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1. Introduction.

Large random matrices appear in many different fields, including quantum mechanics,
quantum chaos, telecommunications, finance, and statistics. As such, understanding how
the asymptotic properties of the spectrum depend on the fine details of the model, in
particular on the distribution of the entries, soon appeared as a central question.

An important model is the one of Wigner matrices, that is Hermitian matrices
with independent and identically distributed real or complex entries. We will denote
by N the dimension of the matrix, and assume that the entries are renormalized to

http://crossmark.crossref.org/dialog/?doi=10.1007/s11511-016-0142-4&amp;domain=pdf


82 a. figalli and a. guionnet

have covariance N−1. It was shown by Wigner [68] that the macroscopic distribution
of the spectrum converges, under very mild assumptions, to the so-called semi-circle
law. However, because the spectrum is a complicated function of the entries, its local
properties took much longer to be revealed. The first approach to the study of local
fluctuations of the spectrum was based on exact models, namely the Gaussian models,
where the joint law of the eigenvalues has a simple description as a Coulomb Gas law [52],
[63], [64], [31], [19]. There, it was shown that the largest eigenvalue fluctuates around
the boundary of the support of the semi-circle law in the scale N−2/3, and that the limit
distribution of these fluctuations were given by the so-called Tracy–Widom law [63], [64].
On the other hand, inside the bulk the distance between two consecutive eigenvalues
is of order N−1 and the fluctuations at this scale can be described by the sine-kernel
distribution. Although this precise description was first obtained only for the Gaussian
models, it was already envisioned by Wigner that these fluctuations should be universal,
i.e., independent of the precise distribution of the entries.

Recently, a series of remarkable breakthroughs [23], [25], [26], [29], [27], [61], [60],
[59], [58] proved that, under rather general assumptions, the local statistics of a Wigner
matrix are independent of the precise distribution of the entries, provided they have
enough finite moments, are centered and with the same variance. These results were
extended to the case where distribution of the entries depend on the indices, still assuming
that their variance is uniformly bounded below [28]. The study of band-matrices is still
a challenge when the width of the band approaches the critical order of

√
N , see related

works [57], [24]. Such universality results were also extended to non-normal square
matrices with independent entries [62].

A related question is to study universality for local fluctuations for the so-called
β-models, that are laws of particles in interaction according to a Coulomb-gas potential
to the power β and submitted to a potential V . When β=1, 2, 4 and V is quadratic,
these laws correspond to the joint law of the eigenvalues of Gaussian matrices with real,
complex, or symplectic entries. Universality was proven for very general potentials in the
case β=2 [45], [47]. In the case β=1, 4, universality was proved in [21] in the bulk, and
[20] at the edge, for monomial potentials V (see [22] for a review). For general one-cut
potentials, the first proof of universality was given in [56] in the case β=1, whereas [41]
treated the case β=4. The local fluctuations of more general β-ensembles were only
derived recently [65], [54] in the Gaussian case. Universality in the β-ensembles was first
addressed in [13] (in the bulk, β>0, V ∈C4), then in [14] (at the edge, β>1, V ∈C4),
[43] (at the edge, β>0, V convex polynomial), and finally in [56] (in the bulk, β>0,
V analytic, multi-cut case included) and in [5] (in the bulk and the edge, V smooth
enough). The universality at the edge in the several-cut case is treated in [4]. The case
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where the interaction is more general than a Coulomb gas, but given by a mean-field
interaction

∏
i<j ϕ(xi−xj) where ϕ(t) behaves as |t|β in a neighborhood of the origin

and both log |x|−βϕ(x) and the potential are real-analytic, was considered in [32] (β=2,
universality in the bulk), [66] (β>0, universality in the bulk), and [42] (β=2, universality
at the edge).

Despite all these new developments, up to now nothing was known about the uni-
versality of the fluctuations of the eigenvalues in several-matrix models, except in very
particular situations. The aim of this paper is to provide new universality results for
general perturbative several-matrix models, giving a firm mathematical ground to the
widely spread belief coming from physics that universality of local fluctuations should
hold, at least until some phase transition occurs.

An important application of our results is given by polynomials in Gaussian Wigner
matrices and deterministic matrices. More precisely, let XN

1 , ..., X
N
d be independent

N×N matrices in the Gaussian Unitary Ensemble (GUE), i.e. N×N Hermitian matrices
with independent complex Gaussian entries with covariance 1/N , and let BN

1 , ..., B
N
m

be N×N Hermitian deterministic matrices. Assume that for any choices of i1, ..., ik∈
{1, ...,m} and k∈N,

1
N

Tr(BN
i1 ... B

N
ik

) (1.1)

converges to some limit τ(bi1 ... bik
), where τ is a linear form on the set of polynomials in

the variables {b`}m
`=1 that inherits properties of the trace (such as positivity, mass one,

and traciality, see (6.2)), and is called a tracial state or a non-commutative distribution
in free probability.

A key result due to Voiculescu [67] shows the existence of a non-commutative distri-
bution σ such that for any polynomial p in d+m self-adjoint non-commutative variables

lim
N!∞

1
N

Tr(p(XN
1 , ..., X

N
d , B

N
1 , ..., B

N
m))=σ(p(S1, ..., Sd, b1, ..., bm)) a.s.

where, under σ, S1, ..., Sd are d free semi-circular variables, free from b1, ..., bm with
law τ . More recently, Haagerup and Thorbjørnsen [39] (when the matrices {BN

i }m
i=1

vanish) and then Male [49] (when the spectral radius of polynomials p(BN
1 , ..., B

N
m) in

{BN
i }m

i=1 converge to the norm of their limit p(b1, ..., bm)) showed that this convergence is
also true for the operator norms, namely the following convergence holds almost surely:

lim
N!∞

‖p(XN
1 , ..., X

N
d , B

N
1 , ..., B

N
m)‖∞ = ‖p(S1, ..., Sd, b1, ..., bm)‖∞,

where

‖p(S1, ..., Sd, b1, ..., bm)‖∞ = lim
r!∞

σ((p(S1, ..., Sd, b1, ..., bm)p(S1, ..., Sd, b1, ..., bm)∗)r)1/2r.
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However, it was not known in general how the eigenvalues of such a polynomial fluctuate
locally.

In this paper we show that if p is a perturbation of x1 then, under some weak
additional assumptions on the deterministic matrices BN

1 , ..., B
N
m , the eigenvalues of

p(XN
1 , ..., X

N
d , B

N
1 , ..., B

N
m) fluctuate as the eigenvalues of XN

1 . In particular, if

p(X1, ..., Xd) =X1+εQ(X1, ..., Xd)

with ε small enough and Q self-adjoint, then we can show that, once properly renormal-
ized, the fluctuations of the eigenvalues of p(XN

1 , ..., X
N
d ) follow the sine-kernel inside

the bulk and the Tracy–Widom law at the edges. In addition, this universality result
holds also for (averages with respect to E of) m-point correlation functions around some
energy level E in the bulk. Furthermore, all these results extend to the case of matrices
in the Gaussian Orthogonal Ensemble (GOE).

Although we shall not investigate this here, our results should extend to non-
Gaussian entries at least when the entries have the same first four moments as the
Gaussian. This would however be a non-trivial generalization, as it would involve fine
analysis such as the local law and rigidity.

To our knowledge this type of result is completely new except in the case of the
very specific polynomial p(S, b)=b+S, which was recently treated in non-perturbative
situations [17], [44] or when p is a product of non-normal random matrices [46], [1].
Notice that although our results hold only in a perturbative setting, it is clear that some
assumptions on p are needed and universality cannot hold for any polynomial. Indeed,
even if one considers only one matrix, if p is not strictly increasing then the largest
eigenvalue of p(XN

1 ) could be the image by p of an eigenvalue of XN
1 inside the bulk, and

hence it would follow the sine-kernel law instead of the Tracy–Widom law.
Our approach to universality for polynomials in several matrices goes through the

universality for unitarily invariant matrices interacting via a potential. Indeed, as shown
in §7, the law of the eigenvalues of such polynomials is a special case of the latter models,
that we describe now.

Let V be a polynomial in non-commutative variables, W1, ...,Wd: R!R be smooth
functions, and consider the following probability measure on the space of d-tuples of
N×N Hermitian or symmetric matrices (see also §2 for more details):

dPN,V
β (dX1, ..., dXd)

=
1

ZN,V
β

eNTrV (X1,...,Xd,B1,...,Bm)e−N
∑d

k=1 TrWk(Xk)
d∏

i=1

1‖Xi‖∞6M dX,
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where dX=dX1 ... dXd is the Lebesgue measure on the set of d-tuples of N×N Hermitian
or symmetric matrices (from now on, to simplify the notation, we remove the superscript
N on Xi and Bi). Also, M>0 is a cut-off which ensures that

ZN,V
β := eN TrV (X1,...,Xd,B1,...,Bm)e−N

∑d
k=1 TrWk(Xk)

d∏
i=1

1‖Xi‖∞6M dX

is finite despite the fact that V is a polynomial which could go to infinity faster than
the Wk’s. We assume that V is self-adjoint in the sense that V (X1, ..., Xd, B1, ..., Bm)
is Hermitian (resp. symmetric) for any N×N Hermitian (resp. symmetric) matrices
X1, ..., Xd, B1, ..., Bm. As a consequence, PN,V

β has a real non-negative density. Since we
shall later need to assume that V is small, we shall not try to get the best assumptions
on the Wk’s, and we shall assume that they are uniformly convex. As discussed in
Remark 2.2 below, this could be relaxed.

Such multi-matrix models appear in physics, in connection with the enumeration of
colored maps [16], [51], [40], [30], and in planar algebras and the Potts model on random
graphs [33], [34]. However, despite the introduction of biorthogonal polynomials [8] to
compute precisely observables in these models, the local properties of the spectrum in
these models could not be studied so far, except in very specific situations [3]. Our proof
shows that the limiting spectral measure of the matrix models has a connected support
and behaves as a square root at the boundary when a is small enough and the Wk are
uniformly convex, see Lemma 3.2. This in particular shows that in great generality the
nth moments for the related models, which can be identified with generating functions
for planar maps, grow like Cnn−3/2, as for the semi-circle law and rooted trees. More
interesting exponents could be found at criticality, a case that we can hardly study in this
article since we need a to be small. The transport maps between the limiting measures
could themselves provide valuable combinatorial information, as a way to analyze the
limiting spectral measures, but they would also need to be extended to criticality too.
Yet, the extension of our techniques to the non-commutative setting yields interesting
isomorphisms of related algebras [38], [53].

In [35], [36] it was shown that there exists M0<∞ such that the following holds: for
M>M0 there exists a0>0 so that, for a∈[−a0, a0], there is a non-commutative distribu-
tion τaV satisfying

lim
N!∞

PN,aV
β

(
1
N

Tr
(
p(X1, ..., Xd)

))
= τaV (p)

for any polynomials p in d non-commutative letters. In particular, if {λk
i }N

i=1 denote the
eigenvalues of Xk, the spectral measure

LN
k :=

1
N

N∑
i=1

δλk
i

∫
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converges weakly and in moments towards the probability measure µaV
k defined by

µaV
k (x`) := τaV ((Xk)`) for all `∈N. (1.2)

Moreover, one can bound these moments to see that µaV
k is compactly supported and

hence defined by the family of its moments. In addition, it can be proved that µaV
k does

not depend on the cutoff M . Furthermore, a central limit theorem for this problem was
studied in [36] where it was proved that, for any polynomial p,

Tr
(
p(X1, ..., Xd)

)
−N τaV (p)

converges in law towards a Gaussian variable. A higher-order expansion (the “topological
expansion”) was derived in [50].

In this article we show that, if a is small enough, the local fluctuations of the
eigenvalues of each matrix under PN,aV

β are the same as when a=0 and the Wk are
just quadratic; in other words, up to rescaling, they follow the sine-kernel distribution
inside the bulk and the Tracy–Widom law at the edges of the corresponding ensemble
(see Corollaries 2.6 and 2.7). In addition, averaged energy universality of the correlation
functions holds in our multi-matrix setting (see Corollary 2.8).

The idea to prove these results consists in finding a map from the law of the eigen-
values of independent GUE or GOE matrices to a probability measure that approximates
our matrix models (see Theorem 2.5 and Corollary 2.7). This approach is inspired by
the method introduced in [5] to study one-matrix models. However, not only are the
arguments here much more involved, but we also improve the results in [5]. Indeed,
the estimates on the approximate transport map obtained in [5] allowed one to obtain
universality results only with bounded test functions, and could not be used to show
averaged energy universality even in the single-matrix setting. Here, we are able to show
stronger estimates that allow us to deal also with functions that grow polynomially in
N (see equation (2.8)), and we exploit this to prove averaged energy universality in
multi-matrix models (see Corollary 2.8).

A second key (and highly non-trivial) step in our proof consists in showing a large
N -expansion for integrals over the unitary and orthogonal group (see §6). Such integrals
arise when one seeks for the joint law of the eigenvalues by simply performing a change
of variables and integrating over the eigenvectors. The expansion of such integrals was
only know up to the first order [18] in the orthogonal case, and was derived for linear
statistics in the case β=2 in [37]. However, to be able to study the law of the eigenvalues
of polynomials in several matrices we need to treat quadratic statistics. Moreover, we
need to prove that the expansions are smooth functions of the empirical measures of the
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matrices. Indeed, such an expansion allows us to express the joint law of the eigenvalues
of our matrix models as the distribution of mean field interaction models (more precisely,
as the distribution of d β -ensembles interacting via a mean field smooth interaction), and
from this representation we are able to apply to this setting the approximate transport
argument mentioned above, and prove our universality results.

In the next section we describe in detail our results.

2. Statement of the results

We are interested in the joint law of the eigenvalues under PN,V
β . We shall in fact consider

a slightly more general model, where the interaction potential may not be linear in the
trace, but rather some tensor power of the trace. This is necessary to deal with the law
of a polynomial in several matrices. Hence, we consider the probability measure

dPN,V
β (X1, ..., Xd) :=

1

ZN,V
β

eN2−rTr⊗rV (X1,...,Xd,B1,...,Bm)
d∏

k=1

dRN,Wk

β,M (Xk)

with
dRN,W

β,M (X) :=
1

ZN,W
β,M

e−NTr(W (X))1‖X‖∞6MdX,

where 1E denotes the indicator function of a set E, and ZN,V
β and ZN,W

β,M are normalizing
constants. Here,

• β=2 (resp. β=1) corresponds to integration over the Hermitian (resp. symmetric)
set HN

β of N×N matrices with complex (resp. real) entries. In particular

dX =
{ ∏

16j6`6N dX`j , if β=1,∏
16j6`6N dRe(X`j)

∏
16j<`6N d Im(X`j), if β=2.

• Tr denotes the trace over N×N matrices, that is, TrA=
∑N

j=1Ajj .
• Wk: R!R are uniformly convex functions, that is

W ′′
k (x) > c0> 0 for all x∈R,

and given a function W : R!R and a N×N Hermitian matrix X, we define W (X) as

W (X) :=UW (D)U∗,

where U is a unitary matrix which diagonalizes X as X=UDU∗, and W (D) is the
diagonal matrix with entries (W (D11), ...,W (DNN )).
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• B1, ..., Bm are Hermitian (resp. symmetric) matrices if β=2 (resp. β=1).
• C〈x1, ..., xd, b1, ..., bm〉⊗r denotes the space of rth tensor products of polynomials

in d non-commutative variables with complex (resp. real) coefficients when β=2 (resp.
β=1). For p∈C〈x1, ..., xd, b1, ..., bm〉⊗r we denote by

p=
∑

〈p, q1⊗q2 ...⊗qr〉 q1⊗q2 ...⊗qr

its decomposition on the monomial basis, and let p∗ denote its adjoint given by

p∗ :=
∑

〈p, q1⊗q2 ...⊗qr〉 q∗1⊗q∗2 ...⊗q∗r ,

where ∗ denotes the involution given by

(Yi1 ... Yi`
)∗ =Yi`

... Yi1 for all i1, ..., i` ∈{1, ..., d+m},

where {Yi=Xi}d
i=1 and {Yj+d=Bj}m

j=1. We take V to belong to the closure of

C〈x1, ..., xd, b1, ..., bm〉⊗r

for the norm given, for ξ>1 and ζ>1, by

‖p‖ξ,ζ :=
∑

|〈p, q1⊗q2 ...⊗qr〉|ξ
∑r

i=1 degX(qi)ζ
∑r

i=1 degB(qi) (2.1)

where degX(q) (resp. degB(q)) denotes the number of letters {Xi}d
i=1 (resp. {Bi}m

i=1)
contained in q. If p only depends on the Xi (resp. the Bi), its norm does not depend
on ζ (resp. ξ) and we simply denote it by ‖p‖ξ (resp. ‖p‖ζ). We also assume that V is
self-adjoint, that is V (X1, ..., Xd, B1, ..., Bm)∗=V (X1, ..., Xd, B1, ..., Bm).

• We use ‖ · ‖∞ to denote the spectral radius norm.
Performing the change of variables Xk 7!UkD(λk)U∗

k , with Uk being unitary and
D(λk) being the diagonal matrix with entries λk :=(λk

1 , ..., λ
k
N ), we find that the joint

law of the eigenvalues is given by

dPN,V
β (λ1, ..., λd) =

1

Z̃N,V
β

IN,V
β (λ1, ..., λd)

d∏
k=1

dRN,Wk

β,M (λk), (2.2)

where

IN,V
β (λ1, ..., λd) := eN2−rTr⊗rV (U1D(λ1)U∗

1 ,...,UdD(λd)U∗
d ,B1,...,Bm) dU1 ... dUd,

dU being the Haar measure on the unitary group when β=2 (resp. the orthogonal group
when β=1), Z̃N,V

β >0 is a normalization constant, and RN,W
β,M is the probability measure

on RN given by

dRN,W
β,M (λ) :=

1

ZN,W
β,M

∏
i<j

|λi−λj |βe−N
∑N

i=1 W (λi)
N∏

i=1

1|λi|6Mdλi, λ=(λ1, ..., λN ). (2.3)

∫
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As we shall prove in §3, if Wk are uniformly convex and V is sufficiently small, for all
k∈{1, ..., d} the empirical measure LN

k of the eigenvalues of Xk converges to a compactly
supported probability measure µV

k . In particular, if the cut-off M is chosen sufficiently
large so that [−M,M ]csupp(µ0

k), for V sufficiently small [−M,M ]csupp(µV
k ) and the

limiting measures µV
k will be independent of M . Hence, we shall assume that M is a

universally large constant (i.e., the largeness depends only on the potentials Wk). More
precisely, throughout the whole paper we will suppose that the following holds.

Hypothesis 2.1. Assume that:
• Wk: R!R is uniformly convex for any k∈{1, ..., d}, that is, W ′′

k (x)>c0>0 for all
x∈R. Moreover, Wk∈Cσ(R) for some σ>36.

• M>1 is a large universal constant.
• V is self-adjoint and ‖V ‖Mξ,ζ<∞ for some ξ large enough (the largeness being

universal, see Lemma 6.16) and ζ>1.
• The spectral radius of each of the Hermitian matrices B1, ..., Bm is bounded by 1.

Remark 2.2. The convexity assumption on the potentials Wk could be relaxed. In-
deed, the main reasons for this assumption are:

– To ensure that the equilibrium measures, obtained as limits of the empirical mea-
sure of the eigenvalues, enjoy the properties described in §3.

– To guarantee that the operator Ξt appearing in Proposition 4.4 is invertible.
– To prove the concentration inequalities in §4.5.
– To have rigidity estimates on the eigenvalues, needed in the universality proofs

in §5.
As shown in the papers [12], [11], [5], the properties above hold under weaker as-

sumptions on the Wk’s. However, because the proofs of our results are already very
delicate, we decided to introduce the convexity assumptions in order to avoid additional
technicality that would obscure the main ideas in the paper.

In order to be able to apply the approximate transport strategy introduced in [5], a
key result we will prove is the following large dimension expansion of IN,V

β .

Theorem 2.3. Under Hypothesis 2.1, there exists a0>0 such that, for a∈[−a0, a0],

IN,aV
β (λ1, ..., λk) =

(
1+O

(
1
N

))
e
∑2

l=0 N2−lF a
l (LN

1 ,...,LN
d ,τN

B ), (2.4)

where LN
k are the spectral measures

LN
k :=

1
N

N∑
i=1

δλk
i
,
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O(1/N) depends only on M , τN
B denotes the non-commutative distribution of the Bi

given by the collection of complex numbers

τN
B (p) :=

1
N

Tr(p(B1, ..., Bm)), p∈C〈b1, ..., bm〉, (2.5)

and {F a
l (µ1, ..., µd, τ)}2

l=0 are smooth functions of (µ1, ..., µd, τ) for the weak topology
generated on the space of probability measures P([−M,+M ]) by

‖µ‖ζM :=max
k>1

(Mζ)−k|µ(xk)|

and the norm sup‖p‖ζ61 |τ(p)| on linear forms τ on C〈b1, ..., bm〉.

This result is proved in §6. We notice that it was already partially proved in [37]
in the unitary case. However, only the case where r=1 was considered there, and the
expansion was shown to hold only in terms of the joint non-commutative distribution of
the diagonal matrices {D(λk)}d

k=1 rather than the spectral measure of each of them.
From the latter expansion of the density of PN,aV

β we can deduce the convergence
of the spectral measures by standard large deviation techniques.

Corollary 2.4. Assume that, for any polynomial p∈C〈b1, ..., bm〉,

lim
N!∞

τN
B (p) = τB(p). (2.6)

Then, under Hypothesis 2.1, there exists a0>0 such that, for a∈[−a0, a0], the empirical
measures {LN

k }d
k=1 converge almost surely under PN,aV

β towards probability measures
{µaV

k }d
k=1 on the real line.

In the case r=1 this result is already a consequence of [35] and [18]. The existence
and study of the equilibrium measures is performed in §3.

Starting from the representation of the density given in Theorem 2.3 (see §4), we
are able to prove the following existence results on approximate transport maps.

Theorem 2.5. Under Hypothesis 2.1 with ζ>1, suppose additionally that

τN
B (p) = τ0

B(p)+
1
N
τ1
B(p)+

1
N2

τ2
B(p)+O

(
1
N3

)
, (2.7)

where the error is uniform on balls for ‖ · ‖ζ . Then there exists a constant α>0 such
that, provided |a|6α, we can construct a map

TN =((TN )11, ..., (T
N )1N , ..., (T

N )d
1, ..., (T

N )d
N ): RdN−!RdN
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satisfying the following property : Let χ: RdN!R+ be a non-negative measurable function
such that ‖χ‖∞6Nk for some k>0. Then, for any η>0, we have∣∣∣∣log

(
1+ χ�TN dPN,0

β

)
−log

(
1+ χdPN,aV

β

)∣∣∣∣ 6Ck,η N
η−1 (2.8)

for some constant Cη,k independent of N . Also, with λ̂:=(λ1
1, ..., λ

d
N ), TN has the form

(TN )k
i (λ̂) =T k

0 (λk
i )+

1
N

(TN
1 )k

i (λ̂) for all i=1, ..., N and k=1, ..., d,

where T k
0 : R!R and TN

1 :RdN!RdN are of class Cσ−3 and satisfy uniform (in N)
regularity estimates. More precisely, we have the decomposition

TN
1 =XN

1,1+
1
N
XN

2,1,

where

max
16k6d

16i6N

‖(XN
1,1)

k
i ‖L4(P N,0

β ) 6C logN and max
16k6d

16i6N

‖(XN
2,1)

k
i ‖L2(P N,0

β ) 6C (logN)2,

for some constant C>0 independent of N . In addition, with PN,0
β -probability greater

than 1−e−c(log N)2 ,

max
i,k

|(XN
1,1)

k
i |6C(logN)N1/(σ−14),

max
i,k

|(XN
2,1)

k
i |6C(logN)2N2/(σ−15),

max
16i,i′6N

|(XN
1,1)

k
i (λ̂)−(XN

1,1)
k
i′(λ̂)|6C(logN)N1/(σ−15) |λk

i −λk
i′ | for all k=1 ..., d,

max
16i,i′6N

|(XN
2,1)

k
i (λ̂)−(XN

2,1)
k
i′(λ̂)|6C(logN)2N2/(σ−17)|λk

i −λk
i′ | for all k=1, ..., d,

max
16i,j6N

|∂λ`
j
(XN

1,1)
k
i |(λ̂) 6C(logN)N1/(σ−15) for all k, `=1, ..., d.

As explained in §5, the existence of an approximate transport map satisfying regular-
ity properties as above allows us to show universality properties for the local fluctuations
of the spectrum. For instance, we can prove the following result.

Corollary 2.6. Under the hypotheses of Theorem 2.5 the following holds: Let T k
0

be as in Theorem 2.5 and denote by P̃N,aV
β the distribution of the increasingly ordered

eigenvalues ({λk
i }N

i=1)
d
k=1 under the law PN,aV

β . Also, let µ0
k and µaV

k be as in Corol-
lary 2.4, and α as in Theorem 2.5. Then, for any θ∈

(
0, 1

6

)
there exists a constant Ĉ>0,

independent of N , such that the following two facts hold true provided |a|6α:
(1) Let {ik}d

k=1⊂[εN, (1−ε)N ] for some ε>0. Then, choosing γk
ik/N∈R such that

µ0
k((−∞, γk

ik/N ))=
ik
N
,

∫ ∫
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if m6N2/3−θ then, for any bounded Lipschitz function f : Rdm!R,∣∣∣∣ f((N(λk
ik+1−λk

ik
), ..., N(λk

ik+m−λk
ik

))d
k=1) dP̃

N,aV
β

− f(((T k
0 )′(γk

ik/N )N(λk
ik+1−λk

ik
), ..., (T k

0 )′(γk
ik/N )N(λk

ik+m−λk
ik

))d
k=1) dP̃

N,0
β

∣∣∣∣
6 ĈNθ−1‖f‖∞+Ĉm3/2Nθ−1‖∇f‖∞.

(2) Let a0
k (resp. aaV

k ) denote the smallest point in the support of µ0
k (resp. µaV

k ), so
that supp(µ0

k)⊂[a0
k,∞) (resp. supp(µaV

k )⊂[aaV
k ,∞)). If m6N4/7 then, for any bounded

Lipschitz function f : Rdm!R,∣∣∣∣ f((N2/3(λk
1−aaV

k ), ..., N2/3(λk
m−aaV

k ))d
k=1) dP̃

N,aV
β

− f(((T k
0 )′(a0

k)N2/3(λk
1−a0

k), ..., (T k
0 )′(a0

k)N2/3(λk
m−a0

k))d
k=1) dP̃

N,0
β

∣∣∣∣
6 ĈNθ−1‖f‖∞+Ĉ(m1/2Nθ−1/3+m7/6N−2/3)‖∇f‖∞.

The same bound holds around the largest point in the support of µaV
k .

Similar results could be derived with functions of both statistics in the bulk and
at the edge. Let us remark that for a=0 the eigenvalues of the different matrices are
uncorrelated and PN,0

β becomes a product:

dPN,0
β =

d∏
k=1

dRN,Wk

β,M .

Universality under the latter β -models was already proved in [13], [14], [56], [5]. Also,
by the results in [5] we can find approximate transport maps SN

k : RN!RN from the law
PN

GVE,β (this is the law of GUE matrices when β=2 and GOE matrices when β=1) to
RN,Wk

β,M for any k=1, ..., d. Hence (SN
1 , ..., S

N
d ): RdN!RdN is an approximate transport

from (PN
GVE,β)⊗d (i.e., the law of d independent GUE matrices when β=2 and GOE

matrices when β=1) to PN,0
β , and this allows us to deduce that the local statistics are

in the same universality class as GUE (resp. GOE) matrices.
More precisely, as already observed in [5], the leading orders in the transport can be

restated in terms of the equilibrium densities: denoting by

%sc(x) :=
1
2π

√
(4−x2)+ (2.9)

the density of the semi-circle distribution and by %0
k the density of µ0

k, then the leading-
order term of SN

k is given by (Sk
0 )⊗N , where Sk

0 : R!R is the monotone transport from
%sc dx to %0

k dx that can be found solving the ordinary differential equation (ODE)

(Sk
0 )′(x) =

%sc

%0
k(Sk

0 )
(x), Sk

0 (−2) = a0
k. (2.10)

∫
∫

∫
∫
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Also, the transport T k
0 : R!R appearing in Corollary 2.6 solves

(T k
0 )′(x) =

%0
k

%aV
k (T k

0 )
(x), T k

0 (a0
k) = aaV

k . (2.11)

Set
caV
k := lim

x!−2+

%sc

%aV
k (T k

0 �S
k
0 )

(x). (2.12)

Due to these observations, we can easily prove the following result.

Corollary 2.7. Let m∈N. Under the hypotheses of Theorem 2.5, the following
holds: Denote by P̃N,aV

β (resp. (P̃N
GVE,β)⊗d) the distribution of the increasingly ordered

eigenvalues ({λk
i }N

i=1)
d
k=1 under the law PN,aV

β (resp. (PN
GVE,β)⊗d). Also, let α be as in

Theorem 2.5. Then, for any θ∈
(
0, 1

6

)
and C0>0 there exists a constant Ĉ>0, indepen-

dent of N , such that the following two facts hold true provided |a|6α:
(1) Given {σk}d

k=1⊂(0, 1), let γσk
∈R be such that µsc((−∞, γσk

))=σk, and γσk,k

such that µaV
k ((−∞, γσk,k))=σk. Then, if |ik/N−σk|6C0/N and m6N2/3−θ, for any

bounded Lipschitz function f : Rdm!R we have∣∣∣∣ f((N(λk
ik+1−λk

ik
), ..., N(λk

ik+m−λk
ik

))d
k=1) dP̃

N,aV
β

− f

((
%sc(γσk

)
%aV

k (γσk,k)
N(λk

ik+1−λk
ik

), ...,
%sc(γσk

)
%aV

k (γσk,k)
N(λk

ik+m−λk
ik

)
)d

k=1

)
d(P̃N

GVE,β)⊗d

∣∣∣∣
6 ĈNθ−1‖f‖∞+Ĉm3/2Nθ−1‖∇f‖∞.

(2) Let caV
k be as in (2.12). If m6N4/7 then, for any bounded Lipschitz function

f : Rm!R, we have∣∣∣∣ f((N2/3(λk
1−aaV

k ), ..., N2/3(λk
m−aaV

k ))d
k=1) dP̃

N,aV
β

− f(caV
k N2/3(λk

1+2), ..., caV
k N2/3(λk

m+2))d
k=1) d(P̃

N
GVE,β)⊗d

∣∣∣∣
6 ĈNθ−1‖f‖∞+Ĉ(m1/2Nθ−1/3+m7/6N−2/3)‖∇f‖∞.

The same bound holds around the largest point in the support of µaV
k .

While the previous results deal only with bounded test function, in the next theo-
rem we take full advantage of the estimate (2.8) to show averaged energy universality
in our multi-matrix setting. Note that, to show this result, we need to consider as test
functions averages (with respect to E) of m-points correlation functions of the form∑

i1 6=...6=im
f(N(λk

i1
−E), ..., N(λk

im
−E)), where E belongs to the bulk of the spectrum.

∫
∫

∫
∫
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In particular, these test functions have L∞ norm of size Nm. Actually, as in Corol-
laries 2.6 and 2.7, we can deal with test functions depending at the same time on the
eigenvalues of the different matrices.

Here and in the following, we use −
I

to denote the averaged integral over an interval
I⊂R, namely −

I
=(1/|I|)

I
.

Corollary 2.8. Fix m∈N and ζ∈(0, 1), and let α be as in Theorem 2.5. Also, let
T k

0 and Sk
0 be as in (2.11) and (2.10), and define Rk :=T k

0 �S
k
0 . Then, given {Ek}16k6d⊂

(−2, 2), θ∈(0,min{ζ, 1−ζ}), and a non-negative Lipschitz function f : Rdm!R+ with
compact support, there exists a constant Ĉ>0, independent of N , such that the following
holds true provided |a|6α:∣∣∣∣ [

−
R1(E1)+N−ζR′

1(E1)

R1(E1)−N−ζR′
1(E1)

dẼ1 ...−
Rd(Ed)+N−ζR′

d(Ed)

Rd(Ed)−N−ζR′
d(Ed)

dẼd

×
∑

ik,1 6=...6=ik,m

f((N(λk
ik,1

−Ẽk), ..., N(λk
ik,m

−Ẽk))d
k=1)

]
dPN,aV

β

−
[
−

E1+N−ζ

E1−N−ζ

dẼ1 ...−
Ed+N−ζ

Ed−N−ζ

dẼd

×
∑

ik,1 6=...6=ik,m

f((R′
k(Ek)N(λk

ik,1
−Ẽk), ..., R′

k(Ek)N(λk
ik,m

−Ẽk))d
k=1)

]
dPN

GVE

∣∣∣∣
6 Ĉ(Nθ+ζ−1+Nθ−ζ).

It is worth mentioning that, in the single-matrix case, Bourgade, Erdős, Yau, and
Yin [15] have recently been able to remove the average with respect to E and prove
the Wigner–Dyson–Mehta conjecture at fixed energy in the bulk of the spectrum for
generalized symmetric and Hermitian Wigner matrices. We believe that combining their
techniques with ours one should be able to remove the average with respect to E in the
previous theorem. However, this would go beyond the scope of this paper and we shall
not investigate this here.

Another consequence of our transportation approach is the universality of other
observables, such as the minimum spacing in the bulk. The next result is restricted to
the case β=2 since we rely on [6, Theorem 1.4] which is proved in the case β=2 and is
currently unknown for β=1.

Corollary 2.9. Let β=2, fix k∈{1, ..., d}, let Ik be a compact subset of (−aaV
k , baV

k )
with non-empty interior, and denote the renormalized gaps by

∆k
i :=

λk
i+1−λk

i

(T k
0 �S

k
0 )′(γi/N )

, λk
i ∈ Ik,

∫

∫ ∫

∫ ∫

∫

∫
∫∫
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where γi/N∈R is such that µsc((−∞, γi/N ))=i/N . Also, denote by P̃N,aV
β,k the distribu-

tion of the increasingly ordered eigenvalues {λk
i }N

i=1 under PN,aV
β,k , the law of the eigen-

values of the k-th matrix under PN,aV
β . Then, under the hypotheses of Theorem 2.5, the

following statements hold :
• (Smallest gaps) Let t̃1N,k<t̃

2
N,k ...<t̃

p
N,k denote the p smallest renormalized spac-

ings ∆k
i of the eigenvalues of the k-th matrix lying in I, and set

τ̃ p
N,k :=

(
1

144π2
(T k

0 �S
k
0 )−1(I)

(4−x2)2 dx
)1/3

t̃pN,k.

Then, as N!∞, N4/3τ̃ p
N,k converges in law towards τp whose density is given by

3
(p−1)!

x3p−1e−x3
dx.

• (Largest gaps) Let `1N,k(I)>`2N,k(I)>... be the largest gaps of the form ∆k
i with

λk
i ∈Ik. Let {rN}N∈N be a family of positive integers such that

log rN
logN

! 0 as N!∞.

Then, as N!∞,
N√

32 logN
`rN

N,k! 1 in Lq(P̃N,aV
β,k )

for any q<∞.

All the above corollaries are proved in §5.
As an important application of our results, we consider the law of the eigenvalues

of a self-adjoint polynomials in several GUE or GOE matrices. Indeed, if ε is sufficiently
small andX1, ..., Xd are independent GUE or GOE matrices, a change of variable formula
shows that the law of the eigenvalues of the d random matrices given by

Yi =Xi+ε Pi(X1, ..., Xd), 1 6 i6 d,

follows a distribution of the form PN,aV
β with r=2 and V a convergent series, see §7.

Hence we have the following result.

Corollary 2.10. Let P1, ..., Pd∈C〈x1, ..., xd, b1, ..., bm〉 be self-adjoint polynomials.
There exists ε0>0 such that the following holds: Let Xi be independent GUE or GOE
matrices and set

Yi :=Xi+ε Pi(X1, ..., Xd).

∫
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Then, for ε∈[−ε0, ε0], the eigenvalues of the matrices {Yi}d
i=1 fluctuate in the bulk or at

the edge as when ε=0, up to rescaling. The same result holds for

Yi =Xi+ε Pi(X1, ..., Xd, B1, ..., Bm)

provided τN
B satisfies (2.7). Namely, in both models, the law P̃N,εP

β of the ordered eigen-
values of the matrices Yk satisfies the same conclusions as P̃N,aV

β in Corollaries 2.7
and 2.9.

Remark 2.11. Recall that, as already stated at the beginning of §2, when β=1 the
matrices Bi, as well as the coefficients of P , are assumed to be real. In particular, in the
statement above, if Xi are GOE then the matrices Yi must be orthogonal. The reason
for this is that we need the map (X1, ..., Xd) 7!(Y1, ..., Yd) to be an isomorphism close to
identity at least for uniformly bounded matrices. Our result should generalize to mixed
polynomials in GOE and GUE which satisfy this property, but it does not include the
case of the perturbation of a GOE matrix by a small GUE matrix which is Hermitian
but not orthogonal.

Acknowledgments. A.F. was partially supported by NSF Grant DMS-1262411 and
NSF Grant DMS-1361122. A. G. was partially supported by the Simons Foundation and
by NSF Grant DMS-1307704. The authors would like to thank an anonymous referee for
his challenging questions.

3. Study of the equilibrium measure

In this section we study the macroscopic behavior of the eigenvalues, that is the conver-
gence of the empirical measures and the properties of their limits. Note here that we
are restricting ourselves to measures supported on [−M,M ] so that the weak topology
is equivalent to the topology of moments induced by the norm

‖ν‖ζM :=max
k>1

(ζM)−k|ν(xk)|.

As a consequence, a large deviation principle for the law ΠN,aV
β of (LN

1 , ..., L
N
d ) under

PN,aV
β can be proved:

Lemma 3.1. Assume that M>1 is sufficiently large and that τN
B converges towards

τB (see (2.5) and (2.6)). Then the measures (ΠN,aV
β )N>0 on P([−M,M ])d equipped

with the weak topology satisfy a large deviation principle in the scale N2 with good rate
function

Ia(µ1, ..., µd) := Ja(µ1, ..., µd)− inf
νk∈P([−M,M ])

Ja(ν1, ..., νd),
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where

Ja(µ1, ..., µd) :=
1
2

d∑
k=1

[Wk(x)+Wk(y)−β log |x−y| ] dµk(x) dµk(y)

−F a
0 (µ1, ..., µd, τB).

Proof. The proof is given in [7], [2] in the case F a
0 =0, while the general case follows

from the Laplace method (known also as Varadhan lemma) since F a
0 is continuous for

the ‖ · ‖ζM topology (and therefore for the usual weak topology, which is stronger).

It follows by the result above that {LN
k }d

k=1 converge to the minimizers of Ia. We
next prove that, for a small enough, Ia admits a unique minimizer, and show some of its
properties. This is an extended and refined version of (1.2) which shall be useful later on.

Lemma 3.2. Assume that Hypothesis 2.1 holds. There exists a0>0 such that, for
a∈[−a0, a0], Ia admits a unique minimizer (µaV

1 , ..., µaV
d ). Moreover the support of each

µaV
k is connected and strictly contained inside [−M,M ], and each µaV

k has a density
which is smooth and strictly positive inside its support except at the two boundary points,
where it goes to zero as a square root.

Proof. We first notice that if Ia(µ1, ..., µk) is finite, so is

− log |x−y| dµk(x) dµk(y).

In particular the minimizers {µaV
i }d

i=1 of Ia have no atoms. We then consider the
small perturbation Ia(µaV

1 +εν1, ..., µaV
d +ενd) for centered measures (ν1, ..., νd) (that is,

dνk=0) such that νk>0 outside the support of µaV
k and µaV

k +ενk>0 for |ε|�1. Hence,
by differentiating Ia(µaV

1 +εν1, ..., µaV
d +ενd) with respect to ε and setting ε=0, we de-

duce that

0 = Fk(x) dνk(x), (3.1)

where

Fk(x) :=Wk(x)−DkF
a
0 (µaV

1 , ..., µaV
d , τB)[δx]−β log |x−y| dµaV

k (y)

and x 7!DkF
a
0 (µ1, ..., µd, τB)[δx] denotes the function such that, for any measure ν,

d

dε

∣∣∣∣
ε=0

F a
0 (µaV

1 , ..., µaV
k−1, µ

aV
k +εν, µaV

k+1, ..., µ
aV
d , τB)

= DkF
a
0 (µaV

1 , ..., µaV
d , τB)[δx] dν(x).

(3.2)

∫

∫

∫

∫

∫∫

∫
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It is shown in Lemma 6.16 that this function, as well as its derivatives, is smooth and
of size a. Since νk is centered and νk>0 outside the support of µk, it follows from (3.1)
that there exists a constant Ck∈R such that

Fk =Ck on supp(µaV
k ) and Fk >Ck on R\supp(µaV

k ).

Since ∂2
x(DkF

a
0 (µaV

1 , ..., µaV
k )[δx]) is uniformly bounded by C(M)a for some finite con-

stant C(M) which only depends on M , the effective potential

W eff
k (x) :=Wk(x)−DkF

a
0 (µaV

1 , ..., µaV
k , τB)[δx] (3.3)

is uniformly convex for a<c0/C(M) due to Hypothesis 2.1. In addition,

x 7−!− log |x−y| dµaV
k (y)

is convex for x∈R\supp(µaV
k ). This implies that the non-negative function Fk−Ck is

uniformly convex on R\supp(µaV
k ) and vanishes at the boundary of the support of µk,

and hence µaV
k necessarily has connected support, which we denote by [aaV

k , baV
k ].

We now consider the measures µε
k :=(Id+εfk)#µaV

k , where fk: R!R is a smooth
function. Then, since Ia(µε

1, ..., µ
ε
d)>I

a(µaV
1 , ..., µaV

d ), we deduce by comparing the terms
linear in ε that

(W eff
k )′(x)f(x) dµaV

k (x) =
f(x)−f(y)

x−y
dµaV

k (x) dµaV
k (y) (3.4)

for all k=1, ..., d and all f . In particular, choosing f(x):=(z−x)−1 with z∈R\[aaV
k , baV

k ],
we obtain that

Gk(z) := (z−x)−1 dµaV
k (x)

satisfies the equation

Gk(z)2 =(W eff
k )′(z)Gk(z)+Hk(z), Hk(z) :=

(W eff
k )′(x)−(W eff

k )′(z)
z−x

dµaV
k (x).

Solving this quadratic equation so that G(z)!0 as |z|!∞ yields

Gk(z) = 1
2

(
(W eff

k )′(z)−
√

(W eff
k )′(z)2+4Hk(z)

)
from which it follows (by smoothness of Hk, see also [5, Proof of Lemma 3.2]) that

dµaV
k (x)
dx

= dk(x)
√

(x−aaV
k )(baV

k −x),

∫

∫

∫

∫

∫∫
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where

dk(x)2(x−aaV
k )(baV

k −x) =−(W eff
k )′(x)2−4Hk(x) =: gk(x) for x∈ [aaV

k , baV
k ].

Note that gk is a smooth function. In the case where a=0, it is well known that the strict
convexity of Wk implies that gk has simple zeroes in aaV

k and baV
k , and that dk does not

vanish in an open neighborhood of [aaV
k , baV

k ]. On the other hand we also know (see e.g.
Lemma 6.15) that the measures µaV

k depend continuously on the parameter a (the set
of probability measures being equipped with the weak topology) as they are compactly
supported measures with moments depending analytically on a. As a consequence, gk and
g′k are smooth functions of a, uniformly in the variable x. This implies that, for a small
enough, gk can only vanish in a small neighborhood of aaV

k and baV
k , where its derivative

does not vanish. Hence gk can only have one simple zero in a small neighborhood of
aaV

k (resp. baV
k ), and dk cannot vanish in an open neighborhood of [aaV

k , baV
k ]. Also,

notice that, since W eff
k and Hk are smooth, so is dk. In addition, if one chooses M>

max{|a0
k|, |b0k|} for all k=1, ..., d, then by continuity we deduce that [aaV

k , baV
k ]⊂(−M,M)

for any a∈[−a0, a0].
We finally deduce uniqueness: Assume there are two minimizers (µ1, ..., µd) and

(µ′1, ..., µ
′
d). By the previous considerations, both µi and µ′i have smooth densities with

respect to the Lebesgue measure on R, and we can therefore consider the unique monotone
non-decreasing maps Ti: R!R such that that µ′i=(Ti)#µi. We then consider

ja(τ) := Ja((τ Id+(1−τ)T1)#µ1, ..., (τ Id+(1−τ)Td)#µd).

By concavity of the logarithm and uniform convexity of Wk−DkF
a
0 (ν1, ..., νd, τB)[δx]

(uniform with respect to ν`∈P([−M,M ])), we conclude that ja is uniformly convex on
[0, 1], which contradicts the minimality of µi and µ′i.

We next show that, since the support of each µaV
k is strictly contained inside

[−M,M ], the eigenvalues will not touch R\[−M,M ] with large probability.

Lemma 3.3. Let Hypothesis 2.1 hold. There exists a0>0 such that the following
holds for a∈[−a0, a0]: if [aaV

k , baV
k ] denotes the support of µaV

k (see Lemma 3.2), then
for any ε>0 there exists c(ε)>0 such that, for N large enough,

PN,aV
β (∃i∈{1, ..., N},∃k∈{1, ..., d} :λk

i ∈ [aaV
k −ε, baV

k +ε]c) 6 e−c(ε)N .

Proof. By [11, Lemma 3.1] (see also [9] and [10]) we can prove that, for any closed
sets Fk,

lim sup
N!∞

1
N

logPN,aV
β (∃i, k :λk

i ∈Fk) 6− inf
F1×...×Fd

I,
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where I is the good rate function

I(x1, ..., xi) :=J (x1, ..., xk)− inf
y1,...,yk∈[−M,M ]d

J (y1, ..., yk)

with

J (x1, ..., xd) :=
d∑

k=1

(
W eff

k (xk)−β log |xk−y| dµaV
k (y)

)
,

where W eff is defined in (3.3). As in the proof of Lemma 3.2 one sees that, for |a|
sufficiently small, J is uniformly convex outside the support of the measure, whereas it
is constant on each support. Hence it is strictly greater than its minimal value at positive
distance of this support, from which the conclusion follows.

4. Construction of approximate transport maps: proof of Theorem 2.5

As explained in the introduction, one of the drawbacks of the results in [5] is that it
only allows one to deal with bounded test functions. To avoid this, we shall prove a
multiplicative closeness result (see (2.8)).

4.1. Simplification of the measures and strategy of the proof

We begin from the measure PN,V
β as in (2.2). Because of Theorem 2.3, it makes sense to

introduce the probability measures

dPN,aV
t,β (λ1, ..., λd) :=

1

Z̃N,aV
t,β

eN2tF a
0 (LN

1 ,...,LN
d ,τN

B )+NtF a
1 (LN

1 ,...,LN
d ,τN

B )+tF a
2 (LN

1 ,...,LN
d ,τN

B )

×
d∏

k=1

dRN,Wk

β,M (λk)

for t∈[0, 1], where RN,W
β is as in (2.3). Then, it follows by (2.2) and (2.4) that, for any

non-negative function χ: RN!R+,

1+ χdPN,aV
β

1+ χdPN,aV
1,β

=
(1+χ) dPN,aV

β

(1+χ) dPN,aV
1,β

=1+O
(

1
N

)
,

and therefore ∣∣∣∣log
(

1+ χdPN,aV
β

)
−log

(
1+ χdPN,aV

1,β

)∣∣∣∣ 6
C

N
. (4.1)

Hereafter we do not stress the dependency in β, so PN,aV
t,β =PN,aV

t .

∫

∫ ∫

∫ ∫
∫∫
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To remove the cutoff in M , let

dQN,aV
t (λ1, ..., λd) :=

1

ZN,aV
t

e
∑2

l=0 N2−ltF a
l (φM

# LN
1 ,...,φM

# LN
d ,τN

B )
d∏

k=1

dRN,Wk

β,∞ (λk),

where

ZN,aV
t := e

∑2
l=0 N2−ltF a

l (φM
# LN

1 ,...,φM
# LN

d ,τN
B )

d∏
k=1

dRN,Wk

β,∞ (λk) (4.2)

and φM : R!R is a smooth function equal to x on a neighborhood of the supports
[aaV

k , baV
k ], vanishing outside of [−2M, 2M ], and bounded by 2M everywhere. Then

Lemma 3.3 (as well as similar considerations for QN,aV
t ) implies that, for some δ>0,

‖QN,aV
1 −PN,aV

1 ‖TV 6 e−δN . (4.3)

Notice that QN,aV
0 =QN,0

1 =PN,0
β so, if we can construct an approximate transport map

from QN,aV
0 to QN,aV

1 as in the statement of Theorem 2.5, by (4.1) and (4.3) the same
map will be an approximate transport from PN,0

β to PN,aV
β . Thus it suffices to prove

Theorem 2.5 with QN,aV
0 and QN,aV

1 in place of PN,0
β and PN,aV

β .
For this, we improve the strategy developed in [5]: we construct a 1-parameter family

of maps TN
t : RdN!RdN that approximately sends QN,aV

0 onto QN,aV
t by solving

∂tT
N
t =YN

t (TN
t ), TN

0 =Id,

where YN
t =((YN

t )11, ..., (Y
N
t )d

N ): RdN!RdN is constructed so that the following quantity
is small in Lq(QN,aV

t ), for any q<∞:

RN
t (YN ) := cNt −β

∑
k

∑
i<j

(YN
t )k

i −(YN
t )k

j

λk
i −λk

j

−
∑
i,k

∂λk
i
(YN

t )k
i

−N2F a
0 (φM

# LN
1 , ..., φ

M
# LN

d , τ
N
B )−NF a

1 (φM
# LN

1 , ..., φ
M
# LN

d , τ
N
B )

−F a
2 (φM

# LN
1 , ..., φ

M
# LN

d , τ
N
B )+

∑
i,k

∂λk
i
Ht(λ̂)(YN

t )k
i ,

(4.4)

where λ̂:=(λ1, ..., λd)=(λ1
1, ..., λ

1
N , ..., λ

d
1, ... λ

d
N ), cNt :=∂t logZN,aV

t ,

LN
k :=

1
N

N∑
i=1

δλk
i
,

and

Ht(λ̂) :=N
∑
i,k

Wk(λk
i )−tN2F a

0 (φM
# LN

1 , ..., φ
M
# LN

d , τ
N
B )

−tNF a
1 (φM

# LN
1 , ..., φ

M
# LN

d , τ
N
B )−tF a

2 (φM
# LN

1 , ..., φ
M
# LN

d , τ
N
B ).

(4.5)

∫
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In [5] it is proved that the flow of YN
t is an approximate transport map provided RN

t (YN )
is small: more precisely, if XN

t solves the ODE

ẊN
t =YN

t (XN
t ), XN

0 =Id, (4.6)

and we set TN :=XN
1 , then [5, Lemma 2.2] shows that∣∣∣∣ χ�TN dQN,aV

0 − χdQN,aV
1

∣∣∣∣ 6 ‖χ‖∞
1

0

‖RN
t (YN )‖L1(QN,aV

t ) dt (4.7)

for any bounded measurable function χ: RdN!R.
Although this result is powerful enough if χ is a bounded test function, it becomes

immediately useless if we would like to integrate a function that grows polynomially in N .
For this reason we prove here a new estimate that considerably improves [5, Lemma 2.2].

Lemma 4.1. Assume that, for any q<∞, there exists a constant Cq such that

‖RN
t (YN )‖Lq(QN,aV

t ) 6Cq
(logN)3

N
for all t∈ [0, 1], (4.8)

define XN
t as in (4.6), and set TN :=XN

1 . Let χ: RN!R+ be a non-negative measurable
function satisfying ‖χ‖∞6Nk for some k>0. Then, for any η>0, there exists a constant
Ck,η, independent of χ, such that∣∣∣∣log

(
1+ χdQN,aV

1

)
−log

(
1+ χ�TN dQN,aV

0

)∣∣∣∣ 6Ck,η N
η−1.

Notice that this lemma proves the validity of (2.8) with QN,aV
0 and QN,aV

1 in place
of PN,0

β and PN,aV
β , respectively, provided we can show that (4.8) holds.

Here, we shall first prove Lemma 4.1 and then we show the validity of (4.8). More
precisely, in §4.2 we prove Lemma 4.1, then in §§4.3–4.5 we show that

|RN
t (YN )|6C

(logN)3

N
on a set Gt ⊂RN satisfying QN,aV

t (Gt) > 1−N−cN . (4.9)

As RN
t (YN ) is trivially bounded by CN2 everywhere (being the sum of O(N2) bounded

terms, see (4.4)), (4.9) implies that

‖RN
t (YN )‖Lq(QN,aV

t ) 6C
(logN)3

N
+CN2(QN,aV

t (RN \Gt))1/q 6C
(logN)3

N
,

proving (4.8).
Finally, in §4.6 we show that TN =XN

1 satisfies all the properties stated in Theo-
rem 2.5.

∫ ∫ ∫

∫ ∫
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4.2. Proof of Lemma 4.1

Let %t denote the density of QN,aV
t with respect to the Lebesgue measure L. Then, by

a direct computation one can check that %t, YN , and RN
t =RN

t (YN ) are related by the
following formula:

∂t%t+div(YN
t %t) =RN

t %t. (4.10)

Now, given a smooth function χ: RN!R+ satisfying ‖χ‖∞6Nk, we define

χt :=χ�XN
1 �(X

N
t )−1 for all t∈ [0, 1]. (4.11)

Note that with this definition χ1=χ. Also, since χt�X
N
t is constant in time, differenti-

ating with respect to t we deduce that

0 =
d

dt
(χt�X

N
t ) = (∂tχt+YN

t ·∇χt)�XN
t ,

and hence χt solves the transport equation

∂tχt+YN
t ·∇χt =0, χ1 =χ. (4.12)

Combining (4.10) and (4.12), we compute

d

dt
χt%t dL= ∂tχt%t dL+ χt∂t%t dL

=− YN
t ·∇χt%t dL− χt div(YN

t %t) dL+ χtRN
t %t dL

= χtRN
t %t dL.

We want to control the last term. To this aim we notice that, since ‖χ‖∞6Nk, it
follows immediately from (4.11) that ‖χt‖∞6Nk for any t∈[0, 1]. Hence, using Hölder’s
inequality and (4.8), for any p>1 we can bound∣∣∣∣ χt RN

t %t dL
∣∣∣∣ 6 ‖χt‖Lp(QN,aV

t )‖R
N
t ‖Lq(QN,aV

t )

6 ‖χt‖(p−1)/p
∞ ‖χt‖1/p

L1(QN,aV
t )

‖RN
t ‖Lq(QN,aV

t )

6Nk(p−1)/p‖χt‖1/p

L1(QN,aV
t )

‖RN
t ‖Lq(QN,aV

t )

6Cq
Nk(p−1)/p(logN)3

N
‖χt‖1/p

L1(QN,aV
t )

,

where q :=p/(p−1). Hence, given η>0, we can choose p:=1+η/2k to obtain∣∣∣∣ χt RN
t %t dL

∣∣∣∣ 6CqN
η−1‖χt‖1/p

L1(QN,aV
t )

6CNη−1(1+‖χt‖L1(QN,aV
t )),

∫ ∫ ∫
∫ ∫ ∫

∫

∫

∫
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where C depends only on Cq, k, and η. Therefore, setting

Z(t) := χt %t dL= ‖χt‖L1(QN,aV
t )

(recall that χt>0), we proved that

|Ż(t)|6CNη−1(1+Z(t)),

which implies that

|log(1+Z(1))−log(1+Z(0))|6CNη−1.

Recalling that TN =XN
1 , this proves the desired result when χ is smooth. By approxi-

mation the result extends to all measurable functions χ: RN!R+ satisfying ‖χ‖∞6Nk,
concluding the proof.

4.3. Construction of approximate transport maps

Define

MN
k :=

N∑
i=1

δλk
i
−Nµ∗k,t,

where µ∗k,t :=µ
aV
k,t are the limiting measures for LN

k under QN,aV
t ; their existence and

properties are derived exactly as in the case t=1, see §3. In analogy with [5, §2.3] we
make the following ansatz: we look for a vector field YN

t of the form

(YN
t )k

i (λ̂) =y0
k,t(λ

k
i )+

1
N

y1
k,t(λ

k
i )+

1
N

d∑
`=1

ζk`,t(λ
k
i ,M

N
` ), (4.13)

where y0
k,t: R!R, y1

k,t: R!R, zk`,t=z`k,t: R2!R, and

ζk`,t(x,M
N
` ) := zk`,t(x, y) dMN

` (y).

With this particular choice of YN
t , we see that

N∑
i=1

∂λk
i
(YN

t )k
i (λ̂) =N (y0

k,t)
′(x) dLN

k (x)+ (y1
k,t)

′(x) dLN
k (x)

+
d∑

`=1

∂1ζk`,t(x,M
N
` ) dLN

k (x)+ ∂2zkk,t(x, x) dLN
k (x).

∫

∫

∫ ∫
∫∫
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We now expand {F a
l }2

l=0 around the stationary measures µ∗k,t (recall that F a
l are smooth

by Lemma 6.16, and that MN has mass bounded by 2N) and use that φM
# µ∗k,t=µ

∗
k,t to

get

F a
l (φM

# LN
1 , ..., φ

M
# LN

d , τ
N
B )

=F a
l (µ∗1,t, ..., µ

∗
d,t, τ

N
B )+

1
N

∑
k

DkF
a
l (µ∗1,t, ..., µ

∗
d,t, τ

N
B )[φM

# MN
k ]

+
1
N2

∑
k,`

D2
k`F

a
l (µ∗1,t, ..., µ

∗
d,t, τ

N
B )[φM

# MN
k , φ

M
# MN

` ]

+
1
N3

∑
k,`,m

D3
k`mF

a
l (µ∗1,t, ..., µ

∗
d,t, τ

N
B )[φM

# MN
k , φ

M
# MN

` , φ
M
# MN

m ]+O
( |φM

# MN |4

N4

)
,

where

O

( |φM
# MN |p

Nk

)
:=O(N−k‖φM

# MN‖p
Mζ);

see Lemma 6.16.
We now use assumption (2.7) and the smoothness of the functions F a

l (see again
Lemma 6.16) to expand DkF

a
l , D2

k`F
a
l , and D3

k`mF
a
l with respect to τ . To simplify

notation, we define the following functions:

fk,l(x) :=DkF
a
l (µ∗1,t, ..., µ

∗
d,t, τ

0
B)[δφM (x)],

fkτ1,l(x) :=D2
k,τF

a
l (µ∗1,t, ..., µ

∗
d,t, τ

0
B)[δφM (x), τ

1
B ],

fkτ2,l(x) :=D2
k,τF

a
l (µ∗1,t, ..., µ

∗
d,t, τ

0
B)[δφM (x), τ

2
B ],

+ 1
2D

3
k,ττF

a
l (µ∗1,t, ..., µ

∗
d,t, τ

0
B)[δφM (x), τ

1
B , τ

1
B ],

fk`,l(x, y) :=D2
k`F

a
l (µ∗1,t, ..., µ

∗
d,t, τ

0
B)[δφM (x), δφM (y)]

fk`τ1,l(x, y) :=D3
k`,τF

a
l (µ∗1,t, ..., µ

∗
d,t, τ

0
B)[δφM (x), δφM (y), τ

1
B ],

fk`m,l(x, y) :=D3
k`mF

a
l (µ∗1,t, ..., µ

∗
d,t, τ

0
B)[δφM (x), δφM (y), δφM (z)].

We may assume without loss of generality that these functions are symmetric with respect
to their arguments. Then we get the following formulas:

F a
l (φM

# LN
1 , ..., φ

M
# LN

d , τ
N
B )

=F a
l (µ∗1,t, ..., µ

∗
d,t, τ

0
B)+

1
N

∑
k

fk,l(x) dMN
k (x)

+
1
N2

∑
k

fkτ1,l(x) dMN
k (x)+

1
N2

∑
k,`

fk`,l(x, y) dMN
k (x) dMN

` (y)
∫

∫
∫∫
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+
1
N3

∑
k

fkτ2,l(x) dMN
k (x)+

1
N3

∑
k,`

fk`τ1,l(x, y) dMN
k (x) dMN

` (y)

+
1
N3

∑
k,`,m

fk`m,l(x, y, z) dMN
k (x) dMN

` (y) dMN
m (z)+O

( |φM
# MN |4

N4

)
,

and

∂λk
i
F a

l (φM
# LN

1 , ..., φ
M
# LN

d , τ
N
B )

=
1
N
f ′k,l(λ

k
i )+

1
N2

f ′kτ1,α(λk
i )+

2
N2

∑
`

∂1fk`,l(λk
i , y) dM

N
` (y)

+
1
N3

f ′kτ2,α(λk
i )+

2
N3

∑
`

∂1fk`τ1,α(λk
i , y) dM

N
` (y)

+
3
N3

∑
`,m

∂1fk`m,l(λk
i , y, z) dM

N
` (y) dMN

m (z)+O
( |φM

# MN |3

N4

)
.

This gives, for H defined in (4.5),

∂λk
i
Ht(λ̂) =NW ′

k(λk
i )−tNf ′k,0(λ

k
i )−t[f ′kτ1,0(λ

k
i )−f ′k,1(λ

k
i )]

−2t
∑

`

∂1fk`,0(λk
i , y) dM

N
` (y)

− t

N
[f ′kτ2,0(λ

k
i )+f ′kτ1,1(λ

k
i )+f ′k,2(λ

k
i )]

− 2t
N

∑
`

[∂1fk`τ1,0(λk
i , y)+∂1fk`,1(λk

i , y)] dM
N
` (y)

− 3t
N

∑
`,m

∂1fk`m,0(λk
i , y, z) dM

N
` (y) dMN

m (z)+O
( |φM

# MN |2

N2

)
.

Also, with this notation, the analogue of (3.3) for t∈[0, 1] becomes

W eff
k,t(x) :=Wk(x)−tfk,0(x). (4.14)

Hence, with all this at hand, we can estimate the term RN
t (YN ) defined in (4.4): using

the convention that when we integrate a function of the form

ψ(x)−ψ(y)
x−y

∫

∫
∫

∫

∫

∫∫
∫∫∫

∫∫

∫∫
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with respect to LN
k ⊗LN

k the diagonal terms give ψ′(x), we get

RN
t (YN )

= cNt − βN2

2

∑
k

y0
k,t(x)−y0

k,t(y)
x−y

dLN
k (x) dLN

k (y)

−N
(

1− β

2

) ∑
k

(y0
k,t)

′ dLN
k

− βN

2

∑
k

y1
k,t(x)−y1

k,t(y)
x−y

dLN
k (x) dLN

k (y)−
(

1− β

2

) ∑
k

(y1
k,t)

′ dLN
k

− βN

2

∑
k,`

ζk`,t(x,MN
` )−ζk`,t(y,MN

` )
x−y

dLN
k (x) dLN

k (y)

−
(

1− β

2

) ∑
k,`

∂1ζk`,t(x,M
N
` ) dLN

k −
∑

k

∂2zkk,t(x, x) dLN
k (x)

−N2F a
0 (µ∗1,t, ..., µ

∗
d,t, τ

0
B)−N

∑
k

fk,0(x) dMN
k (x)

−
∑
k,`

fk`,0(x, y) dMN
k (x) dMN

` (y)−NF a
1 (µ∗1,t, ..., µ

∗
d,t, τ

0
B)

−
∑

k

fk,1(x) dMN
k (x)−F a

2 (µ∗1,t, ..., µ
∗
d,t, τ

0
B)

+N2
∑

k

(W eff
k,t)

′(x)y0
k,t(x) dL

N
k (x)

+N
∑

k

(W eff
k,t)

′(x)y1
k,t dL

N
k (x)

+N
∑
k,`

(W eff
k,t)

′(x) ζk`,t(x,M
N
` ) dLN

k (x)

−tN
∑

k

[f ′kτ1,0−f ′k,1](x)y
0
k,t(x) dL

N
k (x)

−t
∑

k

[f ′kτ1,0−f ′k,1](x)y
1
k,t(x) dL

N
k (x)

−t
∑
k,`

[f ′kτ1,0−f ′k,1](x)ζk`,t(x,M
N
` ) dLN

k (x)

−2tN
∑
k,`

∂1fk`,0(x, y)y0
k,t(x) dM

N
` (y) dLN

k (x)

−2t
∑
k,`

∂1fk`,0(x, y)y1
k,t(x) dM

N
` (y) dLN

k (x)

∫∫

∫∫
∫∫

∫∫

∫∫
∫∫

∫ ∫
∫

∫
∫

∫
∫
∫

∫
∫

∫
∫
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−2t
∑

k,`,m

∂1fk`,0(x, y) ζkm,t(x,M
N
m ) dMN

` (y) dLN
k (x)

−3t
∑

k,`,m

∂1fk`m,0(x, y, z)y0
k,t(x) dM

N
` (y) dMN

m (z) dLN
k (x)

−2t
∑
k,`

[∂1fk`τ1,0+∂1fk`,1](x, y)y0
k,t(x) dM

N
` (y) dLN

k (x)

−t
∑

k

[f ′kτ2,0+f ′kτ1,1+f ′k,2](x)y
0
k,t(x) dL

N
k (x)+O

( |φM
# MN |3

N

)
.

Recalling (3.4) we observe that, for any function f ,

N2 (W eff
k,t)

′f dLN
k − βN2

2
f(x)−f(y)

x−y
dLN

k (x) dLN
k (y)

=N Ξkf dM
N
k − β

2
f(x)−f(y)

x−y
dMN

k (x) dMN
k (y),

(4.15)

where

Ξkf(x) :=−β f(x)−f(y)
x−y

dµ∗k,t(y)+(W eff
k,t)

′(x)f(x). (4.16)

Also, observe that up to now the term O(|φM
# MN |3/N) does not depend on the smooth-

ness of the functions y0
k,t,y

1
k,t, zk`,t. However, in order to be able later to quantify the

degree of smoothness required on the potentials Wk, we introduce the following notation:
we will denote by O(|φM

# MN |3/N ; g1, g2, ..., gp) a quantity bounded by
p∑

m=1

R[gm]+
C

N
‖φM

# MN‖3
Mζ , (4.17)

where the functions gm map R`m into R for `m∈{1, 2}, and

R[gm] :=
d∑

r1,r2,r3=1

1
N

1

0

dα

∣∣∣∣ gm(αz1+(1−α)z2, z3) dMN
r1

(z1) dMN
r2

(z2) dMN
r3

(z3)
∣∣∣∣

+
d∑

r1,r2=1

1
N

∣∣∣∣ gm(z1, z2) dMN
r1

(z1) dMN
r2

(z2)
∣∣∣∣

+
d∑

r1=1

1
N

∣∣∣∣ gm(z1, z1) dMN
r1

(z1)
∣∣∣∣

if `m=2, while

R[gm] :=
d∑

r1,r2=1

1
N

1

0

dα

∣∣∣∣ gm(αz1+(1−α)z2) dMN
r1

(z1) dMN
r2

(z2)
∣∣∣∣

+
d∑

r1=1

1
N

∣∣∣∣ gm(z1) dMN
r1

(z1)
∣∣∣∣

∫∫

∫∫

∫∫
∫∫

∫∫

∫∫

∫∫∫

∫∫∫

∫

∫
∫

∫

∫

∫

∫
∫
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if `m=1. For instance, writing

zk`,t(x, z)−zk`,t(y, z)
x−y

=
1

0

∂1zk`,t(αx+(1−α)y, z) dα

and recalling the definition of ζk`,t, we see that

1
N

ζk`,t(x,MN
` )−ζk`,t(y,MN

` )
x−y

dMN
k (x) dMN

k (y) =O

( |φM
# MN |3

N
; ∂1zk`,t

)
.

Thus, applying (4.15) to f=y0
k,t,y

1
k,t, ζk`,t( · ,MN

` ), and using that LN
k =µ∗k,t+M

N
k /N

(recall that zk`,t=z`k,t for all k and `), we get

RN
t (YN ) =N

∑
k

[
Ξky0

k,t−2t
(∑

`

y0
`,t(y)∂1fk`,0(y, ·) dµ∗`,t(y)

)
−fk,0

]
dMN

k

+
∑

k

[
Ξky1

k,t−2t
(∑

`

y1
`,t(y)∂1fk`,0(y, ·) dµ∗`,t(y)

)
−fk,1−t[f ′kτ1,0−f ′k,1]y

0
k,t−

(
β

2
−1

)
(y0

k,t)
′

−
(

1− β

2

) ∑
`

∂1zk`,t(y, ·) dµ∗`,t(y)

−t
∑

`

[
f ′`τ1,0−f ′`,1

]
(y) zk`,t(y, ·) dµ∗`,t(y)

−2t
∑

`

y0
`,t(y)[∂1fk`τ1,0+∂1fk`,1](y, ·) dµ∗`,t(y)

]
dMN

k

+
∑
k,`

[
Ξk[zk`,t( · , y)](x)−2t

∑
m

zkm,t(z, y) ∂1fm`,0(z, x) dµ∗m,t(z)

−fk`,0(x, y)−2t ∂1fk`,0(x, y)y0
k,t(x)−

β

2
1k=`

y0
k,t(x)−y0

k,t(y)
x−y

−3t
∑
m

y0
m,t(z) ∂1fk`m,0(x, y, z) dµ∗m,t(z)

]
dMN

k (x) dMN
` (y)

+CN
t +O

( |φM
# MN |3

N
; (y1

k,t)
′, ∂1zk`,t, ∂2zkk,t

)
where CN

t is a constant. Let us consider the operator Ξt defined on d-tuples of functions
by

Ξt(Ψ1, ...,Ψd) := (Ξt(Ψ1, ...,Ψd)1, ...,Ξt(Ψ1, ...,Ψd)d),

where

Ξt(Ψ1, ...,Ψd)k :=ΞkΨk−2t
d∑

`=1

Ψ`(y) ∂1fk`,0(y, ·) dµ∗`,t(y) for all k=1, ..., d.

(4.18)

∫

∫ ∫
∫ ∫

∫
∫
∫

∫

∫

∫∫

∫∫ ∫
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Then, for RN
t (YN ) to be small we want to impose

Ξt(y0
1,t, ...,y

0
d,t)k =(g0

1 , ..., g
0
d),

Ξt(z1`,t( · , y), ..., zd`,t( · , y))k =(g2
1`( · , y), ..., g2

d`( · , y)) for all `=1, ..., d and all y,

Ξt

(
y1

1,t, ...,y
1
d,t

)
k
=

(
g1
1 , ..., g

1
d

)
,

(4.19)

where

g0
k(x) := fk,0(x)+ck,

g2
k`(x, y) := fk`,0(x, y)+2t ∂1fk`,0(x, y)y0

k,t(x)

+3t
∑
m

y0
m,t(z) ∂1fk`m,0(x, y, z) dµ∗m,t(z)+ck`(y), if k 6= `,

g2
kk(x, y) := fkk,0(x, y)+2t ∂1fkk,0(x, y)y0

k,t(x)−
β

2
y0

k,t(x)−y0
k,t(y)

x−y

+3t
∑
m

y0
m,t(z) ∂1fkkm,0(x, y, z) dµ∗m,t(z)+ckk(y),

g1
k(x) := fk,1(x)+t[f ′kτ1,0(x)−f ′k,1(x)]y

0
k,t(x)+

(
β

2
−1

)
(y0

k,t)
′(x)

+
(

1− β

2

) ∑
`

∂1zk`,t(y, x) dµ∗`,t(y)+
∑

`

f ′`,1(y) zk`,t(y, x) dµ∗`,t(y)

+2t
∑

`

y0
`,t(y)[∂1fk`τ1,0+∂1fk`,1](y, ·) dµ∗`,t(y)+c′k,

where ck and c′k are constants to be fixed later, and ck`(y) is a family of functions
depending only on y also to be fixed.

Indeed, noticing that dMN
k =0 for all k, we see that all constants integrate to zero

against MN , and we conclude that the following holds.

Lemma 4.2. Let Ξt be defined as in (4.18), with {Ξk}d
k=1 as in (4.16). Also, recall

the notation (4.17). Assume that we can find functions y0
k,t,y

1
k,t, zk`,t solving (4.19).

Then

RN
t (YN ) =CN

t +O
( |φM

# MN |3

N
; (y1

k,t)
′, ∂1zk`,t, ∂2zkk,t

)
,

where CN
t is a constant.

∫

∫

∫

∫
∫

∫
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4.4. Invertibility properties of Ξt

Lemma 4.2 suggests that, to construct an approximate map, we need to solve an equation
of the form

Ξt(Ψ1, ...,Ψd) = (g1, ..., gd).

We remind that, in our setting, the functions ∂1fk`,0( · , y) are smooth and their Cs norms
are of size O(|a|) for any s>0, where a is a small number. Also, note that the operators
Ξk defined in (4.16) are continuous with respect to the C1 topology. This will allow us
to show invertibility of Ξt using Lemma 4.3 below and a fixed-point argument.

Before stating the result in our setting we recall that, given a function f : R!R, the
norm Cs is defined as

‖f‖Cs(R) :=
s∑

j=0

‖f (j)‖L∞(R),

where f (j) denotes the jth derivative of f . The next result is contained in [5, Lemma 3.2].

Lemma 4.3. Let V : R!R be a function of class Cσ with σ>4, assume that µV has
support given by [a, b] and that

dµV

dx
(x) =S(x)

√
(a−x)(x−b) with S(x) > c̄ > 0 a.e. on [a, b]. (4.20)

Define the operator

ΞΨ(x) :=−β Ψ(x)−Ψ(y)
x−y

dµV (x)+V ′(x)Ψ(x),

and fix an integer 36s6σ−1. Then, for any function g: R!R of class Cs, there exists
a unique constant cg such that the equation

ΞΨ(x) = g(x)+cg

has a unique solution Ψ: R!R of class Cs−2, also denoted by Ξ−1g, which satisfies the
estimate

‖Ψ‖Cs−2(R) 6 Ĉs‖g‖Cs(R). (4.21)

Moreover Ψ (and its derivatives) behaves like

g(x)+cg
V ′(x)

(and its corresponding derivatives) when |x|!∞.

∫
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We now want to apply this lemma with V =W eff
k,t and µV =µ∗k,t (so that Ξ=Ξk, see

(4.16)), and prove the invertibility of Ξt by a fixed point argument. We notice that the
constants appearing in the above result depend only on the smoothness of V and on
the assumption (4.20), which is satisfied by µ∗k,t due to Lemma 3.2. In particular, when
applied with V =W eff

k,t and µV =µ∗k,t, all the constants are uniform for t∈[0, 1]. Also, as
F a

0 is of class C∞, the smoothness of W eff
k,t is the same as that of Wk (see (4.14)).

Proposition 4.4. There exists α>0 such that the following holds. Assume that the
functions W1, ...,Wd: R!R are of class Cσ for some σ>4. Suppose that |a|6α, and let
t∈[0, 1]. Then, for any family of functions g1, ..., gd: R!R of class Cs with s∈[3, σ−1],
there exist a unique family of constants (cg1 , ..., cgd

) such that the equation

Ξt(Ψ1, ...,Ψd) = (g1, ..., gd)+(cg1 , ..., cgd
) (4.22)

has a solution Ψ1, ...,Ψd: R!R of class Cs−2. In addition, there exists a finite constant

C0 such that

d
max
k=1

‖Ψk‖C1(R) 6 
C0
d

max
k=1

‖gk‖C3(R). (4.23)

Furthermore, there exists γs>0 such that Ψk and its derivatives up to order s−1 decay
like O(1/[(W eff

k,t)
′(x)]γs) as |x|!∞.

Proof. Define the operator

ΥaV
k (Ψ1, ...,Ψd) :=

d∑
`=1

Ψ`(y) ∂1fk`,0(y, ·) dµ∗`,t(y),

so that (4.22) can be rewritten as

ΞkΨk−2tΥaV
k (Ψ1, ...,Ψd) = gk+cgk

for all k=1, ..., d.

Recalling that ∂1fk`,0( · , y) is a smooth function with all derivatives of size O(|a|), for
any family of bounded functions Ψk: R!R, one has∥∥ΥaV

k (Ψ1, ...,Ψd)
∥∥

C3(R)
6 
C|a| d

max
k=1

‖Ψk‖C1(R) (4.24)

for some universal constant 
C. To prove the result we simply apply a fixed point argu-
ment: more precisely, we set (Ψ1,(0), ...,Ψd,(0))=(0, ..., 0) and we recursively define, for
j>1,

Ψk,(j+1) := (Ξk)−1(2tΥaV
k (Ψ1,(j), ...,Ψd,(j))+gk), k=1, ..., d.

Applying Lemma 4.3 with V =W eff
k,t and µV =µ∗k,t (so that Ξ=Ξk), we deduce that

Ψk,(j) ∈C1(R) for all j> 1 and k=1, ..., d.

∫
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Also, by the linearity of Ξk and ΥaV
k , we have

Ψk,(j+1)−Ψk,(j) =(Ξk)−1(2tΥaV
k (Ψ1,(j)−Ψ1,(j−1), ...,Ψd,(j)−Ψd,(j−1))),

so it follows from (4.21) and (4.24) that

d
max
k=1

‖Ψk,(j+1)−Ψk,(j)‖C1(R) 6 2tĈ3

C|a| d

max
k=1

‖Ψk,(j)−Ψk,(j−1)‖C1(R).

Hence, if we choose α small enough so that Ĉ3

Cα6 1

4 , we deduce that {Ψk,(j)}j>1 is a
Cauchy sequence in C1 for all k=1, ..., d. Recalling that the operator Ξk are continuous
with respect to the C1 topology, we deduce that the sequence (Ψ1,(j), ...,Ψd,(j)) converges
to a solution of our problem (Ψ1, ...,Ψd).

Applying (4.21) and (4.24) again, we deduce that

d
max
k=1

‖Ψk,(j+1)‖C1(R) 6 2tĈ3

C|a| d

max
k=1

‖Ψk,(j)‖C1(R)+Ĉ3
d

max
k=1

‖gk‖C3(R)

6 1
2

d
max
k=1

‖Ψk,(j)‖C1(R)+Ĉ3
d

max
k=1

‖gk‖C3(R),

so (4.23) follows by letting j!∞. In addition, Lemma 4.3 implies that Ψk decays like
O(1/(W eff

k,t)
′(x)) as |x|!∞. Furthermore, since ΥaV

k (Ψ1, ...,Ψd)∈C∞, it follows by (4.21)
that

d
max
k=1

‖Ψk‖Cs(R) 6 
Cs,

showing that Ψk∈Cs.
To prove the final statement we note that, since ‖Ψk‖Cs(R)6
Cs and Ψk decays like

O(1/(W eff
k,t)

′), by interpolation inequalities the derivatives of Ψk up to order s−1 decay
as an inverse power of (W eff

k,t)
′.

We can now apply the above proposition to invert the first equation in (4.19) and
find a solution y0

k,t of class Cσ−3. Then (since now y0
k,t is given) we solve the second

equation in (4.19) using again the proposition above, and finally we invert the third
equation. In this way, in analogy with [5, Lemma 3.3] we obtain the following result
(we recall that a function of two variables belongs to Cτ,τ ′ if it is τ times continuously
differentiable with respect to the first variable and τ ′ times with respect to the second).

Corollary 4.5. Let α be as in Proposition 4.4. Assume that Wk: R!R are of
class Cσ for all k=1, ..., d with σ>10, and that |a|6α. Then there exist functions
y0

k,t,y
1
k,t, zk`,t solving (4.19), and a finite universal constant Cσ, such that

‖y0
k,t‖Cσ−3(R)+‖y1

k,t‖Cσ−9(R)+
∑

τ+τ ′6σ−6

‖zk`,t‖Cτ,τ′ (R×R) 6Cσ for all k, `=1, ..., d.

Moreover these functions and their derivatives (except the last ones) decay as an inverse
power of (W eff

k,t)
′(x) as |x|!∞.
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Recalling (4.4), it follows by Lemma 4.2 and Corollary 4.5 that

RN
t (YN ) =CN

t +O
( |φM

# MN |3

N
; (y1

k,t)
′, ∂1zk`,t, ∂2zkk,t

)
.

But in fact, since RN
t (YN ) is centered (compare with [5, §3.5]), we deduce that

RN
t (YN ) =O

( |φM
# MN |3

N
; (y1

k,t)
′, ∂1zk`,t, ∂2zkk,t

)
.

The goal of the next section is to control the right-hand side.

4.5. Getting rid of the remainder

We start by using concentration inequalities to control MN
k −E[MN

k ].

Lemma 4.6. Let Hypothesis 2.1 hold, and let a0 be as in §3. For a∈[−a0, a0], there
exists c′>0 such that, for any Lipschitz function f : R!R, for all δ>0, all t∈[0, 1] and
k∈{1, ..., d},

QN,aV
t

(∣∣∣∣ N∑
i=1

f(λk
i )−E

[ N∑
i=1

f(λk
i )

]∣∣∣∣ > ‖f‖Lδ

)
6 2e−c′δ2

,

where ‖f‖L denotes the Lipschitz constant of f .

Proof. QN,aV
t being a probability measure with uniformly log-concave density (see

§3), Bakry–Emery’s and Herbst’s argument applies (see e.g. [2, §4.4]).

We now need to control the difference between E[LN
k ] and its limit µ∗k,t. We shall do

this in two steps: we first derive a rough estimate which only provides a bound of order
N−1/2 following ideas initiated in [48], and in a second step we use loop equations to get
a bound of order (logN)/N , see e.g. [55]. This two steps approach was already developed
in [9], [10], [11]. To get the rough estimate, we shall use the distance d(µ, µ′)=d(µ−µ′)
on the space of probability measures on R defined on centered measures ν by

d(ν) :=
(

2 log |x−y|−1dν(x) dν(y)
)1/2

=

√
R

1
|τ |

|ν̂(τ)|2 dτ ,

where ν̂ denotes the Fourier transform of the measure ν. Because this distance blows
up on measures with atoms, we shall consider the following regularization of the empir-
ical measure: For a given vector λ:=(λ1<...<λN ), we denote by λ̃:=(λ̃1<...<λ̃N ) its
transformation given by

λ̃1 :=λ1, λ̃i+1 := λ̃i+max{λi+1−λi, N
−3}.

We denote by L̃N
k the empirical measure of the λ̃k

i , and by L̄N
k its convolution with the

uniform measure on [0, N−4]. We then claim the following result.

∫∫ ∫
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Lemma 4.7. Let Hypothesis 2.1 hold. Then there is an a0>0 so that, for a∈
[−a0, a0], there exist positive constants c and C such that, for all δ>0 and t∈[0, 1],
the following bounds hold :

• we have

QN,aV
t

(
d

max
k=1

d(L̄N
k , µ

∗
k,t) > δ

)
6 eCN log N−βδ2N2/6+Ce−cN2

;

• if f : R!R is Lipschitz and belongs to L2(R), then

QN,aV
t

(∣∣∣∣ f(x) d(LN
k −µ∗k,t)(x)

∣∣∣∣ > δ‖f‖1/2+
‖f‖L

N2

)
6 eCN log N−βδ2N2/8+Ce−cN2

,

where ‖f‖1/2 :=( R |τ | |f̂(τ)|2dτ)1/2.

Remark 4.8. Note for later use that if f is supported in [−M,M ], then there exists
a finite constant C(M) such that

‖f‖1/2 6C(M)‖f ′‖∞.

Indeed,

‖f‖2
1/2 = |s| |f̂(s)|2 ds=

1
|s|

|f̂ ′(s)|2 ds

=−2 log |x−y|f ′(x) f ′(y) dx dy6C(M)‖f ′‖2
∞.

Proof of Lemma 4.7. We just recall the main point of the proof, which is almost
identical to that of [11, Corollary 3.5]. In the latter article, the potential is only depending
polynomially on the measures rather than being an infinite series. It turns out that the
main point is to show that

S(ν) :=
β

2

∑
k

d(νk)2−
∑
k,`

D2
k`F

a
0 (µ∗1,t, ..., µ

∗
d,t, τ

N
B )[νk, ν`]

is uniformly convex on the set P ([−M,M ])d of probability measures on [−M,M ], so that
its square root defines a Lipschitz distance. Here, we more simply notice that for a small
enough

S(ν) >
β

4

d∑
k=1

d(νk)2. (4.25)

Indeed, the latter amounts to bound from above the second term in the definition of S.
But since D2

k`F
a
0 (µ∗1,t, ..., µ

∗
d,t)[δx, δy] is smooth and compactly supported, we can always

write

D2
k`F

a
0 (µ∗1,t, ..., µ

∗
d,t, τ

N
B )[δx, δy] = eiξx+iζyD̂2

k`F
a
0 (µ∗1,t, ..., µ

∗
d,t, τ

N
B )(ξ, ζ) dξ dζ

∫∫

∫

∫ ∫

∫∫

∫
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and for any centered measures νk and ν` we get, by the Cauchy–Schwarz inequality,

|D2
k`F

a
0 (µ∗1,t, ..., µ

∗
d,t, τ

N
B )[νk, ν`]|

6 d(νk) d(ν`)
(

|D̂2
k`F

a
0 (µ∗1,t, ..., µ

∗
d,t, τ

N
B )(ξ, ζ)|2|ξ| |ζ| dξ dζ

)1/2

.

Hence we can always choose a small enough so that the last term is as small as wished,
proving (4.25).

Let us sketch the rest of the proof. By localizing the eigenvalues in a very tiny
neighborhood around the quantiles of µ∗k,t it is possible to show (see e.g. [11, Lemma
3.11]) that there exists a finite constant C such that

ZN,aV
t > e−N2Ja

t (µ∗1,t,...,µ
∗
d,t)−CN log N

where ZN,aV
t is as in (4.2) and

Ja
t (µ1, ..., µk)

:=
1
2

d∑
k=1

(
[Wk(x)+Wk(y)−β log |x−y|] dµk(x) dµk(y)

)
−tF a

0 (µ1, ..., µk, τ
N
B ).

Then, writing LN :=(LN
1 , ..., L

N
d ), L̄N :=(L̄N

1 , ..., L̄
N
d ), and µ∗ :=(µ∗1,t, ..., µ

∗
d,t), one has

β

2 x6=y

log |x−y| dLN (x) dLN (y)−tF a
0 (LN , τ

N
B )−

∑
k

Wk dL
N
k +Ja

t (µ∗1,t, ..., µ
∗
d,t)

=
β

2 x6=y

log |x−y| d[LN−µ∗](x) d[LN−µ∗](y)+R(LN−µ∗)

=
β

2
log |x−y| d[L̄N−µ∗](x) d[L̄N−µ∗](y)+R(LN−µ∗)+O

(
logN
N

)
,

where we used the regularization L̄N of LN to add the diagonal term x=y in the loga-
rithmic term up to an error of order N logN , we bounded uniformly F a

1 and F a
2 up to

an error of order N , and we set

R(ν) :=
∑

k

fk(x) dνk(x)−D3F a
0 (µ∗+θν, τN

B )[ν⊗3]

for some θ∈[0, 1] and some functions fk vanishing on the support of the equilibrium
measure µ∗k,t, positive outside, and going to infinity like Wk (see [11, Lemma 3.11] for
more details). In this way one deduces that

QN,aV
t

(
d

max
k=1

d(L̄N
k , µ

∗
k,t) > δ

)
6 eCN log N

maxd
k=1 d(L̄N

k ,µ∗k,t)>δ

e−N2d(L̄N ,µ∗)2−N2R(L̄N−µ∗)
N∏

i=1

dλk
i .

∫∫

∫∫

∫ ∫
∫
∫

∫

∫
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By the large deviation principle in Theorem 3.1, we see that the cubic term in R is neg-
ligible compared to the quadratic term on a set with probability greater than 1−e−cN2

.
Thus, setting �MN

k :=N(L̄N
k −µ∗k,t), we get

QN,aV
t

(
d

max
k=1

d(�MN
k ) >Nδ

)
6 eCN log N

[
maxd

k=1 d(�MN
k )>Nδ

e−(β/5)
∑d

k=1 d(�MN
k )2−N2 ∑

k

�
fk(x) dLN

k (x)
N∏

i=1

dλk
i +e−cN2

]
6 eCN log N (e−βN2δ2/6+e−cN2

)

This gives the first bound of the lemma, from which the second is easily deduced since∣∣∣∣ f(x) dν(x)
∣∣∣∣ =

∣∣∣∣ f̂(τ)ν̂(τ) dτ
∣∣∣∣ 6 ‖f‖1/2 d(ν)

and ∣∣∣∣ f(x) d(LN
k −L̄N

k )(x)
∣∣∣∣ 6

‖f‖L

N2
.

We finally improve the previous bounds to get an error of order (logN)/N instead
of (logN)/

√
N .

Lemma 4.9. Let Hypothesis 2.1 hold, and given a function f : R!R define the norm

|||f ||| := (1+|τ |7)|f̂(τ)| dτ. (4.26)

There exists a0>0 so that, for all a∈[−a0, a0] and all functions f : R!R, with |||f |||<∞,∣∣∣∣ [
f(x) d(LN

k −µ∗k,t)(x)
]
dQN,aV

t

∣∣∣∣ 6C|||f ||| logN
N

for some constant C independent of a and f .

Proof. Before starting the proof, we recall the notation

LN := (LN
1 , ..., L

N
d ) and µ∗ := (µ∗1,t, ..., µ

∗
d,t).

To improve the bound we just obtained, we use the loop equation. Such an equation
is simply obtained by integration by parts and, for any smooth test function, reads as
follows:

− 1
N

f ′(x) dLN
k (x) dQN,aV

t

=
1
N2

N∑
i=1

f(λk
i )∂λk

i

(
dQN,aV

t∏N
j=1

∏d
`=1 dλ

`
j

) N∏
j=1

d∏
`=1

dλ`
j

=
(

f(x)(t[∂xDkF
a](LN , τ

N
B )[δx]−W ′

k(x)) dLN
k (x)

+
β

2
f(x)−f(y)

x−y
dLN

k (x) dLN
k (y)− β

2N
f ′(x) dLN

k (x)
)
dQN,aV

t ,

∫

∫ ∫
∫

∫
∫ ∫

∫
∫∫

∫

∫∫
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where F a :=
∑2

l=0 F
a
l N

−l. Recalling that MN
k =N(LN

k −µ∗k,t) and (4.16), we rewrite the
above equation as[

Ξkf dM
N
k −t

∑
` 6=k

∂xDk`F
a
0 (µ∗, τN

B )[δy, δx]f(x) dµ∗k,t(x) dM
N
` (y)

]
dQN,aV

t

=
4∑

γ=1

RN
γ (f), (4.27)

where

RN
1 (f) :=

(
1− β

2

)
f ′(x) dLN

k (x) dQN,aV
t ,

RN
2 (f) :=

β

2N
f(x)−f(y)

x−y
dMN

k (x) dMN
k (y) dQN,aV

t ,

RN
3 (f) :=Nt

[
f(x) ∂xDk(F a−F a

0 )(LN , τ
N
B )[δx] dLN

k (x)
]
dQN,aV

t ,

RN
4 (f) :=

t

N

∑
`

(
f(x) ∂xDk`F

a
0 (µ∗+θ(LN−µ∗), τN

B )[MN
k ,M

N
` ]

)
dQN,aV

t ,

and the last term was computed using a Taylor expansion. Writing f(x)= eixsf̂(s) ds
and noticing that ‖eiλ ·‖1/2+‖eiλ ·‖L62(1+|λ|) so that Lemma 4.7 entails

∣∣(̂MN
k )(λ)

∣∣2 dQN,aV
t 6CN logN(1+|λ|)2,

we get

|RN
1 (f)|6 ‖f‖L,

|RN
2 (f)|6N−1 dτ |f̂(τ)|

1

0

dα |τ |
∣∣(̂MN

k )(ατ)
∣∣ ∣∣(̂MN

k )
(
(1−α)τ

)∣∣ dQN,aV
t

6N−1 dτ |τ | |f̂(τ)|
1

0

dα
∣∣(̂MN

k )(ατ)
∣∣2dQN,aV

t

6 (logN) (1+|τ |3)|f̂(τ)| dτ,

|RN
3 (f)|6C‖f‖∞,

|RN
4 (f)|6C(logN)‖f‖∞,

where we used Lemma 4.7 for the second and fourth terms, and to bound the last term
we noticed that, since F a

0 is smooth and it is of size O(|a|) together with its derivatives,
we have

max
k,`

∣∣[ ̂∂xDk`F a
0

]
(λ, ζ)

∣∣ 6
Ĉ|a|

(1+λ2)(1+|ζ|10)
. (4.28)

∫∫

∫∫

∫ ∫

∫ ∫
∫∫

∫

∫
∫

∫

∫
∫

∫
∫

∫∫
∫∫∫
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Hence, since∣∣∣∣ [
∂xDk`F

a
0 (µ∗, τN

B )[δy, δx] f(x) dµ∗k,t(x) dM
N
` (y)

]
dQN,aV

t

∣∣∣∣
6

∣∣f̂ ·dµ∗k,t(ζ)
∣∣ ∣∣ ̂∂xDk`F a

0 (ξ, ζ)
∣∣ ∣∣∣∣ (̂MN

` )(ξ) dQN,aV
t

∣∣∣∣ dξ dζ,
we deduce from (4.27) that∣∣∣∣ f(x) dMN

k (x) dQN,aV
t

∣∣∣∣
6 ‖Ξ−1

k f‖∞
∑
` 6=k

| ̂∂xDk`F a
0 (ξ, ζ)|

∣∣∣∣ (̂MN
` )(ζ) dQN,aV

t

∣∣∣∣ dξ dζ
+C‖Ξ−1

k f‖C1(R)+logN (1+|τ |3)|Ξ̂−1
k f(τ)| dτ.

Applying the above bound with f(x)=eiλx and using (4.21) with Ξ=Ξk, we get

δN (λ) :=
d

max
k=1

∣∣∣∣ M̂N
k (λ) dQN,aV

t

∣∣∣∣
6λ2 max

k,`
| ̂∂xDk`F a

0 (λ, ζ)|δN (ζ) dζ+C(1+|λ|7) logN.
(4.29)

By (4.28), we deduce from the above equation that

1
1+|λ|10

δN (λ) dλ

6 Ĉ |a|
(

1
1+|λ|10

dλ

)
1

1+|ζ|10
δN (ζ) dζ+C

(
1+|λ|7

1+|λ|10
dλ

)
logN

6CĈ|a| 1
1+|ζ|10

δN (ζ) dζ+C logN.

In particular, if a is sufficiently small so that CĈ|a|6 1
2 , we can reabsorb the first term

in the right-hand side and obtain

1
1+|λ|10

δN (λ) dλ6 2C logN.

Plugging back this control in (4.29) and using again (4.28), we finally get the bound

δN (λ) 6C(1+|λ|7) logN.

Therefore, using the identity f(x)= f̂(τ)eiτxdτ we conclude that

d
max
k=1

∣∣∣∣ [
f(x) dMN

k (x)
]
dQN,aV

t

∣∣∣∣ 6 |f̂(τ)|δN (τ) dτ 6C logN (1+|τ |7)|f̂(τ)| dτ,

as desired.

∫∫

∫∫

∫ ∫
∫

∫ ∫
∫

∫
∫

∫
∫
∫

∫∫

∫

∫ ∫ ∫ ∫
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A straightforward corollary of Lemmas 4.6 and 4.9 is the following.

Corollary 4.10. There exists a0>0 such that, for all a∈[−a0, a0], there are finite
positive constants C and c′ such that, for all f : R!R with |||f |||<∞ and all δ>0, we
have

QN,aV
t

(∣∣∣∣ f(x) dMN
k (x)

∣∣∣∣ > δ‖f‖L+C|||f ||| logN
)

6 2e−c′δ2
. (4.30)

In particular, for all p>1 there exists a finite constant Cp such that

∥∥MN
k [f ]

∥∥
Lp(QN,aV

t )
=

∥∥∥∥ f(x) dMN
k (x)

∥∥∥∥
Lp(QN,aV

t )

6Cp

(
‖f‖L+|||f ||| logN

)
.

Thanks to this corollary we get the following result.

Corollary 4.11. Assume that φM∈C9(R) vanishes outside [−M,M ] and that it
is bounded by M . There exists a0>0 so that, for all a∈[−a0, a0] and for all ζ>M , there
are finite constants cζ , Cζ , c>0 such that, for all δ>0, we have

QN,aV
t (‖φM

# MN
k ‖ζ > δcζ +Cζ logN) 6 2e−cδ2

. (4.31)

Proof. Using Corollary 4.10 with f(x)=(φM (x))p, together with Remark 4.8, we
deduce that there exist constants c0, C0>0, only depending on φM , such that

QN,aV
t (|MN

k ((φM )p)|> c0pM
p−1δ+C0M

pp7 logN) 6 2e−c′δ2
.

Therefore, for ζ>M we find c1, C1>0 such that

QN,aV
t (|MN

k ((φM )p)|> c1ζ
pδ+C1ζ

p logN) 6 2e−c′δ2ζ2p/M2pp2
.

Applying this bound for p∈[1, ecN2/2], by a union bound we deduce that there exists
c′′>0 such that

QN,aV
t

(
max

16p6ecN2/2
ζ−p

∣∣MN
k ((φM )p)|> c1δ+C1 logN

)
6 2e−c′′δ2

.

On the other hand, for p>ecN2/2 the bound is trivial as

ζ−ecN2/2
|MN

k ((φM )ecN2/2
)|6N

(
M

ζ

)ecN2/2

6 c1δ+C1 logN

as soon as N is large enough. This concludes the proof.

∫

∫
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Due to this corollary, we can finally estimate the remainder

RN
t (YN ) =O

( |φM
# MN |3

N
; (y1

k,t)
′, ∂1zk`,t, ∂2zkk,t

)
with C(logN)3/N . Indeed, recalling (4.17), using Fourier transform we have

ψ(x, y, z) dMN
k (x) dMN

` (y) dMN
m (z)

= ψ̂(ξ, ζ, θ)MN
k [eiξ·]MN

` [eiζ·]MN
m [eiθ·] dξ dζ dθ,

so applying Corollaries 4.10 and 4.11, and recalling (4.26), we can bound our remainder
by

C
(logN)3

N
+C

(logN)3

N
|ψ̂(ξ, ζ, θ)|(1+|ξ|)7(1+|ζ|)7(1+|θ|)7 dξ dζ dθ

with probability greater than 1−N−cN . Since all the functions involved decay at infinity,
for the above integral to converge it is enough to assume that ψ∈C26, as this ensures
that

|ψ̂(ξ, ζ, θ)| (1+|ξ|)7 (1+|ζ|)7 (1+|θ|)7 6
C

1+|ξ|5+|ζ|5+|θ|5
∈L1(R3).

Recalling that by assumption ψ is as smooth as (y1
k,t)

′, ∂1zk`,t, or ∂2zkk,t, the assumption
is, by Corollary 4.5, satisfied provided Wk∈Cσ with σ>36. Due to our Hypothesis 2.1,
this concludes the proof of (4.9). As explained at the end of §4.1 this implies (4.8), which
combined with (4.1), (4.3), and (4.7) proves (2.8).

Before concluding this section, we prove an additional estimate on the size of the
integral of smooth functions against the measure MN . Corollary 4.10 provides a very
strong bound on the probability that f dMN is large when f is a fixed function. We
now show how to obtain an estimate that holds true when we replace f dMN by its
supremum over smooth functions.

Lemma 4.12. There exists a0>0 so that, for all a∈[−a0, a0], the following holds:
for any `>0 there are finite positive constants C` and c` such that

QN,aV
t

(
sup

‖f‖
C`+9(R)61

∣∣∣∣ f(x) dMN
k (x)

∣∣∣∣ > (logN)N1/(`+1)

)
6C`e

−c`(log N)2+2/`

. (4.32)

Proof. Since the measure QN,aV
t is supported inside the cube [−M,M ]N (see §4.1),

we may assume that all functions f are supported on [−2M, 2M ]. Fix L∈N and define
the points

xm,L :=−2M+m
4M
L
, m=0, ..., L.

∫

∫∫∫
∫∫∫

∫∫∫

∫
∫
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Given f∈C`+9
0 ([−2M, 2M ]) with ‖f‖C`+9 61, we set g :=f (9)∈C`

0([−2M, 2M ]) and define
the function

gL(x) :=
`−1∑
j=0

g(j)(xm,L)
j!

(x−xm,L)j for all x∈ [xm,L, xm+1,L].

Note that, since ‖g‖C` 61,

|g(x)−gL(x)|6 ‖g(`)‖∞(x−xm,L)` 6

(
4M
L

)̀
for all x∈[xm,L, xm+1,L] and all m=0, ..., L−1. So, by the arbitrariness of x,

‖g−gL‖L∞([−2M,2M ]) 6 (4M)`L−`.

Hence, if we set

fL(x) :=
x

−2M

(x−y)8

8!
gL(y) dy,

since f (9)
L =gL and f (j)(−2M)=0 for all j=0, ..., 8, we get

‖f−fL‖L∞([−2M,2M ]) 6CM,`L
−`.

Recalling that MN has mass bounded by 2N , this implies that∣∣∣∣ f dMN− fL dMN

∣∣∣∣ 6 2CM,`NL
−`. (4.33)

Fix now a smooth cut-off function ψM : R![0, 1] satisfying ψM =1 inside [−M,M ] and
ψM =0 outside [−2M, 2M ], and define

fL,M (x) =
L−1∑
m=0

`−1∑
j=0

g(j)(xm,L)f̂m,j(x),

where

f̂m,j(x) :=ψM (x)
x

−2M

(x−y)8

8!
(y−xm,L)jχ[xm,L,xm+1,L](y) dy.

It is immediate to check that f̂m,j∈C8,1
0 ([−2M, 2M ]) (i.e., f̂m,j has eight derivatives, and

its 8th derivative is Lipschitz), and that fL,M =fL on [−M,M ]. Also, since ‖f‖C`+9 61
we see that |g(j)(xm,L)|61 for all m, j. Hence, recalling (4.33) and the fact that MN

is supported on [−M,M ], this proves that for any function f∈C`+9
0 ([−2M, 2M ]) with

‖f‖C`+9 61 there exist some coefficients αm,j∈[−1, 1] such that∣∣∣∣ f dMN−
∑
m,j

αm,j f̂m,j dMN

∣∣∣∣ 6 2CM,`NL
−`.

∫

∫ ∫

∫

∫ ∫
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Since #{f̂m,j}=`L, this implies that

QN,aV
t

(
sup

‖f‖
C`+961

∣∣∣∣ f dMN

∣∣∣∣> (logN)N1/(`+1)

)
6

∑
m,j

QN,aV
t

(∣∣∣∣ f̂m,j dMN

∣∣∣∣> (logN)N1/(`+1)−2CM,`N L−`

`L

)
.

(4.34)

We now observe that ‖f̂m,j‖C8,1 6AM,`, where AM,` is a constant depending only on M
and `. Thus, recalling that the functions f̂m,j are supported on [−2M, 2M ], this yields

|||f̂m,j |||6A′
M,`,

where the norm ||| · ||| is defined in (4.26). Hence, choosing

L := bĈM,`N
1/(`+1)(logN)−1/`c (4.35)

with ĈM,` large enough so that

(logN)N1/(`+1)−2CM,`N L−` > 1
2 (logN)N1/(`+1),

we can apply Corollary 4.10 to the functions f̂m,j , and it follows from (4.34) and (4.35)
that

QN,aV
t

(
sup

‖f‖
C`+961

∣∣∣∣ f dMN

∣∣∣∣> (logN)N1/(`+1)

)
6C ′

M,`Le
−c′M,`((log N)N1/(`+1)/L)2

6C ′′
M,`e

−c′′M,`(log N)2+2/`

.

4.6. Reconstructing the transport map via the flow

In this section we study the properties of the flow XN
t : RdN!RdN generated by a vector

field YN
t as in (4.13), i.e., XN

t solves the ODE

ẊN
t =YN

t (XN
t ), XN

0 =Id,

and we prove that TN :=XN
1 satisfies all the properties stated in Theorem 2.5.

Recalling the form of YN
t (see (4.13)), it is natural to expect that for all t∈[0, 1] we

can give an expansion for XN
t as

XN
t =X0,t+

1
N
X1,t+

1
N2

X2,t,

∫
∫

∫
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where each component (X0,t)k
i of X0,t should flow accordingly to y0

k,t: more precisely,
we define (X0,t)k

i :=Xk
0,t(λ

k
i ) with Xk

0,t: R!R the solution of

Ẋk
0,t =y0

k,t(X
k
0,t), Xk

0,t(λ) =λ. (4.36)

Recalling the notation λ̂=(λ1, ..., λd) where λk :=(λk
1 , ..., λ

k
N ), we define

X1,t =((X1,t)11, ..., (X1,t)1N , ..., (X1,t)d
1, ..., (X1,t)d

N ): RdN−!RdN

to be the solution of the linear ODE

(Ẋ1,t)k
i (λ̂) = (y0

k,t)
′(Xk

0,t(λ
k
i ))·(X1,t)k

i (λ̂)+y1
k,t(X

k
0,t(λ

k
i ))

+
d∑

`=1

zk`,t(Xk
0,t(λ

k
i ), y) dMN

X`
0,t

(y)

+
1
N

d∑
`=1

N∑
j=1

∂2zk`,t(Xk
0,t(λ

k
i ), X`

0,t(λ
`
j))·(X1,t)`

j(λ̂),

(4.37)

with the initial condition (X1,0)k
i =0, where MN

X`
0,t

is defined as

f(y) dMN
X`

0,t
(y) =

N∑
i=1

(
f
(
X`

0,t(λ
`
i)

)
− f dµ∗`,t

)
for all f ∈Cc(R).

Proposition 4.13. Let α be as in Proposition 4.4. Assume that Wk: R!R are of
class Cσ for all k=1, ..., d, with σ>16, and that |a|6α. Then the flow

XN
t =((XN

t )11, ..., (X
N
t )1N , ..., (X

N
t )d

1, ..., (X
N
t )d

N ): RdN−!RdN

is of class Cσ−9 and the following properties hold : Let (X0,t)k
i and (X1,t)k

i be as in
(4.36) and (4.37) above, and define X2,t: RdN!RdN via the identity

XN
t =X0,t+

1
N
X1,t+

1
N2

X2,t.

Then, for any t∈[0, 1],

max
k,i

‖(X1,t)k
i ‖L4(QN,aV

0 ) 6C logN, max
k,i

‖(X2,t)k
i ‖L2(QN,aV

0 ) 6C(logN)2. (4.38)

Also, there exist constants C, c>0 such that, with probability greater than 1−e−c(log N)2 ,
the following bounds hold :

sup
t∈[0,1]

max
i,k

|(X1,t)k
i |6C(logN)N1/(σ−14),

sup
t∈[0,1]

max
i,k

|(X2,t)k
i |6C (logN)2N2/(σ−15),

(4.39)

∫

∫∫
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and, for all k, `=1, ..., d,

sup
t∈[0,1]

max
i,i′

∣∣(X1,t)k
i (λ̂)−(X1,t)k

i′(λ̂)
∣∣ 6C (logN)N1/(σ−15)|λk

i −λk
i′ |, (4.40)

sup
t∈[0,1]

max
i,i′

∣∣(X2,t)k
i (λ̂)−(X2,t)k

i′(λ̂)
∣∣ 6C (logN)2N2/(σ−17)|λk

i −λk
i′ |, (4.41)

sup
t∈[0,1]

max
i,j

|∂λ`
j
(X1,t)k

i |(λ̂) 6C (logN)N1/(σ−15). (4.42)

Proof. Since YN
t ∈Cσ−9 (see Corollary 4.5) it follows by Cauchy–Lipschitz theory

that XN
t is of class Cσ−9. Define

(XN,τ
t )k

i (λ̂) :=Xk
0,t(λ

k
i )+τ

(X1,t)k
i

N
(λ̂)+τ

(X2,t)k
i

N2
(λ̂) = (1−τ)Xk

0,t(λ
k
i )+τ(XN

t )k
i (λ̂).

Also, we define the measure MN
(XN,τ

t )k
as

f(y) dMN
(XN,τ

t )k(y) =
N∑

i=1

[
f((1−τ)Xk

0,t(λ
k
i )+τ(XN

t )k
i (λ̂))− f dµ∗k,t

]
(4.43)

for all f∈Cc(R). In order to get an ODE for X2,t, the strategy is to use the Taylor
formula with integral remainder to expand the ODE ẊN

t =YN
t (XN

t ), and then use (4.36)
and (4.37) to simplify the terms involving Ẋ0,t and Ẋ1,t. In this way we get

(Ẋ2,t)k
i (λ̂) =

1

0

(y0
k,t)

′((XN,τ
t )k

i (λ̂)) dτ ·(X2,t)k
i (λ̂)

+N
1

0

[(y0
k,t)

′((XN,τ
t )k

i (λ̂))−(y0
k,t)

′(Xk
0,t(λ

k
i ))] dτ ·(X1,t)k

i (λ̂)

+
1

0

(y1
k,t)

′((XN,τ
t )k

i (λ̂)) dτ ·
(

(X1,t)k
i (λ̂)+

(X2,t)k
i (λ̂)

N

)
+

1

0

∑
`

[
∂1zk`,t((X

N,τ
t )k

i (λ̂), y) dMN
(XN,τ

t )`(y)

− ∂1zk`,t(Xk
0,t(λ

k
i ), y) dMN

X`
0,t

(y)
]
dτ ·

(
(X1,t)k

i (λ̂)+
(X2,t)k

i (λ̂)
N

)
+

∑
`

∂1zk`,t(Xk
0,t(λ

k
i ), y) dMN

X`
0,t

(y)·
(

(X1,t)k
i (λ̂)+

(X2,t)k
i (λ̂)

N

)

+
∑

`

N∑
j=1

1

0

[∂2zk`,t((X
N,τ
t )k

i (λ̂), (XN,τ
t )`

j(λ̂))

−∂2zk`,t(Xk
0,t(λ

k
i ), X`

0,t(λ
`
j))] dτ ·(X1,t)`

j(λ̂)

+
∑

`

N∑
j=1

1

0

[∂2zk`,t((X
N,τ
t )k

i (λ̂), (XN,τ
t )`

j(λ̂))] dτ ·
(X2,t)`

j(λ̂)
N

, (4.44)

∫ ∫

∫
∫

∫
∫

∫
∫

∫
∫

∫
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with the initial condition (X2,t)k
i =0. Using that

‖y0
k,t‖Cσ−3(R) 6C

(see Corollary 4.5) we obtain
‖X0,t‖Cσ−4(R) 6C. (4.45)

We now start by controling (X1,t)k
i . First, simply by using that MN has mass bounded

by 2N we obtain the rough bound |(X1,t)k
i |6CN . Inserting this bound into (4.44) one

easily obtains |(X2,t)k
i |6CN2.

We now prove finer estimates. First, by Lemma 4.12 together with the fact that
(X0,t)k

i and y 7!zk`,t(x, y) are of class Cσ−6 uniformly in x and t (see Corollary 4.5),
it follows that there exists a finite constant C such that, with probability greater than
1−e−c(log N)2 ,

sup
x∈R

t∈[0,1]

∣∣∣∣ zk`,t(x, λ) dMN
X`

0,t
(λ)

∣∣∣∣ 6C (logN)N1/(σ−14).

Hence, using (4.37) we easily deduce the first bound in (4.39).
In order to control X2,t we first estimate (X1,t)k

i in L4(QN,aV
0 ): using (4.37) again,

we get

d

dt
max
i,k

‖(X1,t)k
i ‖L4(QN,aV

0 )

6C

(
max
i,k

‖(X1,t)k
i ‖L4(QN,aV

0 )+1

+max
i,k,`

∥∥∥∥ zk`,t(Xk
0,t(λ

k
i ), y) dMN

X`
0,t

(y)
∥∥∥∥

L4(QN,aV
0 )

)
.

(4.46)

To bound (X1,t)k
i in L4(QN,aV

0 ), and then to be able to estimate X2,t, we will use the
following lemma.

Lemma 4.14. Assume that s>16. Then, for any i=1, ..., N and k, `=1, ..., d,∥∥∥∥ zk`,t(Xk
0,t(λ

k
i ), y) dMN

X`
0,t

(y)
∥∥∥∥

L4(QN,aV
0 )

6C logN, (4.47)∥∥∥∥ ∂1zk`,t(Xk
0,t(λ

k
i ), y) dMN

X`
0,t

(y)
∥∥∥∥

L4(QN,aV
0 )

6C logN. (4.48)

Proof. Fix indices i, k, and ` and write the Fourier decomposition of

η2,t(x, y) := zk`,t(Xk
0,t(x), X

`
0,t(y))

∫

∫

∫
∫
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to get

η2,t(x, y) dMN
` (y) = η̂2,t(x, ξ) eiξy dMN

` (y) dξ.

Since zk`,t∈Cu,v for u, v6σ−6 and Xk
0,t∈Cσ−4 (see (4.45)) with derivatives decaying

fast at infinity, we deduce that

|η̂2,t(x, ξ)|6
C

1+|ξ|σ−6
.

Thus, using Corollary 4.10, we get∥∥∥∥∥sup
x

∣∣∣∣ η2,t(x, y) dMN
k (y)

∣∣∣∣
∥∥∥∥∥

L4(QN,aV
0 )

6 ‖η̂2,t( · , ξ)‖∞
∥∥∥∥ eiξydMN

k (y)
∥∥∥∥

L4(QN,aV
0 )

dξ

6C(logN) ‖η̂2,t( · , ξ)‖∞(1+|ξ|7) dξ

6C logN

provided σ>13. The same argument works for ∂1zk`,t provided σ>15, which concludes
the proof.

Inserting (4.47) into (4.46), we obtain the validity of the first bound in (4.38).
We now bound the time derivative of X2,t: using that MN has mass bounded by

2N , in (4.44) we can easily estimate∣∣∣∣N 1

0

[(y0
k,t)

′((XN,τ
t )k

i (λ̂))−(y0
k,t)

′(Xk
0,t(λ

k
i ))] dτ ·(X1,t)k

i (λ̂)
∣∣∣∣

6C|(X1,t)k
i |2+

C

N
|(X1,t)k

i | |(X2,t)k
i |,

1

0

∣∣∣∣ ∂1zk`,t((X
N,τ
t )k

i (λ̂), y) dMN
(XN,τ

t )`(y)− ∂1zk`,t(Xk
0,t(λ

k
i ), y) dMN

X`
0,t

(y)
∣∣∣∣ dτ

6C|(X1,t)k
i |+

C

N
|(X2,t)k

i |+
C

N

∑
j

(
|(X1,t)`

j |+
1
N
|(X2,t)`

j |
)
,

and

N∑
j=1

1

0

|∂2zk`,t((X
N,τ
t )k

i (λ̂), (XN,τ
t )`

j(λ̂))−∂2zk`,t(Xk
0,t(λ

k
i ), X`

0,t(λ
`
j))| dτ |(X1,t)`

j |

6
C

N

(
|(X1,t)k

i |+
1
N
|(X2,t)k

i |
) ∑

j

|(X1,t)`
j |

+
C

N

∑
j

(
|(X1,t)`

j |2+
1
N
|(X2,t)`

j | |(X1,t)`
j |

)
,

∫ ∫ ∫

∫ ∫ ∫
∫

∫

∫ ∫

∫

∫
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and hence, noticing that
d|(X2,t)k

i |
dt

6 |(Ẋ2,t)k
i |,

we get

d

dt
|(X2,t)k

i |

6C|(X2,t)k
i |+C|(X1,t)k

i |2+
C

N
|(X1,t)k

i | |(X2,t)k
i |+C|(X1,t)k

i |+
C

N2
|(X2,t)k

i |2

+
C

N

∑
`,j

|(X1,t)`
j | |(X1,t)k

i |+
C

N3

∑
`,j

|(X1,t)k
i | |(X2,t)`

j |+
C

N3

∑
`,j

|(X2,t)k
i | |(X2,t)`

j |

+
∣∣∣∣ ∂1zk`,t(Xk

0,t(λ
k
i ), y) dMN

X`
0,t

(y)
∣∣∣∣ |(X1,t)k

i |+
C

N

∑
`,j

|(X1,t)`
j |2

+
C

N2

∑
`,j

|(X2,t)`
j | |(X1,t)`

j |+
C

N2

∑
`,j

|(X1,t)`
j | |(X2,t)k

i |+
C

N

∑
`,j

|(X2,t)`
j |.

Using the trivial bounds |(X1,t)k
i |6CN and |(X2,t)k

i |6CN2, and the elementary inequal-
ity ab6a2+b2, we obtain

d

dt
|(X2,t)k

i |6C

(
|(X2,t)k

i |+|(X1,t)k
i |2+

1
N

∑
`,j

|(X1,t)`
j |2+

1
N

∑
`,j

|(X2,t)`
j |

+
∣∣∣∣ ∂1zk`,t(Xk

0,t(λ
k
i ), y) dMN

X`
0,t

(y)
∣∣∣∣2).

(4.49)

In particular, if we set

A1,t :=max
i,k

|(X1,t)k
i | and A2,t :=max

i,k
|(X2,t)k

i |,

we obtain

d

dt
A2,t 6C

(
A2,t+A2

1,t+max
i,k

∣∣∣∣ ∂1zk`,t(Xk
0,t(λ

k
i ), y) dMN

X`
0,t

(y)
∣∣∣∣2). (4.50)

Hence, noticing that

sup
x∈R

t∈[0,1]

∣∣∣∣ ∂1zk`,t(x, λ) dMN
X`

0,t
(λ)

∣∣∣∣ 6C(logN)N1/(σ−15) (4.51)

with probability greater than 1−e−c(log N)2 (see Corollary 4.5 and Lemma 4.12) and
recalling the first bound in (4.39), using (4.50) and a Grönwall argument we deduce the
validity also of the second bound in (4.39).

∫

∫

∫

∫
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Going back to (4.49) and again using the inequality ab6a2+b2, we also see that

d

dt
‖(X2,t)k

i ‖2
L2(QN,aV

0 )
6C

(
‖(X2,t)k

i ‖2
L2(QN,aV

0 )
+‖(X1,t)k

i ‖4
L4(QN,aV

0 )

+
1
N

∑
`,j

‖(X1,t)`
j‖4

L4(QN,aV
0 )

+
1
N

∑
`,j

‖(X2,t)`
j‖2

L2(QN,aV
0 )

+
∥∥∥∥ ∂1zk`,t(Xk

0,t(λ
k
i ), y) dMN

X`
0,t

(y)
∥∥∥∥4

L4(QN,aV
0 )

)
.

Hence, recalling the first bound in (4.38) and (4.48), we get

d

dt
‖(X2,t)k

i ‖2
L2(QN,aV

0 )
6C(‖(X2,t)k

i ‖2
L2(QN,aV

0 )
+(logN)4),

so a Grönwall argument concludes the proof of (4.38).
We now prove (4.40). Recalling (4.37), we have

|(Ẋ1,t)k
i (λ̂)−(Ẋ1,t)k

i′(λ̂)|

6 |(y0
k,t)

′(Xk
0,t(λ

k
i ))−(y0

k,t)
′(Xk

0,t(λ
k
i′))| |(X1,t)k

i (λ̂)|

+|(y0
k,t)

′(Xk
0,t(λ

k
i′))| |(X1,t)k

i (λ̂)−XN,k′

1,t (λk
i′)|+|y1

k,t(X
k
0,t(λ

k
i ))−y1

k,t(X
k
0,t(λ

k
i′))|

+
∑

`

∣∣∣∣ (zk`,t(Xk
0,t(λ

k
i ), y)−zk`,t(Xk

0,t(λ
k
i′), y)) dM

N
X`

0,t
(y)

∣∣∣∣
+

1
N

∑
`,j

|∂2zk`,t(Xk
0,t(λ

k
i ), X`

0,t(λ
`
j))−∂2zk`,t(Xk

0,t(λ
k
i′), X

`
0,t(λ

`
j))| |(X1,t)`

j(λ
`
j)|.

Hence, using that |Xk
0,t(λ

k
i )−Xk

0,t(λ
k
i′)|6C|λk

i −λk
i′ |, the bounds (4.39) and (4.51), and

the Lipschitz regularity of (y0
k,t)

′, y1
k,t, zk`,t, and ∂2zk`,t, we get

|(Ẋ1,t)k
i (λ̂)−(Ẋ1,t)k

i′(λ̂)|6C|(X1,t)k
i (λ̂)−(X1,t)k

i′(λ̂)|+C(logN)N1/(σ−15)|λk
i −λk

i′ |

outside a set of probability less than e−c(log N)2 , so (4.40) follows from Grönwall’s in-
equality.

By a completely analogous argument, it follows from (4.44), (4.40), (4.39), and
estimates analogue to (4.51) for the higher derivatives of zk`,t, that

|(Ẋ2,t)k
i (λ̂)−(Ẋ2,t)k

i′(λ̂)|6C|(X2,t)k
i (λ̂)−(X2,t)k

i′(λ̂)|+C (logN)2N2/(σ−17)|λk
i −λk

i′ |

holds outside a set of probability less than e−c(log N)2 . Thus (4.41) follows.
Finally, denoting by δ`

j the vector with zero entries except at position j, ` where
there is a one (so that λ̂+εδ`

j =(λ1
1, ..., λ

`
j +ε, ... λd

N )), one can differentiate in time

|(X1,t)k
i (λ̂+εδ`

j)−(X1,t)k
i′(λ̂)|

∫

∫
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and argue as above to deduce that

|(X1,t)k
i (λ̂+εδ`

j)−(X1,t)k
i′(λ̂)|6C(logN)N1/(σ−15)ε

outside a set of probability less than e−c(log N)2 . Dividing by ε and letting ε!0, this
proves (4.42).

5. Universality results

In this section we explain how Corollaries 2.6, 2.7 and 2.9 follow from Theorem 2.5.

Proof of Corollary 2.6. Given ϑ>0, we define the set

Gϑ := {λ̂∈RdN : |λ`
i−γ`

i/N |6Nϑ−2/3 min{i,N+1−i}1/3 for all i and `}. (5.1)

As proved in [29] in the special case of the Gaussian ensembles and then generalized
in [13, Theorem 2.4] to potentials Wk satisfying much weaker conditions than the ones
assumed here, the following rigidity estimate holds: for all ϑ>0 there exist c̄>0 and

C<∞ such that, for all N>0,

P̃N,0
β

(
RN \Gϑ

)
6 
Ce−N c̄

. (5.2)

Also, due to the fact that µ0
k has a density which is strictly positive inside its support

[a0
k, b

0
k] except at the two boundary points where it goes to zero as a square root (see

Lemma 3.2), we deduce that

m

N
>

1
C

γk
(i+m)/N

γk
i/N

min
{√

s−a0
k,

√
b0k−s

}
ds,

from which it follows easily that

|γk
(i+m)/N−γk

i/N |6 C

N2/3
min

{
m2/3,

m

min{i,N+1−i}1/3

}
. (5.3)

Since
|λk

i+m−λk
i |6 |λk

i −γk
i/N |+|λk

i+m−γk
(i+m)/N |+|γk

(i+m)/N−γk
i/N |, (5.4)

using (5.2) and (5.3) and recalling that by assumption m�N , we deduce that

|N(λk
ik+j−λk

ik
)|6C(Nϑ+m) for all λ̂∈Gϑ, ik ∈ [Nε,N(1−ε)], j=1, ...,m, (5.5)

and
|N2/3(λk

j −a0
k)|6C(Nϑ+m2/3) for all λ̂∈Gϑ, j=1, ...,m. (5.6)

∫
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Now, given a bounded function χ: RdN!R, applying (2.8) to

1
2

(
1+

χ

‖χ‖∞

)
with k=0 and η=ϑ, we deduce that∣∣∣∣ χ�TN dPN,0

β − χdPN,aV
β

∣∣∣∣ 6CNϑ−1‖χ‖∞. (5.7)

Recall that the map TN is given by XN
1 , where XN

t is the flow of the vector field YN
t that

has the very special form (4.13) (see Proposition 4.13). In particular, since the functions
y0

k,t, y1
k,t, ζk`,t( · , y) are uniformly Lipschitz, we see that

|(ẊN
t )k

i −(ẊN
t )k

j |6L |(XN
t )k

i −(XN
t )k

j | for all i, j=1, ..., N and k=1, ..., d.

Hence, since XN
1 =TN and XN

0 =Id, Grönwall’s inequality yields

e−L(λk
i −λk

j ) 6 (TN )k
i (λ̂)−(TN )k

j (λ̂) 6 eL(λk
i −λk

j ) for all λk
i >λk

j . (5.8)

We now remark that the law P̃N,aV
β is obtained as the image of the law of λk=(λk

1 , ..., λ
k
N ),

16k6d under PN,aV
β under the map

R̂: RdN!RdN , R̂(λ1, ..., λk, ..., λd) := (R(λ1), ...,R(λk), ...,R(λd)), (5.9)

where R: RN!RN is defined as

[R(x1, ..., xN )]i := min
#J=i

max
j∈J

xj for all i=1, ..., N . (5.10)

Hence, due to (5.8), it follows that TN and R̂ commute, namely

R̂�TN =TN
�R̂. (5.11)

We now consider a test function χ of the form

χ(λ̂) = f((N(λk
ik+1−λk

ik
), ..., N(λk

ik+m−λk
ik

))d
k=1). (5.12)

Then

f((N(λk
ik+1−λk

ik
), ..., N(λk

ik+m−λk
ik

))d
k=1) dP̃

N,aV
β = χ�R̂ dPN,aV

β ,

and it follows by (5.7) and (5.11) that∣∣∣∣ χdP̃N,aV
β − χ�TN

�R̂ dPN,0
β

∣∣∣∣6CNϑ−1‖f‖∞.

∫ ∫

∫

∫ ∫

∫
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Let X0,t, X1,t, and X2,t be as in Proposition 4.13, and note the following fact: whenever
λ̂∈Gϑ we know that, for any `=1, ..., d, the numbers {λ`

i}N
i=1 are close, up to an error

Nϑ, to the quantiles of the stationary measure µ0
` =µ∗`,0. Hence, given any 1-Lipschitz

function ψ, ∣∣∣∣ ψ dMN
`

∣∣∣∣ 6CNϑ for all `=1, ..., d.

Since X`
0,t is a smooth diffeomorphism which sends the quantiles of µ∗`,0 onto the quantiles

of µ∗`,t, we deduce that∣∣∣∣ ψ dMN
X`

0,t

∣∣∣∣ 6CNϑ for all `=1, ..., d and t∈ [0, 1].

This implies that

sup
x,t

zk`,t(x, y) dMN
X`

0,t
(y) =O(Nϑ) and sup

x,t
∂1zk`,t(x, λ) dMN

X`
0,t

(λ) =O
(
Nϑ

)
,

and by the same argument as the one used in the proof of Proposition 4.13 to show (4.39)
and (4.40) we get

max
i,k

|(X1,1)k
i (λ̂)|6CNϑ and |(X1,1)k

i (λ̂)−(X1,1)k
i′(λ̂)|6CNϑ |λk

i −λk
i′ |. (5.13)

for all λ̂∈Gϑ. Then, noticing that ‖∇χ‖∞6N‖∇f‖∞, due to (5.13), (4.41), and (5.5),
we get∣∣∣∣

Gϑ

χ�TN
�R̂ dPN,0

β −
Gϑ

χ�X0,1�R̂ dPN,0
β

∣∣∣∣
6 ‖∇χ‖∞

Gϑ

[ d∑
k=1

m∑
j=1

( |(X1,1)k
ik+j−(X1,1)k

ik
|

N
+
|(X2,1)k

ik+j−(X2,1)k
ik
|

N2

)2 ]1/2

dP̃N,0
β

6C‖∇f‖∞Nϑ

Gϑ

( d∑
k=1

m∑
j=1

|λk
ik+j−λk

ik
|2

)1/2

dP̃N,0
β

6C‖∇f‖∞
m1/2Nϑ (Nϑ+m)

N
.

Note now that (X0,1)k
i =T k

0 for all i=1, ..., N , and that

e−L 6 (T k
0 )′ 6 eL (5.14)

(this follows by the same proof as the one of (5.8), compare also with [5, Equation (5.2)]).
In addition,

(T0,1)k
ik+j(λ̂)−(T0,1)k

ik
(λ̂) = (T k

0 )′(λk
ik

)[λk
ik+j−λk

ik
]+O(|λk

ik+j−λk
ik
|2),

∫

∫

∫ ∫

∫ ∫
∫

∫
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and hence, by the definition of Gϑ,

Gϑ

χ�X0,1�R̂ dPN,0
β

=
Gϑ

f(((T k
0 )′(λk

ik
)N(λk

ik+1−λk
ik

), ..., (T k
0 )′(λk

ik
)N(λk

ik+m−λk
ik

))d
k=1) dP̃

N,0
β

+O(‖∇f‖∞m1/2 (Nϑ+m)2N−1).

Also, in the integral above we can replace (T k
0 )′(λk

ik
) with (T k

0 )′(γk
ik/N ), up to an error

bounded by

C‖∇f‖∞
Gϑ

( d∑
k=1

m∑
j=1

|λk
ik
−γk

i/N |2(N |λk
ik+j−λk

ik
|)2

)1/2

dP̃N,0
β

=O(‖∇f‖∞m1/2(Nϑ+m)Nϑ−1).

Finally, it follows by (5.2) that all integrals on RN \Gϑ are bounded by C‖f‖∞ e−N c̄

.
Hence, we have proved that(1)∣∣∣∣ f((N(λk

ik+1−λk
ik

), ..., N(λk
ik+m−λk

ik
))d

k=1) dP̃
N,aV
β

− f(((T k
0 )′(γk

ik/N )N(λk
ik+1−λk

ik
), ..., (T k

0 )′(γk
ik/N )N(λk

ik+m−λk
ik

))d
k=1) dP̃

N,0
β

∣∣∣∣
6 Ĉ(Nϑ−1+e−N c̄

)‖f‖∞+Ĉ
m1/2N2ϑ+m3/2Nϑ

N
‖∇f‖∞.

Since e−N c̄

6CNθ−1, choosing ϑ6 1
2θ we conclude the validity of the first statement.

For the second statement we choose

χ(λ̂) = f((N2/3(λk
1−aaV

k ), ..., N2/3(λk
m−aaV

k ))d
k=1),

(1) This estimate, as well as the one at the edge that we shall prove below, should be compared
with the one obtained in [5, Theorem 1.5]. While the estimates here are considerably stronger than the
ones in [5, Theorem 1.5] (this follows from the fact that we have better bounds on our approximate
transport maps), as a small “loss” we now have Nϑ−1 instead of a term (log N)3/N . The reason for this
small difference comes from the fact that we decided to apply (2.8) to deduce (5.7). It is worth noticing
that the argument in §4 combined with [5, Lemma 2.2] proves that also the stronger bound∣∣∣∣ χ�T N dP N,0

β − χ dP N,aV
β

∣∣∣∣ 6 C
(log N)3

N
‖χ‖∞

holds. However, since in general (2.8) is much more powerful than the estimate above (as it allows to
deal with functions that grow polynomially with respect to the dimension) and the improvement between
(log N)3/N and Nϑ−1 is minimal, we have decided not to state also this second estimate.

∫
∫

∫

∫
∫

∫ ∫
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and we note that T k
0 (a0

k)=aaV
k . Then, due to (4.39) and (5.13), we get∣∣∣∣

Gϑ

χ�TN
�R̂ dPN,0

β −
Gϑ

χ�X0,1�R̂ dPN,0
β

∣∣∣∣
6
‖∇f‖∞
N1/3

Gϑ

[ d∑
k=1

m∑
j=1

(
|(X1,1)k

j |+
|(X2,1)k

j |
N

)2

�R̂
]1/2

dPN,0
β

6
‖∇f‖∞
N1/3

(dm)1/2

Gϑ

(
max
i,k

|(X1,1)k
i |+

maxi,k |(X2,1)k
i |

N

)
dPN,0

β

6C‖∇f‖∞
m1/2Nϑ

N1/3
.

Also, since
T k

0 (λk
1)−T k

0 (a0
k) = (T k

0 )′(a0
k)(λk

1−a0
k)+O(|λk

1−a0
k|2),

using the rigidity estimate (5.6), we may replace

N2/3(T k
0 (λk

1)−T k
0 (a0

k)) by (T k
0 )′(a0

k)N2/3(λk
1−a0

k)

up to an error of size m1/2 (Nϑ+m2/3)N−2/3. Hence, arguing as above we conclude that∣∣∣∣ f((N2/3(λk
1−aaV

k ), ..., N2/3(λk
m−aaV

k ))d
k=1) dP̃

N,aV
β

− f(((T k
0 )′(a0

k)N2/3(λk
1−a0

k), ..., (T k
0 )′(a0

k)N2/3(λk
m−a0

k))d
k=1) dP̃

N,0
β

∣∣∣∣
6 Ĉ Nϑ−1‖f‖∞+Ĉ

(
m1/2Nϑ

N1/3
+
m1/2(Nϑ+m2/3)

N2/3

)
‖∇f‖∞.

which proves the second statement by choosing ϑ6θ.

Proof of Corollary 2.7. We first note that the proof of Corollary 2.6 could be re-
peated verbatim in the context of [5] to show that [5, Theorem 1.5] holds with the same
estimates as we obtained here. Hence, by combining this result with Corollary 2.6, we
have∣∣∣∣ f((N(λk

ik+1−λk
ik

), ..., N(λk
ik+m−λk

ik
))d

k=1) dP̃
N,aV
β

− f(((T k
0 �S

k
0 )′(γik/N )N(λk

ik+1−λk
ik

), ..., (T k
0 �S

k
0 )′(γik/N )N(λk

ik+m−λk
ik

))d
k=1)

×d(P̃N
GVE,β)⊗d

∣∣∣∣
6 ĈNθ−1‖f‖∞+Ĉm3/2Nθ−1‖∇f‖∞,

∫ ∫
∫

∫

∫
∫

∫
∫
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where γik/N satisfies µsc((−∞, γik/N ))=ik/N . Note that the transport relations (2.10)
and (2.11) imply that T k

0 �S
k
0 (γik/N )=γk

ik/N,a, where γk
ik/N,a satisfies

µaV
k ((−∞, γk

ik/N,a))=
ik
N
,

and hence (again by (2.10) and (2.11))

(T k
0 �S

k
0 )′(γik/N ) =

%sc(γik/N )
%aV

k (γk
ik/N,a)

.

Finally, since |σk−ik/N |6C/N and σk∈(0, 1), arguing as we did for proving (5.3), we
deduce that |γik/N−γσk

|6C̃/N , so up to another small error we may replace

%sc(γik/N )
%aV

k (γk
ik/N,a)

by
%sc(γσk

)
%aV

k (γσk,k)
.

This concludes the proof of of the first statement, while the second one is just a conse-
quence of Corollary 2.6 (2) and [5, Theorem 1.5 (2)].

Proof of Corollary 2.8. As is clear by looking at the proof of Corollaries 2.6 and 2.7,
the fact of dealing at the same time with the eigenvalues of different matrices does not
complicate the proof. For this reason, since the proof of Corollary 2.8 is already very
involved, to make the argument more transparent we shall prove the result when the test
function is of the form

−
Rk(E)+N−ζ R′

k(E)

Rk(E)−N−ζ R′
k(E)

∑
ij distinct

f
(
N(λk

i1−Ẽ), ..., N(λk
im
−Ẽ)

)
dẼ

for some E∈(−2, 2), the proof in the general case being completely analogous and just
notationally heavier.

To simplify the notation, we set

gẼ(λ̂) :=
∑

i1 6=...6=im

f(N(λk
i1−Ẽ), ..., N(λk

im
−Ẽ)),

Ak :=
[
−

Rk(E)+N−ζR′
k(E)

Rk(E)−N−ζR′
k(E)

gẼ dẼ

]
dPN,aV

β .

It follows by (2.8) with η=θ that

|log(1+Ak)−log(1+A1,k)|6CNθ−1, (5.15)

∫

∫ ∫
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where

A1,k :=
[
−

Rk(E)+N−ζ R′
k(E)

Rk(E)−N−ζR′
k(E)

gẼ �(T
N )k dẼ

]
dPN,0

β

=
[
−

Rk(E)+N−ζR′
k(E)

Rk(E)−N−ζR′
k(E)∑

i1 6=...6=im

f(N((TN )k
i1(λ̂)−Ẽ), ..., N((TN )k

im
(λ̂)−Ẽ)) dẼ

]
dPN,0

β .

Define the quantiles γk
i/N∈(S0

k(−2), S0
k(2)) as in Corollary 2.6, and given ϑ>0 small (to

be fixed later) we consider the set Gϑ defined in (5.1).
Since the integrand gẼ �(T

N )k is pointwise bounded by ‖f‖∞Nm, it follows by (5.2)
that

A1,k =A2,k+O(e−Nc

), (5.16)

where

A2,k :=
Gϑ

[
−

Rk(E)+N−ζ R′
k(E)

Rk(E)−N−ζ R′
k(E)

gẼ �(T
N )k dẼ

]
dPN,0

β .

Observe that if λ̂∈Gϑ then, by definition,

|λk
i −λk

j |> |γk
i/N−γk

j/N |−N−2/3+ϑ min{i,N+1−i}−1/3−N−2/3+ϑ min{j,N+1−j}−1/3.

Hence, since γk
(i+1)/N−γk

i/N >c0N−2/3 min{i,N+1−i}−1/3 for all i, we deduce that

|λk
i −λk

j |>Nϑ−1 provided |i−j|>C0N
ϑ,

which, combined with (5.8) yields, for λ̂∈Gϑ,

|(TN )k
i (λ̂)−(TN )k

j (λ̂)|> e−LNϑ−1 provided |i−j|>C0N
ϑ. (5.17)

We now notice that, since f is compactly supported, the quantity

f(N((TN )k
i1(λ̂)−Ẽ), ..., N((TN )k

im
(λ̂)−Ẽ))

can be non-zero only if

|(TN )k
ij

(λ̂)−Ẽ|6 C1

N
for all j=1, ...,m.

Therefore, if ī∈{1, ..., N} is an index (depending on λ̂ and Ẽ) such that

|(TN )k
ī (λ̂)−Ẽ|6 C1

N
,

∫ ∫
∫ ∫

∫ ∫
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then (5.17) yields

|(TN )k
i (λ̂)−Ẽ|6 C1

N
=⇒ |i− ī|6C0N

ϑ.

This proves that, for any λ̂∈Gϑ, there exists a set of indices

Jλ̂,Ẽ ⊂{(i1, ..., im)∈{1, ..., N}m : i1 6= ... 6= im}

such that #Jλ̂,Ẽ 6CNmϑ and

A2,k =
Gϑ

[
−

Rk(E)+N−ζR′
k(E)

Rk(E)−N−ζ R′
k(E)

ĝẼ �(T
N )k dẼ

]
dPN,0

β ,

where
ĝẼ(λ̂) :=

∑
(i1,...,im)∈J

λ̂,Ẽ

f(N(λk
i1−Ẽ), ..., N(λk

im
−Ẽ))

satisfies |ĝT k
0 (Ẽ)|6C‖f‖∞N

mϑ.

We now perform the change of variable Ẽ 7!T k
0 (Ẽ), which gives

Rk(E)+N−ζ R′
k(E)

Rk(E)−N−ζ R′
k(E)

ĝẼ �(T
N )k dẼ=

(T k
0 )−1[Rk(E)+N−ζ R′

k(E)]

(T k
0 )−1[Rk(E)−N−ζ R′

k(E)]

ĝT k
0 (Ẽ)�(T

N )k (T k
0 )′(Ẽ) dẼ.

Recalling that Rk=T k
0 �S

k
0 and that these maps are all smooth diffeomorphisms of R, we

see that for

Ẽ ∈ [(T k
0 )−1[Rk(E)−N−ζR′

k(E)], (T k
0 )−1[Rk(E)+N−ζR′

k(E)]]

it holds

|(T k
0 )′(Ẽ)−(T k

0 )′�Sk
0 (E)|6CN−ζ , R′

k(E) = [(T k
0 )′�Sk

0 (E)] (Sk
0 )′(E),

and
(T k

0 )−1[Rk(E)±N−ζ R′
k(E)]=Sk

0 (E)±N−ζ(Sk
0 )′(E)+O(N−2ζ).

Hence, since |ĝT k
0 (Ẽ)|6CN

mϑ,

−
(T k

0 )−1[Rk(E)+N−ζ R′
k(E)]

(T k
0 )−1[Rk(E)−N−ζR′

k(E)]

ĝT k
0 (Ẽ)�(T

N )k (T k
0 )′(Ẽ) dẼ

=−
Sk

0 (E)−N−ζ(Sk
0 )′(E)

Sk
0 (E)−N−ζ(Sk

0 )′(E)

ĝT k
0 (Ẽ)�(T

N )k dẼ+O(Nmϑ−ζ),

∫ ∫

∫ ∫

∫
∫
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which proves that
A2,k =A3,k+O(Nmϑ−ζ), (5.18)

where

A3,k :=
Gϑ

[
−

Sk
0 (E)−N−ζ(Sk

0 )′(E)

Sk
0 (E)−N−ζ(Sk

0 )′(E)

ĝT k
0 (Ẽ)�(T

N )k dẼ

]
dPN,0

β .

We now estimate A3,k.
Due to Theorem 2.5, we can write

ĝT k
0 (Ẽ)�(T

N )k(λ̂) =
∑

(i1,...,im)∈J
λ̂,Ẽ

f(N(T k
0 (λk

i1)−T
k
0 (Ẽ))+(XN

1,1)
k
i1(λ̂),

..., N(T k
0 (λk

im
)−T k

0 (Ẽ))+(XN
1,1)

k
im

(λ̂))

+O
(
‖∇f‖∞
N

∑
(i1,...,im)∈J

λ̂,Ẽ

|(XN
2,1)

k
ij
|
)
.

and thus

A3,k =A4,k+O
(

1
N Gϑ

∑
(i1,...,im)∈J

λ̂,Ẽ

|(XN
2,1)

k
ij
| dPN,0

β

)
(5.19)

where

A4,k :=
Gϑ

[
−

Sk
0 (E)−N−ζ(Sk

0 )′(E)

Sk
0 (E)−N−ζ(Sk

0 )′(E)

hẼ dẼ

]
dP̃N,0

β,k ,

and with

hẼ(λ̂) :=
∑

(i1,...,im)∈J
λ̂,Ẽ

f(N(T k
0 (λk

i1)−T
k
0 (Ẽ))+(XN

1,1)
k
i1(λ̂),

..., N(T k
0 (λk

im
)−T k

0 (Ẽ))+(XN
1,1)

k
im

(λ̂)).

We now want to get rid of the terms (XN
1,1)

k
ij

and |(XN
2,1)

k
ij
|.

Motivated by (4.37), for any Ẽ∈R we define Xk
1,λ̂

(Ẽ) as the solution of the ODE

Ẋk
t,λ̂

(Ẽ) = (y0
k,t)

′(Xk
0,t(Ẽ))·Xk

t,λ̂
(Ẽ)+y1

k,t(X
k
0,t(Ẽ))

+
d∑

`=1

zk`,t(Xk
0,t(Ẽ), y) dMN

X`
0,t

(y)

+
1
N

d∑
`=1

N∑
j=1

∂2zk`,t(Xk
0,t(Ẽ), X`

0,t(λ
`
j))·(X1,t)`

j(λ̂),

with Xk
0,λ̂

(Ẽ)=Ẽ, and we note the following fact: whenever λ̂∈Gϑ we know that {λ`
i}N

i=1

are close, up to an error Nϑ, to the quantiles of the stationary measure µ0
` =µ∗`,0. Hence,

arguing as we did for (5.13), we get

|∂ẼX
k
1,λ̂

(Ẽ)|6CNϑ, |(XN
1,1)

k
i (λ̂)−Xk

1,λ̂
(Ẽ)|6CNϑ |λk

i −Ẽ| for all λ̂∈Gϑ. (5.20)

∫ ∫

∫

∫ ∫

∫
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In addition, by the same reasoning,

max
i,k

∂1zk`,t(Xk
0,t(λ

k
i ), y) dMN

X`
0,t

(y) =O(Nϑ) for all λ̂∈Gϑ,

and the argument used to prove (4.39) (see in particular (4.50)) yields

max
i,k

|(XN
2,1)

k
i |6CN2ϑ for all λ̂∈Gϑ.

Hence, since #Jλ̂,Ẽ 6CNmϑ we immediately deduce that

O

(
1
N Gϑ

∑
(i1,...,im)∈J

λ̂,Ẽ

|(XN
2,1)

k
ij
| dPN,0

β

)
=O

(
N (m+2)ϑ−1

)
. (5.21)

Now, to get rid of the term Xk
1,λ̂

(Ẽ) inside hẼ we take advantage of (5.20) and the

average with respect to Ẽ: more precisely, we consider the change of variable

Ẽ 7−!Φλ̂(Ẽ) := (T k
0 )−1

[
T k

0 (Ẽ)+
1
N
Xk

1,λ̂
(Ẽ)

]
so that

−
Sk

0 (E)−N−ζ(Sk
0 )′(E)

Sk
0 (E)−N−ζ(Sk

0 )′(E)

hẼ dẼ

=−
Sk

0 (E)−N−ζ(Sk
0 )′(E)

Sk
0 (E)−N−ζ(Sk

0 )′(E)

∑
(i1,...,im)∈J

λ̂,Ẽ

f(N(T k
0 (λk

i1)−T
k
0 (Ẽ))+[(XN

1,1)
k
i1(λ̂)−Xk

1,λ̂
(Ẽ)

]
,

..., N(T k
0 (λk

im
)−T k

0 (Ẽ))+[(XN
1,1)

k
im

(λ̂)−Xk
1,λ̂

(Ẽ)])∂ẼΦλ̂(Ẽ) dẼ.

Therefore, since ∂ẼΦλ̂(Ẽ)=1+O
(
Nϑ−1

)
(due to (5.20)), |hẼ |6CN

mϑ, and the interval
[Sk

0 (E)−N−ζ(Sk
0 )′(E), Sk

0 (E)−N−ζ(Sk
0 )′(E)] has length of order N−ζ , we deduce that

−
Sk

0 (E)−N−ζ(Sk
0 )′(E)

Sk
0 (E)−N−ζ(Sk

0 )′(E)

hẼ dẼ

=−
Sk

0 (E)−N−ζ(Sk
0 )′(E)

Sk
0 (E)−N−ζ(Sk

0 )′(E)

∑
(i1,...,im)∈J

λ̂,Ẽ

f(N(T k
0 (λk

i1)−T
k
0 (Ẽ))+[(XN

1,1)
k
i1(λ̂)−Xk

1,λ̂
(Ẽ)],

..., N(T k
0 (λk

im
)−T k

0 (Ẽ))+[(XN
1,1)

k
im

(λ̂)−Xk
1,λ̂

(Ẽ)]) dẼ+O(N ζNmϑNϑ−1).

(5.22)

We now observe that, since T k
0 : R!R is a diffeomorphism with (T k

0 )′>e−L>0 (see
(5.14)), it follows by (5.20) that

|(XN
1,1)

k
i1(λ̂)−Xk

1,λ̂
(Ẽ)|6CNϑ |T k

0 (λk
i )−T k

0 (Ẽ)|.

∫

∫

∫
∫

∫
∫
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Therefore, since f is compactly supported, we see that the expression

f(N(T k
0 (λk

i1)−T
k
0 (Ẽ))+[(XN

1,1)
k
i1(λ̂)−Xk

1,λ̂
(Ẽ)],

..., N(T k
0 (λk

im
)−T k

0 (Ẽ))+[(XN
1,1)

k
im

(λ̂)−Xk
1,λ̂

(Ẽ)])

is non-zero only if

|T k
0 (λk

ij
)−T k

0 (Ẽ)|6 C1

N
for all j=1, ...,m.

In particular, using again that (T k
0 )′>e−L>0, this implies that |λk

ij
−Ẽ|6C/N . Thus

|T k
0 (λk

ij
)−T k

0 (Ẽ)−(T k
0 )′(E)[λk

ij
−Ẽ]|=O

(
1
N2

)
and

Nϑ|T k
0 (λk

ij
)−T k

0 (Ẽ)|=O
(
Nϑ−1

)
,

and we get

f(N(T k
0 (λk

i1)−T
k
0 (Ẽ)

)
+[(XN

1,1)
k
i1(λ̂)−Xk

1,λ̂
(Ẽ)],

..., N(T k
0 (λk

im
)−T k

0 (Ẽ))+[(XN
1,1)

k
im

(λ̂)−Xk
1,λ̂

(Ẽ)])

= f((T k
0 )′(E)N(λk

ij
−Ẽ), ..., (T k

0 )′(E)N(λk
ij
−Ẽ))+O(‖∇f‖∞Nϑ−1).

Combining this estimate with (5.22) and the fact that #Jλ̂,Ẽ 6CNmϑ we conclude that

−
Sk

0 (E)−N−ζ(Sk
0 )′(E)

Sk
0 (E)−N−ζ(Sk

0 )′(E)

hẼ dẼ= ḡE +O
(
N (m+1)ϑ+ζ−1

)
,

where

ḡE(λ̂)

:=−
Sk

0 (E)−N−ζ(Sk
0 )′(E)

Sk
0 (E)−N−ζ(Sk

0 )′(E)

∑
(i1,...,im)∈J

λ̂,Ẽ

f((T k
0 )′(E)N(λk

ij
−Ẽ), ..., (T k

0 )′(E)N(λk
ij
−Ẽ)) dẼ.

Also, by the argument above it follows that we can add back into the sum all the in-
dices outside Jλ̂,Ẽ (since, up to infinitesimal errors, the function above vanishes on such
indices), and therefore

−
Sk

0 (E)−N−ζ(Sk
0 )′(E)

Sk
0 (E)−N−ζ(Sk

0 )′(E)

hẼ dẼ= ¯̄gE +O(N (m+1)ϑ+ζ−1),

∫

∫

∫
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with

¯̄gE(λ̂)

:=−
Sk

0 (E)−N−ζ(Sk
0 )′(E)

Sk
0 (E)−N−ζ(Sk

0 )′(E)

∑
i1 6=...6=im

f((T k
0 )′(E)N(λk

ij
−Ẽ), ..., (T k

0 )′(E)N(λk
ij
−Ẽ)) dẼ.

Combining this bound with (5.15), (5.16), (5.18), (5.19), and (5.21), we conclude that

|log(1+Ak)−log(1+ ¯̄Ak)|6C(Nmϑ−ζ +N (m+2)ϑ−1+N (m+1)ϑ+ζ−1), (5.23)

where ¯̄Ak := ¯̄gE dP
N,0
β .

We now repeat this very same argument replacing PN,aV
β , PN,0

β , and TN , with PN,0
β ,

(PN
GVE,β)⊗d, and SN =(SN

1 , ..., S
N
d ), respectively (see the discussion before Corollary 2.7),

and we deduce that

|log(1+ ¯̄Ak)−log(1+Âk)|6C(Nmϑ−ζ +N (m+2)ϑ−1+N (m+1)ϑ+ζ−1),

where

Âk :=
[
−

E+N−ζ

E−N−ζ

∑
i1 6=...6=im

f(R′
k(E)N(λi1−Ẽ), ..., R′

k(E)N(λim−Ẽ)) dẼ
]
dPN

GVE,β .

Combining this estimate with (5.23), we get

|log(1+Ak)−log(1+Âk)|6C(Nmϑ−ζ +N (m+2)ϑ−1+N (m+1)ϑ+ζ−1).

Choosing ϑ small enough so that (m+2)ϑ<θ, this gives

|log(1+Ak)−log(1+Âk)|6C(Nθ+ζ−1+Nθ−1/2+Nθ−ζ) 6C(Nθ+ζ−1+Nθ−ζ),

and since Âk is uniformly bounded in N (see for instance [65]) and the right-hand side
is infinitesimal (recall that θ<min{ζ, 1−ζ}), we conclude that

|Ak−Âk|6C(Nθ+ζ−1+Nθ−ζ).

Recalling the definition of Ak and Âk, this proves that∣∣∣∣ [
−

Rk(E)+N−ζ R′
k(E)

Rk(E)−N−ζ R′
k(E)

∑
i1 6=...6=im

f(N(λk
i1−Ẽ), ..., N(λk

im
−Ẽ)) dẼ

]
dPN,aV

β

−
[
−

E+N−ζ

E−N−ζ

∑
i1 6=...6=im

f
(
R′

k(E)N(λi1−Ẽ), ..., R′
k(E)N(λim−Ẽ)

)
dẼ

]
dPN

GVE

∣∣∣∣
6 Ĉ(Nθ+ζ−1+Nθ−ζ),

which corresponds to our statement when f depends only on the eigenvalues of one
matrix. As explained at the beginning of the proof, the very same argument presented
above extends also to the general case.

∫

∫ ∫

∫ ∫
∫ ∫

∫
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Proof of Corollary 2.9. We begin by noticing that the proof of Theorem 2.5 could
be repeated verbatim in the context of [5] to show that [5, Theorem 1.4] holds with the
same estimates as we obtained here.

To prove the gap estimates, it is enough to show that the approximate transport
maps do not change gaps in the bulk uniformly (away from the edges). Due to Theo-
rem 2.5 and [5, Theorem 1.4], we have the expansions

(TN )k
i (λ̂) =T k

0 (λk
i )+

1
N

(XN
1,1)

k
i (λ̂)+

1
N2

(XN
2,1)

k
i (λ̂),

(SN
k )i(λk) =Sk

0 (λk
i )+

1
N

(Sk,1)i(λk)+
1
N2

(Sk,2)i(λk),

where (Sk,1)i and (Sk,2)i satisfy the same estimates as (XN
1 )k

i and (XN
2 )k

i . Hence, by
the formulas above we deduce that

(TN )k
i

(
SN

1 (λ1), ..., SN
d (λd)

)
=T k

0 �S
k
0 (λk

i )+
1
N

[(T k
0 )′�Sk

0 (λk
i )](Sk,1)i(λk)

+
1
N

(XN
1,1)

k
i

(
S1

0(λ1
1)+

1
N

(S1,1)1(λ1), ..., Sd
0 (λd

N )+
1
N

(SN,d)N (λd)
)

+Ei,

(5.24)

where the error Ei satisfies (due to the bounds in Theorem 2.5 and [5, Theorem 1.4])√∑
i

‖Ei‖2
L2(P N

GVE,β)
=O

(
(logN)2

N3/2

)
(5.25)

Also, by using again Theorem 2.5 and [5, Theorem 1.4], with probability greater than
1−e−c(log N)2 and uniformly with respect to i∈{1, ..., N}, we have

|[(T k
0 )′�Sk

0 (λk
i+1)](Sk,1)i+1(λk)−[(T k

0 )′�Sk
0 (λk

i )](Sk,1)i(λk)|

6C(logN)N1/(σ−15)|λk
i+1−λk

i |,

and

|(XN
1,1)

k
i+1−(XN

1,1)
k
i |�

(
(S1

0)⊗N +
1
N
S1,1, ..., (Sd

0 )⊗N +
1
N
Sd,1

)
(λ̂)

6C(logN)N1/(σ−15)

(
|Sk

0 (λk
i+1)−Sk

0 (λk
i )|+ 1

N
|(Sk,1)i+1(λk)−(Sk,1)i(λk)|

)
6C logN N1/(σ−15)|λk

i+1−λk
i |,

while

T k
0 �S

k
0 (λk

i+1)−T k
0 �S

k
0 (λk

i ) = (T k
0 �S

k
0 )′(λk

i )[λk
i+1−λk

i ]+O(|λk
i+1−λk

i |2).
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Recalling that, with probability greater than 1−e−N c̄

, |λk
i+1−λk

i |6CNθ−1 when the
{λk

i }N
i=1 are ordered and i∈[εN, (1−ε)N ] (see (5.2) and (5.4)), we conclude that, with

probability greater than 1−e−c(log N)2 , and uniformly with respect to i∈[εN, (1−ε)N ],
we have

[(TN )k
i+1−(TN )k

i ](SN
1 (λ1), ..., SN

d (λd))

= (T k
0 �S

k
0 )′(λk

i )[λk
i+1−λk

i ]+O
(

(logN)N1/(σ−15)

N2−θ

)
.

Combining this estimate with (5.25) and noticing that

N4/3

(
(logN)N2/(σ−15)

N2−θ
+

(logN)2

N3/2

)
! 0 as N!∞,

provided θ< 1
6 (recall that by assumption σ>36; see Hypothesis 2.1), the two statements

follow from the fact that TN
�(SN

1 , ... S
N
d ): RdN!RdN is an approximate transport map

from (PN
GVE,β)⊗d to PN,aV

β and that the results are true under PN
GVE,β due to [6, Theo-

rem 1.3 and Corollary 1.5].

6. Matrix integrals

In this section, we consider the integral

IN,V
β (A1, ..., Ad, B1, ..., Bm) := eN2−rTr⊗rV (U1A1U∗

1 ,...,UdAdU∗
d ,B1,...,Bm) dU1 ... dUd,

where β=2 (resp. β=1) corresponds to integration over the unitary (resp. the orthogonal)
group U(N) (resp. O(N)). Here A1, ..., Ad and B1, ..., Bm are m+d Hermitian (resp.
symmetric) matrices such that

d
max
i=1

‖Ai‖∞ 6 1 and
m

max
i=1

‖Bi‖∞ 6 1, (6.1)

and V belongs to the tensor product C〈x1, ..., xd; b1, ..., bm〉⊗r (or more generally to its
closure for the norm defined below), where C〈x1, ..., xd; b1, ..., bm〉 denotes the set of
polynomial in d+m self-adjoint variables.

We see V as a Laurent polynomial in {ui, u
∗
i , ai}d

i=1 and {bi}m
i=1, where xi=uiaiu

−1
i .

The set L of Laurent polynomials is equipped with the involution ∗ given by u∗i =u−1
i ,

a∗i =ai, b∗i =bi, and for any Laurent polynomials p and q one has (zpq)∗=z̄q∗p∗. We let∑
〈p, q1⊗...⊗qr〉q1⊗...⊗qr be the decomposition of a polynomial p in

L ⊗r := C〈u1, u
∗
1, ..., ud, u

∗
d; a1, ..., ad; b1, ..., bm〉⊗r

∫
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in the basis of tensor products of monomials, and for ξ, ζ>1 we set

‖p‖ξ,ζ :=
∑

|〈p, q1⊗...⊗qr〉|ξ
∑r

i=1 degU (qi)ζ
∑r

i=1 degA,B(qi),

where degU (q) (resp. degA,B(q)) is the number of letters in {ui, u
∗
i }d

i=1 (resp. {ai}d
i=1

and {bi}m
i=1) in the word q. We let L r

ξ,ζ :=L ⊗r
‖·‖ξ,ζ

be the closure of L ⊗r for the norm
‖ · ‖ξ,ζ . We endow the space of linear forms Lr

ξ,ζ on L r
ξ,ζ with the weak topology, that

can be recast in terms of the norm

‖τ‖ξ,ζ := sup
‖p‖ξ,ζ61

|τ(p)|.

Notice that, by abuse of notation, we use ‖ · ‖ξ,ζ to denote both the norm and the dual
norm. It will always be clear from the context which one we are referring to. For later
purpose, observe that ξ, ζ 7!‖p‖ξ,ζ is increasing for any p∈L r

ξ,ζ , whereas ξ, ζ 7!‖τ‖ξ,ζ is
decreasing for any τ∈Lr

ξ,ζ . In the case where r=1, we denote in short Lξ,ζ , Lξ,ζ , etc.
We denote by L(S ) the set of linear forms on a vector subspace S of L , and

endow it with the weak norm ‖ · ‖ξ,ζ . In particular if AB is the algebra generated by
{a1, ..., ad, b1, ..., bm}, the parameter ξ does not appear and we write in short ‖ · ‖ζ . In
case of a linear form on the algebra generated by a single self-adjoint variable, that
corresponds simply to measure on the real line, this is

‖ν‖ζ := sup
k
ζ−k|ν(xk)|.

We denote by M(K) (resp. P(K)) the set of Borel measures (resp. probability measure)
on the set K⊂R and by B the algebra generated by {b1, ..., bm}, and we write

‖ν‖ζ :=
d∑

i=1

‖νi‖ζ +‖τ‖ζ

for (d+1)-tuples consisting of d probability measures on [−1, 1] and one linear form in
L(B). Notice that, for τ∈L(B),

‖τ‖ζ := sup
k

ij∈{1,...,m}

ζ−k|τ(bi1 ... bik
)|

as in this case the degree degA,B is simply the degree in {bi}m
i=1. We assume, without loss

of generality, that V is symmetric, in the sense that for any permutation σ of {1, ..., r}∑
〈V, q1⊗...⊗qr〉q1⊗...⊗qr =

∑
〈V, qσ(1)⊗...⊗qσ(r)〉qσ(1)⊗...⊗qσ(r).
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Compared to the notation used in (2.1), we have rescaled V so that the Ai are bounded
by 1 instead of M , but otherwise we can compare the norms as the diverse degrees
are related by degU (q)6 1

2 degX(q) and degA,B(q)=degX(q)+degB(q). In particular, the
norm ‖V ‖ξ,ζ used in this section can be compared to the norm ‖V ‖Mξ1/2ζ,ζ used in (2.1).
Once this is said, the two notions are sufficiently close that we keep the same notation.

The following is the main result of this section.

Theorem 6.1. Let β=2 (resp. β=1). Let {αi
j}16i6d,16j6N⊂[−1,+1]dN and set

LN
i :=

1
N

N∑
j=1

δαi
j
.

Let A1, ..., Ad be Hermitian (resp. symmetric) matrices with eigenvalues (αi
1, ..., α

i
N ), let

B1, ..., Bm be Hermitian (resp. symmetric) matrices, and let

p 7−! τN
B (p) :=

1
N

Tr
(
p(B1 ..., Bk)

)
be the non-commutative distribution of B1, ..., Bm. Let V ∈L r

‖·‖ξ,ζ
be self-adjoint. Then,

if ‖V ‖ξ,ζ is finite for some ξ large enough and ζ>1, there exists a0>0 such that, for all
a∈[−a0, a0],

IN,aV
β (A1, ..., Ad, B1, ..., Bm) = e

∑2
l=0 N2−lF aV

l,β (LN
1 ,...,LN

d ,τN
B )

(
1+O

(
1
N

))
,

where the error is uniform on the set of matrices satisfying (6.1) and F aV
l are smooth

functions on P([−1, 1])d×L(B). More precisely, for any `>0, the `-th derivative of F aV
l,β

at µ∈P([−1, 1])d×L(B) in the direction ν is such that

|D`F aV
l,β [µ](ν)⊗`|6C`|a| ‖ν‖`

ζ ,

where C` is a finite constant, uniform with respect to µ.

The proof of this theorem is split over the next sections. For notational convenience,
instead of adding a small parameter a in front of V we rather write down our hypotheses
in terms of the smallness of the norms of V .

6.1. Integrals over the unitary or orthogonal group

The goal of this section is to prove Theorem 6.1. Recall that Lξ,ζ and L r
ξ,ζ denote the

completion of L and L ⊗r, respectively, with respect to the norm ‖ · ‖ξ,ζ .
We shall prove Theorem 6.1 in two steps. First we extend the results of [37] to the

case β=1 and r>1.
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Proposition 6.2. Let β∈{1, 2}. Let τN
AB be the non-commutative distribution of

(A1, ..., Ad, B1, ..., Bm), that is, the linear form on AB given by

τN
AB(p) :=

1
N

Tr(p(A1, ..., Ad, B1, ..., Bm)) for all p∈L .

There exist ξ0>1, ζ>1, and ε0>0 such that if ‖V ‖ξ0,ζ 6ε0 then, uniformly on the set
of matrices A1, ..., Ad and B1, ..., Bm satisfying (6.1) and with respect to the dimension
N , we have

IN,V
β (A1, ..., Ad, B1, ..., Bm) = eN2GV

0,β(τN
AB)+NGV

1,β(τN
AB)+GV

2,β(τN
AB)

(
1+O

(
1
N

))
,

where the GV
l,β are real-valued functions on L (AB) and the error is uniform in the

norm ‖ · ‖ζ .

Next, we show that the functions {GV
l,β}2

l=0 depend only on the spectral measures
of the matrices Ai and on τN

B . More precisely, let T be the set of tracial states on L ,
that is, the set of linear forms τ on L satisfying

τ(pp∗) > 0, τ(pq) = τ(qp), and τ(1)= 1. (6.2)

Also, denote by T (B)⊂L (B) the set of tracial states on B.
Recall that, given ν=(ν1, ..., νd+1)∈M([−1, 1])d×L(B), we have

‖ν‖ζ =
d∑

i=1

‖νi‖ζ +‖νd+1‖ζ ,

where

‖µ‖ζ =
{

maxk>1 ζ
−k|ν(xk)|, if µ∈P([−1, 1]),

maxi1,...,ik
ζ−k|µ(Bi1 ... Bik

)|, if µ∈T (B).
(6.3)

Lemma 6.3. The functions {GV
l }2

l=0 are absolutely summable series whose coeffi-
cients depend only on τN

B and the moments

LN
i (xk) =

1
N

Tr[(Ai)k], 1 6 i6m, k∈N.

In other words, there exists a function FV
l,β :P([−1, 1])d×T (B)!R such that

GV
l,β(τN

AB) =FV
l,β(LN

1 , ..., L
N
d , τ

N
B ).

Moreover, FV
l,β is Fréchet differentiable and its derivatives are bounded by

|D`FV
l,β [µ](ν1, ..., ν`)|6C`‖ν1‖ζ ... ‖ν`‖ζ .
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As in [35], [36], [18], [9], [37], the derivation of the expansion for large N of the free
energy

FN,V
β (A1, ..., Ad, B1, ..., Bm) :=

1
N2

log IN,V
β (A1, ..., Ad, B1, ..., Bm)

is based on the expansion of the function given, for any polynomial p∈L , by

WV,β
1N (p) := Tr(p(U1, ..., Ud, U

∗
1 , ..., U

∗
d , A1, ..., Ad, B1, ..., Bm)) dQN,V

β (U1, ..., Ud),

(6.4)
where dQN,V

β is the measure on U(N)d defined by

dQN,V
β (U1, ..., Ud) :=

1

IN,V
β

eN2−rTr⊗rV (U1A1U∗
1 ,...,UdAdU∗

d ,B1,...,Bm) dU1 ... dUd. (6.5)

The main step to prove Proposition 6.2 is the following large dimension expansion.

Proposition 6.4. Let β=1 (resp. β=2). Let A1, ..., Ad be symmetric (resp. Her-
mitian) matrices with real eigenvalues (α1

i , ..., α
N
i )d

i=1 and satisfying (6.1). Let V be a
self-adjoint polynomial in L r

ξ,ζ for some ξ>1 and ζ>1. There exist ξ0>1, and ε0>0 so
that, if ξ>ξ0 and ‖V ‖ξ,ζ 6ε0, then

WV,β
1N (p) =Nτβ

10(p)+τ
β
11(p)+

1
N
τβ
12(p)+O

(
1
N2

)
for all p∈L ,

for some τβ
10, τ

β
11, τ

β
12∈Lξ,ζ . Moreover, the error is uniform in ‖ · ‖ξ,ζ .

Notice that this result implies Proposition 6.2 provided we prove also the convergence
of the second correlator WV,β

2N , see (6.8) and §6.2.1.
Hereafter we will drop the index β, but all our results will remain true both for β=1

and β=2.
The proof of Proposition 6.4 is based on Schwinger–Dyson’s equation and a-priori

concentration of measure properties, which depend on differentials acting on the space
L of Laurent polynomial in letters {u1, ..., ud, u

−1
1 , ..., u−1

d , a1, ..., ad, b1, ..., bm}. Recall
that AB denotes the Laurent polynomial with degree zero, that is the linear span of
words in {a1, ..., ad, b1 ..., bm}. We now introduce some notation.

• The non-commutative derivative with respect to the ith variable ui is defined by
its action on monomials of L :

∂ip :=
∑

p=p1uip2

p1ui⊗p2−
∑

p=p1u−1
i p2

p1⊗u−1
i p2. (6.6)

∫
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• The cyclic derivative with respect to ui is defined as the endomorphism of L

which acts on monomials according to

Dip :=
∑

p=p1uip2

p2p1ui−
∑

p=p1u−1
i p2

u−1
i p2p1.

We can think of Di as Di=m�∂i with m(p⊗q):=qp for all p, q∈L . We will set
m̃(p⊗q):=q∗p.

Note that Di appears naturally when differentiating the trace of a polynomial. More
precisely, if we let uj(t)=uj for j 6=i and ui(t)=uie

tB then, for any Laurent polynomial
p and any tracial state τ , we have

d

dt

∣∣∣∣
t=0

τ(p(u(t)))= τ(Dip(u(0))B).

As we shall apply it to differentiate quantities of the form Tr⊗rV (U(t)), let us introduce
the following notation: for p∈L ⊗r with p=p1⊗p2⊗...⊗pr and a tracial state τ , we set

Di,τp :=
r∑

k=1

( k−1∏
j=1

τ(pj)
)
Dipk

( r∏
j=k+1

τ(pj)
)
.

Hence, if B is a anti-symmetric matrix (that is B=−B∗) and Uj(t)=Uje
t1j=iB ,

d

dt
|t=0

1
Nr

Tr⊗rV (U(t))=
1
N

Tr(BDi,(1/N)TrV ).

• We will consider linear transformations

T: (L ⊗k1 , ‖ · ‖ξ1,ζ)−!(L ⊗k2 , ‖ · ‖ξ2,ζ)

mapping between the various tensor powers of L . A linear transformation

T:L ⊗k1−!L ⊗k2

is (ξ1, ξ2; ζ)-continuous if and only if there exists a constant C such that

‖T(p1⊗...⊗pk1)‖ξ2,ζ 6C‖p1⊗...⊗pk1‖ξ1,ζ

for all monomials p1⊗...⊗pk1∈L ⊗k1 . The operator norm of T, denoted ‖T‖ξ1,ξ2,ζ , can
be calculated by considering the smallest constant C for which the above inequality holds.

Allowing different instances of the ξ-norm on the source and target of our linear
maps is useful for the following reason: certain linear transformations that we will need
to deal with are not (ξ, ξ; ζ)-continuous for any ξ>1, but are (ξ1, ξ2; ζ)-continuous, and
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even contractive, if the ratio ξ1/ξ2 is large enough. When ξ1=ξ2 we simplify the notation
by putting only one index ξ.

• Recall that for ν a multilinear form on L ⊗k, we set

‖ν‖ξ,ζ = max
‖p‖ξ,ζ61

|ν(p)|,

and denote by Lk,k′

ξ,ζ the set of linear maps from (L ⊗k, ‖ · ‖ξ,ζ) into (L ⊗k′ , ‖ · ‖ξ,ζ), and
Lk

ξ,ζ denotes the set of linear maps from (L ⊗k, ‖ · ‖ξ,ζ) into C. Also, if S is a vector
subspace of (L ⊗k, ‖ · ‖ξ,ζ), then L(S ) is the set of linear forms on S (if S =L , we
simply denote it by L). One can check that Lk,k′

ξ,ζ , Lk
ξ,ζ , and L(S ) are Banach spaces

(see for instance [37, Proposition 7] to see that ‖ · ‖ξ,ζ is a vector space norm on L ⊗k, and
in fact an algebra norm). We denote by T k

ξ,ζ the subset of tracial states on (L ⊗k, ‖ · ‖ξ,ζ).
The basis of the Schwinger–Dyson equation is the following equation.

Lemma 6.5. Let V be a self-adjoint polynomial, p∈L , and i∈{1, ..., d}. Then

E
[

1
N

Tr⊗ 1
N

Tr(∂ip)+
1+1β=1

N
Tr(Di,(1/N)TrV p)

]
=1β=1

1
N

E
[

1
N

Tr(m̃�∂ip)
]
, (6.7)

where E denotes the expectation under QV
β,N (see (6.5)).

Proof. We focus on the case β=1, the proof for β=2 is similar and detailed in [37] for
the case r=1. This equation is derived by performing an infinitesimal change of variable
Ui 7!Ui(t):=Uie

tDi , where Di is a N×N matrix with real entries such that D∗
i =−Di,

and writing that for any polynomial function p∈L , and any k, `∈{1, ..., N},
d

dt

∣∣∣∣
t=0

p(U1(t), ..., Ud(t), U∗
1 (t), ..., U∗

d (t), A1, ..., Ad, B1, ..., Bm)k`

×dQV
1,N (U1(t), ..., Ud(t))= 0.

Taking Dj :=1j=i(∆(k, `)−∆(`, k)), with ∆(k, `) the matrix with zero entries except at
(k, `) where the entry equals 1, and summing over k, `∈{1, ..., N}, yields

E
[

1
N

Tr⊗ 1
N

Tr(∂ip)+
1
N

Tr((Di,(1/N)TrV −(Di,(1/N)TrV )∗)p)
]

=
1
N

E
[

1
N

Tr(m̃�∂ip)
]
.

The last thing to check is that (Di,(1/N)TrV )∗=−Di,(1/N)TrV . Indeed, it is enough to
check it for r=1. Then, for all i and p∈L we have

Dip=
∑

〈p, q〉Diq=
∑

〈p, q〉
[ ∑

q=q1uiq2

q2q1ui−
∑

q=q1u∗i q2

u∗i q2q1

]
,

Di(p∗) =
∑

〈p, q〉
[
−

∑
q=q1uiq2

u∗i q
∗
1q

∗
2 +

∑
q=q1u∗i q2

q∗1q
∗
2ui

]
=−(Dip)∗.

Since V is self-adjoint, the proof is complete.

∫
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Equation (6.7) can be reinterpreted as a relation between the “correlators” WV
kN

defined as (see also (6.4))

WV
kN (p1, ..., pk) :=

d

dt1
...

d

dtk

∣∣∣∣
t1=0,...,tk=0

log IV +(t1/N)p1+...+(tk/N)pk

β,N

=
d

dt2
...

d

dtk

∣∣∣∣
t2=0,...,tk=0

WV +(t2/N)p2+...+(tk/N)pk

1,N (p1).
(6.8)

Notice that here the pi’s belong to L , but we can identify them with pi⊗1⊗(r−1)∈L ⊗r.
Observe that we can always write the following expansion

E
[ r∏

j=1

Tr(qj)
]

=
r∏

j=1

WV
1N (qj)+

∑
j 6=k

WV
2N (qj , qk)

∏
` 6=j,k

WV
1N (q`)+RN (q1, ..., qr)

where RN (q1, ..., qr) is a sum of products of correlators, each of which contains either a
correlator of order at least 3, or two correlators of order 2. We define

Si
V,τp :=

r∑
j=1

∑
〈V, q1⊗...⊗qr〉

∑
k 6=j

[( ∏
` 6=k,j

τ(q`)
)
Diqjp⊗qk

+
∑

k, j, m distinct

( ∏
` 6=k,j,m

τ(q`)
)
τ(Diqjp)qm⊗qk

]
.

(6.9)

Using this expansion, we can rewrite (6.7) as follows.

Corollary 6.6. Let V be a self-adjoint polynomial, p∈L , and i∈{1, ..., d}. Then
the first Schwinger–Dyson equation reads

1
N
WV

1N⊗ 1
N
WV

1N (∂ip)+
1+1β=1

N
WV

1N (Di,(1/N)W1N
V p)

=
1β=1

N2
WV

1N (m̃�∂ip)−
1
N2

WV
2N (∂ip)

− 1r>2

N2
WV

2N (Si
V, 1

N WV
1N
p)+

1
Nr

R(WV
1N , ...,WV

rN : p),

where R is a sum (independent of N) of products of correlators of polynomials extracted
from p and V , each of which contains either a correlator of order at least 3, or two
correlators of order 2.

To derive asymptotics from the Schwinger–Dyson equations we shall use a-priori
upper bounds on the correlators WV

kN . The next result (proved in Appendix 8) is a
direct consequence of concentration of measures and states as follows.
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Lemma 6.7. Let p1, ..., pk be monomials in L . Then there exists a finite constant
Ck, independent of N and the pi’s, such that, for k>2,

|WV
kN (p1, ..., pk)|6Ck

k∏
i=1

degU (pi) and |WV
1N (p)|6N.

In particular, ‖WV
kN‖ξ,ζ 6Ck(max`>1 ξ

−``)k is finite for all ξ>1, ζ>1, and k>2, whereas
‖WV

1N (p)‖ξ,ζ 6N for any ξ, ζ>1.

We now deduce the expansion of WV
1N up to order O(N−2), and of WV

2N up to
O(N−1).

As N−1WV
1N (p) is bounded by 1 for all p∈L , we deduce that N−1WV

1N has limit
points. Let τ be such a limit point. As N−1WV

2N (∂ip) goes to zero for any polynomial
p∈L (see Lemma 6.7), we deduce from the Schwinger–Dyson equation (see Corollary 6.6)
that the limit point τ satisfies the limiting Schwinger–Dyson equation

τ⊗τ(∂ip)+(1+1β=1)τ(Di,τV p) = 0 for all p∈L . (6.10)

Hereafter we let
Vβ := (1+1β=1)V,

and we show uniqueness of the solutions to such an equation whenever τ restricted to AB

is prescribed, ‖τ‖1,161, and ‖V ‖ξ,ζ is small enough. In our application τ1 :=τ |AB will
simply be given by τN

AB , the non-commutative distribution of (A1, ..., Ad, B1, ..., Bm).
It could also be given by its limit, if any, but we prefer to take it dependent on the
dimension N .

To show uniqueness, we apply the above equation to pi=Diq and sum over i∈
{1, ..., d}. We will use that (see [37, Proposition 10])

τ⊗τ
( d∑

i=1

∂iDiq

)
= τ(Dq)+τ⊗τ

( d∑
i=1

∆iq

)
, (6.11)

where
• D is the degree operator: Dp:=degU (p)p;
• ∆i acts on monomials according to

∆ip := ∂iDip−
∑

p=p1uip2

p2p1ui⊗1−
∑

p=p1u−1
i p2

1⊗u−1
i p2p1,

that is,

∆ip=
∑

p=p1uip2

( ∑
p2p1ui=q1uiq2ui

q1 ui⊗q2 ui−
∑

p2p1ui=q1u−1
i q2ui

q1⊗ q2

)
(6.12)

−
∑

p=p1u−1
i p2

( ∑
u−1

i p2p1=u−1
i q1uiq2

q1⊗q2−
∑

u−1
i p2p1=u−1

i q1u−1
i q2

u−1
i q1⊗u−1

i q2

)
,

where the sum is over all possible decompositions as specified.
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We write in short ∆:=
∑d

i=1 ∆i, and we rewrite equation (6.10) as

τ
((

D+ 1
2Tτ +P

Vβ
τ

)
q
)
=0 (6.13)

where Tτ and P
Vβ
τ are the following operators:

• Tτ arises as the analogue of the Laplacian:

Tτ := (Id⊗τ+τ⊗Id)∆.

• The operator P
Vβ
τ is the dot product of the cyclic gradient of Vβ with the cyclic

gradient of p:

P
Vβ
τ p :=DτVβ ·Dp=

d∑
i=1

Di,τVβ ·Dip.

More generally, for linear forms τ1, ..., τr−1 on L , we define

P
Vβ
τ1,...,τr−1p :=

d∑
i=1

r∑
j=1

∑
〈Vβ , q1⊗...⊗qr〉

( j−1∏
k=1

τk(qk)
)
Diqj ·Dip

( r∏
k=j+1

τk−1(qk)
)
.

When r>2, we also define a companion operator Q
Vβ
τ1,...,τr−1 to P

Vβ
τ1,...,τr−1 :

Q
Vβ
τ1,...,τr−1p

:=
d∑

i=1

∑
16j<`6r

∑
〈Vβ , q1⊗...⊗qr〉

( ∏
k∈{j,`}c

τk−1k>`
(qk)

)
τj−1j=r (Diqj ·Dip) q`.

We set Π′ (resp. Π) to be the orthogonal projection onto (resp. onto the complement
of) the algebra AB generated by {a1, ..., ad, b1, ..., bm}. For any linear transformation T

with domain L , we define its degree regularization by

	T :=TD−1,

where D is the degree operator defined above. It is understood that the domain of the
regularized operator 	T is restricted to (AB)⊥. We recall that, for our applications, we
assume that the restriction of τ to AB is given and equal to τ1, and therefore

τ = τΠ+τ1Π′.

Hence, we can see (6.13) as a fixed point equation for τ∈Lξ,ζ given by

F [τ ; τ1, Vβ ] = 0, τ |AB = τ1, (6.14)
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where
F :Lξ,ζ×(T (AB), ‖ · ‖ζ)×(L ⊗r, ‖ · ‖ξ,ζ)−!Lξ,ζ

is given by F [τ ; τ1, Vβ ]:=G[τΠ+τ1Π′;Vβ ] with

G[τ ;Vβ ](q) := τ
((

Id+ 1
2
	Tτ +�PVβ

τ

)
Πq

)
for all q ∈Lξ,ζ and τ ∈Lξ,ζ . (6.15)

When V =0 and τ1∈T (AB), the equation F [τ ; τ1, 0]=0 has a unique solution τ0,τ1
10 since

the moments of τ are defined recursively from those of τ1. In this case, τ is the non-
commutative distribution of ({ai, ui, u

∗
i }d

i=1, {bj}m
j=1) so that (a1, ..., ad, b1, ..., bm) has

law τ1, and is free from the d free unitary variables ({ui, u
∗
i }d

i=1), see [67] and [2, Theo-
rem 5.4.10].

Observe that we know that solutions exist in T (AB) as limit points of N−1WV
N1

(which is tight in any Lξ,ζ by Lemma 6.7); we shall prove uniqueness of such solutions
for V small by applying ideas similar to those of the implicit function theorem.

To state our result precisely, for ξ>1 and ζ>1 we define

δξ,ζ(V ) :=
8

ξ−1
+

∑
|〈Vβ , q1⊗...⊗qr〉|

( r∑
j=1

degU (qj)
)[ r∑

`=1

ξdegU (q`)ζdegA,B(q`)

]
. (6.16)

Observe that for ξ>ξ0, with ξ0 sufficiently large so that

8
ξ0−1

6
1

2(1+max{2, r})
,

if ‖V ‖ξ,ζ is finite one can choose a0 small enough so that δξ,ζ(aV )<1/(1+max{2, r}) for
all a∈[−a0, a0].

Lemma 6.8. Assume that there exist ζ>1 and ξ>1 such that

δξ,ζ(V )<
1

1+max{2, r}
. (6.17)

Then, for any law τ1∈T (AB), there exists a unique solution τV,τ1
10 ∈T ∩Lξ,ζ to

F [ · ; τ1, Vβ ] = 0

such that τ |AB=τ1 and ‖τ‖1,161. Also, the map T (AB)3τ1 7!τV,τ1
10 ∈Tξ,ζ is Fréchet

differentiable at all orders, and its derivatives D`τV,τ1
10 satisfy, for any ν1, ..., ν`∈Lζ(AB),

‖D`τV,τ1
10 [ν1, ..., ν`]‖ξ,ζ 6Cξ,ζ,`‖ν1‖ζ ... ‖ν`‖ζ

for some finite constant Cξ,ζ,`. Finally,

lim
N!∞

‖N−1W1N−τV,τN
AB

10 ‖ξ,ζ =0.
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Before proving Lemma 6.8, we need the following technical result.

Lemma 6.9. Let ξ>1, ξ̃>1 and ζ, ζ̃>1. Then the following statements hold :
• Let f∈Lξ̃,ζ̃ and ξ>ξ̃ and ζ>ζ̃. Then

‖	Tf‖ξ,ζ < 8‖f‖ξ̃,ζ̃

ξ̃

ξ−ξ̃
. (6.18)

• Let f1, ..., fr−1∈L. Then, for any V ∈L r
ξ,ζ self-adjoint and any ξ̃, ζ̃>1, we have

∥∥�PVβ

f1,...,fr−1

∥∥
ξ,ζ

6
r−1∏
j=1

‖fj‖ξ̃,ζ̃

∥∥|ΠVβ |
∥∥

ξ,ζ,ξ̃,ζ̃
, (6.19)

with ∥∥|ΠVβ |
∥∥

ξ,ζ,ξ̃,ζ̃
:=

∑
|〈Vβ , q1⊗...⊗qr〉|

×
r∑

j=1

degU (qj)ξdegU (qj)ζdegA,B(qj)ξ̃
∑

i6=j degU (qi)ζ̃
∑

i6=j degB(qi).

• Let f1, ..., fr−1∈L. Then, for any V ∈L r
ξ,ζ self-adjoint and any ξ̃, ζ̃>1 with ξ̃6ξ

and ζ̃6ζ, we have

‖	QVβ

f1,...,fr−1
‖ξ,ζ 6

r−1∏
j=1

‖fj‖ξ̃,ζ̃

∥∥|ΠVβ |
∥∥

ξ,ζ,ξ̃,ζ̃;2
, (6.20)

with∥∥|ΠVβ |
∥∥

ξ,ζ,ξ̃,ζ̃;2
:=

∑
|〈Vβ , q1⊗...⊗qr〉|

×
∑
j 6=`

ξ̃
∑

i6=` degU (qi)ζ̃
∑

i6=` degA,B(qi) degU (qj)ξdegU (q`)ζdegA,B(q`).

• Let f1, ..., fr∈L, and for V ∈L r
ξ,ζ self-adjoint set

SV
f1,...,fr−2

p

:=
∑

〈V, q1⊗...⊗qr〉

×
d∑

i=1

∑
j,k

[( ∏
` 6=k,j

f`−1k6`−1j6`
(q`)

)
(1j<kDiqj ·Dip⊗qk+1k<jqk⊗Diqj ·Dip)

+
∑

s 6=j,k

( ∏
` 6=k,j,s

f`−1k6`−1s6`−1m6`
(q`)

)
fr−2(Diqj ·Dip) qs⊗qk

]
.

(6.21)
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Then, we have

|fr−1⊗fr(�SV
f1,...,fr−2

(p))|6
r∏

j=1

‖fj‖ξ̃,ζ̃

r∑
k=r−2

‖fk‖ξ,ζ

‖fk‖ξ̃,ζ̃

∥∥|ΠVβ |
∥∥

ξ,ζ,ξ̃,ζ̃;3
‖p‖ξ,ζ , (6.22)

where ∥∥|ΠVβ |
∥∥

ξ,ζ,ξ̃,ζ̃;3
= r

∥∥|ΠVβ |
∥∥

ξ,ζ,ξ̃,ζ̃
+r

∥∥|ΠVβ |
∥∥

ξ,ζ,ξ̃,ζ̃;2
.

Proof. The proof of (6.18) is done by considering term by term the norm of 1⊗f∆ip.
For instance, if p has degree di in ui and u∗i , and d=degU (p), then we have that∥∥∥∥ ∑

p=p1uip2

∑
p2p1ui=q1uiq2u1

q1uif(q2ui)
∥∥∥∥

ξ,ζ

6 ‖f‖ξ̃,ζ̃

∑
p=p1uip2

∑
p2p1ui=q1uiq2u1

‖q1ui‖ξ,ζ‖q2ui‖ξ̃,ζ̃

6 di‖f‖ξ̃,ζ̃

d−1∑
p=0

ξp ξ̃d−pζdegAB(p)

6 di‖f‖ξ̃,ζ̃‖p‖ξ,ζ
ξ̃

ξ−ξ̃
,

where we used ζ>ζ̃ and the fact that q1 and q2 have degree smaller than d−1. Proceeding
for each term similarly (and noting a degree reduction of each term) yields the claim,
after summing over i and dividing by d. More details are given in [37, Proposition 17] in
the case ζ=1.

We next prove (6.19). Take a monomial p in (AB)⊥. Then, with ε, εj∈{−1, 1},

‖�PVβ

f1,...,fr−1
p‖ξ,ζ

=
∥∥∥∥ 1

degU (p)

d∑
i=1

∑
〈Vβ , q1⊗...⊗qr〉

r∑
j=1

( j−1∏
k=1

fk(qk)
)
Diqj ·Dip

( r∏
k=j+1

fk−1(qk)
)∥∥∥∥

ξ,ζ

6
1

degU (p)

d∑
i=1

∑
|〈Vβ , q1⊗...⊗qr〉|

r∑
j=1

( j−1∏
k=1

|fk(qk)|
) ( r∏

k=j+1

|fk+1(qk)|
)

×
∑

qj=q1
j uεj

i q2
j

∑
p=p1uε

i p2

‖u−1εj=−1
i q2j q

1
ju

1εj=1
i u

−1ε=−1
i p2p1u1ε=1

i ‖ξ,ζ

6
∑

|〈Vβ , q1⊗...⊗qr〉|
r∑

j=1

( r−1∏
k=1

‖fk‖ξ̃,ζ̃

)
ξ̃

∑
i6=j degU (qi)ζ̃

∑
i6=j degB(qi)

×degU (qj) ξdegU (p)+degU (qj)ζdegA,B(p)+degA,B(qj),



156 a. figalli and a. guionnet

where we have used the facts that ξ, ζ>1, that the degree of

u
−1εj=−1
i q2j q

1
ju

1εj=1
i u

−1ε=−1
i p2p1u1ε=1

i

is at most degU (p)+degU (qj) in the ui’s (and similarly in the ai’s and bi’s), and that the
sum contained at most degU (p)×deg(qj) terms. We thus obtain (6.19).

To prove (6.20) we note that ‖	QVβ

f1,...,fr−1
p‖ξ,ζ is equal to∥∥∥∥ 1

degU (p)

d∑
i=1

∑
〈Vβ , q1⊗...⊗qr〉

∑
` 6=j

( j−1∏
k=1
k 6=`

fk(qk)
)

fj(Diqj ·Dip)q`

( r∏
k=j+1

k 6=`

fk−1(qk)
)∥∥∥∥

ξ,ζ

6
∑

|〈Vβ , q1⊗...⊗qr〉|
∑
j 6=`

( r−1∏
k=1

‖fk‖ξ̃,ζ̃

)
ξ̃

∑
i6=` degU (qi)+degU (p)

×ζ̃
∑

i6=` degB(qi)+degA,B(p) degU (qj)ξdegU (q`)ζdegB(q`)

6
∥∥|ΠVβ |

∥∥
ξ,ζ,ξ̃,ζ̃;2

‖p‖ξ,ζ ,

where we used in the last line that ξ̃6ξ and ζ̃6ζ. The bound (6.22) is analogous and
left to the reader.

Proof of Lemma 6.8. Following the implicit function theorem, let us consider F
as a function from X×Y to Y , with X :=L(AB)ζ×L r

ξ,ζ and Y :=L(AB⊥)ξ,ζ . (Here
L(AB⊥) is the set of linear functionals over AB⊥. Even though AB⊥ is not an algebra,
this is a well-defined Banach space once equipped with ‖ · ‖ξ,ζ .)

Recall that F has a unique solution τ0,τ1
10 on the subset T (AB)×{0} of X, given by

the law of free variables, as discussed above. To show that this unique solution extends
to a neighborhood of T (AB)×{0}, it is enough to check that F is differentiable along
the variable τ∈Y , and its derivative is a Banach space isomorphism from L(AB⊥)ξ,ζ

into L(AB⊥)ξ,ζ at (τ1, 0). But this is clear as for any q∈AB⊥,

DF [τ ; τ1, Vβ ](µ; 0)(q) := lim
ε!0

1
ε
(F [τ+εµ; τ1, Vβ ]−F [τ ; τ1, Vβ ])(q) =µ((Id+Π[	T

τ
0,τ1
10

])q),

where Id+Π	T
τ
0,τ1
10

is invertible, as a triangular operator. Hence, by the implicit function
theorem there exists a unique solution of F (τ ; τ1, Vβ) for ‖Vβ‖ξ,ζ small enough and τ1∈
T (AB). However, for further use we shall reprove this result “by hand”.

If τ and τ ′ are two solutions of (6.14) we see that δ :=τ−τ ′ satisfies

δ((Id+ΞV
τ,τ1

)p) = δ⊗δ(∆̄p+RV
τ,δp), (6.23)

where
ΞV

τ,τ1
:=Π[	TτΠ+τ1Π′+�PVβ

τΠ+τ1Π′+	Q
Vβ

τΠ+τ1Π′ ],
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RV
τ,δ :=−

1

0

�SV,τ ′+sδs ds and SV,τ (p) :=
d∑

i=1

Si
V,τ (Dip)

where Si
V,τ is defined in (6.9). Indeed, this follows by the identity

τ⊗τ−τ ′⊗τ ′ = δ⊗τ+τ⊗δ−δ⊗δ

and the expansion

τ(�PVβ

τΠ+τ1Π′p)−τ ′(�PVβ

τ ′Π+τ1Π′p)

=
1

0

d

ds
((τ ′+sδ)(�PVβ

(τ ′+sδ)Π+τ1Π′p)) ds

= δ

( 1

0

(Π[�PVβ

(τ ′+sδ)Π+τ1Π′+	Q
Vβ

(τ ′+sδ)Π+τ1Π′ ]p) ds
)

= δ(Π[�PVβ

τΠ+τ1Π′+	Q
Vβ

τΠ+τ1Π′ ]p)+δ⊗δ
( 1

0

1

s

Π(�SV,τ ′+σδp) dσ ds
)

= δ(Π[�PVβ

τΠ+τ1Π′+	Q
Vβ

τΠ+τ1Π′ ]p)+δ⊗δ
( 1

0

σΠ(�SV,τ ′+σδp) dσ
)
,

which proves the desired formula noticing that δ=δ�Π.
We next claim that Id+ΞV

τ,τ1
is invertible and with bounded inverse in

((AB)⊥, ‖ · ‖ξ,ζ).

We begin by noticing that (6.18), (6.19), and (6.20) imply the following: if τ, τ1∈T , as
τΠ+τ1Π′ is a tracial state which has ‖ · ‖1,1 norm bounded by 1, we have (by taking
ξ̃=ζ̃=1)

‖ΞV
τ,τ1

‖ξ,ζ 6
8

ξ−1
+

∥∥|ΠVβ |
∥∥

ξ,ζ,1,1
+

∥∥|ΠVβ |
∥∥

ξ,ζ,1,1;2
= δξ,ζ(V ) (6.24)

(see (6.16)). Therefore, since δξ,ζ(V )<1 (by (6.17)), it follows that Id+ΞV
τ,τ1

is invertible
on (L((AB)⊥), ‖ · ‖ξ,ζ), with inverse bounded by (1−δξ,ζ(V ))−1.

By (6.18) and because ‖δ‖1,16‖τ‖1,1+‖τ ′‖1,162, as well as ‖τ ′+sδ‖1,161,

|δ⊗δ(∆̄p)|= |δ(Tδp)|6
16
ξ−1

‖δ‖ξ,ζ ‖p‖ξ,ζ ,

and similarly, by (6.22), we find that for ξ, ζ>1, since ‖p‖1,16‖p‖ξ,ζ ,

|δ⊗δ(RV
τ,δ(p))|6

∥∥|ΠVβ |
∥∥

ξ,ζ,1,1;3
‖δ‖ξ,ζ ‖p‖ξ,ζ .

It follows from (6.24) and (6.23) that

‖δ‖ξ,ζ 6
max{2, r}
1−δξ,ζ(V )

δξ,ζ(V )‖δ‖ξ,ζ ,

∫

∫
∫

∫ ∫
∫
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and recalling (6.17) we conclude that ‖δ‖ξ,ζ =0, that is τ=τ ′ as desired.
We let τV,τ1

10 denote our unique solution. Notice that if τ1 is not necessarily a tracial
state, but an element of Lξ,ζ which still satisfies ‖τ1‖161 and such that ‖τ1−τ0

1 ‖ζ 6ε

for some τ0
1 ∈T (AB) with ε small enough, then the very same argument as before shows

that there exists a unique τV,τ1
10 in a small neighborhood of τV,τ0

1
10 solving (6.7).

By the implicit function theorem, since the function F is smooth, the solution τV,τ1
10

is smooth both in V and τ1. For ν1, ..., ν`∈Lξ,ζ , we denote by D`τV,τ1
0,1 the `th derivative

of τV,τ1
0,1 with respect to τ1, which is given by

D`τV,τ1
0,1 [ν1, ..., ν`] =

d

dε1
...

d

dε`

∣∣∣∣
ε1=0,...,ε`=0

[
τ

V,τ1+
∑

i εiνi

0,1

]
,

and is defined inductively by the formula, valid for all q∈(AB)⊥,

D1τV,τ1
0,1 [ν]

((
Id+ΞV

τ
V,τ1
01

)
q
)
=−ν

(
Π′[	T

τ
V,τ1
01 Π+τ1Π′+�P

Vβ

τ
V,τ1
01 Π+τ1Π′

+	QVβ

τ
V,τ1
01 Π+τ1Π′

]
q
)
,

(6.25)
where we use the simplified notation ΞV

τ
V,τ1
01

=ΞV

τ
V,τ1
01 ,τ1

. Hence, if we set K={1, ..., `} and

DIτ :=D|I|τ
V,τN

AB
0,1 [νi, i∈I], then

DKτ((Id+ΞV

τ
V,τ1
01

)q) =−1
2

∑
I∪J=K
I,J 6=∅

DIτ⊗DJτ(∆̄p)

−
∑̀
i=1

(νi⊗DK\{i}τ(∆̄p)−1`=2νi⊗νK\{i}(∆̄p))

−
∑
Ji

∑
θi∈DJi

τ

θ1(�PV
θ2,...,θr

q),

(6.26)

where in the last term we sum over all choices Ji, with
⋃r

i=1 Ji=K and J1 6=∅,K, and
all θi in the set

DJiτ =
{
νJi , if |Ji|=1,
τ , if Ji = ∅.

From this formula and the invertibility of Id+ΞV

τ
V,τ1
01

, we deduce by induction that for all

ξ satisfying (6.17) and for all `∈N, there exists a finite constant Cξ,ζ,` such that

‖D`τV,τ1
10 [ν1, ..., ν`]‖ξ,ζ 6Cξ,ζ,`‖ν1‖ζ ... ‖ν`‖ζ .

Finally, we apply the above uniqueness result with τ1 :=τN
AB , that is, to the non-

commutative distribution of (A1, ..., Ad, B1, ..., Bm); see Proposition 6.2. Indeed, by
the discussion after Lemma 6.7, any limit point of N−1WV

1N∈Lξ,ζ satisfies the limit-
ing Schwinger–Dyson equation, so this lemma ensures that this limit is unique and that
N−1WV

1N converge to τV,τN
AB

10 , which concludes the proof.
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In order to simplify the notation, we use τ10 to denote τV,τN
AB

10 . We next develop
similar arguments to expand WV

1N as a function ofN−1. Let us first consider the first error
term and rewrite the first Schwinger–Dyson equation by taking P=Dip in Corollary 6.6.
Summing over i, we get δN :=WV

1N−Nτ10,

δN ((Id+	Tτ10 +�PVβ
τ10 +	QVβ

τ10)p) =
1β=1

N
WV

1N (∆̃p)− 1
N
WV

2N (∆̄p)+RN (p), (6.27)

where

∆̃ :=
d∑

i=1

m̃�∂iDiD
−1

and RN (p) contains the terms which are at least quadratic in δN , or depending on
cumulants of order greater than or equal to 2:

RN (p) :=−δN (	TN−1δN
p)

− 1
Nr−1

d∑
i=1

r∑
k=1

∑
〈Vβ , q1⊗...⊗qr〉

×
∑

I⊂{1,...,r}\k

|I|>1

δN (Diqk ·DiD
−1p)

( ∏
j∈I

δN (qj)
)( ∏

j∈(I∪k)c

WV
1N (qj)

)

− 1
Nr−1

∑
i

∑
〈Vβ , q1⊗...⊗qr〉

×
∑

I1∪I2∪...∪Ik={1,...,r}
k6r−1

WV
|I1|N (Diqi1 ·DiD

−1p, {qj}j∈I1\{i1})

×
k∏

`=2

W|I`|N ({qs}s∈I`
),

where in the above sum at least one set Ij has at least two elements.
In order to control the right-hand side of (6.27) we use the following estimate (com-

pare with [37, Proposition 18]).

Lemma 6.10. For any ζ>1 and ξ1>ξ2, the operator ∆̄ is a bounded mapping
from ((AB)⊥, ‖ · ‖ξ1,ζ) into (L ⊗2, ‖ · ‖ξ2,ζ). Moreover ∆̃ is a bounded mapping from
(L ((AB)⊥), ‖ · ‖ξ1,ζ) into (L , ‖ · ‖ξ2,ζ).

The proof of this result simply follows by using (6.12) and noticing that there exists
a constant Cξ1,ξ2>1 such that nξn

2 6Cξ1,ξ2ξ
n
1 for all n>0: one deduces that, for any

monomial p,

‖∆̄p‖ξ2,ζ 6degU (p)ξdegU (p)
2 ζdegA,B(p) 6Cξ1,ξ2ξ

degU (p)
1 ζdegA,B(p) =Cξ1,ξ2‖p‖ξ1,ζ .
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The proof for ∆̃ is similar.
Next, we prove the following convergence result for δN .

Lemma 6.11. Assume that there exist ξ2<ξ1 and ζ>1 such that, for both ξ=ξ1 and
ξ=ξ2,

δξ,ζ(V )<
1

1+max{2, r}
.

Then, for any p∈Lξ1,ζ , we have

lim
N!∞

δN (p) =1β=1τ10(∆̃(Id+	Tτ10 +�PVβ
τ10 +	QVβ

τ10)
−1p) =: τ11(p),

and N‖δN−τ11‖ξ1,ζ is uniformly bounded in N .

Proof. First notice that for ξ=ξ1 or ξ=ξ2, our hypothesis ensures that

ΨVβ
τ := Id+	Tτ10 +�PVβ

τ10 +	QVβ
τ10

is invertible in Lξ,ζ with norm smaller than (1−δξ,ζ(V ))−1 (see the proof of Lemma 6.8).
Therefore, it follows from (6.27) that, for p∈(AB)⊥,

δN (p) =
1
N
WV

1N (∆̃(ΨVβ
τ10)

−1p)− 1
N
WV

2N (∆̄(ΨVβ
τ10)

−1p)+RN ((ΨVβ
τ10)

−1p). (6.28)

We next bound each term separately. For the first one, we get∣∣∣∣ 1
N
WV

1N (∆̃(ΨVβ
τ10)

−1p)
∣∣∣∣ 6

∥∥∥∥ 1
N
WV

1N

∥∥∥∥
ξ2,ζ

‖∆̃(ΨVβ
τ10)

−1p‖ξ2,ζ

6

∥∥∥∥ 1
N
WV

1N

∥∥∥∥
ξ2,ζ

‖∆̃‖ξ2,ξ1,ζ ‖(Ψ
Vβ
τ10)

−1p‖ξ1,ζ

6

∥∥∥∥ 1
N
WV

1N

∥∥∥∥
ξ2,ζ

‖∆̃‖ξ2,ξ1,ζ ‖(Ψ
Vβ
τ10)

−1‖ξ1,ζ ‖p‖ξ1,ζ .

A similar bound holds for the second term. For RN , note first that (6.18) with ξ̃=ξ2
yields

|δN (	TN−1δN
p)|6 8N−1 ξ2

ξ1−ξ2
‖δN‖ξ2,ζ ‖δN‖ξ1,ζ ‖p‖ξ1,ζ ,

and noticing that similar bounds hold for the other terms in RN , we obtain

‖δN‖ξ1,ζ 6

∥∥∥∥ 1
N
WV

1N

∥∥∥∥
ξ2,ζ

‖∆̃‖ξ2,ξ1,ζ ‖(Ψ
Vβ
τ10)

−1‖ξ1,ζ

+
∥∥∥∥ 1
N
WV

2N

∥∥∥∥
ξ2,ζ

‖∆̄‖ξ2,ξ1,ζ‖(Ψ
Vβ
τ10)

−1‖ξ1,ζ

+C(1+‖(ΨVβ
τ10)

−1‖ξ1,ζ)
1
N
‖δN‖ξ2,ζ ‖δN‖ξ1,ζ ,
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where we bounded the last term using Lemma 6.7. As N−1‖δN‖ξ2,ζ!0 (see Lemma 6.8),
forN sufficiently large we can reabsorb the last term and deduce that ‖δN‖ξ1,ζ is bounded.

Moreover, this implies also that the last term is of order N−1. In addition, the
second term is of order N−1 by Lemma 6.7. Hence, going back to (6.28) we see that
the first term in the right-hand side converges towards the desired limit by Lemma 6.8,
provided ∆̃(ΨVβ

τ10)−1p∈Lξ2,ζ , which is true as soon as p∈Lξ1,ζ (see Lemma 6.10).
Finally, to prove the last statement, it is enough to notice that the above reasoning

implies that ‖δN‖ξ3,ζ is bounded for some ξ3∈(ξ2, ξ1) (notice that the assumption on
δξ3,ζ still holds for ξ3 close enough to ξ2 or ξ1 by continuity of δ · ,ζ) so that the previous
arguments (in particular the fact that WV

2N and RN are bounded) imply that there exists
a finite constant C such that

N‖δN−τ11‖ξ1,ζ 6C‖δN‖ξ3,ζ‖∆̃‖ξ3,ξ1,ζ‖(Ψ
Vβ
τ10)

−1‖ξ1,ζ +C

which concludes the proof.

The second-order correction to WV
1N depends on the limit of WV

2N that we now
derive by using the second Schwinger–Dyson equation. The latter is simply derived from
the first Schwinger–Dyson equation (see Lemma 6.5), by changing the potential V into
V +tq⊗1r−1 and differentiating with respect to t at t=0. This results in the equation,
valid for all p, q∈L ,

E
[
(Tr q−E[Tr q])

(
1
N

Tr⊗ 1
N

Tr(∂ip)+
1+1β=1

N
Tr((Di,(1/N)TrV )p)

)]
+

1+1β=1

N
E[Tr((Diq) p)]

=
1
N

E
[
(Tr q−E[Tr q])

(
1
N

Tr(m̃�∂ip)
)]
.

We next rearrange the above expression in terms of correlators WV
kN , k=1, 2, replace p

by Dip, and sum over i, to deduce the second Schwinger–Dyson equation:

WV
2N (q, p) =−1+1β=1

N
WV

1N (�Pq
τ10

(ΨVβ
τ10)

−1p)+R̂N ((ΨVβ
τ10)

−1p),

where R̂N only depends on correlators of order greater than or equal to 3, or on δN to
a power greater than or equal to 3. We can therefore see that R̂N will be negligible
provided (ΨVβ

τ10)−1p belongs to a space in which all the previous convergences hold. This
allows us to prove the following lemma.

Lemma 6.12. Let ζ>1. Assume there exist 1<ξ3<ξ2<ξ1 such that, for ξ=ξ1, ξ2, ξ3,

δξ,ζ(V )<
1

1+max{2, r}
.
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Then, for any p, q∈Lξ1,ζ , we have

lim
N!∞

WV
2N (p, q) =−(1+1β=1)τ10(�Pq

τ10
(ΨVβ

τ10)
−1p) =: τ20(p, q),

and N‖WV
2N−τ20‖ξ1,ζ is uniformly bounded in N .

We can finally derive the correction of order 1 for WV
1N by going back to the

first Schwinger–Dyson equation. Indeed, if we let δ2N :=N(WV
1N−Nτ10−τ11), the first

Schwinger–Dyson equation reads

δ2N (ΨVβ
τ10p) = 1β=1δN (∆̃p)−[WVβ

2N +δN⊗δN ](�SVβp+∆̄p)+R̃N (p),

where R̃N (p) depends on correlators of order three or higher, which are negligible by
Lemma 6.7, and SV is defined in (6.21). Then, arguing as previously, we infer the
following result.

Lemma 6.13. Assume there exist 1<ξ4<ξ3<ξ2<ξ1 such that, for ξ=ξ1, ξ2, ξ3, ξ4,

δξ,ζ(V )<
1

1+max{2, r}
.

Then

lim
N!∞

δ2N (p) = τ11(∆̃(ΨVβ
τ10)

−1p)−[τ20+τ11⊗τ11](∆̄(ΨVβ
τ10)

−1p+�SVβ (ΨVβ
τ10)

−1p) =: τ12(p)

and N‖δ2N−τ12‖ξ1,ζ is uniformly bounded in N .

This concludes the proof of Proposition 6.4. We can now prove Proposition 6.2 and
Lemma 6.3.

6.2. Proof of Proposition 6.2 and Lemma 6.3.

We first show that the free energy is a function of the correlators, and then that the
correlators only depend on {LN

i (x`)}`>0, 16i6d and τN
B . Finally, we deduce the large N

expansion of the free energy as well as its smoothness.

6.2.1. The free energy in terms of the correlators

Recalling the definition of free energy, (6.5), and (6.4), we have

FN,aV
β (A1, ..., Ad, B1, ..., Bm) := log IN,aV

β

=
a

0

d

du
log IN,uV

β du

=N2
a

0

1
Nr

Tr⊗rV dQN,uV
β du

=N2−r
a

0

(WuV
1N )⊗r(V ) du+r(r−1)N2−r

a

0

WuV
2N ⊗(WuV

1N )r−2(V ) du+	RN ,

∫
∫ ∫

∫ ∫
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where 	RN has terms either with two cumulants of order 2, or a cumulant of order greater
or equal to 3. By Lemma 6.7 (note that it applies uniformly in u∈[−a0, a0], for some a0

universally small), this latter term is at most of order 1/N , and is therefore negligible.
Moreover, using Corollary 6.8 and Lemmas 6.12 and 6.13, we find that

FN,aV
β (A1, ..., Ad, B1, ..., Bm) =N2

a

0

fu
0 du+N

a

0

fu
1 du+

a

0

fu
2 du+O

(
1
N

)
,

with

fu
0 := (τuV

10 )⊗r(V ),

fu
1 := rτuV

11 ⊗(τuV
10 )⊗(r−1)(V ),

fu
2 := r(r−1)

[
(τuV

11 )⊗2+τuV
20

]
⊗(τuV

10 )⊗(r−2)(V )+rτuV
12 ⊗(τuV

10 )⊗(r−1)(V ),

(6.29)

where we have used that V is symmetric and such that ‖V ‖ξ1,ζ is finite for ξ1 big enough,
so that δξ1,ζ(uV )<(1+max{2, r})−1 provided u∈[−a0, a0] with a0 sufficiently small. In
particular this implies that, for a0 small enough and any 1<ξ4<ξ3<ξ2<ξ1,

δξi,ζ(uV )< (1+max{2, r})−1 for all u∈ [−a0, a0],

so that the previous lemmas apply. Hence, we deduce the following result.

Lemma 6.14. Let ‖V ‖ξ1,ζ1 be finite for some ξ1 large enough and let ζ1>1. Then,
there exists a0>0 so that, for a∈[−a0, a0], and uniformly on Hermitian matrices {Ai}d

i=1

and {Bi}16i6m whose operator norm is bounded by 1, we have

FN,aV
β (A1, ..., Ad, B1, ..., Bm) =

2∑
l=0

N2−lF a
l +O

(
1
N

)
,

with
F a

l =
a

0

fu
l du

and fu
l given by (6.29).

6.2.2. The correlators as functions of {LN
i }d

i=1 and τN
B

Let us define the space

P := {Q(u1a1u
−1
1 , ..., udadu

−1
d , b1, ..., bk) : Q∈C〈x1, ..., xd, b1, ..., bm〉}.

As the functions F a
l only depend on the restriction to P of τuV

10 , τuV
11 , τuV

12 , and τuV
20 for

u∈[−a, a], we shall first prove that the latter only depend on

MA,B :=
{

1
N

N∑
j=1

(ai
j)

` : `> 0 and 16 i6 d

}
∪{τN

B }.

∫ ∫ ∫

∫
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• The restriction τaV
01 |P depends only on MA,B. We start by showing that τaV

01 can
be defined inductively, as is the case when V =0, since it depends analytically on the
potential V in the following sense.

Lemma 6.15. Let p∈L and V be a potential such that, for some ξ>1 and ζ>1,

δξ,ζ(V )<
1

1+max{2, r}
.

Then, for all a∈[−1, 1], the solution τaV
10 of

τ⊗τ(∂ip)+a(1+1β=1)τ(Di,τV p) = 0 (6.30)

is uniquely defined. Moreover, we have the decomposition

τaV
10 =

∑
n>0

anτV
n ,

with τV
n ∈Lξ,ζ satisfying ‖τV

n ‖ξ,ζ 6CnD
n, where {Cn}n>0 denote the Catalan numbers

and D is a positive constant.

Proof. This result can be seen to be a consequence of the implicit function theorem.
However we will soon need additional information on the τV

n , and therefore give a proof
“by hand”.

By uniqueness of solutions, it is enough to show that there exists a solution of (6.30),
or more precisely of (6.13), which is analytic in a. Let us therefore look for such a solution
and write τaV (p):=

∑
n>0 a

nτV
n (p). We then find that τaV satisfies (6.13) if and only if

τV
n (p)+

∑
k∈{0,n}

τV
k ⊗τV

n−k(Π∆̄p)

=−
n−1∑
k=1

τV
k ⊗τV

n−k(Π∆̄p)

−
∑

〈V, q1⊗...⊗qr〉
d∑

i=1

r∑
`=1

∑
∑

i ki=n−1

( ∏
j 6=`

τV
kj

(qj)
)
τV
k`

(Diq` ·DiD
−1p)

(6.31)

As ∆̄ splits monomials p into simple tensors q1⊗q2 each of whose factors has degree
strictly smaller than that of p, we see that there exists a unique solution to this equation.
Moreover, we prove by induction that there exists finite constant D>0 such that, if Cn

denote the Catalan numbers, then

‖τV
n ‖ξ,ζ 6CnD

n.
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Indeed, for n=0, we simply have the law of free variables bounded by 1, so that the
result is clear. Using the inductive hypothesis until n−1 to bound the right-hand side
in (6.31), and (6.18) to bound the second term in the left-hand side of (6.31), we deduce
that

(1−δξ,ζ(V ))‖τV
n ‖ξ,ζ 6

8
ξ−1

Dn
n−1∑
k=1

CkCn−k+Dn−1
∑

|〈V, q1⊗...⊗qr〉|

×
( r∑

i=1

deg qi

)
ζ

∑r
i=1 degA,B(qi)ξ

∑r
i=1 degU qi

∑
∑r

i=1 ki6n−1

r∏
i=1

Cki
.

Using the fact that
∑n

k=0 CkCn−k=Cn+164Cn, we find recursively that

∑
∑r

i=1 ki6n−1

r∏
i=1

Cki
6Cn+r−1 6 4r−1Cn.

Thus we can bound the last term by 4r−1CnD
n−1

∥∥|V |∥∥
ξ
, which implies that

‖τV
n ‖ξ,ζ 6CnD

n

provided D is chosen sufficiently large. As Cn64n, this implies that τaV =
∑

n>0 a
nτV

n

is absolutely converging provided |a|<1/4D and it satisfies (6.30), so we get τaV =τaV
01

as desired.

We finally show that τV
n |P only depends onMA,B . Again, we can argue by induction.

As already mentioned, this is clear when n=0 as τV
0 is the law of free variables. Also, if

p∈P and deg(p)=0 then p depends only on b1, ..., bk, and therefore τV
n (p) only depends

on τN
B for all n>0. Thus, by the inductive hypothesis, we can assume that the result is

true for τV
k (p) when k6n−1 and p∈P, and for τV

n (p) when p∈P and deg(p)6`.
To show that this property propagates we shall use the fact that (6.31) can be seen

as an induction relation where all monomials belong to P. To this end, first note that
{τV

n }n>0 are tracial, that is

τV
n (pq) = τV

n (qp) for all p, q ∈P.

Indeed this property is clear as it is satisfied by τaV , and {τV
n }n>0 are derivatives of τaV

with respect to a.
Next, observe that D−1 keeps P stable. Moreover, if p=Q({uiaiu

−1
i }m

i=1), where Q
is a monomial, then

Dip=
∑

Q=q1xiq2

(aiu
−1
i q2q1ui−u−1

i q2q1uiai),
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so that, up to cyclic symmetry, Dip·Diq∈P for each i and q⊂P. (Here and in the sequel,
cyclic symmetry is just the action of exchanging pq into qp.) We also show that ∆̄ maps
P into P⊗P up to cyclic symmetry. Indeed, it follows from (6.12) that, for p∈P,

∆̄ip=
∑

p=p1uiaiu
−1
i p2

( ∑
aiu

−1
i p2p1ui=aiu

−1
i q1uiaiu

−1
i q2ui

aiu
−1
i q1ui⊗aiu

−1
i q2ui

−
∑

aiu
−1
i p2p1ui=aiu

−1
i q1uiaiu

−1
i q2ui

(aiu
−1
i q1uiai⊗q2−ai⊗p2p1−p2p1⊗ai)

−
∑

u−1
i p2p1uiai=u−1

i q1uiaiu
−1
i q2uiai

q1⊗aiu
−1
i q2uiai

+
∑

u−1
i p2p1uiai=u−1

i q1uiaiu
−1
i q2uiai

u−1
i q1uiai⊗u−1

i q2uiai

)
,

so that, up to cyclic symmetry, ∆̄ip∈P⊗P for all i∈{1, ...,m} and p∈P.
Hence, by induction we see that τV

n restricted to P only depends on the restriction
of {τV

k }k6n−1 to P, therefore only on the restriction of τV
0 to P. Since we have already

seen that τV
0 |P only depends on MA,B , the conclusion follows.

• τaV
11 depends only on MA,B. A direct inspection shows that ∆̃ maps P into P up

to cyclic symmetry. Indeed, ∆̃=
∑

i ∆̃i with

∆̃ip=
∑

p=p1uiaiu
−1
i p2

( ∑
aiu

−1
i p2p1ui=aiu

−1
i q1uiaiu

−1
i q2ui

u−1
i q∗2uia

2
iu

−1
i q1ui

−
∑

aiu
−1
i p2p1ui=aiu

−1
i q1uiaiu

−1
i q2ui

(u−1
i q∗2uiaiu

−1
i q1uiai−u−1

i p∗1p
∗
2uiai−aiu

−1
i p2p1ui)

−
∑

u−1
i p2p1uiai=u−1

i q1uiaiu
−1
i q2uiai

aiu
−1
i q∗2uiaiu

−1
i q1ui

+
∑

u−1
i p2p1uiai=u−1

i q1uiaiu
−1
i q2uiai

aiu
−1
i q∗2q1uiai

)
.

Moreover, the previous considerations showed that ΨaV
τ10

maps P into P for a small, and
therefore

τaV
11 (p) =1β=1τ

aV
10 (∆̃(ΨaV

τ10
)−1(p))

only depends on τaV
10 |P . Since we just checked that the latter only depends on MA,B ,

this proves the result.

• τaV
20 depends only on MA,B. By Lemma 6.12,

τaV
20 (ΨaV

τ10
p, q) =−(1+1β=1)τaV

10 (�Pq

τaV
10
p),



universality in several-matrix models via approximate transport maps 167

and recalling that τaV
10 expands in a convergent series in a, we see that so does τaV

20 . We
only need to check that the operators which appear in the equation defining τaV

20 keep
P stable. But we have already seen that both the operators ∆̄ and PV keep P stable,
and hence τaV

20 (p, q) only depends on MA,B and it is in fact a convergent series in such
elements.

• τaV
12 depends only on MA,B. By Lemma 6.13,

τaV
12 (ΨaV

τ10
p) = τaV

11 (∆̃p)−[τaV
20 +τaV

11 ⊗τaV
11 ](∆̄p+�SaVβp),

from which we see that τaV
12 (p) is a convergent series in a (recall that we already proved

that τaV
10 (p), τaV

11 (p) and τaV
20 (p) are convergent series in a). So the main point is to prove

that, up to cyclic symmetry, ∆̄p+�SaVβp∈P⊗P whenever p∈P.
We already proved that this is the case for ∆̄p, so we focus on �SaVβp. We notice that

it is the sum of two parts. One part is linear over tensors of two monomials appearing
in the decomposition of aV , and as aV ∈P⊗r this part clearly belongs to P⊗2. The
other part is linear over tensors of one monomial appearing in the decomposition of aV
(which therefore belongs to P) and Dip·Diqj with qj appearing in the decomposition of
aV (which we have seen belongs to P up to cyclic symmetry). Hence also this second
part satisfies the desired property, which concludes the proof.

6.2.3. Smoothness of the functions F2, F1, and F0

By Lemma 6.14 and the discussion in the previous subsection, we know that

FN,aV
β =

2∑
l=0

N2−lF a
l (LN

1 , ..., L
N
d , τ

N
B )+O

(
1
N

)
,

where the functionals F a
0 , F a

1 and F a
2 depend on {LN

i }d
i=1 and on τN

B through the asymp-
totic correlators {τuV

1g }2
g=0 and τuV

20 . We finally prove that they are smooth functions of
these measures.

Recall the notation introduced in (6.3). We show the following.

Lemma 6.16. There exists ξ0>1 large enough such that the following holds: let
V have finite ‖ · ‖ξ,ζ norm for some ξ>ξ0 and ζ>1. Then there exists a0>0 such
that, for all a∈[−a0, a0], F a

l is Fréchet differentiable ` times for all `∈N, and if νj =
(νj

1 , ..., ν
j
d, τj)∈P ([−1, 1])d×T (B), we have

|D`F a
l (LN

1 , ..., L
N
d , τ

N
B )[ν1, ..., ν`]|6C`|a| ‖ν1‖ζ ... ‖ν`‖ζ .
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Moreover, the derivative DkF
a
0 (LN

1 , ..., L
N
d , τ

N
B )=DF a

0 (LN
1 , ..., L

N
d , τ

N
B )[0, ..., 0, δx, 0, ..., 0]

of F in the direction of the measure LN
k is a function on the real line with finite ‖ · ‖ζ

norm for any k∈{1, ..., d}. As a consequence, it is of class C∞ in an open neighborhood
of [−1, 1].

Proof. First, fix ξ0 sufficiently large so that all previous results apply. By the
previous section it is enough to show that {τuV

1g }2
g=0 and τuV

20 depend smoothly on
({LN

i }d
i=1, τ

N
B ), uniformly with respect to u∈[−a, a]. Indeed, by (6.29), F a

0 is the in-

tegral of (τuV
10 )⊗r(V ) over u∈[0, a]. We have seen in Lemma 6.8 that τN

AB 7!τ
uV,τN

AB
01 is

` times Fréchet differentiable. Moreover, we have also seen that, once restricted to P,
it depends only on {LN

i }d
i=1 and τN

B , and not the full distribution τN
AB . As a conse-

quence, the smoothness of τuV,τN
AB

01 as a function of τN
AB reduces to the smoothness as a

function of the probability measures {LN
i }d

i=1 and τN
B . The fact that DF a

0 is C∞ is a
direct consequence of formulas (6.25) and (6.26). For instance, if we denote by Dk the
derivative along LN

k , and Π′
k is the projection onto the algebra generated by {ak}, for

any p∈Lξ,ζ∩P we have

Dkτ
V,τ1
0,1 [p] =−Π′

k[	TτΠ+τ1Π′+�PVβ

τΠ+τ1Π′+	Q
Vβ

τΠ+τ1Π′ ](Id+ΞV

τ
V,τ1
01

)−1p∈P, (6.32)

where we use the fact (see Lemma 6.2) that

[	TτΠ+τ1Π′+�PVβ

τΠ+τ1Π′+	Q
Vβ

τΠ+τ1Π′ ](Id+ΞV

τ
V,τ1
01

)−1(P)⊂P

so that once we project it on AB we get only polynomials either in the ai or in the bi,
and hence differentiating in the direction of LN

k we only keep those in ak.
The same argument holds for Fu

1 and Fu
0 , since also τuV

10 , τuV
11 , and τuV

20 are smooth
and only depend on {LN

i }d
i=1 and τN

B .

7. Law of polynomials of random matrices

Let us consider the equation

Yi =Xi+aFi(X1, ..., Xd, B1, ..., Bm)

withX1, ..., Xd, (resp. B1, ..., Bm) self-adjoint operators with norm bounded by ξ (resp. ζ)
and Fi smooth functions (eventually polynomial functions) on such operators. We assume
that Fi are self-adjoint and that Fi=

∑
i β

q
i q, where the sum is over monomials in Xi’s

and Bi’s with total degree degX(q) (resp. degB(q)) in X1, ..., Xd (resp. in B1, ..., Bm).
We also assume that for ζ>1 and ξ large enough

‖Fi‖ξ,ζ :=
∑

i

|βq
i | ξ

degX(q)ζdegB(q)<∞.
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By the implicit function theorem, see [38, Corollary 2.4], for any fixed ξ and ζ there
exist A<A′<ξ such that for a small enough (e.g., so that A+|a| ‖Fi‖ξ,ζ 6A′) there exist
analytic functions Gi, with ‖Gi‖A,ζ =O(|a|), satisfying

Xi =Yi+Gi(Y1, ..., Yd, B1, ..., Bm),

for all operators Yi whose norm is bounded by A.
To be precise, notice that [38] only consider the case where the Bi’s are constant,

but the proof extends readily to the case where some additional fixed matrices Bi are
present, as it is based on a fixed point argument showing that the sequence

X0
i =Yi, Xn+1

i =Yi−aFi(Xn
1 , ..., X

n
d , B1, ..., Bm)

is Cauchy for ‖ · ‖A,ζ provided a is small enough. As the closure C〈x1, ..., xd; b1, ..., bm〉A,ζ

of the space of polynomials under ‖ · ‖A,ζ is complete, it follows that the sequence
{Xn

i }n∈N converges in this space for all 16i6d. This construction also shows that

there exist functions Gi∈C〈x1, ..., xd; b1, ..., bm〉
‖·‖A,ζ satisfying the desired properties.

We next consider the law PN
Y of the random matrices

Y N
i =XN

i +aFi(XN
1 , ..., X

N
d , B

N
1 , ..., B

N
m)

for d independent GUE matrices XN
1 , ..., X

N
d and m deterministic matrices BN

1 , ..., B
N
m .

Our goal in this section is to show that the law of Y N
1 , ..., Y N

d satisfies our previous
hypotheses.

First, notice that by Lemma 3.3 applied to the current situation where the equilib-
rium density is the semi-circle law, see (2.9), the matrices XN

i have norms bounded by
3 with probability greater than 1−e−cN . Hence, if we fix ξ=4 and

Fi ∈C〈x1, ..., xd; b1, ..., bm〉ξ,ζ

we see that, with probability greater than 1−e−cN , for a small enough we have

XN
i =Y N

i +Gi(Y N
1 , ..., Y N

d , BN
1 , ..., B

N
m),

for some Gi∈C〈x1, ..., xd; b1, ..., bm〉
‖·‖A,ζ with 36A<A′<ξ.

Therefore, up to an error of order e−cN in the total variation norm, we have

PN
Y (dY N

1 , ..., dY N
d ) =

1
ZN

e−N
∑d

i=1 Tr(Y N
i +Gi(Y

N
1 ,...,Y N

d ,BN
1 ,...,BN

m))2

×JacG(Y N
1 , ..., Y N

d , BN
1 , ..., B

N
m)

d∏
i=1

dY N
i ,
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where JacG(Y N
1 , ..., Y N

d , BN
1 , ..., B

N
m) denotes the Jacobian of the change of variable

Xi =Yi+Gi(Y1, ..., Yd, B1, ..., Bm).

It turns out that, in the case β=2,

log JacG(Y N
1 , ..., Y N

d , BN
1 , ..., B

N
m) =Trd(Tr⊗Tr(log(Id+JG))),

where Tr is the trace over N×N matrices, Trd is the trace over d×d matrices, and

(JG)ij,k`;t,s = ∂Y N
t (k`)Gs(ij) = (∂̂tGs)ik,`j , i, j, k, `∈{1, ..., N}, s, t∈{1, ..., d},

where ∂̂t denotes the non-commutative derivative over polynomial of self-adjoint variables
defined as

∂̂tp :=
∑

p=q1Ytq2

q1⊗q2.

Indeed, the above formula follows from the fact that ∂̂tp lives in the tensor product space
(in other words, on the algebra of left multiplication tensored with the right multiplica-
tion) and

∂Y N
t (k`)Gs(ij) = (∂̂tGs]∆k`)(ij) = (∂̂tGs)ik,`j ,

where ∆k` is the matrix with null entries except at position (`, k) where there is a 1 (here
A⊗B]C=ACB).

AsG is small for a small enough (at least when restricted to matrices with universally
bounded operator norm), the singularity of the logarithm is away from our support of
integration and we deduce that the law of Y N

1 , ..., Y N
d can be approximated in the total

variation distance by

1
ZN

eNTr F1(Y
N
1 ,...,Y N

d ,BN
1 ,...,BN

m)+Tr⊗Tr F2(Y
N
1 ,...,Y N

d ,BN
1 ,...,BN

m)
d∏

i=1

dY N
i

for two smooth functions F1 and F2, belonging respectively to the closure of

C〈x1, ..., xd, b1, ..., bm〉 and C〈x1, ..., xd, b1, ..., bm〉⊗2

with respect to the norms ‖ · ‖ξ,ζ , where

‖F2‖ξ,ζ :=
∑
q1,q2

|〈F, q1⊗q2〉| ‖q1‖ξ,ζ ‖q2‖ξ,ζ

whenever F=
∑

q1,q2
〈F, q1⊗q2〉q1⊗q2 and the sum runs over monomials. This proves the

result when β=2.
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Next, we consider the random matrices

Y N
i =XN

i +aFi(XN
1 , ..., X

N
d , B

N
1 , ..., B

N
k )

for d independent GOE matrices (XN
1 , ..., X

N
d ) and m deterministic symmetric matrices

BN
1 , ..., B

N
m . The Jacobian is slightly changed and reads

(JG)ij,k`;t,s =(∂̂tGs)ik,`j +(∂̂tGs)i`,kj , i, j, k, `∈{1, ..., d},

where the second term comes from the fact that ∂X`k
X`k does not vanish (as in the

complex case) but is equal to 1. Notice that we can write the second term as Σ(∂̂tGs),
where Σ acts on basic tensor products by

Σ(A⊗B)ik,`j :=Ai`Bkj .

Considering the logarithm of the determinant of (I+JG), we see that it expands in
moments of JG as

log det(I+JG) =TrdTr⊗Tr log(I+JG) =
∑
n>1

(−1)n+1

n
TrdTr⊗Tr(JG)n

=
∑
n>1

(−1)n+1

n
TrdTr⊗Tr(∇G+Σ(∇G))n

with ∇Gij,k`;t,s=(∂̂tGs)ik,`j . When expanding the above moments, it turns out that the
moments with an odd number of Σ result in the trace of a single polynomial, whereas
even numbers result in tensor products of two traces. For instance, when n=1,

TrdTr⊗Tr(Σ(∇G))=
∑

t

∑
i,j

(∂̂tGt)ij,ji =
∑

t

Tr(m(∂̂tGt))

whereas TrdTr⊗Tr((∇G))=
∑

t

∑
i,j(∂̂tGt)ii,jj . Hence, also in this case there exist con-

vergent series F1, F0 such that

log JacG(Y1, ..., Yd, B1, ..., Bm) =Tr⊗TrF0+TrF1

=Tr⊗Tr
(
F0+

1
2N

(F1⊗Id+Id⊗F1)
)
,

and we conclude as before.
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8. Appendix: Concentration lemma

In this section we prove Lemma 6.7. As already mentioned, it follows from standard
results on concentration of measure.

Indeed, thanks to Gromov, it is well known that the groups

SU(N) := {U ∈U(N) : det(U) = 1}, SO(N) :=O(N)∩SU(N)

can be seen as submanifolds of the set of N×N matrices that have a Ricci curvature
bounded below by 1

4β(N+2)−1, see e.g. [2, Theorem 4.4.27] and [2, Corollary 4.4.31].
In particular, this implies concentration of measure under the Haar measures on these
groups. To lift this result to QV

β,N , let us first notice that, by definition, the potential V is
balanced, in the sense that it is invariant under the maps Uj 7!Uje

iθj for any θj∈[0, 2π),
being a sum of words each containing the same number of letters Ui and U∗

i . Recalling
that QV

β,N is a measure on O(N) (resp. U(N)) when β=1 (resp. β=2), it follows that,
for any balanced polynomial P ,

QV
β,N (|Tr(P )−QV

β,N (Tr(P ))
∣∣ > δ) = Q̃V

β,N (|Tr(P )−Q̃V
β,N (Tr(P ))|> δ),

where Q̃V
β,N is the restriction of QV

β,N to SO(N) (resp. SU(N)) when β=1 (resp. β=2).
On the other hand, if P is a word which is not balanced and we write Uj as Uj =eiθj Ũj

with Ũj in SU(N), then TrP (U)=eiθTrP (Ũ) for some θ which is a linear combination
of the θj . As θj follows the uniform measure on [0, 2π], we deduce that QV

β,N (Tr(P ))=0.
Hence, if P is not balanced,

QV
β,N (|Tr(P )−QV

β,N (Tr(P ))|> δ) = Q̃V
β,N (

∣∣Tr(P )
∣∣ > δ),

Therefore in both cases we can use concentration inequalities on the special groups.
We then notice that N1−rTr⊗rV has a bounded Hessian, going to zero when ‖V ‖ξ,ζ

goes to zero. Hence, we can use the Bakry–Emery criterion to conclude that, for any
ξ>1, if ‖V ‖ξ,ζ is small enough then

QV
β,N (|Tr(P )−QV

β,N

(
Tr(P ))|> δ) 6 2e−βδ2/8‖P‖2

L , (8.1)

where ‖P‖L is the Lipschitz constant of TrP , which can be bounded as

‖P‖2
L 6 sup

uj ,u∗j ,aj

d∑
i=1

τ
(
|DiP |2(uj , u

∗
j , aj)

)
where the supremum is taken over all unitary operators ui, all operators ai with norm
bounded by 1, and all tracial states τ . Note that if P is a word, then we simply have
‖P‖L6degU (p), and more in general

‖P‖L 6
∑

q

|〈P, q〉| degU (q) 6Cξ‖P‖ξ,1,
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where Cξ is a finite constant so that s6Cξ ξ
s for all s∈N. Therefore, due to (8.1), we

deduce that, for any monomials q1, ..., qk,

∣∣∣∣QV
β,N

( k∏
`=1

(
Tr(q`)−QV

β,N (Tr(q`))
))∣∣∣∣ 6Ck

k∏
`=1

degU (q`). (8.2)

As correlators can be decomposed as the sum of products of such moments, it follows
that, for any words q1, ..., qk and any ξ>1,

|WV
kN (q1, ..., qk)|6Ck

k∏
`=1

degU (q`) 6Ck(Cξ)k
k∏

`=1

‖q`‖ξ,

which concludes the proof of Lemma 6.7.
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