖+‖ǎxǎy(N++1)ξ‖)

6CN−1/2〈ξ, (VN+N 2
+ +1)ξ〉.

(7.30)

As for M2, it reads in position space

M2 =

∫
dx dy N5/2V (N(x−y))(b∗(γ̌x)ď∗y+b(σ̌x)ď∗y+ď∗xb

∗(γ̌y)+ď∗xb(σ̌y))ďx

+

∫
dx dy N5/2V (N(x−y))ď∗xď

∗
y(b(γ̌x)+b∗(σ̌x))

=: M21+M22.

To control M22, we use the bound (2.20) to estimate

|〈ξ,M22ξ〉|6
∫
dx dy N5/2V (N(x−y))‖(N++1)−1ďyďxξ‖

×‖(N++1)(b(γ̌x)+b∗(σ̌x))ξ‖

6CN−2

∫
dx dy N5/2V (N(x−y))(‖(N++1)3/2ξ‖+‖ǎx(N++1)ξ‖)

×(N‖(N++1)ξ‖+‖ǎx(N++1)3/2ξ‖

+‖ǎy(N++1)3/2ξ‖+‖ǎxǎy(N++1)ξ‖)

6CN−1〈ξ, (VN+N++1)(N++1)ξ〉.

With the first and the second bounds in (2.20), we can also control M21. We find

|〈ξ,M21ξ〉|6C

∫
dx dy N5/2V (N(x−y))‖ďxξ‖

×(‖ďyb(γ̌x)ξ‖+‖ďyb∗(σ̌x)ξ‖+‖b(γ̌y)ďxξ‖+‖b∗(σ̌y)ďxξ‖)

6C

∫
dx dy N1/2V (N(x−y))(‖(N++1)3/2ξ‖+‖ǎx(N++1)ξ‖)

×(N‖(N++1)ξ‖+‖ǎx(N++1)3/2ξ‖+‖ǎy(N++1)3/2ξ‖

+‖ǎxǎy(N++1)ξ‖)

6CN−1〈ξ, (VN+N++1)(N++1)ξ〉,

(7.31)
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where we used that ‖η̌‖∞6CN . Hence, we proved that

|〈ξ,M2ξ〉|6CN−1〈ξ, (VN+N++1)(N++1)ξ〉. (7.32)

Next, let us consider the operator M1. In position space, we find

M1 =

∫
dx dy N5/2V (N(x−y))(b∗(γ̌x)ď∗y+b(σ̌x)ď∗y+ď∗xb

∗(γ̌y)+ď∗xb(σ̌y))

×(b(γ̌x)+b∗(σ̌x))

+

∫
dxdy N5/2V (N(x−y))(b∗(γ̌x)b∗(γ̌y)+b∗(γ̌x)b(σ̌y)+b(σ̌x)b(σ̌y)

+b∗(γ̌x)b(σ̌y)−N−1a∗(γ̌x)a(σ̌y))ďx

=: M11+M12.

To estimate M11, we proceed as in (7.31). With (2.20), using again ‖η̌‖∞6CN , we find

|〈ξ,M11ξ〉|

6
∫
dx dy N5/2V (N(x−y))(‖b(γ̌x)ξ‖+‖b∗(σ̌x)ξ‖)

×(‖ďyb(γ̌x)ξ‖+‖ďyb∗(σ̌x)ξ‖+‖b(γ̌y)ďxξ‖+‖b∗(σ̌y)ďxξ‖)

6C

∫
dx dyN3/2V (N(x−y))(‖(N++1)1/2ξ‖+‖ǎxξ‖)

×(N‖(N++1)ξ‖+‖ǎx(N++1)3/2ξ‖+‖ǎy(N++1)3/2ξ‖+‖ǎxǎy(N++1)ξ‖)

6CN−1/2〈ξ, (VN+N++1)(N++1)ξ〉.

As for the term M12, we use the bound

‖(N++1)1/2(b∗(γ̌x)b∗(γ̌y)+b∗(γ̌x)b(σ̌y)+b(σ̌x)b(σ̌y)+b∗(γ̌x)b(σ̌y)−N−1a∗(γ̌x)a(σ̌y))ξ‖

6C(‖(N++1)3/2ξ‖+
∥∥ǎx(N++1)ξ‖+‖ǎy(N++1)ξ‖+‖ǎxǎy(N++1)1/2ξ‖)

to conclude that

|〈ξ,M12ξ〉|6C

∫
dx dy N3/2V (N(x−y))(‖(N++1)ξ‖+‖ǎx(N++1)1/2ξ‖)

×(‖(N++1)3/2ξ‖+‖ǎx(N++1)ξ‖+‖ǎy(N++1)ξ‖+‖ǎxǎy(N++1)1/2ξ‖)

6CN−1/2〈ξ, (VN+N++1)(N++1)ξ〉.

Thus,

|〈ξ,M1ξ〉|6CN−1/2〈ξ, (VN+N++1)(N++1)ξ〉. (7.33)
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Finally, we consider (7.29). We split M0=M01+M02, with

M01 : =
1√
N

∗∑
p,q

V̂
( p
N

)
γp+qγpb

∗
p+qb

∗
−p(γqbq+σqb

∗
−q),

M02 : =
1√
N

∗∑
p,q

V̂
( p
N

)
(γp+qσpb

∗
p+qbp+σp+qσpb−p−qbp+σp+qγpb

∗
−pb−p−q

−N−1σp+qγpa
∗
−pa−p−q)(γqbq+σqb

∗
−q).

Switching to position space, we find

|〈ξ,M02ξ〉|6
∫
dx dy N5/2V (N(x−y))(‖ǎxξ‖+‖(N++1)1/2ξ‖)

×(‖(N++1)ξ‖+‖ǎx(N++1)1/2ξ‖+‖ǎy(N++1)1/2ξ‖)

6CN−1/2〈ξ, (N++1)2ξ〉.

As for M01, we write γp=1+(γp−1) and γp+q=1+(γp+q−1). Using that |γp−1|6C/p4

and σq are square summable, it is easy to check that

M01 =
1√
N

∗∑
p,q

V̂
( p
N

)
b∗p+qb

∗
−p(γqbq+σqb

∗
−q)+Ẽ2,

where Ẽ2 is such that

|〈ξ, Ẽ2ξ〉|6CN−1/2〈ξ, (N++1)2ξ〉.

Combining the last bound, with the bounds (7.27), (7.30), (7.32), (7.33) and the decom-

positions (7.26) and (7.28), we obtain (7.25).

7.4. Analysis of G(4)
N =e−B(η)L(4)

N eB(η)

From (3.4), we have

G(4)
N =

1

2N

∑
p,q∈Λ∗+
r∈Λ∗

r 6=−p,−q

V̂
( r
N

)
e−B(η)a∗p+ra

∗
qapaq+re

B(η). (7.34)
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We define the error operator E(4)
N through the identity

G(4)
N =VN+

1

2N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp

(
1+

1

N
− 2N+

N

)

+
1

2N

∑
p∈Λ∗+
q∈Λ∗

V̂
(p−q
N

)
ηq

×(γ2
pb
∗
pb
∗
−p+2γpσpb

∗
pbp+σ2

pbpb−p+dp(γpb−p+σpb
∗
p)

+(γpbp+σpb
∗
−p)d−p+h.c.)

+
1

N2

∑
p,q,u∈Λ∗+

V̂
(p−q
N

)
ηpηq

×(γ2
ub
∗
ubu+σ2

ub
∗
ubu+γuσub

∗
ub
∗
−u+γuσubub−u+σ2

u)

+E(4)
N .

(7.35)

The goal of this subsection is to bound the error term E(4)
N .

Lemma 7.4. Let E(4)
N be as defined in (7.35). Then, under the same assumptions as

in Proposition 3.2, we find C>0 such that

±E(4)
N 6CN−1/2(VN+N++1)(N++1). (7.36)

Proof. First of all, we replace, on the right-hand side of (7.34), all a-operators by

b-operators. To this end, we notice that

a∗p+ra
∗
qapaq+r = b∗p+rb

∗
qbpbq+r

(
1− 3

N
+

2N+

N

)
+a∗p+ra

∗
qapaq+r ΘN+

,

where

ΘN+ : =

(
N−N++2

N

N+−1

N
+
N+−2

N

)2
+

(
−N

2
+

N2
+

3N+

N2
− 2

N2

)(
N−N++2

N

N−N++1

N

)
is such that ±ΘN+

6C(N++1)2/N2 on F6N
+ . With Lemma 7.1, we conclude that

G(4)
N =

N+1

2N2

∑
p,q∈Λ∗+
r∈Λ∗

r 6=−p,−q

V̂
( r
N

)
e−B(η)b∗p+rb

∗
qbpbq+re

B(η)

+
1

N2

∑
p,q,u∈Λ∗+
r∈Λ∗

r 6=−p,−q

V̂
( r
N

)
e−B(η)b∗p+rb

∗
qb
∗
ububpbq+re

B(η)+Ẽ1,
(7.37)
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with the error Ẽ1 satisfying

±Ẽ1 6CN−1(VN+N++1)(N++1).

We split the rest of the proof in two steps, where we analyze separately the two terms

on the right-hand side of (7.37).

Step 1. The first term on the right-hand side of (7.37) can be written as

N+1

2N2

∑
p,q∈Λ∗+
r∈Λ∗

r 6=−p,−q

V̂
( r
N

)
e−B(η)b∗p+rb

∗
qbpbq+re

B(η)

=VN+
1

2N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp

(
1+

1

N
− 2N+

N

)

+
1

2N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγq[γ

2
pb
∗
pb
∗
−p+2γpσpb

∗
pbp+σ2

pbpb−p

+dp(γpb−p+σpb
∗
p)+(γpbp+σpb

∗
−p)d−p+h.c.]+Ẽ2

(7.38)

where the error Ẽ2 is such that

±Ẽ2 6CN−1/2(VN+N++1)(N++1).

To show (7.38), we write

N+1

2N2

∑
p,q∈Λ∗+
r∈Λ∗

r 6=−p,−q

V̂
( r
N

)
e−B(η)b∗p+rb

∗
qbpbq+re

B(η) = V0+V1+V2+V3+V4,

with

V0 : =
N+1

2N2

∗∑
p,q,r

V̂
( r
N

)
[γp+rγqb

∗
p+rb

∗
q+γp+rσqb

∗
p+rb−q+σp+rσqb−p−rb−q

+σp+rγq(b
∗
qb−p−r−N−1a∗qa−p−r)][σpσq+rb

∗
−pb
∗
−q−r

+σpγq+rb
∗
−pbq+r+γpγq+rbpbq+r+γpσq+r(b

∗
−q−rbp−N−1a∗−q−rap)]

+
N+1

2N2

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγq

[
(γ2
pb
∗
pb
∗
−p+2γpσpb

∗
pbp−N−1γpσpa

∗
pap

+σ2
pbpb−p)

(
1−N+

N

)
+h.c.

]
+
N+1

2N2

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp

(
1−N+

N

)2
,

(7.39)
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V1 : =
N+1

2N2

∗∑
p,q,r

V̂
( r
N

)
[γp+rγqb

∗
p+rb

∗
q+γp+rσqb

∗
p+rb−q

+σp+rσqb−p−rb−q+σp+rγq(b
∗
qb−p−r−N−1a∗qa−p−r)]

×[(γpbp+σpb
∗
−p)dq+r+dp

(
γq+rbq+r+σq+rb

∗
−q−r

)
]

+
N+1

2N2

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγq

(
1−N+

N

)
×[dp(γpb−p+σpb

∗
p)+(γpbp+σpb

∗
−p)d−p]+h.c.,

(7.40)

and

V2 : =
N+1

2N2

∗∑
p,q,r

V̂
( r
N

)
[(γp+rb

∗
p+r+σp+rb−p−r)d

∗
q+d∗p+r(γqb

∗
q+σqb−q)]

×[(γpbp+σpb
∗
−p)dq+r+dp(γq+rbq+r+σq+rb

∗
−q−r)]

+
N+1

2N2

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγq

[
d∗−pd

∗
p

(
1−N+

N

)
+

(
1−N+

N

)
dpd−p

]
,

V3 : =
N+1

2N2

∗∑
p,q,r

V̂
( r
N

)
[(γp+rb

∗
p+r+σp+rb−p−r)d

∗
q+d∗p+r(γqb

∗
q+σqb−q)]dpdq+r

+h.c.,

V4 : =
N+1

2N2

∗∑
p,q,r

V̂
( r
N

)
d∗p+rd

∗
qdpdq+r.

(7.41)

Here, we used the notation
∗∑

p,q,r

:=
∑

p,q∈Λ∗+
r∈Λ∗

r 6=−p,−q

,

for simplicity. Notice that the index of Vj refers to the number of d-operators it contains.

Let us consider V4. Switching to position space and using (2.20), we find

|〈ξ,V4ξ〉|6C

∫
dx dy N2V (N(x−y)) ‖ďxďyξ‖ ‖ďxďyξ‖

6C

∫
dx dy V (N(x−y))(‖(N++1)2ξ‖+N‖(N++1)ξ‖

+‖ǎx(N++1)3/2ξ‖+‖ǎy(N++1)3/2ξ‖+‖ǎxǎy(N++1)ξ‖)2

6CN−1〈ξ, (VN+N++1)(N++1)ξ〉.

Next, we switch to the contribution V3, defined in (7.41). Switching again to position
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space, using (2.20) and the bound N+6N , we obtain

|〈ξ,V3ξ〉|6C

∫
dx dy N2V (N(x−y))‖ďxďyξ‖

×(‖ďyb(γ̌x)ξ‖+‖ďyb∗(σ̌x)ξ‖+‖b(γ̌y)ďxξ‖+‖b∗(σ̌y)ďxξ‖)

6C

∫
dx dy V (N(x−y))(‖(N++1)2ξ‖+‖ǎx(N++1)3/2ξ‖

+‖ǎy(N++1)3/2ξ‖+‖ǎxǎy(N++1)ξ‖+N‖(N++1)ξ‖)2

6CN−1〈ξ, (VN+N++1)(N++1)ξ〉.

Proceeding similarly, V2 can be bounded, switching to position space, by

|〈ξ,V2ξ〉|6C

∫
dx dy N2V (N(x−y))

×(‖ďyb(γ̌x)ξ‖+‖ďyb∗(σ̌x)ξ‖+‖b(γ̌y)ďxξ‖+‖b∗(σ̌y)ďxξ‖)2

+C

∫
dx dy N2V (N(x−y))|(σ̌∗γ̌)(x−y)| ‖(N++1)−1ďxďyξ‖ ‖(N++1)ξ‖

6C

∫
dx dy V (N(x−y))(‖(N++1)2ξ‖+‖ǎx(N++1)3/2ξ‖

+‖ǎy(N++1)3/2ξ‖+‖ǎxǎy(N++1)ξ‖+N‖(N++1)ξ‖)2

+C

∫
dx dy NV (N(x−y))‖(N++1)ξ‖(‖(N++1)2ξ‖+N‖(N++1)ξ‖

+‖ǎx(N++1)3/2ξ‖+‖ǎy(N++1)3/2ξ‖+‖ǎxǎy(N++1)ξ‖)

6CN−1〈ξ, (VN+N++1)(N++1)ξ〉.

Here we used the bound ‖σ̌∗γ̌‖∞6CN from (3.21).

Let us now study the term V1. We write

V1 =
1

2N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγq(dp(γpb−p+σpb

∗
p)+(γpbp+σpb

∗
−p)d−p)+h.c.

+V12+V13,

(7.42)

where V13 denotes the first sum on the right-hand side of (7.40) and V12 is the difference

between the second term on the right-hand side of (7.40) and the term on the right-hand

side of (7.42). Switching to position space and using (2.20), we easily find

|〈ξ,V12ξ〉|6C

∫
dx dy NV (N(x−y))|(σ̌∗γ̌)(x−y)| ‖(N++1)ξ‖

×(‖ďxb(γ̌y)ξ‖+‖ďxb∗(σy)ξ‖+‖b(γ̌x)ďyξ‖+‖b∗(σ̌x)ďyξ‖)

6CN−1〈ξ, (VN+N++1)(N++1)ξ〉
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and

|〈ξ,V13ξ〉|6C

∫
dx dy N2V (N(x−y))

×(‖(N++1)ξ‖+‖ax(N++1)1/2ξ‖+‖ay(N++1)1/2ξ‖+‖axayξ‖)

×(‖b(γ̌x)ďyξ‖+‖b∗(σ̌x)ďyξ‖+‖ďxb(γ̌y)ξ‖+‖ďyb∗(σ̌y)ξ‖)

6CN−1〈ξ, (VN+N++1)(N++1)ξ〉.

Finally, we analyze V0, as defined in (7.39). We write V0=V01+V02+V03, where

V01 : =
N+1

2N2

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp

(
1−N+

N

)2
,

V02 : =
N+1

2N2

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγq

(
(γ2
pb
∗
pb
∗
−p+2γpσpb

∗
pbp−N−1γpσpa

∗
pap

+σ2
pbpb−p)

(
1−N+

N

)
+h.c.

)
,

V03 : =
N+1

2N2

∗∑
p,q,r

V̂
( r
N

)
(γp+rγqb

∗
p+rb

∗
q+γp+rσqb

∗
p+rb−q+σp+rσqb−p−rb−q

+σp+rγq(b
∗
qb−p−r−N−1a∗qa−p−r))(σpσq+rb

∗
−pb
∗
−q−r+σpγq+rb

∗
−pbq+r

+γpγq+rbpbq+r+γpσq+r(b
∗
−q−rbp−N−1a∗−q−rap)).

Proceeding similarly as above, switching to position space and using (in the estimate for

Ẽ4) the bound ‖σ̌∗γ̌‖∞6CN , we find that

V01 =
1

2N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp

(
1+

1

N
− 2N+

N

)
+Ẽ3,

V02 =
1

2N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγq(γ

2
pb
∗
pb
∗
−p+2γpσpb

∗
pbp+σ2

pbpb−p+h.c.)+Ẽ4,

V03 =VN+Ẽ5.

Combining with (7.42) and with all other bounds for the error terms, we arrive at (7.38).
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Step 2. We claim that

1

N2

∑
p,q,u∈Λ∗+
r∈Λ∗

r 6=−p,−q

V̂
( r
N

)
e−B(η)b∗p+rb

∗
qb
∗
ububpbq+re

B(η)

=
1

N2

∑
p,q,u∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp(γ

2
ub
∗
ubu+σ2

ub
∗
ubu+γuσub

∗
ub
∗
−u+γuσubub−u)

+
1

N2

∑
p,q,u∈Λ∗+

V̂
(p−q
N

)
σqγqσpγpσ

2
u+Ẽ6,

(7.43)

where the error Ẽ6 is such that, on F6N
+ ,

±E(4)
3,N 6CN−1/2(VN+N++1)(N++1).

To show (7.43), we split

1

N2

∑
p,q,u∈Λ∗+
r∈Λ∗

r 6=−p,−q

V̂
( r
N

)
e−B(η)b∗p+rb

∗
qb
∗
ububpbq+re

B(η) = W0+W1+W2,

where

W0 : =
1

N2

∑
p,q,u∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp

(
1−N+

N

)
(e−B(η)b∗ubue

B(η))

(
1−N+

N

)

and

W1 : =
1

N2

∑
p,q,u∈Λ∗+

V̂
(p−q
N

)
σqγq(γ

2
pb
∗
pb
∗
−p+2γpσpb

∗
pbp−N−1γpσpa

∗
pap+σ2

pbpb−p

+γpb
∗
−pd

∗
p+σpbpd

∗
p+γpd

∗
−pb
∗
p+σpd

∗
pbp+d∗p+rd

∗
q)

×(e−B(η)b∗ubue
B(η))

(
1−N+

N

)
+h.c.,

W2 : =
1

N2

∗∑
p,q,r,u

V̂
( r
N

)
[γp+rγqb

∗
p+rb

∗
q+γp+rσqb

∗
p+rb−q+σp+rσqb−p−rb−q

+σp+rγq(b
∗
qb−p−r−N−1a∗qa−p−r)+(γp+rb

∗
p+r+σp+rb−p−r)d

∗
q

+d∗p+r(γqb
∗
q+σqb−q)+d∗p+rd

∗
q ][e
−B(η)b∗ubue

B(η)][σpσq+rb
∗
−pb
∗
−q−r

+σpγq+rb
∗
−pbq+r+γpγq+rbpbq+r+γpσq+r(b

∗
−q−rbp−N−1a∗−q−rap)

+(γpbp+σpb
∗
−p)dq+r+dp(γq+rbq+r+σq+rb

∗
−q−r)+dpdq+r].
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Here, we introduced the notation

∗∑
p,q,r,u

:=
∑

p,q,u∈Λ∗+
r∈Λ∗

r 6=−p,−q

for simplicity. Using Lemma 2.1 to get rid of the factor

∑
u∈Λ∗+

e−B(η)b∗ubue
B(η) = e−B(η)N+

(
1−N+

N

)
eB(η),

and then proceeding similarly as in Step 1, we obtain that

|〈ξ,W1ξ〉|6CN−1/2〈ξ, (VN+N++1)(N++1)ξ〉 ,

|〈ξ,W2ξ〉|6CN−1〈ξ, (VN+N++1)(N++1)ξ〉.

As for W0, we write

W0 =
1

N2

∑
p,q,u∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp

×(γ2
ub
∗
ubu+σ2

ub
∗
ubu+γuσub

∗
ub
∗
−u+γuσubub−u+σ2

u)+Ẽ7.

Using (2.18) to decompose

e−B(η)b∗ubue
B(η) = (γub

∗
u+σub−u+d∗u)(γubu+σub

∗
−u+du)

and then the bounds (2.19), it is easy to estimate the remainder operator Ẽ7, on F6N
+ ,

by

±Ẽ7 6CN−1(N++1).

Hence, we obtain (7.43).
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Step 3. (Conclusion of the proof.) Combining (7.38) and (7.43) with (7.37), we

conclude that

G(4)
N =VN+

1

2N

∑
p,q∈Λ∗+

V̂

(
p−q
N

)
σqγqσpγp

(
1+

1

N
− 2N+

N

)

+
1

2N

∑
p,q∈Λ∗+

V̂
(p−q
N

)
σqγq[γ

2
pb
∗
pb
∗
−p+2γpσpb

∗
pbp+σ2

pbpb−p+dp(γpb−p+σpb
∗
p)

+(γpbp+σpb
∗
−p)d−p+h.c.]

+
1

N2

∑
p,q,u∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp

×(γ2
ub
∗
ubu+σ2

ub
∗
ubu+γuσub

∗
ub
∗
−u+γuσubub−u+σ2

u)+Ẽ8,
(7.44)

with an error Ẽ8 such that, on F6N
+ ,

±Ẽ8 6CN−1/2(VN+N++1)(N++1).

To conclude the proof of (7.36), we just observe that, in the term appearing on the second

line on the right-hand side of (7.44), we can replace the product σqγq simply by ηq. Since

|σqγq−ηq|6C|q|−6 (or, in position space, ‖(σ̌∗γ̌)−η̌‖∞6C), it is easy to show that the

difference can be incorporated in the error term. Similarly, in the term appearing on the

third and fourth lines on the right-hand side of (7.44), we can replace σpγpσqγq by ηpηq;

also in this case, the contribution of the difference is small and can be included in the

remainder. This concludes the proof of the lemma.

7.5. Proof of Proposition 3.2

Collecting the results of (7.5) and Lemmas 7.2–7.4, we obtain that

GN = C̃GN +Q̃GN +DN+HN+CN+ẼGN , (7.45)

where CN is the cubic term defined in (3.31), ẼGN is an error term controlled by

±ẼGN 6CN−1/2(HN+N 2
+)(N++1),

and where C̃GN , Q̃GN and DN are given by

C̃GN =
N−1

2
V̂ (0)+

∑
p∈Λ∗+

(
p2σ2

p

(
1+

1

N

)
+V̂

( p
N

)
(σpγp+σ2

p)

)

+
1

2N

∑
q∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp

(
1+

1

N

)

+
1

N

∑
u∈Λ∗+

σ2
u

∑
p∈Λ∗+

(
p2σ2

p+
1

N

∑
q∈Λ∗+

V̂
(p−q
N

)
ηpηq

)
,

(7.46)
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Q̃GN =
∑
p∈Λ∗+

b∗pbp

(
2σ2

pp
2+V̂

( p
N

)
(γp+σp)

2+
2

N
γpσp

∑
q∈Λ∗

V̂
((p−q

N

)
ηq

)
+
∑
p∈Λ∗+

(b∗pb
∗
−p+bpb−p)

×
(
p2σpγp+

1

2
V̂
( p
N

)
(γp+σp)

2+
1

2N

∑
q∈Λ∗

V̂
(p−q
N

)
ηq(γ

2
p+σ2

p)

)

−N+

N

∑
p∈Λ∗+

(
p2σ2

p+V̂
( p
N

)
γpσp+

1

N

∑
q∈Λ∗+

V̂
(p−q
N

)
γpσpγqσq

)

+
1

N

∑
u∈Λ∗+

((γ2
u+σ2

u)b∗ubu+γuσu(b∗ub
∗
−u+bub−u))

×
∑
p∈Λ∗+

(
p2σ2

p+
1

N

∑
q∈Λ∗+

V̂
(p−q
N

)
ηpηq

)

(7.47)

and

DN =
∑
p∈Λ∗+

(
p2ηpbpd−p+

1

2
V̂
( p
N

)
bpd−p+

1

2N

(
V̂
( ·
N

)
∗η
)
p
bpd−p+h.c.

)

+
1

2

∑
p∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
(p)((γp−1)bpd−p+σpb

∗
−pd−p+h.c.)

+
1

2

∑
p∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
(p)(γpdpb−p+σpdpb

∗
p+h.c.),

(7.48)

with f̂`,N defined as in (3.7). Next, we analyze the operator DN , which still contains

d-operators, to extract the important contributions. To this end, we write

DN = D1+D2+D3.

where D1, D2 and D3 denote the operators on the first, second and, respectively, third

line on the right-hand side of (7.48).

Using the relation (3.15) and the bound (2.19), we find

|〈ξ,D1ξ〉|6
∑
p∈Λ∗+

|(χ̂`∗f̂`,N )(p)| ‖(N++1)ξ‖ ‖(N++1)−1/2d−pξ‖

6
C

N
‖(N++1)ξ‖

∑
p∈Λ∗+

(
1

p4
‖(N++1)ξ‖+ 1

p2
‖bp(N++1)1/2ξ‖

)

6
C

N
‖(N++1)ξ‖2.

Similarly, using (2.19), we find

±D2 6CN−1(N++1)2.
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Thus, we switch to D3. We split

D3 = D31+D32+D33,

with

D31 : =
1

2

∑
p∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
(p)γpdpb−p+h.c.,

D32 : =
1

2

∑
p∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
(p)(σp−ηp)dpb∗p+h.c.,

D33 : =
1

2

∑
p∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
(p)ηpdpb

∗
p+h.c. .

Switching to position space and using (2.20), we observe that

|〈ξ,D31ξ〉|6C

∫
dx dy N3V (N(x−y))f`(N(x−y))‖(N++1)ξ‖ ‖(N++1)−1ďxb(γ̌y)ξ‖

6C

∫
dx dy N2V (N(x−y))f`(N(x−y))‖(N++1)ξ‖

×(‖(N++1)ξ‖+‖ǎx(N++1)1/2ξ‖+‖ǎy(N++1)1/2ξ‖+‖ǎxǎyξ‖)

6CN−1/2〈ξ, (VN+N++1)(N++1)ξ〉.

As for D32, we can use the decay of |σp−ηp|6C|p|−6 to prove that

±D32 6CN−1(N++1)2.

We are left with D33; here we cannot apply (2.19), because of the lack of decay in p. This

term contains contributions that are relevant in the limit of large N . To isolate these

contributions, it is useful to rewrite the remainder operator dp as

dp = e−B(η)bpe
B(η)−γpbp−σpb∗−p

= (1−γp)bp−σpb∗−p+ηp

∫ 1

0

ds e−sB(η)N−N+

N
b∗−pe

sB(η)

− 1

N

∫ 1

0

ds
∑
q∈Λ∗+

ηqe
−sB(η)b∗qa

∗
−qape

sB(η)

= ηp

∫ 1

0

ds d
(s)∗
−p −

ηp
N

∫ 1

0

ds e−sB(η)N+b
∗
−pe

sB(η)

− 1

N

∫ 1

0

ds
∑
q∈Λ∗+

ηqe
−sB(η)b∗qa

∗
−qape

sB(η),

(7.49)
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where, in the last step, we wrote e−sB(η)b∗−pe
sB(η)=γ

(s)
p b∗−p+σ

(s)
p bp+d

(s)∗
−p (the label s

indicates that the coefficients γ
(s)
p and σ

(s)
p and the operator d

(s)∗
−p are defined with η

replaced by sη, for an s∈[0, 1]), and we integrated γ
(s)
p and σ

(s)
p over s∈[0, 1]. Inserting

(7.49) into D33 and using the additional factor ηp appearing in the first two terms on the

right-hand side of (7.49), we conclude that

D33 =− 1

2N

∫ 1

0

ds
∑

p,q∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
(p)ηpηq(e

−sB(η)b∗qa
∗
−qape

sB(η)b∗p+h.c.)+Ẽ1,

with an error operator Ẽ1 such that

±Ẽ1 6CN−1(N++1)2. (7.50)

We expand

−e−sB(η)a∗−qape
sB(η) =−a∗−qap−

∫ s

0

dt e−tB(η)(ηpb
∗
−qb
∗
−p+ηqbqbp)e

tB(η).

Again, the contribution containing the additional factor ηp is small. Hence, we have

D33 =− 1

2N

∫ 1

0

ds
∑

p,q∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
(p)

(
ηpηqe

−sB(η)b∗qe
sB(η)

×
(
a∗−qapb

∗
p+

∫ s

0

dt ηqe
−tB(η)bqbpe

tB(η)b∗p

)
+h.c.

)
+Ẽ2,

where, similarly to (7.50), ±Ẽ26CN−1(N++1)2. In the contribution proportional to

a∗−qapb
∗
p, we commute b∗p to the left. In the other term, we expand

e−tB(η)bpe
tB(η) = γ(t)

p bp+σ(t)
p b∗−p+d(t)

p

using the notation introduced after (7.49), and we commute the contribution γ
(t)
p bp to

the right of b∗p. We obtain D33=D331+D332+Ẽ2, with

D331 : =− 1

2N

∫ 1

0

ds
∑

p,q∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
p
ηpηqe

−sB(η)b∗qe
sB(η)b∗−q

− 1

2N

∫ 1

0

ds

∫ s

0

dt
∑

p,q∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
p
ηpη

2
qe
−sB(η)b∗qe

sB(η)e−tB(η)bqe
tB(η)

+h.c.



306 c. boccato, c. brennecke, s. cenatiempo and b. schlein

and

D332 : =− 1

2N

∫ 1

0

ds
∑

p,q∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
p
ηpηqe

−sB(η)b∗qe
sB(η)b∗−qa

∗
pap

− 1

2N

∫ 1

0

ds

∫ s

0

dt
∑

p,q∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
p
ηpη

2
qe
−sB(η)b∗qe

sB(η)e−tB(η)bqe
tB(η)

×(b∗pbp−N−1N+−N−1a∗pap+(γ(t)
p −1)bpb

∗
p+σ(t)

p b∗−pb
∗
p+d(t)

p b∗p)+h.c. .

Since γ
(t)
p −16Cηp and σ

(t)
p 6Cηp , we can bound

|〈ξ,D332ξ〉|6CN−1〈ξ, (N++1)2ξ〉.

We are left with the operator D331, which is quadratic in the b-fields. Expanding

e−sB(η)b∗qe
sB(η) = γ(s)

q b∗q+σ(s)
q b−q+d(s),∗

q and e−tB(η)bqe
tB(η) = γ(t)

q bq+σ(t)
q b∗−q+d(t)

q

and, using the bounds (2.19), we obtain

D331 =− 1

2N

∫ 1

0

ds
∑

p,q∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
p
ηpηq(γ

(s)
q b∗qb

∗
−q+σ(s)

q b∗qbq+σ(s)
q +h.c.)

− 1

2N

∫ 1

0

ds

∫ s

0

dt
∑

p,q∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
p
ηpη

2
q (γ(s)

q γ(t)
q b∗qbq+γ(s)

q σ(t)
q b∗qb

∗
−q

+σ(s)
q γ(t)

q bqbq+σ(s)
q σ(t)

q b∗qbq+σ(s)
q σ(t)

q +h.c.)+Ẽ2,
(7.51)

where the operator Ẽ2 is such that ±Ẽ26CN−1(N++1)2. Integrating (7.51) over t and s,

we conclude that

DN =− 1

2N

∑
p∈Λ∗

q∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
(p)ηp(γqσq(b

∗
qb
∗
−q+bqb−q)+(σ2

q+γ2
q )b∗qbq+σ2

q )

+
1

2N

∑
p∈Λ∗

q∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
(p)ηpb

∗
qbq+Ẽ3,

(7.52)

where the error Ẽ3 satisfies

± Ẽ3 6CN−1/2(VN+N++1)(N++1).

Notice that, in (7.52), we are summing also over the mode p=0 (this contribution is

small, it can be inserted in the operator Ẽ3).
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Inserting (7.52) into (7.45), we obtain the decomposition (3.32) of the Hamilton-

ian GN . In fact, combining (7.46) with the constant contribution in (7.52), we find

C̃GN−
1

2N

∑
p∈Λ∗

q∈Λ∗+

(
V̂
( ·
N

)
∗f̂`,N

)
(p)ηpσ

2
q

=
N−1

2
V̂ (0)+

∑
p∈Λ∗+

(
p2σ2

p+V̂
( p
N

)
(σpγp+σ2

p)
)

+
1

2N

∑
q∈Λ∗+

V̂
(p−q
N

)
σqγqσpγp+

1

N

∑
p∈Λ∗+

(
p2η2

p+
1

2N

(
V̂
( ·
N

)
∗η
)

(p)ηp

)
+

1

N

∑
u∈Λ∗+

σ2
u

∑
p∈Λ∗+

(
p2η2

p−
1

2
V̂
( p
N

)
ηp+

1

2N

(
V̂
( ·
N

)
∗η
)

(p)ηp

)
+O(N−1)

(7.53)

(the error O(N−1) arises from the substitution σp 7!ηp in the terms appearing at the end

of the third and on the fourth line). Using the relation (3.14), we have

p2η2
p−

1

2
V̂
( p
N

)
ηp+

1

2N
(V̂ ∗η)(p) ηp =−V̂

( p
N

)
ηp+N3λ`(χ̂`∗f̂`,N )(p)ηp. (7.54)

Since N3λ`=O(1) and

‖(χ̂`∗f̂`,N )η‖1 6 ‖χ̂`∗f̂`,N‖2 ‖η‖2 = ‖χ`f`‖2 ‖η‖2 6 ‖χ`‖2‖η‖2 6C,

uniformly in N , we conclude that the right-hand side (7.53) coincides with (3.27), up to

errors of order N−1. Similarly, combining the quadratic term (7.47) with the quadratic

terms on the right-hand side of (7.52) (and using again the relation (7.54)), we obtain

(3.30), up to terms that can be incorporated in the error. We omit these last details.

8. Analysis of the excitation Hamiltonian JN

In this section, we analyze the excitation Hamiltonian

JN = e−Ae−B(η)UNHNU
∗
Ne

B(η)eA = e−AGNeA

to show Proposition 3.3. The starting point is part (b) of Proposition 3.2, stating that

GN =CGN +QGN +CN+HN+EGN ,

where CGN , QGN and CN are defined in (3.27), (3.30) and (3.31) and the error term EGN
is such that

±EGN 6
C√
N

((N++1)(HN+1)+(N++1)3).
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From Proposition 4.2 and Proposition 4.4 we conclude that

±e−AEGN eA6
C√
N

((N++1)(HN+1)+(N++1)3).

In the following sections we study the action of eA on QGN , CN and HN separately. At

the end, in §8.4, we combine these results to prove Theorem 3.3.

8.1. Analysis of e−AQGNeA

The action of eA on the quadratic operator QGN defined in Proposition 3.2 is determined

by the next proposition.

Proposition 8.1. Let A and QGN be defined as in (3.34) and, respectively, (3.30).

Then, under the assumptions of Proposition 3.3, we have

e−AQGN eA =QGN +E(Q)
N ,

where the error E(Q)
N is such that, for a constant C>0,

±E(Q)
N 6

C√
N

(N++1)2.

To prove the proposition we use the following lemma.

Lemma 8.2. Let A be defined as in (3.34) and let Φp and Γp such that

|Φp|6C and |Γp|6C|p|−2.

Then, under the assumptions of Proposition 3.3,

±
∑
p∈Λ∗+

Φp[b
∗
pbp, A]6

C√
N

(N++1)2, (8.1)

±
∑
p∈Λ∗+

Γp[(bpb−p+b∗pb
∗
−p), A]6

C√
N

(N++1)2 (8.2)

Proof of Proposition 8.1. We write

e−AQGN eA =QGN +

∫ 1

0

ds e−sA[QN , A]esA.

We recall the expression for QGN in (3.30), where the coefficients of the diagonal and

off-diagonal terms are given by Φp in (3.28) and, respectively, by Γp in (3.29). With

(3.15), one can show that |Φp|6C and |Γp|6C|p|−2. Hence, Proposition 8.1 follows from

Lemma 8.2 and Proposition 4.2.
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Proof of Lemma 8.2. We start from the proof of (8.1). We use the formula

[b∗p, A] =
1√
N

∑
r∈PH
v∈PL

ηr

(
(γvb

∗
v+σvb−v)b−r

(
1−N+

N

)
δp,r+v

+(γvb
∗
v+σvb−v)br+v

(
1−N+−1

N

)
δp,−r

+σv

(
1−N+

N

)
br+vb−rδp,−v−γvb∗r+vb∗−r

(
1−N+

N

)
δp,v

)
− 1

N
√
N

∑
r∈PH
v∈PL

ηr((γvb
∗
v+σvb−v)(b−ra

∗
par+v+a∗pa−rbr+v)

+σva
∗
pa−vb−rbr+v−γvb∗r+vb∗−ra∗pav)

(8.3)

and the fact that [bp, A]=[b∗p, A]∗ to compute [b∗pbp, A]. We get

∑
p∈Λ∗+

Φp[b
∗
pbp, A] =

8∑
j=1

∆j+h.c.,

where

∆1 =
1√
N

∑
r∈PH
v∈PL

Φr+vηr

(
1−N+−1

N

)
b∗r+vb

∗
−r(γvbv+σvb

∗
−v),

∆2 =
1√
N

∑
r∈PH
v∈PL

Φrηr

(
1−N+−2

N

)
b∗−rb

∗
r+v(γvbv+σvb

∗
−v),

∆3 =
1√
N

∑
r∈PH
v∈PL

Φvηr

(
1−N+−3

N

)
b∗r+vb

∗
−rσvb

∗
−v,

∆4 =− 1√
N

∑
r∈PH
v∈PL

Φvηr

(
1−N+−2

N

)
b∗−rb

∗
r+vγvbv,

∆5 =− 1

N3/2

∑
p∈Λ∗+

∑
r∈PH
v∈PL

Φpηrb
∗
pa
∗
r+vapb

∗
−r(γvbv+σvb

∗
−v),

∆6 =− 1

N3/2

∑
p∈Λ∗+

∑
r∈PH
v∈PL

Φpηrb
∗
pb
∗
r+va

∗
−rap(γvbv+σvb

∗
−v),

∆7 =− 1

N3/2

∑
p∈Λ∗+

∑
r∈PH
v∈PL

Φpηrσvb
∗
pb
∗
r+vb

∗
−ra

∗
−vap,

∆8 =
1

N3/2

∑
p∈Λ∗+

∑
r∈PH
v∈PL

Φpηrγvb
∗
pa
∗
vapb−rbr+v.
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Using |Φp|6C, |ηr|6C|r|−2 and |σv|6C|v|−2, we estimate, for any ξ∈F6N
+ ,

|〈ξ,∆1ξ〉|6
C√
N

∑
r∈PH
v∈PL

|ηr| ‖b−rbr+vξ‖ (|σv| ‖(N++1)1/2ξ‖+‖bvξ‖)

6
C√
N
‖(N++1)ξ‖2.

The terms ∆j , with j=2, 3, 4, are bounded in a similar way. To bound ∆5, we first move

b∗−r to the left, obtaining

∆5 =− 1

N3/2

∑
p∈Λ∗+

∑
r∈PH
v∈PL

Φpηrb
∗
pb
∗
−ra

∗
r+vap(γvbv+σvb

∗
−v)

− 1

N3/2

∑
r∈PH
v∈PL

Φrηrb
∗
−rb
∗
r+v(γvbv+σvb

∗
−v)

= ∆
(1)
5 +∆

(2)
5 .

The cubic term ∆
(2)
5 can be estimated similarly as ∆1, while

|〈ξ,∆(1)
5 ξ〉|6 C

N3/2

∑
p∈Λ∗+

∑
r∈PH
v∈PL

|ηr| ‖ar+vb−rbpξ‖ ‖ap(γvbv+σvb
∗
−v)ξ‖

6
C

N

(
1

N

∑
p∈Λ∗+

∑
r∈PH
v∈PL

‖ar+vb−rbpξ‖2
)1/2

×
( ∑
p∈Λ∗+

∑
r∈PH
v∈PL

|ηr|2(‖apbvξ‖2+|σv|2‖apb∗−vξ‖2)

)1/2

6
C

N
‖(N++1)ξ‖2.

(In the last step, to bound the contribution proportional to ‖apb∗−vξ‖, we first estimated

the sum over r and p with fixed v by |σv|2 ‖N 1/2
+ b∗−vξ‖26|σv|2 ‖(N++1)ξ‖, and then we

summed over v). The terms ∆j , with j=6, 7, 8, can be treated as ∆
(1)
5 . Hence, for all

j=1, ..., 8, we have

±(∆j+h.c.)6
C√
N

(N++1)2.

This concludes the proof of (8.1).

To show (8.2), we use (8.3) and its conjugate to compute

∑
p∈Λ∗+

Γp[(bpb−p+b∗pb
∗
−p), A] =

9∑
j=1

Υj+h.c.,
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where

Υ1 =
1√
N

∑
r∈PH
v∈PL

Γr+vηr

(
1−N++1

N

)(
b∗−rb−r−v−

1

N
a∗−ra−r−v

)
(γvbv+σvb

∗
−v),

Υ2 =
1√
N

∑
r∈PH
v∈PL

Γr+vηr

(
1−N+

N

)
b∗−r(γvbv+σvb

∗
−v)b−r−v,

Υ3 =
1√
N

∑
r∈PH
v∈PL

Γrηr

(
1−N+

N

)
(b∗r+vbr−

1

N
a∗r+var)(γvbv+σvb

∗
−v),

Υ4 =
1√
N

∑
r∈PH
v∈PL

Γrηr

(
1−N+−1

N

)
b∗r+v(γvbv+σvb

∗
−v)br,

Υ5 =
1√
N

∑
r∈PH
v∈PL

Γvηrσv

(
1−N+−1

N

)
(b∗r+vbv−

1

N
a∗r+vav)b

∗
−r,

Υ6 =
1√
N

∑
r∈PH
v∈PL

Γvηrσv

(
1−N+−2

N

)
b∗r+vb

∗
−rbv

and

Υ7 =− 1√
N

∑
r∈PH
v∈PL

Γvηrγv

((
1−N+

N

)
+

(
1−N++1

N

))
br+vb−rb−v,

Υ8 =− 1

N
√
N

∑
p∈Λ∗+

∑
r∈PH
v∈PL

Γpηr[bp(a
∗
r+va−pb

∗
−r+b∗r+va

∗
−ra−p)(γvbv+σvb

∗
−v)

+σvbpb
∗
r+vb

∗
−ra

∗
−va−p−γvbpa∗va−pb−rbr+v],

Υ9 =− 1

N
√
N

∑
p∈Λ∗+

∑
r∈PH
v∈PL

Γpηr[(a
∗
r+vapb

∗
−r+b∗r+va

∗
−rap)(γvbv+σvb

∗
−v)b−p

+σvb
∗
r+vb

∗
−ra

∗
−vapb−p−γva∗vapb−rbr+vb−p].

We show now that for all j=1, ..., 9 we have, on F6N
+ ,

±(Υj+h.c.)6
C√
N

(N++1)2. (8.4)
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We observe that

|〈ξ,Υ1ξ〉|6
1√
N

∑
r∈PH
v∈PL

|Γr+v| |ηr| ‖a−rξ‖ ‖a−r−v(γvbv+σvb
∗
v)ξ‖

6
C√
N

( ∑
r∈PH
v∈PL

|Γr+v|2 ‖a−rξ‖2
)1/2

×
( ∑
r∈PH
v∈PL

|ηr|2(‖bv(N++1)1/2ξ‖2+|σv|2 ‖(N++1)ξ‖2)

)1/2

6
C√
N
‖(N++1)ξ‖2,

and similar bounds hold for Υj with j=2, 3, 4. Next, we bound

|〈ξ,Υ5ξ〉|6
1√
N

∑
r∈PH
v∈PL

|Γv| |ηr| |σv| ‖ar+vξ‖ ‖avb∗−rξ‖

6
C√
N

( ∑
r∈PH
v∈PL

|Γv|2 ‖ar+vξ‖2
)1/2( ∑

r∈PH
v∈PL

|ηr|2 |σv|2 ‖(N++1)ξ‖2
)1/2

6
C√
N
‖(N++1)ξ‖2,

and similarly for Υ6. To bound Υ7, we use

|〈ξ,Υ7ξ〉|6
1√
N

∑
r∈PH
v∈PL

|Γv| |ηr| ‖br+vN−1/2
+ b−rb−vξ‖ ‖(N++1)1/2ξ‖

6
C√
N

( ∑
r∈PH
v∈PL

‖b−rb−vξ‖2
)1/2( ∑

r∈PH
v∈PL

|Γv|2 |ηr|2 ‖(N++1)ξ‖2
)1/2

6
C√
N
‖(N++1)ξ‖2.
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We consider now Υ8. In the first term, we move b∗−r to the left:

Υ
(1)
8 : =− 1

N3/2

∑
p∈Λ∗+

∑
r∈PH
v∈PL

Γpηrbpa
∗
r+va−pb

∗
−r(γvbv+σvb

∗
−v)

=− 1

N3/2

∑
p∈Λ∗+

∑
r∈PH
v∈PL

Γpηrbpb
∗
−ra

∗
r+va−p(γvbv+σvb

∗
−v)

− 1

N3/2

∑
r∈PH
v∈PL

Γrηrbrb
∗
r+v(γvbv+σvb

∗
−v)

= Υ
(1a)
8 +Υ

(1b)
8 .

To bound the quintic term, we use that |PL|6CN3/2 and
∑
r∈PH |ηr|

26CN−1/2:

|〈ξ,Υ(1a)
8 ξ〉|6 1

N3/2

∑
p∈Λ∗+

∑
r∈PH
v∈PL

|Γp||ηr| ‖b∗par+vξ‖ ‖a−pb∗−r(γvbv+σvb
∗
−v)ξ‖

6
1

N

( ∑
p∈Λ∗+

∑
r∈PH
v∈PL

|Γp|2 ‖(N++1)1/2ar+vξ‖2
)1/2

×
(

1

N

∑
p∈Λ∗+

∑
r∈PH
v∈PL

|ηr|2(‖a−pb∗−rbvξ‖2+|σv|2‖a−pb∗−rb∗−vξ‖2)

)1/2

6
C√
N
‖(N++1)ξ‖2,

where, in the last step, to bound the contribution proportional to ‖a−pb∗−rbvξ‖2, we first

estimated the sum over p by ‖N 1/2
+ b∗−rbvξ‖6‖bv(N++1)ξ‖, and then we summed over r

and v (and similarly for the term proportional to ‖a−pb∗−rb∗−vξ‖). As for the cubic term,

we have

|〈ξ,Υ(1b)
8 ξ〉|6 1

N3/2

( ∑
r∈PH
v∈PL

|Γr|2 ‖b∗rbr+vξ‖2
)1/2

×
( ∑
r∈PH
v∈PL

|ηr|2 (‖bvξ‖2+|σv|2‖(N++1)1/2ξ‖2)

)1/2

6
1

N3/2
‖(N++1)ξ‖2.

The remaining terms in Υ8 and Υ9 can be treated with the same arguments shown above,

thus concluding the proof of (8.4).
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8.2. Analysis of e−ACNeA

In this section, we analyze the action of the cubic exponential on the cubic term CN ,

defined in (3.31).

Proposition 8.3. Let A be defined as in (3.34) and let CN be defined as in (3.31).

Then, under the assumptions of Proposition 3.3, we have

e−ACNeA = CN+
2

N

∑
r∈PH
v∈PL

(
V̂
( r
N

)
+V̂

(r+v

N

))
ηr

×(σ2
v+(γ2

v+σ2
v) b∗vbv+γvσv(bvb−v+b∗vb

∗
−v))+E(C)

N ,

(8.5)

where the error E(C)
N satisfies

±E(C)
N 6

C√
N

((N++1)(HN+1)+(N++1)3). (8.6)

To prove the proposition we use the following lemma.

Lemma 8.4. Let A be defined as in (3.34) and CN be defined as in (3.27). Then,

under the assumptions of Proposition 3.3,

[CN , A] =

14∑
j=0

Ξj+h.c. (8.7)

where

Ξ0 =
1

N

∑
r∈PH
v∈PL

(
V̂
( r
N

)
+V̂

(r+v

N

))
ηr(σ

2
v+(γ2

v+σ2
v) b∗vbv+γvσv(bvb−v+b∗vb

∗
−v)),

Ξ1 =
1

N

∑
r∈PH
v∈PL

V̂
(r+v

N

)
ηr(γvb

∗
v+σvb−v)

((
1−N+

N

)2
−1

)
(γvbv+σvb

∗
−v)

+
1

N

∑
r∈PH
v∈PL

V̂
( r
N

)
ηr(γvb

∗
v+σvb−v)

((
1−N++1

N

)(
1−N+

N

)
−1

)
(γvbv+σvb

∗
−v),

Ξ2 =
1

N

∑
r∈PH
v∈PL

V̂
( r
N

)
ηrσv

(
1−N++1

N

)(
1−N+

N

)
br+v(γr+vb−r−v+σr+vb

∗
r+v),

Ξ3 =
1

N

∑
r∈PH
v∈PL

V̂
(r+v

N

)
ηrσv

(
1−N+

N

)2
b−r(γrbr+σrb

∗
−r),



bogoliubov theory in the gross–pitaevskii limit 315

Ξ4 =− 1

N2

∑
r∈PH
v∈PL

V̂
(r+v

N

)
ηrσv

(
1−N+

N

)
b−r(γrbr+σrb

∗
−r),

Ξ5 =
1

N

∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=r+v

V̂
( p
N

)
ηr(γvb

∗
v+σvb−v)

(
1−N++1

N

)
(b∗−pb−r−

1

N
a∗−pa−r)

×(γr+v−pbr+v−p+σr+v−pb
∗
p−r−v)

and

Ξ6 =
1

N

∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=−r

V̂
( p
N

)
ηr(γvb

∗
v+σvb−v)

(
1−N+

N

)
(b∗−pbr+v−

1

N
a∗−par+v)

×(γr+pb−r−p+σr+pb
∗
r+p),

Ξ7 =
1

N

∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=−v

V̂
( p
N

)
ηr

(
1−N+

N

)
σv(b

∗
−pbr+v−

1

N
a∗−par+v)b−r

×(γp+vb−p−v+σp+vb
∗
p+v),

Ξ8 =− 1

N

∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=v

V̂
( p
N

)
ηr

(
1−N+−2

N

)
γvb
∗
r+vb

∗
−rb
∗
−p(γp−vb−p+v+σp−vb

∗
p−v),

Ξ9 =− 1

N2

∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=−v

V̂
( p
N

)
ηr

(
1−N+

N

)
σva
∗
−pa−rbr+v(γp+vb−p−v+σp+vb

∗
p+v),

Ξ10 =
1

N2

∑
r∈PH
v∈PL

∑
p,q∈Λ∗+
p 6=−q

V̂
( p
N

)
ηr(γvb

∗
v+σvb−v)(a

∗
p+qar+vb−r+br+va

∗
p+qa−r)b

∗
−p

×(γqbq+σqb
∗
−q),

Ξ11 =
1

N2

∑
r∈PH
v∈PL

∑
p,q∈Λ∗+
p 6=−q

V̂
( p
N

)
ηr(γvb

∗
r+vb

∗
−ra

∗
p+qav+σva

∗
p+qa−vb−rbr+v)b

∗
−p

×(γqbq+σqb
∗
−q)

and

Ξ12 =
1√
N

∑
p,q∈Λ∗+
p 6=−q

V̂
( p
N

)
b∗p+q[b

∗
−p, A](γqbq+σqb

∗
−q),

Ξ13 =
1√
N

∑
p,q∈Λ∗+
p 6=−q

V̂
( p
N

)
γqb
∗
p+qb

∗
−p[bq, A],

Ξ14 =
1√
N

∑
p,q∈Λ∗+
p 6=−q

V̂
( p
N

)
σqb
∗
p+qb

∗
−p[b

∗
−q, A].

(8.8)
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For all j=1, ..., 14 (but not for j=0) we have

±(Ξj+h.c.)6
C√
N

[(N++1)(K+1)+(N++1)3]. (8.9)

Moreover,

±[Ξ0, A]6
C√
N

(N++1)2. (8.10)

Proof of Proposition 8.3. We write

e−ACNeA = CN+

∫ 1

0

ds e−sA[CN , A]esA. (8.11)

We set

Ẽ(C)
N := [CN , A]−2Ξ0 =

14∑
j=1

(Ξj+h.c.)

and rewrite (8.11) as

e−ACN eA = CN+2Ξ0+E(C)
N ,

with

E(C)
N =

∫ 1

0

ds1

∫ s1

0

ds2 e
−s2A[2Ξ0, A]es2A+

∫ 1

0

ds e−sAẼ(C)
N esA.

Lemma 8.4 together with Propositions 4.2 and 4.4 imply (8.6); with the definition of Ξ0

we obtain (8.5).

Proof of Lemma 8.4. We have

[CN , A] =
1√
N

∑
p,q∈Λ∗+
p 6=−q

V̂
( p
N

)
[b∗p+q, A]b∗−p(γqbq+σqb

∗
−q)+

14∑
j=12

Ξj+h.c.. (8.12)

We use the formula (8.3) to compute the first term on the right-hand side of (8.12).

Putting in normal order the quartic terms (but leaving unchanged the term in parentheses

(γvb
∗
v+σvb−v) and its conjugate), we obtain

1√
N

∑
p,q∈Λ∗+
p 6=−q

V̂
( p
N

)
[b∗p+q, A]b∗−p(γqbq+σqb

∗
−q)

=
1

N

∑
r∈PH
v∈PL

V̂
( r
N

)
ηr(γvb

∗
v+σvb−v)

(
1−N++1

N

)(
1−N+

N

)
(γvbv+σvb

∗
−v)

+
1

N

∑
r∈PH
v∈PL

V̂
(r+v

N

)
ηr(γvb

∗
v+σvb−v)

(
1−N+

N

)2
(γvbv+σvb

∗
−v)+

11∑
j=2

Ξj .
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The first two terms on the right-hand side of the last equation can be further decomposed

as Ξ0+Ξ1. Combining (8.12) with the last equation, we obtain the decomposition (8.7).

Next, we prove the bound (8.9). With∑
r∈Λ∗+

V̂
( r
N

)
ηr 6CN and

∑
v∈PL

|σv|2 6C,

we obtain that

±Ξ1 6CN−1(N++1)2.

As for Ξ2, we find

|〈ξ,Ξ2ξ〉|6
C

N

( ∑
r∈PH
v∈PL

|ηr|2|σv| ‖N 1/2
+ ξ‖2

)1/2

×
( ∑
r∈PH
v∈PL

|σv|(‖b−r−vξ‖2+|σr+v|2‖(N++1)1/2ξ‖2)

)1/2

6
C√
N
‖(N++1)1/2ξ‖2,

using
∑
v∈PL |σv|6CN

1/2. The terms Ξ3 and Ξ4 can be bounded analogously. As for

the term Ξ5=Ξ
(1)
5 +Ξ

(2)
5 , we use that

|PL|6CN3/2 and
∑
r∈PH

|ηr|2 6CN−1/2,

hence

|〈ξ,Ξ(1)
5 ξ〉|

6
1

N

∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=r+v

∣∣∣V̂ ( p
N

)∣∣∣|ηr| ‖bvb−pξ‖ ‖b−r(γr+v−pbr+v−p+σr+v−pb
∗
p−r−v)ξ‖

6
1

N

( ∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=r+v

|ηr|2 ‖bvb−pξ‖2
)1/2

×
(( ∑

r∈PH
v∈PL

∑
p∈Λ∗+
p 6=r+v

‖b−rbr+v−pξ‖2
)1/2

+

( ∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=r+v

|σr+v−p|2 ‖b−rb∗p−r−vξ‖2
)1/2)

6
C√
N
‖(N++1)ξ‖2.
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In the last step, to bound the term proportional to ‖b−rb∗p−r−vξ‖, we first shifted

p 7!p+r+v, then we estimated the sum over r by

‖N 1/2
+ b∗pξ‖6 ‖(N++1)ξ‖,

and at the end we summed over v and p (using the factor |σp|2). The bound for Ξ
(2)
5 and

for the terms Ξj , with j=6, 7, 8, 9, can be obtained similarly. As for the term Ξ10, we

first move the operator b∗p to the left, obtaining

Ξ10 =
1

N2

∑
r∈PH
v∈PL

∑
p,q∈Λ∗+
p 6=−q

V̂
( p
N

)
ηr(γvb

∗
v+σvb−v)a

∗
p+qar+v

(
b∗−pb−r−

1

N
a∗−pa−r

)
×(γqbq+σqb

∗
−q)

+
1

N2

∑
r∈PH
v∈PL

∑
p,q∈Λ∗+
p 6=−q

V̂
( p
N

)
ηr(γvb

∗
v+σvb−v)br+vb

∗
−pa

∗
p+qa−r(γqbq+σqb

∗
−q)

+
1

N2

∑
r∈PH
v∈PL

∑
q∈Λ∗+
q 6=−r

V̂
( r
N

)
ηr(γvb

∗
v+σvb−v)a

∗
r+qar+v(γqbq+σqb

∗
−q)

+
1

N2

∑
r∈PH
v∈PL

∑
q∈Λ∗+
q 6=−r

V̂
( r
N

)
ηr(γvb

∗
v+σvb−v)br+vb

∗
r+q(γqbq+σqb

∗
−q)

=

4∑
j=1

Ξ
(j)
10 .

(8.13)

To bound Ξ
(1)
10 , we commute the operator ar+v to the right of b∗−p. We find

|〈ξ,Ξ(1)
10 ξ〉|6

C

N2

∑
p,q∈Λ∗+
p 6=−q

∑
r∈PH
v∈PL

∣∣∣V̂ ( p
N

)∣∣∣|ηr|
×‖b−pap+q(γvbv+σvb

∗
−v)ξ‖ ‖ar+vb−r(γqbq+σqb

∗
−q)ξ‖

+
C

N2

∑
p,q∈Λ∗+
p 6=−q

∑
v∈PL

p+v∈PH

∣∣∣V̂ ( p
N

)∣∣∣|ηp+v|
×‖bp+q(γvbv+σvb

∗
−v)ξ‖ ‖bp+v(γqbq+σqb

∗
−q)ξ‖.

(8.14)

By the Cauchy–Schwarz inequality, and using the bound∑
p∈Λ∗+

∣∣∣V̂ ( p
N

)∣∣∣2 6CN3,
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we obtain

|〈ξ,Ξ(1)
10 ξ〉|

6
C

N2

( ∑
p,q∈Λ∗+
p 6=−q

∑
r∈PH
v∈PL

|ηr|2(‖a−pap+qavξ‖2+|σv|2‖a−pap+qa∗−vξ‖2)

)1/2

×
( ∑
p,q∈Λ∗+
p 6=−q

∑
r∈PH
v∈PL

∣∣∣V̂ ( p
N

)∣∣∣2(‖ar+va−raqξ‖+|σq|2‖ar+va−ra∗qξ‖2)

)1/2

+
C

N2

( ∑
p,q∈Λ∗+
p 6=−q

∑
v∈PL

|ηp+v|2(‖ap+qbvξ‖2+|σv|2‖ap+qb∗−vξ‖2)

)1/2

×
( ∑
p,q∈Λ∗+
p 6=−q

∑
v∈PL

(‖ap+vbqξ‖2+|σq|2‖ap+vb∗−qξ‖2)

)1/2

6
C√
N
〈ξ, (N++1)3ξ〉.

(8.15)

The bound for Ξ
(2)
10 is similar. As for the quartic operators Ξ

(3)
10 and Ξ

(4)
10 , they can be

handled like the second term on the right-hand side of (8.14) (in Ξ
(4)
10 we first commute

br+v and b∗r+q). We obtain that

±Ξ10 6
C√
N

(N++1)3.

The operator Ξ11 can be controlled similarly as Ξ10. To estimate Ξ12, Ξ13 and Ξ14,

we insert (8.3) into (8.8); this produces several terms. The contributions arising from

Ξ12 are similar to the terms Ξ1, ...,Ξ11 considered above and their expectation can be

estimated analogously. On the other hand, to bound some of the contributions to Ξ13

and Ξ14 we need to use the kinetic energy operator. To explain this step, let us compute

Ξ13 explicitly. We find

Ξ13 =

6∑
j=1

Ξ
(j)
13 ,

with

Ξ
(1)
13 =

1

N

∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=−r−v

V̂
( p
N

)
ηrγr+vb

∗
p+r+vb

∗
−p

(
1−N+

N

)
b∗−r(γvbv+σvb

∗
−v),

Ξ
(2)
13 =

1

N

∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=r

V̂
( p
N

)
ηrγrb

∗
p−rb

∗
−p

(
1−N+−1

N

)
b∗r+v(γvbv+σvb

∗
−v),
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Ξ
(3)
13 =

1

N

∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=v

V̂
( p
N

)
ηrγvσvb

∗
p−vb

∗
−pb
∗
r+vb

∗
−r

(
1−N+

N

)
,

Ξ
(4)
13 =− 1

N

∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=−v

V̂
( p
N

)
ηrγ

2
vb
∗
p+vb

∗
−p

(
1−N+

N

)
b−rbr+v,

Ξ
(5)
13 =− 1

N2

∑
r∈PH
v∈PL

∑
p,q∈Λ∗+
p 6=−q

V̂
( p
N

)
ηrγqb

∗
p+qb

∗
−p(a

∗
r+vaqb

∗
−r+b∗r+va

∗
−raq)(γvbv+σvb

∗
−v),

Ξ
(6)
13 =

1

N2

∑
r∈PH
v∈PL

∑
p,q∈Λ∗+
p 6=−q

V̂
( p
N

)
ηrγqb

∗
p+qb

∗
−p(γva

∗
vaqb−rbr+v−σvb∗r+vb∗−ra∗−vaq).

To bound Ξ
(1)
13 we use the Cauchy–Schwarz inequality. We find (with appropriate shifts

of the summation variables)

|〈ξ,Ξ(1)
13 ξ〉|

6
C

N

( ∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=r+v

|p|2 ‖b−rb−pbp+r+v(N++1)−1/2ξ‖2
)1/2

×
( ∑
r∈PH
v∈PL

∑
p∈Λ∗+
p 6=r+v

|V̂ (p/N)|2

|p|2
|ηr|2(‖bv(N++1)1/2ξ‖2+|σv|2‖(N++1)ξ‖2)

)1/2

6
C√
N

(‖(N++1)1/2(K+1)1/2ξ‖2+‖(N++1)ξ‖2).

The bounds for Ξ
(j)
13 , with j=2, 3, 4, can be obtained similarly. As for the terms Ξ

(5)
13 and

Ξ
(6)
13 , they can be estimated proceeding as we did for Ξ10. We conclude that

±Ξ13 6
C√
N

(N++1)(K+1)+(N++1)3. (8.16)

Also the term Ξ14 can be controlled analogously. To avoid repetitions, we skip the details.

To conclude the proof of the lemma, it remains to show (8.10), which follows from

Lemma 8.2 since, for any v∈PL, we have∣∣∣∣ 1

N

∑
r∈PH

(
V̂
( r
N

)
+V̂

(r+v

N

))
ηr(γ

2
v+σ2

v)

∣∣∣∣6C,∣∣∣∣ 1

N

∑
r∈PH

(
V̂
( r
N

)
+V̂

(r+v

N

))
ηrγvσv

∣∣∣∣6 C

v2
.
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8.3. Analysis of e−AHNeA

In this section, we analyze the action of the cubic exponential on HN=K+VN .

Proposition 8.5. Let A be defined as in (3.34) and HN be as defined after (3.23).

Then, under the assumptions of Proposition 3.3, we have

e−AHN eA =HN−
1√
N

∑
r∈PH
v∈PL

V̂
( r
N

)
(b∗r+vb

∗
−r
(
γvbv+σvb

∗
−v
)
+h.c.)

− 1

N

∑
r∈PH
v∈PL

(
V̂
( r
N

)
+V̂

(r+v

N

))
ηr

×(σ2
v+(γ2

v+σ2
v)b∗vbv+γvσv(bvb−v+b∗vb

∗
−v))

+E(H)
N ,

where the error E(H)
N satisfies

±E(H)
N 6CN−1/4((N++1)(HN+1)+(N++1)3).

To show the proposition, we use the following lemma.

Lemma 8.6. Let A be defined as in (3.34) and let

Θ0 =− 1√
N

∑
r∈PH
v∈PL

V̂
( r
N

)
b∗r+vb

∗
−r(γvbv+σvb

∗
−v),

as defined in Lemma 4.3. Then, under the assumptions of Proposition 3.3,

[Θ0+Θ∗0, A] =

12∑
j=0

Πj+h.c.,

with

Π0 =− 1

N

∑
r∈PH
v∈PL

(
V̂
( r
N

)
+V̂

(r+v

N

))
ηr(σ

2
v+(γ2

v+σ2
v)b∗vbv+γvσv(bvb−v+b∗vb

∗
−v)),

Π1 =− 1

N

∑
r∈PH
v∈PL

V̂
(r+v

N

)
ηr(γvb

∗
v+σvb−v)

((
1−N+

N

)2
−1

)
(γvbv+σvb

∗
−v)

− 1

N

∑
r∈PH
v∈PL

V̂
( r
N

)
ηr(γvb

∗
v+σvb−v)

((
1−N++1

N

)(
1−N+

N

)
−1

)
×(γvbv+σvb

∗
−v),
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Π2 =− 1

N

∑
r∈PH
v∈PL

V̂
( r
N

)
ηrσv

(
1−N++1

N

)(
1−N+

N

)
br+v(γr+vb−r−v+σr+vb

∗
r+v),

Π3 =− 1

N

∑
r∈PH
v∈PL

∑
w∈PL

−w+r+v∈PH

V̂
(r+v−w

N

)
ηr(γvb

∗
v+σvb−v)

(
1−N++1

N

)
×
(
b∗w−r−vb−r−

1

N
a∗w−r−va−r

)
(γwbw+σwb

∗
−w),

Π4 =− 1

N

∑
r∈PH
v∈PL

∑
w∈PL

w+r∈PH

V̂
(r+w

N

)
ηr(γvb

∗
v+σvb−v)

(
1−N+

N

)
×
(
b∗r+wbr+v−

1

N
a∗r+war+v

)
(γwbw+σwb

∗
−w),

Π5 =− 1

N

∑
r∈PH
v∈PL

∑
w∈PL

w+v∈PH

V̂
(v+w

N

)
ηrσv

(
1−N+

N

)
×
(
b∗w+vbr+v−

1

N
a∗w+var+v

)
b−r(γwbw+σwb

∗
−w),

Π6 =
1

N2

∑
r∈PH
v∈PL

∑
w∈PL

w+v∈PH

V̂
(v+w

N

)
ηrσv

(
1−N+

N

)
a∗v+wa−rbr+v(γwbw+σwb

∗
−w),

Π7 =
1

N

∑
r∈PH
v∈PL

∑
w∈PL

v−w∈PH

V̂
(v−w

N

)
ηrγvb

∗
r+vb

∗
−r

(
1−N+

N

)
b∗w−v(γwbw+σwb

∗
−w),

Π8 =
1

N2

∑
r,s∈PH
v,w∈PL

V̂
( s
N

)
ηr(γvb

∗
v+σvb−v)(b−ra

∗
s+war+v+a∗s+wa−rbr+v)b

∗
−s(γwbw+σwb

∗
−w),

Π9 =
1

N2

∑
r,s∈PH
v,w∈PL

V̂
( s
N

)
ηr(σva

∗
s+wa−vb−rbr+v−γvb∗r+vb∗−ra∗s+wav)b∗−s (γwbw+σwb

∗
−w),

and

Π10 =− 1√
N

∑
r∈PH
v∈PL

V̂
( r
N

)
b∗r+v[b

∗
−r, A](γvbv+σvb

∗
−v),

Π11 =− 1√
N

∑
r∈PH
v∈PL

V̂
( r
N

)
γvb
∗
r+vb

∗
−r[bv, A],

Π12 =− 1√
N

∑
r∈PH
v∈PL

V̂
( r
N

)
b∗r+vb

∗
−rσv[b

∗
−v, A].

(8.17)



bogoliubov theory in the gross–pitaevskii limit 323

For all j=1, ..., 12 (but not for j=0) we have

±(Πj+h.c.)6
C√
N

((N++1)(K+1)+(N++1)3). (8.18)

Proof of Proposition 8.5. To show the proposition, we write

e−AHNeA =HN+

∫ 1

0

ds e−sA[HN , A]esA. (8.19)

From Lemma 4.3, we know that

[HN , A] = Θ0+Θ∗0+E(H)
N,1 ,

where

±E(H)
N,1 6CN−1/4((N++1)(K+1)+(N++1)3). (8.20)

Hence, (8.19) implies that

e−AHNeA =HN+Θ0+Θ∗0

+

∫ 1

0

ds1

∫ s1

0

ds2 e
−s2A[(Θ0+Θ∗0), A]es2A+

∫ 1

0

ds e−sAE(H)
N,1 e

sA.

Using Lemma 8.6 and setting E(H)
N,2 =

∑12
j=1 Πj+h.c., we finally obtain

e−AHNeA =HN+Θ0+Θ∗0+Π0

+

∫ 1

0

ds1

∫ s1

0

ds2

∫ s2

0

ds3 e
−s3A [2Π0, A]es3A

+

∫ 1

0

ds1

∫ s1

0

ds2e
−s2AE(H)

N,2 e
s2A+

∫ 1

0

ds e−sAE(H)
N,1 e

sA.

Proposition 8.5 now follows combining (8.20) with the estimates (8.18) and with the

observation that Π0=−Ξ0, where Ξ0 is defined in Lemma 8.4 and satisfies the bound

(8.10).

Proof of Lemma 8.6. We write

[Θ0, A] =− 1√
N

∑
r∈PH
v∈PL
r+v 6=0

V̂
( r
N

)
[b∗r+v, A]b∗−r(γvbv+σvb

∗
−v)+

12∑
j=10

Πj .

Using (8.3) and normal ordering the quartic terms (with the exception of the factor

(γvbv+σvb
∗
−v)), we obtain that

− 1√
N

∑
r∈PH
v∈PL
r+v 6=0

V̂
( r
N

)
[b∗r+v, A]b∗−r(γvbv+σvb

∗
−v) =

9∑
j=0

Πj .
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We now show (8.18). The bound for Π1 follows from

|〈ξ,Π1ξ〉|6
C

N2

∑
r∈PH
v∈PL

|V̂ (r/N)|
r2

(‖bv(N++1)1/2ξ‖2+|σv|2 ‖(N++1)ξ‖2)

6
C

N
‖(N++1)ξ‖2.

To bound Πj , with j=2,3,4,7, one uses that

|PL|6CN3/2 and
∑
r∈PH

|ηr|2 6CN−1/2.

Hence

|〈ξ,Π2ξ〉|6
1

N

∑
r∈PH
v∈PL

∣∣∣V̂ ( r
N

)∣∣∣|ηr| |σv| ‖b∗r+vξ‖ ‖(γr+vb−r−v+σr+vb
∗
r+v)ξ‖

6
1

N

( ∑
r∈PH
v∈PL

|ηr|2 |σv|2 ‖b∗r+vξ‖2
)1/2( ∑

r∈PH
v∈PL

‖(γr+vb−r−v+σr+vb
∗
r+v)ξ‖2

)1/2

6
C√
N
‖(N++1)1/2ξ‖2.

Similarly, using the Cauchy–Schwarz inequality, we can bound Π3 by

|〈ξ,Π3ξ〉|6
C

N

( ∑
r∈PH
v∈PL

∑
w∈PL

−w+r+v∈PH

|ηr|2(‖bvbw−r−vξ‖2+|σv|2 ‖bw−r−v(N++1)1/2ξ‖2)

)1/2

×
( ∑
r∈PH
v∈PL

∑
w∈PL

−w+r+v∈PH

(‖b−rbwξ‖2+|σw|2‖b−r(N++1)1/2ξ‖2)

)1/2

6
C√
N
‖(N++1)ξ‖2.

The terms Π4 and Π7 are bounded similarly. It is easy to check that Π5 and Π6 satisfy

(8.18). For example, we have

|〈ξ,Π5ξ〉|6
C

N

∑
r∈PH
v∈PL

∑
w∈PL

w+v∈PH

∣∣∣V̂ (v+w

N

)∣∣∣|ηr| |σv| ‖bw+v(N++1)1/2ξ‖

×(‖br+vb−rbw(N++1)−1/2ξ‖+|σw| ‖br+vb−rb∗−w(N++1)−1/2ξ‖)
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6
C

N

( ∑
r∈PH
v∈PL

∑
w∈PL

w+v∈PH

|ηr|2 |σv|2 ‖bw+v(N++1)1/2ξ‖2
)1/2

×
( ∑
r∈PH
v∈PL

∑
w∈PL

w+v∈PH

(‖br+vb−rbw(N++1)−1/2ξ‖2

+|σw|‖br+vb−rb∗−w(N++1)−1/2ξ‖2)

)1/2
6
C

N
‖(N++1)ξ‖2.

(In the term containing the creation operator b∗w, we first sum over ṽ=v+r and over r.

This produces a factor N++1 which can be moved through b∗w. At this point, we can

estimate b∗w by an additional factor (N++1)1/2; with this procedure, we do not have to

compute the commutator between b∗w and the other annihilation operators). The bound

for Π6 is similar. As for Π8, we decompose it as

Π8 =
1

N2

∑
r,s∈PH
v,w∈PL

V̂
( s
N

)
ηr(γvb

∗
v+σvb−v)b−rb

∗
−sa
∗
s+war+v(γwbw+σwb

∗
−w)

+
1

N2

∑
r∈PH
v,w∈PL

V̂
(r+v

N

)
ηr(γvb

∗
v+σvb−v)b−rb

∗
−r−v+w(γwbw+σwb

∗
−w)

+
1

N2

∑
r,s∈PH
v,w∈PL

V̂
( s
N

)
ηr(γvb

∗
v+σvb−v)a

∗
s+wa−rbr+vb

∗
−s(γwbw+σwb

∗
−w)

= Π
(1)
8 +Π

(2)
8 +Π

(3)
8 .

The term Π
(1)
8 can be bounded commuting first the operator b−r to the right, analogously

to the estimates (8.14) and (8.15) for the term Ξ
(1)
10 in the proof of Lemma 8.4. Also

the terms Π
(2)
8 (which is similar to Ξ

(3)
10 in (8.13)) and Π

(3)
8 can be treated similarly. We

conclude that

±Π8 6CN−1/2(N++1)3.

The operator Π9 can be controlled as Π8.

Finally, to bound the terms Π10, Π11 and Π12 in (8.17), we can expand them using

(8.3). The contributions arising from Π10 are similar to the terms Π1, ...,Π9, and can

be estimated analogously. On the other hand, the terms arising from Π11 and Π12 are

similar to those arising from Ξ13 and Ξ14 in the proof of Lemma 8.4, and can be handled

proceeding as we did to show (8.16), making use of the kinetic energy operator.
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8.4. Proof of Theorem 3.3

Combining the results of Propositions 8.1, 8.3 and 8.5, we conclude that

JN = e−AGNeA

=CGN +QGN +HN

+
1

N

∑
r∈PH
v∈PL

(
V̂
( r
N

)
+V̂

(r+v

N

))
ηr

×(σ2
v+(γ2

v+σ2
v)b∗vbv+γvσv(bvb−v+b∗vb

∗
−v))

+CN−
1√
N

∑
r∈PH
v∈PL

V̂
( r
N

)
(b∗r+vb

∗
−r(γvbv+σvb

∗
−v)+h.c.)

+ẼJN ,

(8.21)

with an error operator ẼJN satisfying

±ẼJN 6CN−1/4((HN+1)(N++1)+(N++1)3).

We show now that the sum of the cubic terms on the fifth line of (8.21) also contributes

to the error term. In fact, we have

CN−
1√
N

∑
r∈PH
v∈PL

V̂
( r
N

)
(b∗r+vb

∗
−r(γvbv+σvb

∗
−v)+h.c.)

=
1√
N

∑
v∈PH
r∈Λ∗+
r+v 6=0

V̂
( r
N

)
(b∗r+vb

∗
−r(γvbv+σvb

∗
−v)+h.c.)

+
1√
N

∑
v,r∈PL
r+v 6=0

V̂
( r
N

)
(b∗r+vb

∗
−r
(
γvbv+σvb

∗
−v
)
+h.c.)

= Z1+Z2.

To bound Z1, we use that |v|−16N−1/2 for v∈PH and∑
v∈PH

|σv|2 6CN−1/2.

We find

|〈ξ,Z1ξ〉|6
C√
N

∑
v∈PH
r∈Λ∗+
r+v 6=0

∣∣∣V̂ ( r
N

)∣∣∣‖br+vb−rξ‖ (‖bvξ‖+|σv| ‖(N++1)1/2ξ‖)
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6
C√
N

( ∑
v∈PH
r∈Λ∗+
r+v 6=0

r2

v2
‖br+vb−rξ‖2

)1/2( ∑
v∈PH
r∈Λ∗+
r+v 6=0

|V̂ (r/N)|2

r2
v2‖bvξ‖2

)1/2

+
C√
N

( ∑
v∈PH
r∈Λ∗+
r+v 6=0

r2‖br+vb−rξ‖2
)1/2( ∑

v∈PH
r∈Λ∗+
r+v 6=0

|V̂ (r/N)|2

r2
|σv|2

)1/2
×‖(N++1)1/2ξ‖

6
C

N1/4
‖(K+1)1/2(N++1)1/2ξ‖2.

The term Z2 is bounded using the Cauchy–Schwarz inequality and the estimate∑
r∈PL

|r|−2 6CN1/2.

We obtain

|〈ξ,Z2ξ〉|6
C√
N

( ∑
r,v∈PL
r+v 6=0

r2‖br+vb−rξ‖2
)1/2

×
( ∑
r,v∈PL
r+v 6=0

1

r2
(‖bvξ‖2+|σv|2 ‖(N++1)1/2ξ‖2)

)1/2

6
C

N1/4
‖(N++1)1/2(K+1)1/2ξ‖2.

Similarly, we can show that, in the term on the third and fourth line in (8.21), the

restriction r∈PH and v∈PL can be removed producing only a negligible error. We

conclude that

JN =CGN +QGN +HN

+
1

N

∑
p,q∈Λ∗+

V̂
(p+q

N

)
ηq(σ

2
p+(γ2

p+σ2
p)b∗pbp+γpσp(bpb−p+b∗pb

∗
−p))

+
1

N

∑
p,q∈Λ∗+

V̂
( q
N

)
ηq(σ

2
p+(γ2

p+σ2
p)b∗pbp+γpσp(bpb−p+b∗pb

∗
−p))

+ĒJN ,

with

±ĒJN 6
C

N1/4
((HN+1)(N++1)+(N++1)3).
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Theorem 3.3 now follows from the observation that

CGN +
1

N

∑
p,q∈Λ∗+

V̂
(p+q

N

)
ηqσ

2
p+

1

N

∑
p,q∈Λ∗+

V̂
( q
N

)
ηqσ

2
p =CJN +O(N−1)

and that

QN+K+
1

N

∑
p,q∈Λ∗+

V̂
(p+q

N

)
ηq((γ

2
p+σ2

p)b∗pbp+γpσp(bpb−p+b∗pb
∗
−p))

+
1

N

∑
p,q∈Λ∗+

V̂
( q
N

)
ηq((γ

2
p+σ2

p)b∗pbp+γpσp
(
bpb−p+b∗pb

∗
−p)) = Q̃N+ẼQN ,

(8.22)

with

±ẼQN 6
C

N
(N++1). (8.23)

Here we used the fact that the contribution to QN arising from the last term in (3.28)

and (3.29) cancels with the last sum on the left-hand side of (8.22) (it is easy to check

that the remainder corresponding to the momentum q=0 satisfies (8.23)).

Appendix A. Condensate depletion

The goal of this short appendix is to prove formula (1.14) for the number of orthogonal

excitations of the condensate, in the ground state of (1.1).

We start with the observation that

〈UNψN ,N+UNψN 〉= 〈[UNψN−eiωeB(η)eAeB(τ)Ω],N+UNψN 〉

+〈eiωeB(η)eAeB(τ)Ω,N+[UNψN−eiωeB(η)eAeB(τ)Ω]〉

+〈eB(η)eAeB(τ)Ω,N+e
B(η)eAeB(τ)Ω〉.

(A.1)

From (6.7), Lemma 2.1 and Proposition 4.1, we conclude that

|〈UNψN ,N+UNψN 〉−〈eB(η)eAeB(τ)Ω,N+e
B(η)eAeB(τ)Ω〉|6CN−1/8.

Proceeding as in §7.2 and recalling the notation

γp = cosh ηp and σp = sinh ηp,

we find

e−B(η)N+e
B(η) =

∑
p∈Λ∗+

((γ2
p+σ2

p)b∗pbp+γpσp(b
∗
pb
∗
−p+bpb−p)+σ2

p)+Ẽ1,
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where ± Ẽ16CN−1(N++1)2. By Lemma 8.2 and Proposition 4.2, we have

e−Ae−B(η)N+e
B(η)eA =

∑
p∈Λ∗+

((γ2
p+σ2

p)b∗pbp+γpσp(b
∗
pb
∗
−p+bpb−p)+σ2

p)+Ẽ2,

with ± Ẽ26CN−1/2(N++1)2. Conjugating with the generalized Bogoliubov transforma-

tion eB(τ) and taking the vacuum expectation, we obtain

〈eB(η)eAeB(τ)Ω,N+e
B(η)eAeB(τ)Ω〉

=
∑
p∈Λ∗+

(σ2
p+(σ2

p+γ2
p) sinh2 τp+2γpσp sinh(τp) cosh(τp))+O(N−1/2).

With (5.9), we find

2 sinh2 τp =
Fp√
F 2
p−G2

p

−1 and 2 sinh τp cosh τp =
−Gp√
F 2
p−G2

p

.

Using (3.37), we arrive at

〈eB(η)eAeB(τ)Ω,N+e
B(η)eAeB(τ)Ω〉

=
∑
p∈Λ∗+

p2+(V̂ ( ·/N)∗f̂`,N )p−
√
p4+2p2(V̂ ( ·/N)∗f̂`,N )p

2
√
p4+2p2(V̂ ( ·/N)∗f̂`,N )p

+O(N−1/2),

with f̂`,N as in (3.7). Proceeding as in the proof of (5.27), we conclude that

〈eB(η)eAeB(τ)Ω,N+e
B(η)eAeB(τ)Ω〉=

∑
p∈Λ∗+

p2+8πa0−
√
p4+16πa0p2

2
√
p4+16πa0p2

+O(N−1/2).

Equation (1.14) follows by combining (A.1) with the last equation, since

1−〈ϕ0, γ
(1)
N ϕ0〉=N−1〈UNψN ,N+UNψN 〉.

Appendix B. Properties of the scattering function

In this appendix we give a proof of Lemma 3.1 containing the basic properties of the

solution of the Neumann problem (3.5).

Proof of Lemma 3.1. We adapt the proofs of [12, Lemma A.1] and [4, Lemma 4.1].

We start showing an upper bound for (3.9). We consider the solution f of the zero

energy scattering equation (1.2) on R3 with boundary condition f(x)!1 as |x|!∞ (for
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the properties of f we refer to [14, Lemma D.1]). We set r=|x| and m(r)=rf(r). Clearly,

m(r) satisfies

−m′′(r)+ 1
2V (r)m(r) = 0. (B.1)

We define

ψ(r) =
sin(km(r))

r
, (B.2)

with k∈R. From

∂rψ(r) =
1

r2
(m′(r)kr cos(km(r))−sin(km(r))),

we conclude that ψ satisfies Neumann boundary conditions at r=N` if and only if

kN`= tan(k(N`−a0)) (B.3)

(recall that m(r)=r−a for r outside the support of the potential). We choose k to be

the smallest positive real number satisfying equation (B.3). Expanding the tangent, we

find a constant C>0 such that

3a0

(N`)3

(
1+

9

5

a0

N`
−C a2

0

(N`)2

)
6 k2 6

3a0

(N`)3

(
1+

9

5

a0

N`
+C

a2
0

(N`)2

)
. (B.4)

We calculate now
〈
ψ,
(
−∆+ 1

2V
)
ψ
〉
. To this end, we compute

−(sin(km(r)))′′= k2(m′(r))2 sin(km(r))−km′′(r) cos(km(r)). (B.5)

Using that

∆ψ(r) =
1

r

∂2

∂r2
(rψ(r))

and (B.5), we get

ψ

(
−∆+

1

2
V

)
ψ= k2ψ2+k2((m′(r))2−1)

(
sin(km(r))

r2

)2
+

1

r2

(
−km′′ sin(km(r)) cos(km(r))+

1

2
V (sin(km(r)))2

)
.

(B.6)

We denote by R the radius of the support of V , so that suppV ⊂{x∈R3 :|x|6R}. Note

that the second and third term on the right-hand side of (B.6) are supported on |x|6R;

the contribution to
〈
ψ,
(
−∆+ 1

2V
)
ψ
〉

coming from the second line is bounded by

4πk2

∫ R

0

dr r2((m′(r))2−1)
k2m2(r)

r4
6Ck4,
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where we used that m(r)6r (and the fact that m′ is bounded, as follows from [14,

Lemma D.1]). We consider now the contribution coming from the third term on the

right-hand side of (B.6). Using equation (B.1), we notice that the summands of order

k2 in the big parentheses cancel. We get

2π

∫ R

0

dr V (r)(−km(r) sin(km(r)) cos(km(r))+(sin(km(r)))2)6Ck4.

We have therefore 〈
ψ,
(
−∆+ 1

2V
)
ψ〉6 k2〈ψ,ψ〉+Ck4.

Using the estimate

sin(km(r))>Ckm(r)>Ckr for 2R<r<N`

(since m(r)=r−a>r−R for r>R), we also get the lower bound

〈ψ,ψ〉= 4π

∫ N`

0

dr sin2(km(r))>C

∫ N`

2R

dr k2r2 >C(N`)3k2 >C,

by the lower bound in (B.4). The upper bound in (B.4) implies therefore that

λ`6

〈
ψ,
(
−∆+ 1

2V
)
ψ
〉

〈ψ,ψ〉
6 k2+Ck4 6

3a0

(N`)3

(
1+

9

5

a0

N`
+C

a2
0

(N`)2

)
. (B.7)

We look now for a lower bound for λ`. Given any function φ satisfying Neumann

boundary conditions at |x|=N`, we can write it as φ(x)=g(x)ψ(x), with ψ(x) being

the trial function defined in (B.2) and g>0 satisfying Neumann boundary condition at

|x|=N`, too. From the identity(
−∆+ 1

2V
)
φ=

((
−∆+ 1

2V
)
ψ
)
g−(∆g)ψ−2∇g∇ψ,

we have∫
|x|6N`

dx φ̄

(
−∆+

1

2
V

)
φ=

∫
|x|6N`

dx |∇g|2ψ2+

∫
|x|6N`

dx |g|2ψ
(
−∆+

1

2
V

)
ψ.

From (B.6), we see that∣∣ψ(−∆+ 1
2V
)
ψ−k2ψ2

∣∣6Ck4r−2χ(r6R).

Therefore,∫
|x|6N`

dx φ̄

(
−∆+

1

2
V

)
φ> k2‖φ‖22+

∫
|x|6N`

dx |∇g|2ψ2−Ck4

∫
|x|6R

dx
|g(x)|2

|x|2
,
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where we indicated by ‖ · ‖2 the L2 norm on BN`={x∈R3 :|x|6N`}. In the second

integral, we can bound

ψ(r)>
km(r)

r
> ck,

being m(r)>cr for a constant c>0 (see [14, Lemma D.1]). We get∫
|x|6N`

dx φ̄

(
−∆+

1

2
V

)
φ> k2‖φ‖2+c2k2

∫
|x|6N`

dx |∇g|2−Ck4

∫
|x|6R

dx
|g(x)|2

|x|2
.

The third integral can be bounded using the following finite volume version of the Hardy

inequality (see, for example, [12, Lemma 5.1]), so that∫
|x|6R

|g(x)|2

|x|2
dx6C

∫
|x|6N`

|∇g|2dx+
C

(N`)3

(∫
|x|6R

dx

|x|2

)∫
|x|6N`

|g|2 dx.

We have therefore∫
|x|6N`

dx φ̄

(
−∆+

1

2
V

)
φ> k2‖φ‖2+(c2k2−Ck4)

∫
|x|6N`

dx |∇g|2− Ck4

(N`)3

∫
|x|6N`

dx |g|2.

Using again ψ>ck, we get the lower bound∫
|x|6N`

dx φ̄

(
−∆+

1

2
V

)
φ> k2‖φ‖2− Ck2

(N`)3

∫
|x|6N`

dx |g|2 |ψ|2

> k2

(
1− Ck2

(N`)3

)
‖φ‖2

>
3a0

(N`)3

(
1+

9

5

a0

N`
−C a0

(N`)2

)
‖φ‖2.

(B.8)

The last estimate, together with inequality (B.7), proves (i).

We now prove part (ii) and equation (3.12) in part (iii). The bounds 06f` and

w`61 have been proved in [12, Lemma A.1]. We show (3.10) and (3.12). We set r=|x|
and m`(r)=rf`(r), where f`(r) is now the solution of the Neumann problem (3.5). We

rewrite (3.5) as

−m′′` (r)+ 1
2V (r)m`(r) =λ`m`(r). (B.9)

For r∈(R,N`], we find

m`(r) =λ
−1/2
` sin(λ

1/2
` (r−N`))+N` cos(λ

1/2
` (r−N`)). (B.10)

Expanding up to order λ2
` , we obtain

m`(r) = r−a0+
3

2

a0

N`
r− 1

2

a0

(N`)3
r3+O(a2

0(N`)−1). (B.11)
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Using the scattering equation, we can write∫
V (x)f`(x) dx= 4π

∫ N`

0

dr rV (r)m`(r)

= 8π

∫ N`

0

dr (rm′′` (r)+λ`rm`(r)).

(B.12)

The first contribution on the right-hand side vanishes due to the boundary conditions.

We evaluate the second contribution using expansion (B.11), to get

8πλ`

∫ N`

0

dr rm`(r) = 8πλ`

(
(N`)3

3
− a0

10
(N`)2+O(a2N`)

)
. (B.13)

With (3.9), we obtain

8πλ`

∫ N`

0

dr rm`(r)

= 8π
3a0

(`N)3

(
1+

9

5

a0

N`
+O

(
a2

0

(`N)2

))(
(N`)3

3
− a0

10
(N`)2+O(a2N`)

)
= 8π

(
a0+

3

2

a0

N`
+O

(
a3

0

(`N)2

))
,

which proves (3.10). Starting from the expansion (B.11) and recalling that w`=1−f`,
an easy calculation leads to (3.12). Equation (3.11) in part (iii) and part (iv) have been

shown in [4, Lemma 4.1].
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