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1. Introduction

Recall that a subset of Euclidean space is n-rectifiable if it can be covered, up to a set

of Hn measure zero, by a countable number of Lipschitz (or equivalently C1) images of

Rn (throughout this paper, Hn denotes the n-dimensional Hausdorff measure). A set is

purely n-unrectifiable if all of its n-rectifiable subsets have Hn measure zero.

Rectifiable and purely unrectifiable sets are a central object of study in geometric

measure theory, and a fundamental description of them is given by the Besicovitch–

Federer projection theorem [27]. It states that, for a purely n-unrectifiable S⊂Rm with

Hn(S)<∞, for almost every n-dimensional subspace V of Rm, the orthogonal projec-

tion of S onto V has n-dimensional Lebesgue measure zero. The converse statement is

an easy consequence of the Rademacher differentiation theorem: if a set is not purely

n-unrectifiable, then it contains a rectifiable subset of positive measure which has at

least one n-dimensional approximate tangent plane. Any projection onto a plane not

orthogonal to this tangent plane has positive measure and, in particular, almost every

projection has positive measure.

The past several decades have seen significant activity in analysis and geometry in

general metric spaces. In particular, we mention the works of Ambrosio [6], Preiss and

Tisher [28] and Kirchheim [26], which were amongst the first to show that ideas from

classical geometric measure theory generalise to an arbitrary metric space, and the later

work of Ambrosio and Kirchheim [7], [8]. One is quickly led to ask if a counterpart to the

Besicovitch–Federer projection theorem holds in this setting. Of course, in the purely

metric setting, one must interpret a projection appropriately. One approach is to assume
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additional geometric structure on the metric space that leads to an interpretation of a

projection. In this case, some positive, yet specific, results are known [12], [13], [22],

[23]. On the other hand, for the most general interpretation, which considers linear

mappings on an infinite-dimensional Banach space containing (an embedding of) the

metric space, it is known that the projection theorem completely fails: continuing from

the work of De Pauw [17], Bate, Csörnyei and Wilson [10] construct, in any separable

infinite-dimensional Banach space X, a purely 1-unrectifiable set S of finite H1 measure

for which every continuous linear 0 6=T :X!R has L1(T (S))>0. Thus, outside of the

Euclidean setting, it is not sufficient to consider only linear mappings to Euclidean space

in order to describe rectifiability.

In the metric setting, it is natural to consider Lipschitz mappings to Euclidean space.

Indeed, this is exactly the approach taken in Cheeger’s generalisation of Rademacher’s

theorem [14], and Ambrosio and Kirchheim’s generalisation of currents [7], to metric

spaces. One of the main results of this paper is to prove a suitable counterpart to the

projection theorem in metric spaces for Lipschitz mappings into Euclidean space.

Namely, assume thatX is a complete metric space and S⊂X is purely n-unrectifiable

with finite Hn measure and positive lower density at almost every point (see below). The

set of all bounded 1-Lipschitz functions on X into some fixed Euclidean space, equipped

with the supremum norm, is a complete metric space, and so we can consider a residual

(or comeagre) set of 1-Lipschitz functions, and such a set forms a suitable notion of a

“generic” or “typical” 1-Lipschitz function. One of the main results of this paper to show

that a typical 1-Lipschitz function on X maps S to a set of Hn measure zero. Conversely,

it is shown that a typical 1-Lipschitz image of an n-rectifiable subset of X has positive

Hn measure. These results are new even when X is a Euclidean space.

To describe these results in more detail, recall that a subset E of a metric space is

n-rectifiable (see Definition 1.3) if it can be covered, up to a set of Hn measure zero, by a

countable number of Lipschitz images of subsets of Rn (considering subsets of Rn allows

us to avoid topological obstructions). By a result of Kirchheim [26] (see Lemma 7.2),

we obtain an equivalent definition if we require biLipschitz images of subsets of Rn. As

for the classical case, a subset S is purely n-unrectifiable if all of its n-rectifiable subsets

have Hn measure zero, and any metric space X with Hn(X)<∞ can be decomposed into

Borel sets E and S, where E is n-rectifiable and S is purely n-unrectifiable.

In [26] a regularity and metric differentiation theory of rectifiable sets is given. This

was extended be Ambrosio and Kirchheim [8] to a notion of a weak tangent plane to a

rectifiable set. Many properties of rectifiable subsets of Euclidean space can be gener-

alised, with suitable interpretation, to the metric setting using these results. However,

positive results for purely unrectifiable subsets of metric spaces remain elusive.
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We will study purely unrectifiable metric spaces by considering Lipschitz images

into a Euclidean space. Given a metric space X, let Lip1(X,m) be the collection of

all bounded 1-Lipschitz functions f :X!Rm equipped with the supremum norm. A

subset of Lip1(X,m) is residual if it contains a countable intersection of dense open sets.

Since Lip1(X,m) is complete, the Baire category theorem states that residual subsets

of Lip1(X,m) are dense and, since they are closed under taking countable intersections,

naturally form a suitable notion of a generic Lipschitz function.

One of the main results of this paper is the following (see Theorems 6.1 and 7.1).

Theorem 1.1. Let X be a complete metric space and let S⊂X be a purely n-

unrectifiable subset such that Hn(S)<∞ and

lim inf
r!0

Hn(B(x, r)∩S)

rn
> 0 for Hn-a.e. x∈S. (∗)

The set of all f∈Lip1(X,m) with Hn(f(S))=0 is residual. Conversely, if E⊂X is

n-rectifiable with Hn(E)>0, the set of f∈Lip1(X,m) with Hn(f(E))>0 is residual.

The approach to proving this result is very general and we are able to remove the

assumption (∗) in various circumstances. First, if S is a subset of some Euclidean space,

then (∗) is not necessary (see Theorem 6.2). Secondly, if n=1 or, more generally, S

is purely 1-unrectifiable, then (∗) is not necessary (see Theorem 6.4). Finally, using a

recently announced result of Csörnyei and Jones, it is possible to show that (∗) is never

necessary (see Remark 6.7). Further, our approach applies to sets of fractional dimension.

We are able to show that for any subset S of a metric space with Hs(S)<∞ for s /∈N, a

typical f∈Lip1(X,m) has Hs(f(S))=0 (see Theorem 6.3).

The conclusion of Theorem 1.1 is related to the notion of a strongly unrectifiable set

introduced by Ambrosio and Kirchheim [8]. A metric space of finiteHn measure is said to

be strongly n-unrectifiable if every Lipschitz mapping into some Euclidean space has Hn

measure-zero image. In [8], a construction of a strongly n-unrectifiable set is given, for

any n∈N, based on an unpublished work of Konyagin. An earlier construction of a purely

1-unrectifiable set of positive and finite H1 measure for which all real-valued Lipschitz

images have zero-measure image was given by Vitushkin, Ivanov and Melnikov [30] (see

also [25]). Of course, not all purely n-unrectifiable sets are strongly n-unrectifiable.

However, our main theorem shows that purely n-unrectifiable sets are almost strongly

n-unrectifiable, in a suitable sense.

The first step to prove Theorem 1.1 (or any of the other related theorems mentioned

above) is to show that any S satisfying the hypotheses has a (n−1)-dimensional weak

tangent field with respect to any Lipschitz f :X!Rm. That is, for any Lipschitz function

f :X!Rm, after possibly removing a set of measure zero from S, there exists a Borel



4 d. bate

τ :S!G(m,n−1) (the Grassmannian of (n−1)-dimensional subspaces of Rm), such that

the following holds: for any 1-rectifiable γ⊂S, the tangent of f(γ)⊂Rm at a point f(x),

x∈γ, lies in τ(x) for H1 almost every x∈γ. Thus, although S is an n-dimensional set,

the tangents of its 1-rectifiable subsets may only span (n−1)-dimensional subspaces. See

Definition 2.7.

The definition of a weak tangent field of a metric space, and its application to

studying purely unrectifiable metric spaces, is new. It is a generalisation of the weak

tangent fields introduced by Alberti, Csörnyei and Preiss [1]–[3] in their work on the

structure of null sets in Euclidean space, where they study (n−1)-dimensional tangent

fields of subsets of Rn. It is also related to the decomposability bundle introduced by

Alberti and Marchese [4].

The construction of a weak tangent field to a purely unrectifiable subset of a metric

space relies on the notion of an Alberti representation of a metric measure space (X, d, µ),

which is an integral combination of 1-rectifiable measures that gives the µ measure of

any Borel subset of X (see Definition 2.1). Alberti representations were introduced in

[9] to give several descriptions of those metric measure spaces that satisfy Cheeger’s

generalisation of Rademacher’s theorem [14]. However, rather than their differentiability

properties, we will instead be interested in the additional geometric structure that an

Alberti representation provides a metric measure space.

Specifically, in Theorem 2.11, for any Lipschitz f :X!Rm, S⊂X and n6m, we

give a decomposition S=A∪S′ such that µxA has n independent Alberti representations

(see Definition 2.3) and such that S′ has a (n−1)-dimensional weak tangent field with

respect to f . If S satisfies Hn(S)<∞, we can apply this with µ=Hn, and if in addition

S satisfies (∗), the main result of [11] concludes that A is in fact n-rectifiable. Thus, if

S is purely n-unrectifiable, we must have Hn(A)=0, and hence construct the required

weak tangent field of S. For subsets of Euclidean space, we will instead use the results of

Alberti and Marchese [4] and De Philippis and Rindler [19] to conclude that Hn(A)=0

without assuming (∗).
From this point on, the proof of Theorem 1.1 does not use the hypothesis that S is

purely unrectifiable, and only relies upon the definition of a weak tangent field. The main

part of the argument is to construct a dense set of Lip1(X,m) that maps S to a set of

small Hn measure. Given f∈Lip1(X,m) and τ the weak tangent field of S with respect

to f , the idea is to construct a perturbation of f by locally contracting f in all directions

orthogonal to τ . Since τ takes values in (n−1)-dimensional subspaces, it is possible to

reduce the Hn measure of the image of f to an arbitrarily small value. Further, since

τ is a weak tangent field, this can be realised as an arbitrarily small perturbation of f

(see Theorem 4.9). Of course, it is essential that our construction does not increase the
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Lipschitz constant, so that the constructed perturbation of f belongs to Lip1(X,m).

When considering perturbations of Rm-valued mappings of a compact metric space

X, it is also natural to equip the image with the supremum norm. Indeed, for any ε>0,

if x1, ..., xm(ε) is a maximal ε-net in X, then in a similar fashion to the Kuratowski

embedding into `∞, the mapping X!`
m(ε)
∞ defined by

x 7−! (d(x, x1), d(x, x2), ..., d(x, xm(ε)))

is 1-Lipschitz and perturbs relative distances in X by at most ε. If X has a weak tangent

field, then by constructing an arbitrarily small perturbation of this map as above, we

obtain a mapping that perturbs all distances in X by an arbitrarily small amount that

also reduces Hn(X) to an arbitrarily small amount.

If this is done naively, then the Lipschitz constant of this perturbation depends on

ε (due to the comparison of the Euclidean and supremum norms in Rm(ε)). If, however,

we take the norm into consideration when constructing this perturbation, it is possible

to construct it so that the Lipschitz constant increases by a fixed factor depending only

upon n. This leads to the following theorem (see Theorems 6.5 and 7.7).

Theorem 1.2. Let X be a compact purely n-unrectifiable metric space with finite

Hn measure that satisfies (∗). For any ε>0 there exists an L(n)-Lipschitz σε:X!`
m(ε)
∞

such that Hn(σε(X))<ε and∣∣d(x, y)−‖σε(x)−σε(y)‖∞
∣∣<ε for each x, y ∈X. (1.1)

Conversely, if X is n-rectifiable with Hn(X)>0, then

inf
L>1

lim
ε!0

infHn(σε(X))> 0,

where the second infimum is taken over all L-Lipschitz σε:X!`∞ satisfying (1.1).

Simple examples show that the converse statement is false if the Lipschitz constant

is unbounded as ε!0. Thus, it is essential to obtain an absolute bound on the Lipschitz

constant in the first half of the theorem. As for Theorem 1.1, controlling the Lipschitz

constant in this way requires careful consideration throughout the argument.

The assumption (∗) can be removed under the same conditions as before, and we

have a corresponding statement for fractional-dimensional sets (see also Theorem 6.5).

Further, if X is a Banach space with an unconditional basis (see §6.1), it is possible

to realise σε as a genuine perturbation of X. That is, σε:X!X with ‖σε(x)−x‖<ε for

each x∈X (see Theorem 6.8). This is a significant generalisation of a result of Pugh

[29], who proved the result (and its converse) for Ahlfors regular subsets of Euclidean
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space. Generalising this paper was the initial motivation for the work presented here.

Note however, that Pugh’s proof heavily depends on the Besicovitch–Federer projection

theorem, and so our approach is entirely new. Related is the work of Gaski [21] which

finds an arbitrarily small Lipschitz perturbation with measure-zero image, but at the

sacrifice of any control over the Lipschitz constant.

The results that perturb a purely unrectifiable subset of a Banach space in this way

immediately show the existence of a dense subset of all Lipschitz functions f :X!Rm

that reduce the Hausdorff measure of X to an arbitrarily small amount (or to zero in

the case of Gaski). Indeed, this follows by simply pre-composing a suitable Lipschitz

extension of f by such a σε. However, obtaining a result for residual subsets would

require σε to be 1-Lipschitz. It is not clear how to do this in general, and so we primarily

consider perturbing an arbitrary Lipschitz function defined on a metric space from the

outset.

We summarise our construction (see Theorem 4.9) of a perturbation of an arbitrary

Lipschitz function F :X!Rm, with respect to S⊂X that has a weak tangent field with

respect to F . For simplicity, suppose that the tangent field is constant and equal to

W∈G(m,n−1).

Given a linear T :Rm!R, we first construct a perturbation σ of T �F such that, in

a small neighbourhood of S,

|σ(x)−σ(y)|6 ‖π(F (x)−F (y))‖+εd(x, y), (1.2)

for π the orthogonal projection onto W and ε>0 arbitrary (see Proposition 3.5). It is easy

to see that we can only do this if S has a weak tangent field: if γ⊂S is a rectifiable curve

for which (F �γ)′ /∈V almost everywhere, then σ(γ) is a curve that is much shorter than

F (γ) (becoming shorter the further that (F �γ)′ lies away from W on average). Thus, σ

would not be an arbitrarily small perturbation of F , since the endpoints of γ are mapped

much closer together under σ than F . With a standard approximation argument, it is

possible to reach a similar conclusion if γ is simply 1-rectifiable, rather than a rectifiable

curve. The construction given in §3 shows that this condition is sufficient. It is motivated

by a similar construction in [9], though it must be modified to fit the present needs.

We then apply the previous step to coordinate functionals of F . Specifically, take a

basis B of Rm that contains n−1 vectors in W , and perturb the coordinate functionals of

F in the m−(n−1) directions of B not in W , leaving the other n−1 directions unchanged.

SinceW is (n−1)-dimensional, (1.2) implies thatHn(σ(S)) can be made arbitrarily small.

In this construction, the Lipschitz constant of σ depends on the choice of B. As

mentioned above, for all of our main results, we must maintain a strict control of this

Lipschitz constant. When the image of F is equipped with the Euclidean norm, the
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natural choice of an orthonormal basis for B is correct. However, when the image of F

is equipped with a non-Euclidean norm, a more careful choice is required. Therefore,

before concluding with the final step of the construction, we analyse the target norm for

a suitable collection of coordinate functionals (see Definition 4.1).

As mentioned above, the converse statements are false if the Lipschitz constant of

the considered perturbations is not uniformly bounded. In our proofs of the converse

statements, the uniform bound allows us to modify topological arguments to the setting

of rectifiable sets. For example, a simple topological argument shows that any continuous

mapping of the unit ball in Euclidean space to itself that perturbs the boundary by a

small amount has positive measure image (see Lemma 7.3). If this mapping is Lipschitz,

then the same is true if the entire ball is replaced by an arbitrary subset with sufficiently

large measure (depending only upon the Lipschitz constant of the map; see Lemma 7.5).

Using Kirchheim’s description of rectifiable sets [26] (see Lemma 7.2), this can be used

to deduce the required statements about Lipschitz images of rectifiable sets.

This topological observation also leads to the following consequence of Theorem 1.1:

any curve (i.e. continuous image of an interval) with distinct endpoints and σ-finite H1-

measure contains a rectifiable subset of positive measure. Higher-dimensional statements

are also true, see Theorem 7.11. Shortly after the first preprint of this article appeared,

David and Le Donne [16] used Theorem 1.1 to give a stronger result than Theorem 7.11

that only involves topological dimension. In Euclidean space, these statements follow, in

a similar fashion, from the Besicovitch–Federer projection theorem.

The structure of this paper is as follows.

In §2 we recall the definition of an Alberti representation of a metric measure space

and some of their basic properties given in [9]. We give a class of subsets of a metric

measure space, the sets with a weak tangent field (see Definition 2.7), that determine

when a metric measure space has many Alberti representations. We also relate Alberti

representations to rectifiability of metric spaces. In particular, we will use the main result

from [11] that determines when a metric measure space with many Alberti representations

is rectifiable. In particular, these results show that purely unrectifiable metric spaces have

a weak tangent field (see Theorem 2.21).

In §3 we construct a perturbation of real-valued functions. Specifically, given a

Lipschitz function F :X!Rm and S⊂X with a d-dimensional weak tangent field with

respect to F , we construct a perturbation σ of T �F , where T :Rm!R is an arbitrary

linear function. In a small neighbourhood of S, these perturbations satisfy (1.2). The

results in this section use ideas from [9], but they are modified to fit our requirements.

In §4.1 we gather properties of an arbitrary finite-dimensional Banach space V and

use them to construct a collection of coordinate functionals of V . These coordinate
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functionals are well behaved with respect to a given d-dimensional subspace W of V .

Then, in §4.2, we apply the real-valued construction of the previous section to each of

these coordinate functionals to obtain a perturbation σ of F . The preliminary analysis

of V given in §4.1 results in a number K̃(V, d) (see Definition 4.1). Our construction is

such that Lipσ is at most K̃(V, d) LipF .

We will see that K̃(Rm, d)=1 for any m, d∈N and so, given a function in Lip1(X,m),

our construction produces a function in Lip1(X,m). This allows us to show that certain

subsets of Lip1(X,m) are dense, and hence form residual sets. This is done in §5.

This concludes one direction of the proof of our main theorems. In §6 we combine

the results of the previous sections and state and prove these theorems. Our construc-

tions regarding coordinate functionals of finite-dimensional Banach spaces are related to

concepts from infinite-dimensional geometric measure theory. In §6.1 we highlight these

relationships and use them to deduce a perturbation theorem for purely unrectifiable

subsets of Banach spaces with an unconditional basis.

Finally, we prove various results regarding rectifiable subsets of a metric space in §7.

1.1. Notation

Throughout this paper, (X, d) will denote a complete metric space. Since any Lipschitz

function may be uniquely extended to the completion of its domain, this is a natural

assumption in our setting and simply alleviates issues arising from measurability. For

example, it implies that, for any Hs measurable S⊂X with Hs(S)<∞, HsxS is a finite

Borel regular measure on the closure of S, a complete and separable metric space. In

particular, this implies that HsxS is inner regular by compact sets.

Here and throughout, Hs will denote the s-dimensional Hausdorff measure on X

defined, for S⊂X and s, δ>0, by

Hsδ(S) = inf

{∑
i∈N

diam(Si)
s :S⊂

⋃
i∈N

Si, diam(Si)6 δ

}
and

Hs(S) = lim
δ!0
Hsδ(S).

For x∈X and r>0, B(x, r) will denote the open ball of radius r centred on x. If

S⊂X, B(S, r) will denote the open r-neighbourhood of S and 	S the closure of S. We

will write d(x, S) for the infimal distance between x and points of S.

For (Y, %) a metric space and L>0, a function f :X!Y is said to be L-Lipschitz (or

simply Lipschitz if such an L exists) if

%(f(x), f(y))6Ld(x, y)
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for each x, y∈X. We let Lip f be the least L>0 for which f is L-Lipschitz. Further, if f

is Lipschitz, we let

Lip(f, x) = lim sup
y!x

%((f(x), f(y)))

d(x, y)
,

the pointwise Lipschitz constant of f . We will write Lip(f, ·) for the function

x 7−!Lip(f, x).

We will require results from the theory of metric measure spaces: complete metric

spaces (X, d) with a σ-finite Borel regular Radon measure µ. However, our only ap-

plication will be to the metric measure spaces of the form (X, d,HsxS), for S⊂X Hs

measurable.

We define a rectifiable set as follows.

Definition 1.3. For n∈N, a Hn measurable E⊂X is n-rectifiable if there exists a

countable number of Lipschitz fi:Ai⊂Rn!X such that

Hn
(
E\
⋃
i

fi(Ai)

)
= 0.

A Hn measurable S⊂X is purely n-unrectifiable if

Hn(S∩E) = 0

for every n-rectifiable E⊂X.

Since X is complete, an equivalent definition of rectifiable sets is obtained if we

require the Ai to be compact. If X is a Banach space, then by obtaining a Lipschitz

extension of each fi (see [24]), an equivalent definition is obtained by requiring each Ai

to be Rn.

We write G(d,m) for the Grassmannian of d-dimensional subspaces of Rm. We may

sometimes write W6V to denote that W is a subspace of V .

Throughout this paper, the notation ‖ · ‖ will refer to the intrinsic norm of a Banach

space, be it the Euclidean norm on Rm, the supremum norm on a set of bounded func-

tions, the operator norm on a set of bounded linear functions or the norm of some other

arbitrary Banach space. Whenever this notation is used, the precise norm in question

should be clear from the context.
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2. Alberti representations, rectifiability and weak tangent fields

We now recall the definition of an Alberti representation of a metric measure space

introduced in [9], and give conditions that ensure the existence of many independent

Alberti representations. Following this, we give various conditions under which a metric

measure space with many independent Alberti representations is in fact rectifiable. By

combining these, we develop the ideas into the notion of a weak tangent field of a purely

unrectifiable subset of a metric measure space.

2.1. Alberti representations of a measure

An Alberti representation of a measure is an integral representation by rectifiable curves.

One important point is that we allow these curves to be Lipschitz images of disconnected

subsets of R. This allows us to consider all metric spaces, regardless of obvious topological

obstructions.

Definition 2.1. Let (X, d) be a metric space. We define the set of curve fragments

of X to be the set

Γ(X) := {γ: Dom γ⊂R!X : Dom γ is compact and γ is biLipschitz}.

We equip Γ(X) with the Hausdorff metric induced by the inclusion

γ ∈Γ(X) 7−!Graph γ⊂R×X.

An Alberti representation of a metric measure space (X, d, µ) consists of a probability

measure P on Γ(X) and, for each γ∈Γ(X), a measure µγ�H1xγ such that

µ(B) =

∫
Γ

µγ(B) dP(γ)

for each Borel B⊂X. Integrability of the integrand is assumed as a part of the definition.
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Alberti representations first appeared in the generality of metric spaces in paper

[9], where they were used to give several characterisations of Cheeger’s generalisation of

Rademacher’s theorem. The relationship between Alberti representations and differen-

tiability can be seen in the following observation.

Suppose that γ∈Γ(X) and F :X!Rm is Lipschitz. Then F �γ: Dom γ!Rm, and

so it is differentiable at almost every point of Dom γ. Therefore, if µ has an Alberti

representation, for µ almost every x, there exists a curve fragment γ3x for which

(F �γ)′(γ−1(x))

exists. That is, F has a partial derivative at x.

Alternatively, although a curve fragment may not have a tangents in X, there exist

many tangents after mapping the fragment to a Euclidean space. This allows us to

distinguish “different” Alberti representations: Alberti representations will be considered

different if we can find a single Lipschitz map to Euclidean space that distinguishes their

tangents.

Definition 2.2. For w∈`m2 and 0<θ<1 define the cone centred on w of width θ to

be

C(w, θ) := {v ∈Rm : v ·w> (1−θ)‖v‖}.

We say that cones C1, ..., Cn⊂`m2 are independent if, for any choice of wi∈Ci\{0} for

each 16i6n, the wi are linearly independent.

Now, let V be a finite-dimensional Banach space. Given a subspace W6V , we define

the conical complement of W to be

E(W, θ) := {v ∈V : d(v,W )> (1−θ)‖v‖}.

Note that both of the above sets become wider as θ!1. Whilst sets of either form

may be considered “cones”, we will reserve this name, and the notation “C”, for sets of

the first type.

Definition 2.3. Let (X, d) be a metric space, V be a finite-dimensional Banach space,

F :X!V be Lipschitz and D be a set of the form C(w, θ) (if V =`m2 ) or E(W, θ). We

say that a curve fragment γ∈Γ is in the F -direction of D if

(F �γ)′(t)∈D\{0}

for H1-a.e. t∈Dom γ. Further, an Alberti representation (P, {µγ}) of (X, d, µ) is in the

F -direction of a cone C if P-a.e. γ∈Γ is in the F -direction of C.
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Finally, Alberti representations A1, ...,An of (X, d, µ) are independent if there exist

an m∈N, a Lipschitz F :X!`m2 and independent cones C1, ..., Cn⊂`m2 such that Ai is in

the F -direction of Ci for each 16i6n. In this case, we say that the Alberti representa-

tions are F -independent.

In the definition of independent Alberti representations, we could permit a Lipschitz

function taking values in any finite-dimensional Banach space. However, it is rather

straightforward to see that this definition is equivalent to the one given above (up to a

countable decomposition of the support of the measure). Thus, for compatibility with

[9], we will only consider a `m2 -valued function. We do, however, require the definition of

E(W, θ) for arbitrary finite-dimensional Banach spaces. For the remainder of this section,

we will write Rm for `m2 .

This definition of independent Alberti representations differs slightly from the def-

inition given in [9]. There, the definition requires the dimension of the image (m) and

the number of Alberti representations (n) to agree. However, it is easy to see that these

definitions are equivalent. Indeed, if F :X!Rm is Lipschitz and Alberti representations

A1, ...,An are in the F -direction of C(w1, θ), ..., C(wn, θ), let π be the orthogonal pro-

jection onto the span of the wi. Then, it is easy to check that the Ai are in the π�F

direction of the π(Ci) and that the π(Ci) are independent cones.

Although it is a small change to the definition, considering a smaller number of

Alberti representations than the dimension of the image is required for us to develop the

notion of a weak tangent field of a metric space.

One of the main results of [9] gives an equivalence between Cheeger’s generalisation of

Rademacher’s theorem and the existence of many independent Alberti representations of

a metric measure space. Further, independent to interests in differentiability, an Alberti

representation is a new concept to provide additional structure to a metric measure

space. In §2.2 below, we will give various results that show when a metric measure

space (X, d,Hn) with n-independent Alberti representations is, in fact, n-rectifiable. For

the rest of that subsection, we will develop conditions that ensure that a metric measure

space has many independent Alberti representations, so that these results can be applied.

First suppose that w∈Rn, F :X!Rm is Lipschitz and µ has an Alberti representa-

tion in the F -direction of C(w, θ). Then, necessarily, any Borel S⊂X with

H1(γ∩S) = 0

for each γ∈Γ in the F -direction of C(w, θ), must have

µ(S) = 0.

This condition is also sufficient for the existence of an Alberti representation.
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Lemma 2.4. ([9], Corollary 5.8) Let (X, d, µ) be a metric measure space, F :X!Rm

be Lipschitz and C⊂Rm be a cone. There exists a Borel decomposition X=A∪S such

that µxA has an Alberti representation in the F -direction of C and S satisfies

H1(γ∩S) = 0

for each γ∈Γ in the F -direction of C.

We also require the following result, which allows us to refine the directions of an

Alberti representation.

Lemma 2.5. ([9], Corollary 5.9) Let (X, d, µ) be a metric measure space, F :X!Rm

be Lipschitz and C⊂Rm be a cone. Suppose that, for some cone C⊂Rm, µxA has an

Alberti representation in the F -direction of C. Then, for any countable collection of

cones Ck with ⋃
k∈N

interior(Ck)⊃C\{0},

there exists a countable Borel decomposition

A=
⋃
k

Ak

such that each µxAk has an Alberti representation in the F -direction of Ck.

We will use this lemma in the following way. Suppose that µxA has Alberti repre-

sentations in the F -direction of independent cones C1, ..., Cd. For any 0<ε<1, we may

cover each Ci by the interior of a finite number of cones Cji of width ε such that any

choice Cj11 , ..., C
jd
d is also independent. By applying the lemma to these collections, we

see that there exists a finite Borel decomposition A=
⋃
iAi such that each µxAi has d

F -independent Alberti representations in the F -direction of cones of width ε.

It is possible to define a collection Ã(F ) of subsets of X that extends the decompo-

sition given in Lemma 2.4 in the following way: there exists a decomposition

X =S∪
⋃
i

Ui

such that S∈Ã(F ) and each µxUi has m F -independent Alberti representations (see [9,

Definition 5.11, Proposition 5.13]). However, as mentioned above, it will be necessary

for us consider the case when µ has d F -independent Alberti representations, for d6m.

Our first task is to give a suitable decomposition in this case.

We begin with the following result.
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Lemma 2.6. Let (X, d, µ) be a metric measure space, F :X!Rm be Lipschitz and,

for some 06d6m, let W6Rm be a d-dimensional subspace. For any Borel U⊂X,

0<θ<1 and 0<ε<1−θ, there exists a Borel decomposition

U =S∪U1∪...∪UN

such that H1(γ∩S)=0 for each γ∈Γ in the F -direction of E(W, θ) and each µxUi has

an Alberti representation in the F -direction of some cone Ci⊂E(W, θ+ε).

Proof. Cover E(W, θ) by cones C1, ..., CN⊂E(W, θ+ε) and for each 16i6N apply

Lemma 2.4 to obtain a decomposition U=Ui∪Si where µxUi has an Alberti representa-

tion in the F -direction of Ci and H1(γ∩Si)=0 for each γ in the F -direction of Ci.

Observe that S :=
⋂
i Si satisfies H1(γ∩S)=0 for any γ in the F -direction of E(W, θ).

Indeed, if γ is in the F -direction of E(W, θ), there exists a decomposition

γ= γ1∪...∪γN

such that each γi is in the F -direction of Ci. Thus, H1(γi∩S)=0 for each 16i6N , and

so H1(γ∩S)=0. Therefore,

U =S∪U1∪...∪UN

is the required decomposition.

Next, we define the sets that generalise the Ã(F ) sets mentioned above. We will see

that these are precisely those sets with a weak tangent field. Weak tangent fields were

first defined in the works of Alberti, Csörnyei and Preiss [1]–[3], where many aspects

of the classical theory of Alberti representations appears. In these papers it is shown

that any Lebesgue null set in the plane has a weak tangent field. Furthermore, the

relationship between weak tangent fields and various questions in geometric measure

theory is established.

Definition 2.7. Fix a finite-dimensional Banach space V , a Lipschitz F :X!V and

an integer d6dimV .

For 0<θ<1 we define Ã(F, d, θ) to be the set of all S⊂X for which there exists a

Borel decomposition

S=S1∪...∪SM

and d-dimensional subspaces Wi6V such that, for each 16i6M , H1(γ∩Si)=0 for every

γ∈Γ in the F -direction of E(Wi, θ). Further, we define Ã(F, d) to be the set of all S⊂X
that belong to Ã(F, d, θ) for each 0<θ<1.

For m∈N, let C be the collection of closed, conical subsets of Rm (that is, closed

sets that are closed under multiplication by scalars). We define a metric on C by setting
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d(V,W ) to be the Hausdorff distance between V ∩Sm−1 and W∩Sm−1. Note that, for

any integer d6m, G(m, d) is a closed subset of C.
Let S⊂X be Borel. A Borel τ :S!G(m, d) is a d-dimensional weak tangent field to

S with respect to F if, for every γ∈Γ(X),

(F �γ)′(t)∈ τ(γ(t)) for H1-a.e. t∈ γ−1(S).

Note that the sets Ã(F, d, θ) decrease as θ increases to 1, and that any Borel subset

of a Ã(F, d, θ) set is also in Ã(F, d, θ). Also,

Ã(F, d, θ)⊂ Ã(F, d′, θ) if d6 d′.

Further, by the compactness of Sm−1, an equivalent definition is obtained if we allow

countable decompositions of an Ã(F, d, θ) set, rather than finite decompositions. Thus

Ã(F, d, θ), and hence Ã(F, θ) sets are closed under countable unions.

The Ã(ϕ) sets of [9] are essentially Ã(ϕ, n−1) sets and the weak tangent field in-

troduced by Alberti, Csörnyei and Preiss for a set S⊂Rn is what we call an (n−1)-

dimensional weak tangent field with respect to the identity.

It is easy to see the connection between weak tangent fields and Ã sets. The only

technical point is to construct a tangent field in a Borel regular way. First the simple

direction.

Lemma 2.8. For F :X!Rm Lipschitz, let S⊂X have a d-dimensional weak tangent

field with respect to F . Then S∈Ã(F, d).

Proof. Suppose that τ :S!G(m, d) is a d-dimensional weak tangent field with re-

spect to F and let 0<θ<1. Let W1, ...,WM∈G(m, d) such that

M⋂
i=1

E(Wi, θ) = {0}

and, for each 16i6M , let Si be those x∈S for which τ(x)⊂Rm\E(Wi, θ), a Borel

set. Then, if γ∈Γ(X), (F �γ)′(t)∈Rm\E(Wi, θ) for almost every t∈γ−1(Si). Therefore,

H1(γ∩Si)=0 for each γ∈Γ in the F -direction of E(Wi, θ).

For the other direction, we must take a little care to construct the weak tangent

field in a Borel way.

Lemma 2.9. For F :X!Rm Lipschitz, let S∈Ã(F, d). Then S has a d-dimensional

weak tangent field with respect to F .
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Proof. For each j∈N let

S=

Mj⋃
i=1

Si,j

be a disjoint Borel decomposition given by the definition of an Ã set with the choice

θ=1/j, where Wi,j∈G(m, d). To define a weak tangent field with respect to F , for each

x∈S and j∈N, let i(x, j)∈N such that x∈Si(x,j),j . For each n∈N define

Ln(x) =

n⋂
j=1

C

(
Wi(x,j),j ,

1

j

)
∈C

and

L(x) =
⋂
j∈N

C

(
Wi(x,j),j ,

1

j

)
∈C,

for C(W, θ) the closure of Rm\E(W, θ) (it is a “cone” around W ).

First observe that, for any γ∈Γ(X), (F �γ)′(t)∈L(γ(t)) for almost every t∈γ−1(S).

Indeed, for each j∈N and 16i6Mj , for almost every t∈γ−1(Si,j),

(F �γ)′(t)∈C
(
Wi,j ,

1

j

)
.

That is, for almost every t∈γ−1(S) and every j∈N,

(F �γ)′(t)∈C
(
Wi(γ(t),j),j ,

1

j

)
.

Therefore, for a full measure subset of γ−1(S),

(F �γ)′(t)∈L(γ(t)).

Of course, L(x) may not belong to G(m, d), and so we must find a weak tangent field τ

that contains L at almost every point.

However, L(x) is contained in a d-dimensional subspace for each x∈S. Indeed, let

Wi(x,jk),jk!W be any convergent subsequence as k!∞. Then,

L(x)∈Lk(x)⊂C
(
Wi(x,jk),jk ,

1

jk

)
⊂C(W,dk),

where dk!0 as jk!0, so that L(x)⊂W .

Moreover, L(x) is a Borel function, since, for each x∈S, Ln(x)!L(x) as n!∞.

Indeed, since L(x)⊂Ln(x) for each n∈N, if Ln(x) 6!L(x), there exist some ε>0 and a

sequence yn∈Sn−1∩Ln(x) with

yn /∈B(Sm−1∩L(x), ε)
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for each n∈N. By the compactness of Sm−1, we may suppose that

yn! y /∈B(Sm−1∩L(x), ε)

as n!∞. Since Ln(x) decreases as n increases, yn∈Ln′(x) whenever n′6n, and so

y∈Ln′(x) for each n′∈N. Therefore, y∈L(x), a contradiction.

Thus, we can set τ(x) to be the span of L(x) and, wherever necessary, extend it to

a d-dimensional subspace in a Borel way.

Next we generalise [9, Proposition 5.13]. Although it is possible to deduce this result

from [9, Proposition 5.13], because of several technical details in the statement of that

proposition, it is simpler to give a direct proof.

Proposition 2.10. Let (X, d, µ) be a metric measure space, F :X!Rm Lipschitz

and 06d<m an integer. There exists a Borel decomposition

X =S∪
⋃
j∈N

Uj ,

where S∈Ã(F, d) and each µxUj has d+1 F -independent Alberti representations.

Proof. Fix 0<θ<1 and choose an arbitrary d-dimensional subspace W6Rm and

apply Lemma 2.6 to obtain a Borel decomposition

U =S∪U1∪...∪UN ,

where H1(γ∩S)=0 for each γ∈Γ in the F -direction of E(W, θ), and each µxUj has an

Alberti representation in the F -direction of some cone Cj⊂Rm. In particular,

S ∈ Ã(F, d, θ).

If d=0 then we are done. Otherwise, suppose that, for some 0<i6d, there exists a

Borel decomposition

U =S∪U1∪...∪UN

such that each µxUj has i F -independent Alberti representations and S∈Ã(F, d, θ). By

applying Lemma 2.5 and taking a further decomposition if necessary, we may suppose

that each Alberti representation of the µxUj are in the F -direction of cones of width

0<α< 1
2

√
1−θ2.

For a moment, fix 16j6N and let C(w1, α), ..., C(wi, α) be independent cones that

define the F -direction of the Alberti representations of µxUj . By applying Lemma 2.6

to a d-dimensional subspace W containing w1, ..., wi, we obtain a decomposition

Uj =Sj∪U j1∪...∪U
j
Mj
,
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where Sj∈Ã(F, d, θ) and each µxU jk has an Alberti representation in the F -direction

of some cone C⊂E(W, θ+ε) in addition to the other i Alberti representations. Since

α< 1
2

√
1−θ2, ε>0 may be chosen so that C,C1, ..., Ci forms an independent collection of

cones, and hence so that each µxU jk has i+1 F -independent Alberti representations.

Since

S′ :=S∪S1∪...∪SN ∈ Ã(F, d, θ),

this gives a Borel decomposition

U =S′
⋃
j,k

U jk ,

where S′∈Ã(F, d, θ) and each µxU jk has i+1 F -independent Alberti representations.

Repeating this process d−1 times gives a decomposition

X\Sθ =
⋃
j

Uθj ,

where each µxUj has d+1 Alberti representations and Sθ∈Ã(F, d, θ). Repeating this for

θi!1 and setting S=
⋂
i S

θi∈Ã(F, d) gives a decomposition

X =S∪
⋃
i,j

Uθij

of the required form.

We also obtain the following generalisation of [9, Theorem 5.14].

Theorem 2.11. Let (X, d, µ) be a metric measure space, F :X!Rm Lipschitz and

d<m and integer.

(1) For every positive measure Borel subset X ′ of X, µxX ′ has at most d F -

independent Alberti representations if and only if there exists N⊂X with µ(N)=0 and

X\N ∈ Ã(F, d).

(2) There exists a decomposition

X =
⋃
i

Xi,

such that each µxXi has d+1 F -independent Alberti representations if and only if each

Ã(F, d) subset of X is µ-null.
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Proof. We first prove (1). One direction follows from the previous proposition.

Indeed, if Uj are as in the conclusion of the proposition, then, by assumption, each Uj

must have µ measure zero. Therefore, setting N=
⋃
iNi, a µ-null set completes this

direction.

We prove the other direction by contradiction. Suppose that X ′⊂X has posi-

tive measure and d+1 F -independent Alberti representations in the direction of cones

C1, ..., Cd+1⊂Rm. Choose 0<θ<1 sufficiently large (depending only upon the config-

uration of the Ci and m) such that, for any d-dimensional subspace W6Rm, E(W, θ)

contains at least one of the Ci.

Since there exists a µ-null set N such that X\N∈Ã(F, d), there exists a positive

measure subset Y of X ′ and a d-dimensional subspace W6Rm such that

H1(γ∩Y ′) = 0

for each γ∈Γ in the F -direction of E(W, θ). By the choice of θ above, there exists some

Ci⊂E(W, θ) and so, since µxX ′ has an Alberti representation in the F -direction of Ci,

we see that µ(Y )=0, a contradiction.

One direction of (2) also follows from the previous proposition. For the other direc-

tion, suppose that X=
⋃
iXi is such a decomposition and let S∈Ã(F, d). By applying

(1) to the metric measure space (X, d, µxS), we see that every positive measure subset of

S can have at most d F -independent Alberti representations. However, if µ(S)>0, there

exists some i∈N with µ(S∩Xi)>0, and hence S∩Xi is a positive measure subset of S

with d+1 F -independent Alberti representations, a contradiction.

2.2. Alberti representations and rectifiability

In this subsection we will give conditions that ensure that a metric measure space with n

independent Alberti representations is n-rectifiable. By combining these conditions with

the results from the previous subsection, we will obtain a relationship between purely

unrectifiable sets and Ã sets.

The main result we will use is the following.

Theorem 2.12. ([11, Theorem 1.2]) Suppose that a metric measure space (X, d, µ)

satisfies

0< lim inf
r!0

µ(B(x, r))

rn
6 lim sup

r!0

µ(B(x, r))

rn
<∞ for µ-a.e. x∈X

and has n independent Alberti representations. Then, there exists a Borel N⊂X with

µ(N)=0 such that X\N is n-rectifiable.
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We can easily transform the previous result into one about purely n-unrectifiable

sets.

Corollary 2.13. Let S⊂X, with Hn(S)<∞, be purely n-unrectifiable and satisfy

lim inf
r!0

Hn(B(x, r)∩S)

rn
> 0 for Hn-a.e. x∈S. (∗)

Then, for every Borel S′⊂S of positive Hn measure, HnxS′ has at most n−1 independent

Alberti representations.

Proof. Let S′⊂S be Borel. Since S has finite Hn measure, [20, Theorem 2.10.18]

implies that

lim sup
r!0

Hn(B(x, r)∩S)

(2r)n
6 1 for Hn-a.e. x∈S

and

lim sup
r!0

Hn(B(x, r)∩(S\S′))
rn

= 0 for Hn-a.e. x∈S′.

In particular, by combining with (∗),

lim inf
r!0

Hn(B(x, r)∩S′)
rn

> 0 for Hn-a.e. x∈S′.

Therefore, ifHnxS′ has n independent Alberti representations, (X, d,HnxS′) satisfies the

hypotheses of Theorem 2.12, and so S′ is n-rectifiable. In particular, since S is purely

n-unrectifiable, we must have

Hn(S′) = 0.

There are many situations when the lower density assumption (∗) is not necessary.

First, we mention that it is never necessary. We will not prove this, but mention it to

set the scope for the results of this paper.

Remark 2.14. Using very deep results regarding the structure of null sets in Rn

recently announced by Csörnyei and Jones [15], it is possible to show that any (X, d,Hn)

with n-independent Alberti representations necessarily satisfies (∗). In particular, X is

n-rectifiable, and Corollary 2.13 is true without the assumption (∗). If n=2, this can be

deduced from the work of Alberti, Csörnyei and Preiss [1]. This will appear in future

work of myself and T. Orponen.

Without the announcement of Csörnyei and Jones, it is still possible to remove the

assumption (∗) in many situations.

First, observe that it is not necessary for 1-dimensional sets.
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Observation 2.15. For any purely 1-unrectifiable metric space X, a (non-trivial)

measure µ on X cannot have any Alberti representations, and in fact X∈Ã(F, 0) for any

Lipschitz F :X!Rm and any m∈N.

Using the theory of Alberti representations in Euclidean space given by De Philippis

and Rindler [19], and Alberti and Marchese [4], we can remove the assumption (∗) when

metric space is a subset of some Euclidean space. Specifically, we will use the following

theorem.

Theorem 2.16. ([18, Lemmas 3.2 and 3.3]) Let (X, d, µ) be a metric measure space

and ϕ:X!Rn Lipschitz be such that µ has n ϕ-independent Alberti representations.

Then, ϕ#µ, the pushforward of µ under ϕ, is absolutely continuous with respect to Ln.

This leads to the following two results.

Theorem 2.17. For s>0, s /∈N, let S⊂X be Hs measurable with Hs(S)<∞, and

d be the greatest integer less than s. Then, for every Borel S′⊂S of positive measure,

HsxS′ has at most d independent Alberti representations.

Proof. Let ϕ:X!Rd+1 be Lipschitz and suppose that S′⊂S is Borel such that

HsxS′ has d+1 independent Alberti representations. Then, by Theorem 2.16,

ϕ#(HsxS′)�Ld+1.

Since Hs(S)<∞ and ϕ is Lipschitz, Hs(ϕ(S′))<∞. Therefore, Ld+1(ϕ(S′))=0, and so

ϕ#(HsxS′)(ϕ(S′)) = 0.

That is,

Hs(S′) = 0.

Combining Theorem 2.16 with the Besicovitch–Federer projection theorem provides

an improvement of Theorem 2.12 for subsets of Euclidean space.

Theorem 2.18. Let S⊂Rm be a Borel set, with Hn(S)<∞, such that HnxS has n

independent Alberti representations. Then, S is n-rectifiable.

Proof. Let ϕ:Rm!Rn be a Lipschitz function such that the Alberti representations

of HnxS are in the ϕ-direction of independent cones C1, ..., Cn⊂Rn. Identify S with its

image under the biLipschitz embedding

ι:x 7−! (ϕ(x), x)∈Rn×Rm,
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and also identify ϕ with the orthogonal projection onto

W :=Rn×{0}⊂Rn×Rm.

By pushing forward each of the original Alberti representations, we see that µ:=ι#HnxS
has n ϕ-independent Alberti representations, each in the ϕ-direction of a Ci. Write the

Alberti representations of µ as (Pi, {µiγ}), for 16i6n.

After taking a countable decomposition of S, we may suppose that there exists a

δ>0 such that

‖ϕ(γ′(t))‖> δ‖γ′(t)‖

for Pi-a.e. γ∈Γ(Rn×Rm), H1-a.e. t∈Dom γ, and each 16i6n. (This follows by applying

[9, Corollary 5.9] for each Alberti representation, with ψ the orthogonal projection onto

the centre of Ci, and slightly widening each cone such that the widened cones are also

independent.)

Therefore, for any orthogonal projection π onto an n-dimensional plane V suffi-

ciently close to W (depending on δ, n and m), π#µ also has n-independent Alberti

representations. By Theorem 2.16,

π#µ�Ln.

However, if S is not n-rectifiable, then there exists some Borel S′⊂S with

Hn(S′)> 0,

that is, purely n-unrectifiable. Since Hn(S)<∞, we also have Hn(S′)<∞. By the

Besicovitch–Federer projection theorem, there exist V arbitrarily close to W for which

Ln(π(S′))=0, and hence π#µ(π(S′))=0. This contradicts the fact that Hn(S′)>0.

Corollary 2.19. Let S⊂Rm be purely n-unrectifiable with finite Hn measure. For

any Borel S′⊂S with positive Hn measure, HnxS′ has at most n−1 independent Alberti

representations.

As noted earlier, the recent work of Csörnyei and Jones allows us to remove the

lower density assumption from Theorem 2.12. Alternatively, we may use Theorem 2.16

to remove the upper density assumption.

Corollary 2.20. Let (X, d, µ) be a metric measure space with µ(X)<∞ and n

independent Alberti representations. Then,

lim sup
r!0

µ(B(x, r))

rn
<∞ for µ-a.e. x∈X.
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Proof. Let ϕ:X!Rn be Lipschitz such that µ has n ϕ-independent Alberti repre-

sentations. By Theorem 2.16, ϕ#µ�Ln and so

lim sup
r!0

ϕ#µ(B(x, r))

rn
<∞ for ϕ#µ-a.e. x∈Rn.

In particular, since

ϕ(B(x, r))⊂B(ϕ(x),Lipϕr)

for each x∈X and r>0,

lim sup
r!0

µ(B(x, r))

rn
<∞ for µ-a.e. x∈X.

Combining Theorems 2.11 and 2.17, Observation 2.15 and Corollaries 2.13 and 2.19

gives the following relationship between purely unrectifiable and Ã sets.

Theorem 2.21. For s>0, let S⊂X be Hs measurable, with Hs(S)<∞, and let

d be the greatest integer strictly less than s. Suppose that either s /∈N or S is purely

s-unrectifiable and one of the following holds:

(1) S is purely 1-unrectifiable (in this case, we may set d=0);

(2) X=Rk for some k∈N;

(3) S satisfies (∗).
Then, for any Lipschitz F :X!Rm, there exists a N⊂S with Hs(N)=0 such that

S\N ∈ Ã(F, d).

Remark 2.22. Note that the converse to this theorem is true for the integer case: if

S is not purely n-unrectifiable, then, if f :A⊂Rm!S is biLipschitz with Ln(A)>0,

S /∈ Ã(f−1, n−1).

Remark 2.23. By using the comments in Remark 2.14, we see that this theorem is

true for all purely unrectifiable sets, without assuming (∗).
The announced results of Csörnyei and Jones also imply that any Lebesgue null set

of Rn belongs to Ã(Id, n−1). By considering projections to n-dimensional subspaces

spanned by coordinate axes, this implies that any N⊂Rm with Hn(N)=0 belongs to

Ã(Id, n−1). Therefore, for any N⊂X with Hn(N)=0 and Lipschitz F :X!Rm,

N ∈ Ã(F, n−1).

That is, we may take N=∅ in the previous theorem.
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3. Constructing real-valued perturbations

First, we fix some notation for this section.

Notation 3.1. Let B be a Banach space, T :B!R be linear and δ>0. Suppose that

S⊂B is compact and satisfies H1(γ∩S)=0 for each γ∈Γ(B) with

(T �γ)′(t)> δ‖T‖Lip(γ, t) for H1-a.e. t∈Dom γ. (3.1)

We let Ω be the closed convex (and hence compact) hull of S. Further, for γ∈Γ(B) and

V ⊂B Borel, define

R(V, γ, δ) =

∫
γ−1(B\V )

(T �γ)′+

∫
Dom γ

δ‖T‖Lip(γ, ·).

Note that H1(γ∩S)=0 for each γ∈Γ(B) satisfying (3.1) is equivalent to

H1(γ({t∈Dom γ : (T �γ)′(t)> δ‖T‖Lip(γ, t)})∩S) = 0 (3.2)

for all γ∈Γ(B). Indeed, for any compact

K ⊂{t∈Dom γ : (T �γ)′(t)> δ‖T‖Lip(γ, t)},

for almost every t∈K, (T �γ|K)′(t)=(T �γ)′(t) and Lip(γ|K , t)=Lip(γ, t). Thus γ|K sat-

isfies (3.1), and so L1(K)=0, and hence (3.2).

In this section we construct an arbitrarily small perturbation f of T that, when

restricted to S, has pointwise Lipschitz constant at most δ. Suppose that x, y∈B are

connected by a curve γ. By the fundamental theorem of calculus,

T (x)−T (y) =

∫
Dom γ

(T �γ)′.

We will construct a function f for which this integral can (almost) be replaced by

R(V, γ, δ), for V an appropriate neighbourhood of S in Ω. Note that, when restricted to

S, f does have pointwise Lipschitz constant at most δ, because the first integral in the

definition of R equals zero.

The first step is to find an appropriate V such that the resulting function is a small

perturbation of T . Compare to [9, Lemma 6.2].

Lemma 3.2. For any ε>0 there exists a V ⊃S, open in Ω, such that

R(V, γ, δ)>T (γ(l))−T (γ(0))−ε,

for any l>0 and any Lipschitz γ: [0, l]!Ω, with (T �γ)′>0 almost everywhere.
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Proof. It is possible to deduce this directly from [9, Lemma 6.2]. However, the set

up for that lemma is more technical, and also less general than the present situation. For

simplicity, we give a direct proof.

Suppose that the conclusion is false for some ε>0 and the sets

Vn =

{
x∈Ω : d(x, S)<

1

n

}
.

Then, for each n∈N, there exists a Lipschitz

γn: [0, ln]−!Ω

with (T �γn)′>0 almost everywhere such that

R(Vn, γn, δ)6T (γn(l))−T (γn(0))−ε. (3.3)

By the compactness of Ω, we may suppose that each γn has the same endpoints, γs, γe∈Ω.

Observe that, for each n∈N,

δ‖T‖H1(γn)6
∫

Dom γn

δ‖T‖Lip(γn, ·)6T (γe)−T (γs).

Therefore, there exists an l>0 and a reparametrisation of each γn such that each is a

1-Lipschitz function defined on [0, l]. Further, by the Arzelá–Ascoli theorem and taking

a subsequence if necessary, we may suppose that the γn converge uniformly to some

γ: [0, l]−!Ω.

Fix an m∈N and let n>m. Then, since Vn⊂Vm and (T �γn)′>0 almost everywhere,

R(Vm, γn, δ)6R(Vn, γn, δ).

Let I be a finite collection of closed intervals contained in γ−1(B\
Vm), an open subset

of R. Note that both of the integrals appearing in the definition of R(
Vm, γ|I , δ) are

the total variation of Lipschitz functions. Thus, by the lower semi-continuity of total

variation under uniform convergence,

R(
Vm, γ|I , δ)6 lim inf
n!∞

R(
Vm, γn|I , δ). (3.4)

Further, since (T �γn)′>0 almost everywhere and Vn⊂
Vm for each n>m,

lim inf
n!∞

R(
Vm, γn|I , δ)6 lim inf
n!∞

R(Vn, γn|I , δ)6T (γ(l))−T (γ(0))−ε, (3.5)
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where the final inequality uses (3.3) and the fact that (T �γn)′>0 almost everywhere. By

combining (3.4) and (3.5), and taking the supremum over all such I, since γ−1(B\
Vm)

is open, we obtain

R(
Vm, γ, δ)6T (γ(l))−T (γ(0))−ε

for each m∈N. Since S is closed, 
Vm monotonically decrease to S as m increases, and so

R(S, γ, δ)6T (γ(l))−T (γ(0))−ε. (3.6)

By substituting the definition of R into (3.6), applying the fundamental theorem of

calculus to the right hand side and rearranging the resulting inequality, we see that∫
[0,l]

δ‖T‖Lip(γ, ·)6
∫
γ−1(S)

(T �γ)′−ε.

Applying (3.2) gives∫
[0,l]

δ‖T‖Lip(γ, ·)6
∫
γ−1(S)

(T �γ)′−ε6
∫
γ−1(S)

δ‖T‖Lip(γ, ·)−ε,

which contradicts ε>0.

Next, we extend the previous lemma to include all curves in B, not only those in Ω.

Lemma 3.3. For any ε>0, the set V ⊃S obtained from Lemma 3.2 satisfies

R(V, γ, δ)>T (γ(l))−T (γ(0))−ε, (3.7)

for any l>0 and any Lipschitz γ: [0, l]!B with (T �γ)′>0 almost everywhere.

Proof. Fix a γ as in the statement of the lemma. We will modify γ to construct a

curve in Ω.

Let m=min γ−1(Ω) and M=max γ−1(Ω). Since Ω is compact, (m,M)\γ−1(Ω) is

open. Suppose that (a, b) is a connected component for some a<b, so that γ(a), γ(b)∈Ω.

We form γ̃ by altering γ in (a, b) to equal the straight line segment joining γ(a) to γ(b).

Since Ω is convex, this segment is contained in Ω. Also, since T is linear, we have

(T �γ̃)′>0 almost everywhere. Further, γ((a, b))∩V =∅, (T �γ̃)6(T �γ) whenever they

both exist and Lip(γ̃, t)6Lip(γ, t) for all t. Therefore,

R(V, γ̃|(a,b), δ)6R(V, γ|(a,b), δ).

By repeating this for each connected component of (m,M)\γ−1(Ω), we obtain

γ̃: [m,M ]−!Ω,
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with

R(V, γ̃, δ)6R(V, γ|[m,M ], δ)

and (T �γ̃)′>0 almost everywhere. Therefore, by applying the conclusion of Lemma 3.2

to γ̃,

R(V, γ|[m,M ], δ)>R(V, γ̃, δ)>T (γ̃(M))−T (γ̃(m))−ε. (3.8)

Finally, we consider the endpoints of γ. Since

γ([0,m))∩Ω = γ((M, l])∩Ω =∅,

the fundamental theorem of calculus gives

R(V, γ|[0,m), δ)>T (γ(m))−T (γ(0))

and

R(V, γ|(M,l], δ)>T (γ(l))−T (γ(M)).

Therefore, using (3.8) and the fact that γ̃(m)=γ(m) and γ̃(M)=γ(M),

R(V, γ, δ) =R(V, γ|[0,m), δ)+R(V, γ|[m,M ], δ)+R(V, γ|(M,l], δ)

>T (γ(m))−T (γ(0))+T (γ̃(M))−T (γ̃(m))−ε+T (γ(l))−T (γ(M))

=T (γ(l))−T (γ(0))−ε,

as required.

We now use the previous lemma to construct a perturbation f of T . This con-

struction uses the same general idea as the one in [9, Lemma 6.3], but we must make

adjustments to fit our current purposes. Other than technical differences that were intro-

duced to fit the situation in [9], the first difference is that f is defined on the whole of B,

rather than only the compact subset Ω. This is a consequence of the previous lemma

and is necessary to perturb a Lipschitz function defined on the whole of X, rather than

simply a compact subset.

The second difference is that we now obtain a stronger Lipschitz-type bound on f ,

given in (3.9). This is necessary for us to obtain the required bound on the Lipschitz

constant of the vector-valued perturbation constructed in §4.

Lemma 3.4. For any ε>0 there exists a Lipschitz function f :B!R and a %>0

such that the following statements hold :

• For every y, z∈B,

|f(y)−f(z)|6 |T (y)−T (z)|+3δ‖T‖d(y, z); (3.9)
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• For every x∈B,

|T (x)−f(x)|<ε; (3.10)

• For every x∈S and y, z∈B(x, %)∩S,

|f(y)−f(z)|6 3δ‖T‖d(y, z). (3.11)

Proof. First observe that, if T=0, then f=0 satisfies the conclusion of the lemma.

Therefore, we may suppose that ‖T‖6=0.

For ε>0, let V ⊃S be the set, open in Ω, given by Lemma 3.3. Define f :B!R by

f(x) = inf R(V, γ, δ)+T (γ(0)),

where the infimum is taken over all l>0 and all Lipschitz γ: [0, l]!B with (T �γ)′>0

almost everywhere and γ(l)=x. We call such a curve admissible for x. For any x∈B,

the curve consisting of the single point x is admissible for x, and so f(x)6T (x). Also,

since S is compact, there exists a %>0 such that B(x, %)∩Ω⊂V whenever x∈S. We now

show that f satisfies the required conclusions for such a %>0.

First, the fact that f is Lipschitz will follow from (3.9), and the fact that T is

Lipschitz. Let y, z∈B be such that T (z)>T (y), and let γ: [0, l]!B be admissible for y.

Define γ̃: [0, l+1]!B by

γ̃(t) =

{
γ(t), if t∈ [0, l],

y+(t−l)(z−y), if t∈ (l, l+1].

Then, (T �γ̃)′>0 a.e., so that γ̃ is admissible for z, and so

f(z)6 f(y)+R(V, γ̃|[l,l+1], δ)

6 f(y)+

∫
[l,l+1]\γ̃−1(V )

(T �γ̃)′+

∫
[l,l+1]

δ‖T‖Lip(γ̃, ·)

which is

6 f(y)+δ‖T‖d(y, z) if y, z ∈B(x, %)∩Ω⊂V (3.12)

and

6 f(y)+T (z)−T (y)+δ‖T‖d(y, z) otherwise. (3.13)

Note that (3.12) uses the fact that γ̃|[l,l+1] is the straight line joining y to z, which is

contained in Ω, and hence V , and (3.13) uses the fact that (T �γ̃)′>0 almost everywhere.

To bound f(y), let γ: [0, l]!B be admissible for z. If T (γ(0))>T (y), then

f(y)6T (y)6T (γ(0))6T (γ(0))+R(V, γ, δ). (3.14)
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If T (y)>T (γ(0)), choose v∈B with

T (v) = ‖T‖ ‖v‖ 6= 0,

define

P :B−! kerT

x 7−!x− T (x)

T (v)
v,

and set

t0 = inf{t∈ [0, l] :T (γ(t))>T (y)}.

Since T (γ(0))<T (y)6T (z), we have 0<t06l.

Define γ̃: [0, l+1]!B by

γ̃(t) =


γ(t), if t∈ [0, t0],

γ(t0)+P (γ(t)−γ(t0)), if t∈ (t0, l],

γ̃(l)+(t−l)(y−γ̃(l)), if t∈ (l, l+1].

Observe that T (γ̃(t))=T (y) for all t∈[t0, l+1]. Indeed, for t=t0, this follows from the

definition of t0; for t∈(t0, l], this is because P maps into the kernel of T ; for t∈(l, l+1],

T (γ̃(t)) =T (γ̃(l))+(t−l)[T (y)−T (γ̃(l))] =T (y).

In particular, γ̃ is an admissible curve for y, with γ̃(0)=γ(0). Secondly, observe that, for

almost every t∈[t0, l],

Lip(γ̃, t) = Lip(P �γ, t)6Lip(γ, t)+
‖v‖
T (v)

(T �γ)′(t).

Therefore,

R(V, γ̃|[t0,l], δ) =

∫
[t0,l]\γ̃−1(V )

(T �γ̃)′+

∫
[t0,l]

δ‖T‖Lip(γ̃, ·)

6 0+

∫
[t0,l]

δ‖T‖Lip(γ, ·)+

∫
[t0,l]

δ‖T‖
‖T‖

(T �γ)′

6R(V, γ|[t0,l], δ)+δ(T (γ(l))−T (γ(t0)))

6R(V, γ|[t0,l], δ)+δ‖T‖d(y, z). (3.15)

Further, a direct calculation shows that

γ̃(l+1)−γ̃(l) =P (z)−P (y),
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and so

R(V, γ̃|[l,l+1], δ) = δ‖T‖ ‖γ̃(l+1)−γ̃(l)‖6 2δ‖T‖d(y, z).

This and (3.15) gives

f(y)6T (γ̃(0))+R(V, γ̃|[0,t0], δ)+R(V, γ̃|[t0,l], δ)+R(V, γ̃|[l,l+1], δ)

6T (γ(0))+R(V, γ|[0,t0], δ)+R(V, γ|[t0,l], δ)+δ‖T‖d(y, z)+2δ‖T‖d(y, z)

=T (γ(0))+R(V, γ, δ)+3δ‖T‖d(y, z). (3.16)

By using (3.14) or (3.16), depending on whether T (γ(0))>T (y) or not, and taking the

infimum over all admissible γ for z, we see that

f(y)6 f(z)+3δ‖T‖d(y, z). (3.17)

Combining equations (3.12), (3.13) and (3.17) gives (3.9) and (3.11). Note that, for

(3.11), we use the fact that S⊂Ω.

Finally, by applying (3.7) to any admissible curve γ for x,

f(x)>T (x)−T (γ(0))−ε+T (γ(0)) =T (x)−ε.

Since f(x)6T (x) for all x∈B, f satisfies (3.10).

We conclude this section by describing the precise setting we will use this construc-

tion, without the fixed quantities in Notation 3.1. Recall the definition of the set E(W, θ)

given in Definition 2.2.

Proposition 3.5. Let V be a finite-dimensional Banach space, F :X!V be a Lips-

chitz function, 0<θ<1 and W⊂V be a subspace. Suppose that a compact S⊂X satisfies

H1(γ∩S) = 0

for every γ∈Γ(X) in the F -direction of E(W, θ). Further, suppose that T :V!R is

linear, with W6kerT . Then, for any ε>0, there exists a Lipschitz f :X!R and a %>0

such that the following statements hols:

• For every y, z∈X,

|f(y)−f(z)|6 |T (F (y)−F (z))|+3(1−θ)‖T‖LipFd(y, z); (3.18)

• For every x∈X,

|T (F (x))−f(x)|<ε; (3.19)

• For every x∈S and y, z∈B(x, %)∩S,

|f(y)−f(z)|6 3(1−θ)‖T‖LipFd(y, z). (3.20)
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Proof. First note that it suffices to prove a version of the proposition where we

replace (3.19) by

|T (F (x))−f(x)|6 ε‖T‖LipF.

Indeed, the stated version follows from this statement since ε>0 is arbitrary. After this

modification, the hypotheses and conclusion are invariant under multiplying F or T by a

constant. Therefore (since the result is true if LipF or ‖T‖ equals zero), we may suppose

that

LipF = ‖T‖= 1.

Next we obtain the required Banach space structure. Let ι:X!`∞(X) be an iso-

metric embedding, for example the standard Kuratowski embedding, and let

B=V ×`∞(X).

We equip B with the norm

‖(v, x)‖= max{‖v‖, ‖x‖∞}.

Define ι∗:X!B by

ι∗(x) = (F (x), ι(x)).

Since LipF=1, this embedding is an isometry, and so we may identifyX with its isometric

copy in B. Moreover, on this isometric copy of X, F agrees with the projection onto the

first factor of B, which we also denote by F . In particular, F is linear and H1(γ∩S)=0

for any γ∈Γ(B) in the F -direction of E(W, θ).

Now, suppose that T :V!R is linear with W6kerT . Suppose that γ∈Γ(B), with

(T �F �γ)′(t)> (1−θ)‖T‖Lip(γ, t)

for some t∈Dom γ. Then, since W6kerT and LipF=1, if w is a closest point of W to

(F �γ)′(t),

‖T‖d((F �γ)′(t),W )> ‖T ((F �γ)′(t)−w)‖

= |(T �F �γ)′(t)|

> (1−θ)‖T‖Lip(γ, t)

> (1−θ)‖T‖ ‖(F �γ)′(t)‖.

That is,

d((F �γ)′(t),W )> (1−θ)‖(F �γ)′(t)‖,
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and so

(F �γ)′(t)∈E(W, θ).

Thus, since H1(γ∩S)=0 for every γ∈Γ(B) in the F -direction of E(W, θ),

H1(γ∩S) = 0

for each γ∈Γ(B) with

(T �F �γ)(t)′> (1−θ)‖T‖Lip(γ, t)

almost everywhere.

Finally, to apply Lemma 3.4 to T �F , we estimate ‖T �F‖. Since F is the projection

onto the first coordinate,

‖T �F‖= sup
max{‖v‖,‖x‖∞}

T (v) = sup
‖v‖=1

T (v) = ‖T‖.

Thus, if γ∈Γ(B) satisfies

(T �F �γ)(t)′> (1−θ)‖T �F‖Lip(γ, t) for a.e. t∈Dom γ,

then it also satisfies

(T �F �γ)(t)′> (1−θ)‖T‖Lip(γ, t) for a.e. t∈Dom γ,

and so H1(γ∩S)=0. Therefore, we may apply Lemma 3.4 to T �F with the choice

δ= 1−θ

to obtain a Lipschitz function f :X!R and a %>0. The properties of f we require are

precisely those given by the lemma.

4. Perturbing coordinate functionals

Up to this point, the choice of norm on Rm has not been important. The results of §2 are

of a geometric nature, concerning purely unrectifiable sets, and the results of §3 concern

real-valued functions. Throughout this section, we will construct Lipschitz functions into

a finite-dimensional Banach space V , which we now fix. We require precise control on the

Lipschitz constant of these functions, and so the choice of the norm is very important.

In this section, all norms, Lipschitz constants and operator norms are taken with

respect to V .
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4.1. Properties of finite-dimensional Banach spaces

We first fix some terminology for several quantitative properties of V . This is required so

that we may construct certain Lipschitz functions into V , coordinate by coordinate, in a

way that the Lipschitz constant does not depend on the dimension of V . For Euclidean

targets, an orthonormal basis is sufficient (see Observation 4.2). For non Euclidean

targets (in particular V =`m∞), something more involved is required. The following con-

structions mimic the properties we require of Euclidean space in the general setting.

Fix a basis b1, ..., bm of V consisting of unit vectors. We will write b∗i for the ith

coordinate functional

b∗i :

m∑
i=1

λibi 7−!λi.

By the compactness of the unit spheres in V and `m∞, there exists a Ku>1 such that∥∥∥∥ m∑
i=1

lib
∗
i (x)bi

∥∥∥∥6Ku‖l‖∞‖x‖ (4.1)

for each x∈V and each l∈`m∞. Note that, if V =`mp for some 16p6∞ and b1, ..., bm is

the standard basis, then Ku=1.

A projection is a linear function P on a vector space to itself such that P 2=P . For

an integer d>0 and a d-dimensional subspace W of V , the Kadets–Snobar theorem ([5,

Theorem 13.1.7]) gives a projection

P :V −!W

of norm at most
√
d. We set

Q= Id−P :V −! kerP,

so that ‖Q‖6
√
d+1 and

x=P (x)+Q(x) for each x∈V .

By applying the triangle inequality and (4.1), we see that, for any x∈V and l∈`m∞
with ‖l‖∞61, ∥∥∥∥P (x)+

m∑
i=1

lib
∗
i (Q(x))bi

∥∥∥∥6 ‖P (x)‖+
∥∥∥∥ m∑
i=1

lib
∗
i (Q(x))bi

∥∥∥∥
6 ‖P (x)‖+Ku‖l‖∞‖Q(x)‖

6Ku(2
√
d+1)‖x‖.

(4.2)

This leads us to the following definition.
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Definition 4.1. For a finite-dimensional Banach space V and an integer d>0, we let

K̃(V, d) be the least K>1 for which the following is true: There exist Kd,Kp>0 and,

for any d-dimensional subspace W of V , a basis b1, ..., bm of V consisting of unit vectors

and projections P :V!W and Q:V!kerP such that

(1) P (x)+Q(x)=x for all x∈V ;

(2) ‖b∗i ‖6Kp for each 16i6m;

(3) ‖P‖, ‖Q‖6Kd;

(4) For each x∈V and l∈`m∞ with ‖l‖∞61,∥∥∥∥P (x)+

m∑
i=1

lib
∗
i (Q(x))bi

∥∥∥∥6K‖x‖. (4.3)

Note that (4.2) shows that

K̃(V, d)6Ku(2
√
d+1)

for any finite-dimensional Banach space V and any d>0. We record some particular

values of K̃(V, d).

Observation 4.2. For any m∈N and d>0,

K̃(`m2 , d) = 1.

Indeed, for any d-dimensional subspace W6`m2 , choose an orthonormal basis b1, ..., bm

such that b1, ..., bd is a basis of W , and let P be the orthogonal projection onto W and

Q be the orthogonal projection onto W⊥. Then,

Kp =Ku =Kd = 1

and, for any x∈`m2 and l∈`m∞ with ‖l‖∞61,∥∥∥∥P (x)+

m∑
i=1

lib
∗
i (Q(x))bi

∥∥∥∥=

∥∥∥∥ d∑
i=1

〈x, bi〉bi+
m∑

i=d+1

li〈x, bi〉bi
∥∥∥∥6 ‖x‖,

so that

K̃(`m2 , d) = 1.

Observation 4.3. Suppose that V has a basis b1, ..., bm for which, in (4.1), Ku=1.

For example, if V =`mp for any 16p6∞, then the standard basis satisfies this. Then,

K̃(V, 0) = 1.



rectifiability and perturbations 35

Indeed, the only zero-dimensional subspace of V is W={0}, and so we may take P=0

and Q to be the identity, so that Kd=1. Then, for any l∈`m∞ with ‖l‖∞61,∥∥∥∥P (x)+

m∑
i=1

lib
∗
i (Q(x))bi

∥∥∥∥=

∥∥∥∥ m∑
i=1

lib
∗
i (x)bi

∥∥∥∥6 ‖x‖.
As mentioned above, since Ku=1 for this basis,

K̃(`mp , d)6 2
√
d+1

for any d>1 and 16p6∞. Note that this is independent of m.

To deduce one of our main theorems (Theorem 6.5), we will apply the general per-

turbation constructed in the next subsection to the following function.

Lemma 4.4. Let (X, d) be a compact metric space. For any ε>0 there exists an

m∈N and a 1-Lipschitz F :X!`m∞ such that

‖F (x)−F (y)‖> d(x, y)−ε

for each x, y∈X.

Proof. Given ε>0, let x1, ..., xm be a maximal ε-net of X and define

F :X −! `m∞,

x 7−! (d(x, x1), ..., d(x, xm)).

Then, F is 1-Lipschitz. Moreover, if x, y∈X, there exists 16i6m such that y∈B(xi, ε).

In particular,

‖F (x)−F (y)‖> |d(x, xi)−d(y, xi)|> d(x, xi)−ε> d(x, y)−2ε.

Since ε>0 is arbitrary, this completes the proof.

4.2. Constructing vector-valued perturbations

Before giving the statement and proof of the main perturbation lemma, we discuss the

details of constructing Lipschitz maps G:V!V . We will construct such functions coor-

dinate by coordinate. This is because the results of §3 concern real-valued functions.

Let b1, ..., bm be a basis of V consisting of unit vectors. For 1-Lipschitz functions

fi:V!R, consider the map

G=

m∑
i=1

fibi.
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By simply using the triangle inequality, the estimate we obtain on the Lipschitz constant

of G depends on m. This is not useful for our application. Moreover, even when m=2,

the Lipschitz constant of G can be very large; consider for example the basis (1, 0), (1, ε)

of `22, with ε>0 very small, and f1=1 and f2=0. Then, G maps (0, ε) to (−1, 0). Thus,

the Lipschitz constant of G is at least 1/ε.

To obtain precise control, the solution is to require

|fi(x)−fi(y)|6 |b∗i (x−y)|

for each x, y∈V and each 16i6n, and apply (4.1). Under this condition, maps of the

form of G above have Lipschitz constant at most Ku, and, for any x, y∈V and 16i6n,

|b∗i (G(x)−G(y))|= |fi(x)−fi(y)|. (4.4)

Given a d-dimensional subspace W6V , we wish for a similar construction that takes

into account W . For example, suppose that V =`m2 and let bi be an orthonormal basis

such that the first d vectors belong to W . We wish to construct a G such that (4.4) holds

for d+16i6n, but

|b∗i (G(x)−G(y))|= |b∗i (x−y)|

for all 16i6d. In this case, defining

G(x) =

d∑
i=1

b∗i (x)bi+

m∑
i=d+1

fi(x)bi

has the required properties and is 1-Lipschitz.

However, in the case V =`m∞ this does not work. Choosing a basis that is related to

an arbitrary W6V may have a very large value of Ku, and so such a G will have large

Lipschitz constant. Therefore, we must use the standard basis of `m∞.

This is where we use the definition of K̃(V, d) given in Definition 4.1. Precisely, by

(4.3), K̃(V, d) bounds the Lipschitz constant of the function

G(x) =P (x)+

m∑
i=1

fi(x)bi,

whenever each fi:V!R satisfies

|fi(x)−fi(y)|6 |b∗i (Q(x−y))| (4.5)

for each x, y∈V and each 16i6n.
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Now, let X be a metric space and F :X!V be Lipschitz. For each 16i6n, applying

Proposition 3.5 with Ti=b
∗
i �Q yields a Lipschitz function fi:X!R, and we define the

perturbation

σ(x) =P (F (x))+

m∑
i=1

fi(x)bi.

Note that (3.18) gives

|fi(x)−fi(y)|6 |b∗i (Q(F (x)−F (y)))|

(up to some error), which corresponds to (4.5). The important fact to note in the

conclusion of the following lemma is that

Lipσ6 K̃(V, d) LipF

(except for an error term that can be made arbitrarily small by choosing θ close to 1).

In particular, for the examples discussed in Observations 4.2 and 4.3, K̃(V, d) depends

only on d, and for the case `m2 equals 1.

Lemma 4.5. Let F :X!V be Lipschitz. Suppose that for some d-dimensional W6V

and 0<θ<1, a compact S⊂X satisfies H1(γ∩S)=0 for each γ∈Γ(X) in the F -direction

of E(W, θ). There exists a constant CV depending only upon V such that the following

is true. For any ε>0 there exists %>0 and a Lipschitz σ:X!V such that

• The Lipschitz constant of σ is at most

(K̃(V, d)+(1−θ)CV )) LipF ;

• For every x∈X,

‖σ(x)−F (x)‖<ε; (4.6)

• For every x∈S and y, z∈B(x, %),

‖σ(y)−σ(z)‖6 ‖P (F (y))−P (F (z))‖+(1−θ)CV LipFd(y, z), (4.7)

where P :V!W is a projection with norm Kd.

Proof. By Definition 4.1, there exist a basis b1, ..., bm of V and projections P :V!W

and Q:V!kerP that satisfy (4.3) with K̃(V, d) in place of K. Recall that all elements

of this basis have norm 1, ‖b∗i ‖6Kp for each 16i6m and ‖P‖, ‖Q‖6Kd.

For each 16i6m, set Ti=b
∗
i �Q, so that each Ti:V!R is linear with ‖Ti‖6KpKd.

We apply Proposition 3.5 to each Ti to obtain a Lipschitz fi:X!R and %i>0. We set

%=
m

min
i=1

%i> 0
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and

σ(x) =P (F (x))+

m∑
i=1

fi(x)bi.

We must establish the bound on the Lipschitz constant of σ and prove equations (4.6)

and (4.7).

To determine the Lipschitz constant of σ, we use the definition of K̃(V, d). Fix

y, z∈V and, for a moment, fix 16i6m. If Ti(y)=Ti(z), then set li=0. Otherwise, let

li = min

{
fi(y)−fi(z)
Ti(y)−Ti(z)

, 1

}
if
fi(y)−fi(z)
Ti(y)−Ti(z)

> 0,

and

li = max

{
fi(y)−fi(z)
Ti(y)−Ti(z)

,−1

}
if
fi(y)−fi(z)
Ti(y)−Ti(z)

< 0.

Then, by construction, |li|61 and, in any of the above three cases, equation (3.18) implies

that

|fi(y)−fi(z)−li(Ti(y)−Ti(z))|6 (1−θ)‖Ti‖LipFd(y, z)

6 (1−θ)KpKd LipFd(y, z)

= (1−θ)CV LipFd(y, z),

(4.8)

letting CV =KpKd in the final line.

Using the triangle inequality and applying (4.8) for each 16i6n gives

‖σ(y)−σ(z)‖=

∥∥∥∥P (F (y)−F (z))+

m∑
i=1

(fi(y)−fi(z))bi
∥∥∥∥

6

∥∥∥∥P (F (y)−F (z))+

m∑
i=1

li(Ti(y)−Ti(z))bi
∥∥∥∥

+

m∑
i=1

|fi(y)−fi(z)−li(Ti(y)−Ti(z))| ‖bi‖

6

∥∥∥∥P (F (y)−F (z))+

m∑
i=1

li(Ti(y)−Ti(z))bi
∥∥∥∥

+m(1−θ)CV LipFd(y, z).

Substituting in for each Ti (and replacing CV by mCV ) gives

‖σ(y)−σ(z)‖6
∥∥∥∥P (F (y)−F (z))+

m∑
i=1

lib
∗
i (Q(F (y)−F (z)))bi

∥∥∥∥
+(1−θ)CV LipFd(y, z).
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Finally, applying (4.3) gives

‖σ(y)−σ(z)‖6 K̃(V, d)‖F (y)−F (z)‖+(1−θ)CV LipFd(y, z),

so that

Lipσ6 (K̃(V, d)+(1−θ)CV ) LipF,

as required.

The other two properties of σ are simple consequences of the triangle inequality and

the corresponding conclusions of Proposition 3.5. Indeed, for any x∈X, Definition 4.1 (1)

and the definition of b∗i give

F (x) =P (F (x))+Q(F (x)) =P (F (x))+

m∑
i=1

b∗i (Q(F (x)))bi.

Therefore, recalling that σ is defined by

σ(x) =P (F (x))+

m∑
i=1

fi(x)bi,

and that ‖bi‖61 for each 16i6n, we have

‖σ(x)−F (x)‖=

∥∥∥∥ m∑
i=1

[fi(x)−b∗i (Q(F (x)))]bi

∥∥∥∥
6

m∑
i=1

|fi(x)−b∗i (Q(F (x)))|

=

m∑
i=1

|fi(x)−Ti(F (x))|

6mε,

where the penultimate inequality simply uses the definition of Ti, and the final inequality

uses (3.19). Since ε>0 is arbitrary, this gives (4.6).

Now, suppose that y, z∈B(x, %). Since y, z∈B(x, %)⊂B(x, %i) for all 16i6m, the

triangle inequality gives

‖σ(y)−σ(z))‖6 ‖P (F (y))−P (F (z))‖+
m∑
i=1

|fi(y)−fi(z)|

6 ‖P (F (y))−P (F (z))‖+(1−θ)CV LipFd(y, z),

where the final inequality follows by using (3.20) for each 16i6m. This completes the

proof.
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A general Ã set has a finite decomposition into sets that satisfy the hypotheses of

the previous lemma. If such a set has finite measure, then, up to a set of arbitrarily small

measure, we may suppose that this decomposition consists of disjoint compact sets. We

will combine the corresponding perturbations we obtain from the previous lemma into a

single perturbation using the following lemma.

At first thought, one may try to combine these perturbations into a single perturba-

tion by using a Lipschitz extension result. However, in general, this will create a Lipschitz

function with a greater Lipschitz constant than the original functions, which is not what

we require. In this lemma, the original Lipschitz function provides extra structure that

enables us to maintain the same Lipschitz constant.

Lemma 4.6. Let B be a normed vector space and F :X!B be an L-Lipschitz func-

tion for some L>0. Suppose that there exist S1, ..., SM⊂X and %0>0 such that the

B(Si, %0) are disjoint. Furthermore, suppose that, for some ε>0, there exist L-Lipschitz

functions σi:B(Si, %0)!B, with

‖F (x)−σi(x)‖<ε

for each x∈B(Si, %0) and each 16i6M . Then, there exists a (L+2ε/%0)-Lipschitz func-

tion σ:X!V such that

(1) σ(x)=σi(x) for each x∈Si and each 16i6M ;

(2) σ(x)=F (x) if

d

(
x,
⋃
i

Si

)
>%0;

(3) ‖σ(x)−F (x)‖<ε for each x∈X.

Proof. The proof simply interpolates between the different σi. For each 16i6M

and x∈B(Si, %0), write

σi(x) =F (x)+Ei(x),

so that ‖Ei‖∞<ε. We define χi:X!R by

χi(x) =
max

{
1
2%0−d(x, Si), 0

}
1
2%0

,

so that each χi equals 1 on Si and 0 off B
(
Si,

1
2%0

)
, and so the χi have disjoint supports.

Moreover, this allows us to define σ:X!B by

σ=F+

M∑
i=1

χiEi.
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Thus, properties (1)–(3) are automatically satisfied. It remains to check the Lipschitz

constant of σ.

To this end, let y, z∈X, and suppose that 16i, j6M are such that

χi(y) 6= 0 and χj(z) 6= 0.

There exist at most one choice for each of i and j. If no such index exists, we choose

either arbitrarily. First suppose that i=j. Then, by the triangle inequality,

‖σ(y)−σ(z)‖= ‖F (y)−F (z)+χi(y)Ei(y)−χi(z)Ei(z)‖

6 ‖F (y)−F (z)+χi(y)Ei(y)−χi(y)Ei(z)‖+|χi(y)−χi(z)| ‖Ei(z)‖

6χi(y)‖σi(y)−σi(z)‖+(1−χi(y))‖F (y)−F (z)‖+ |d(y, Si)−d(z, Si)|
%0/2

ε

6Ld(y, z)+
2ε

%0
d(y, z).

Now, suppose that i 6=j. In particular, this implies that

1
2%0−d(y, Si)6 d(y, z) and 1

2%0−d(z, Sj)6 d(y, z). (4.9)

Indeed, suppose that the first inequality is false, then, by first using the triangle inequal-

ity,

d(z, Si)6 d(y, z)+d(y, Si)<
1
2%0−d(y, Si)+d(y, Si) = 1

2%0,

so that χi(z) 6=0, which contradicts any possibility of choosing j as the index for z. The

other inequality holds analogously. Thus, by the triangle inequality, (4.9) and (3),

‖σ(y)−σ(z)‖6 ‖F (y)−F (z)‖+|χi(y)| ‖Ei(y)‖+|χj(z)| ‖Ej(z)‖

6Ld(y, z)+2
d(y, z)

%0
ε.

This establishes the required Lipschitz constant in this case.

By combining the previous results, we obtain the following.

Proposition 4.7. Let F :X!V be Lipschitz. Suppose that, for some 0<θ<1 and

M∈N, and for 16i6M , there exist disjoint compact sets Si⊂X and d-dimensional

Wi6V such that H1(γ∩Si)=0 for each γ∈Γ(X) in the F -direction of E(Wi, θ). Then,

there exists a CV >1 depending only upon V such that the following is true. For any

ε>0 there exist a %>0 and a Lipschitz σ:X!V such that

• The Lipschitz constant of σ is at most

(K̃(V, d)+(1−θ)CV ) LipF+ε;
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• For every x∈X
‖σ(x)−F (x)‖<ε

and σ(x)=F (x) if

d(x,
⋃
i

Si)>ε;

• For each 16i6M and y, z∈Si with d(y, z)<%,

‖σ(y)−σ(z)‖6 ‖P (F (y))−P (F (z))‖+(1−θ)CV LipFd(y, z), (4.10)

where Pi:V!Wi is a projection with norm Kd.

Proof. Note that it suffices to prove the result for sufficiently small ε>0, and so we

fix 0<ε< 1
2 . Since the Si are a finite number of disjoint compact sets, there exists a

0<%0<ε such that the B(Si, %0) are disjoint. We set ε′= 1
2ε%0<ε.

For each 16i6M let σi:B!V and %i>0 be obtained by applying Lemma 4.5 to Si

with the choice of ε′ and let

%=
N

min
i=1

%i> 0.

Furthermore, we apply Lemma 4.6 to combine these functions into a single Lipschitz

function σ:B!V . The conclusion of the proposition follows from the conclusions of

these two lemmas, noting that combining the functions increases the Lipschitz constant

by at most
2ε′

%0
<ε.

Finally, we demonstrate how our constructed perturbation deforms the set S.

Lemma 4.8. Let S⊂X be Borel and F, σ:X!V be Lipschitz. Suppose that, for some

ε, %>0, there exists a d-dimensional W6V such that, for each y, z∈S with d(y, z)<%,

‖σ(y)−σ(z)‖6 ‖P (F (y))−P (F (z))‖+εd(y, z), (4.11)

where P :V!W is a projection with norm Kd. Then, for any real number s>d,

Hs(σ(S))6 εs−dCd,s,V,FHs(S),

where Cd,s,V,F is a constant depending only upon d, s, V and LipF .

Proof. Note that, if Hs(S)=∞, then there is nothing to prove, and so we may

suppose that Hs(S)<∞. For any 0<δ<% we cover S by sets Si of diameter at most δ

such that ∑
i∈N

(diamSi)
s6Hs(S)+δ. (4.12)
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We will use the σ(Si) to create a finer covering of σ(S). To this end, fix i∈N. Then,

P (F (Si))⊂W is a set of diameter

LipP LipF diamSi

contained in a d-dimensional subspace of V . Therefore, it may be covered by

M =CV,dε
−d

sets T1, ..., TM of diameter

εLipP LipF diamSi.

(Indeed, this is true if V were Euclidean, and V is CV -biLipschitz to Euclidean space.)

For each 16j6M , (4.11) gives

diamσ((P �F )−1(Tj)∩Si)6diamTj+εdiam(P �F )−1(Tj)∩Si

6 εLipP LipF diamSi+ε diamSi (4.13)

6 (LipP LipF+1)εδ. (4.14)

Since

σ(Si) =

M⋃
j=1

σ((P �F )−1(Tj)∩Si),

if we set

δ′= δε(LipP LipF+1),

then (4.14) shows that this decomposition may be used to bound Hsδ′ . Using (4.13) and

the fact that M=CV,dε
−d, this gives

Hsδ′(σ(Si))6
M∑
j=1

(εdiamSi(LipP LipF+1))s

6CV,dε
−d(εdiamSi(LipP LipF+1))s

=CV,dε
s−d(LipP LipF+1)s(diamSi)

s.

Thus, by (4.12),

Hsδ′(σ(S))6CV,d
∑
i∈N

εs−d(LipP LipF+1)s(diamSi)
s

6CV,dε
s−d(LipP LipF+1)s(Hs(S)+δ).

Since δ>0, and hence δ′>0, is arbitrary, we obtain

Hs(σ(S))6CV,dε
s−d(LipP LipF+1)sHs(S).

Recall that ‖P‖6Kd, so that the constant has the required form.
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To conclude, we summarise the results of this section. Recall the notion of an Ã set

given in Definition 2.7.

Theorem 4.9. Let V be a finite-dimensional Banach space and F :X!V be Lips-

chitz. For an integer d>0 and a real number s>d, let S∈Ã(F, d) have finite Hs measure.

Then, for any ε>0, there exists a (K̃(V, d) LipF+ε)-Lipschitz σ:X!V such that

(1) ‖σ(x)−F (x)‖<ε for each x∈X and σ(x)=F (x) whenever d(x, S)>ε;

(2) Hs(σ(S))<ε.

Proof. We will prove the Theorem for an arbitrary 0<ε′<1, which we now fix.

Choose 0<θ<1 sufficiently close to 1 and 0<ε< 1
2ε
′ sufficiently small such that

(1−θ)CV LipF+ε< ε′,

where CV is the constant appearing in Proposition 4.7. We will impose further constraints

on the size of ε>0 (depending only upon d, s, V and F ) at the end of the proof. Note

that, if m6d, then the result is immediate. Indeed, because s>d>m, we have

Hs(F (S)) = 0,

and so choosing σ=F suffices. Otherwise, by the definition of an Ã(F, d) set, there exists

a disjoint Borel decomposition S=S1∪...∪SM and d-dimensional subspaces Wi6V such

that each Si satisfies H1(γ∩Si)=0 for each γ∈Γ(X) in the F -direction of E(Wi, θ). We

also fix η>0 to be chosen at the end of the proof (in a way depending only upon d, s, V

and F ). Then, since Hs(S)<∞, there exist compact S′i⊂Si such that

Hs
(
S\
⋃
i

S′i

)
<η.

Note that we also have H1(γ∩S′i)=0 for each γ∈Γ(X) in the F -direction of E(Wi, θ) for

each 16i6M .

We now have all of the requirements to apply Proposition 4.7 to
⋃
i S
′
i and F . This

gives a %>0 and a Lipschitz σ:X!V such that

(1) The Lipschitz constant of σ is at most

(K̃(V, d)+(1−θ)CV ) LipF+ε6 K̃(V, d) LipF+ε′;

(2) For every x∈X,

‖σ(x)−F (x)‖<ε and σ(x) =F (x)

if d
(
x,
⋃
i S
′
i

)
>ε, and hence if d(x, S)>ε;
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(3) For each 16i6M , and y, z∈Si with d(y, z)<%,

‖σ(y)−σ(z)‖6 ‖P (F (y))−P (F (z))‖+(1−θ)CV LipFd(y, z)

6 ‖P (F (y))−P (F (z))‖+εd(y, z),

where Pi:V!Wi is a projection with norm Kd.

Points (1) and (2) now allow us to deduce all of the required properties of the

theorem, except for bounding the measure of the image, which we deduce from (3) and

Lemma 4.8. Indeed, (3) is precisely the hypotheses required to apply Lemma 4.8 to each

S′i, and so we deduce that

Hs(σ(S′i))6 εs−dCd,s,V,FHs(S′i)

for each 16i6M . Therefore,

Hs(σ(S))6Hs
(
σ

(
S\

M⋃
i=1

S′i

))
+

M∑
i=1

Hs(σ(S′i))

6 (Lipσ)sHs
(
S\

M⋃
i=1

S′i

)
+εs−dCd,s,V,F

M∑
i=1

Hs(S′i)

6 η(Lipσ)s+εs−dCd,s,V,FHs(S).

As s>d, we may choose ε and η sufficiently small so that this quantity is less than ε′.

5. Typical Lipschitz functions

In this section we will consider typical Lipschitz functions defined on a metric space,

equipped with the topology of uniform convergence. Precisely, we will consider the

following spaces.

Definition 5.1. For a metric space Y , let Lip(X,Y ) be the vector space of all bounded

Lipschitz functions f :X!Y equipped with the supremum norm. Note that, even if

Y is complete, Lip(X,Y ) is not. However, for L>0, the closed subspace Lip(X,Y, L)

consisting of all L-Lipschitz f∈Lip(X,Y ) is a complete metric space whenever Y is

complete. For example, this is true whenever Y is a finite-dimensional Banach space.

Note that the space Lip1(X,m) discussed in the introduction is Lip(X, `m2 , 1).

A subset R of a metric space Y is residual if it contains a countable intersection of

open dense sets. Recall that the Baire category theorem states that a residual subset

of a complete metric space is dense. Also, by definition, residual sets are closed under
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taking countable intersections and supersets. Thus, residual sets form a suitable notion

of “generic points” in a complete metric space. When dealing with a set of continuous

functions with the supremum norm, it is common to say that a certain property is typical

if the set of functions with the property is a residual set.

If a finite-dimensional Banach space V and an integer d are chosen so that

K̃(V, d) = 1,

then the results from the previous section perturb any element of Lip(X,V, L) into a

function that is almost in Lip(X,V, L), the only problem being the arbitrarily small

increase in the Lipschitz constant. This can easily be corrected with the following simple

scaling argument.

Lemma 5.2. Let V be a normed vector space and L>0. For any ε>0 and f∈
Lip(X,V, L), there exist a δ>0 and a g∈Lip(X,V, L−δ) such that ‖f−g‖<ε.

Proof. For any ε>0 and f∈Lip(X,V, L), let δ=ε/2L‖f‖ and set g=(L−δ)f/L (if

‖f‖=0 then the result is immediate). Then, g∈Lip(X,V, L−δ) and, for any x∈X,

‖f(x)−g(x)‖=

(
1−L−δ

L

)
‖f(x)‖=

δ

L
‖f(x)‖<ε,

as required.

The results of the previous section establish the density of certain subsets of

Lip(X,V, L).

We now show that these set are open, so that we may form residual sets.

Lemma 5.3. Let X and Y be metric spaces, L>0 and ε, s>0. Suppose that S⊂X
is compact. The set of all f∈Lip(X,Y, L) for which f(S) may be covered by open balls

f(S)⊂
⋃
i∈N

B(ci, ri),

with
∑
i r
s
i<ε, is open.

Proof. Let f∈Lip(X,Y, L) such that

f(S)⊂
⋃
i∈N

B(ci, ri),

for open balls B(ci, ri), with
∑
i r
s
i<ε. Since S, and hence f(S), is compact, there

exists a %>0 such that the %-neighbourhood of f(S) is also contained in
⋃
iB(ci, ri). In

particular, if g∈B(f, %),

g(S)⊂
⋃
i∈N

B(ci, ri).

Thus, the set of all such f is open, as required.
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By a suitable countable decomposition into sets of the form in the previous lemma,

we obtain the following.

Theorem 5.4. For s>0 let S⊂X be Hs-measurable with σ-finite Hs measure,

and let d∈N with d<s and L>0. Also, let V be a finite-dimensional Banach space

with K̃(V, d)=1. Suppose that, for any Lipschitz f :X!V , there exists an N⊂S, with

Hs(N)=0, such that S\N∈Ã(f, d). Then, the set

{f ∈Lip(X,V, L) :Hs(f(S)) = 0}

is residual in Lip(X,V, L).

Proof. Note that, if L=0, then there is nothing to prove, and so we may suppose

that L>0. We first prove the result under the additional assumption that S is compact

and has finite Hs measure. Under this assumption, for any ε>0, Lemma 5.3 shows that

the set Rε(S) of all f∈Lip(X,V, L) for which f(S) may be covered by open balls

f(S)⊂
⋃
i∈N

B(ci, ri),

with
∑
i r
s
i<ε, is open.

To see that Rε is dense, let f∈Lip(X,V, L), and let S′ be the full measure subset

of S that belongs to Ã(f, d). Since K̃(V, d)=1, for any ε>0, by combining Theorem 4.9

and Lemma 5.2, there exists a σ∈Lip(X,V, L) with ‖f−σ‖<ε andHs(σ(S′))<ε. Indeed,

given r>0, we apply Lemma 5.2 to get a δ>0 and a g∈Lip(X,V, L−δ) with

‖f−g‖< 1
2r.

We then apply Theorem 4.9 to g with the choice ε=min
{
ε, 1

2r, δ
}

to get a σ∈Lip(X,V, L)

with ‖σ−g‖< 1
2r and Hs(σ(S′))<ε. Since σ is Lipschitz, Hs(σ(S\S′))=0, so that

Hs(σ(S))<ε,

and hence σ∈Rε. In particular, σ∈Rε and ‖σ−f‖<r. As r>0 is arbitrary, Rε is dense.

By combining these two facts, each Rε is residual, and hence so is

R(S) :=
⋂
i∈N

R1/n(S).

If f∈R1/n(S), then

Hs1/n1/s(f(S))6
1

n
,
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and so Hs(f(S))=0 for any f∈R(S). This proves the theorem for this special case.

Now suppose that S is simply Hs-measurable, with σ-finite Hs measure. Then, by

the inner regularity of measure, there is a decomposition

S=N∪
⋃
i∈N

Si,

where Hs(N)=0 and each Si is compact, with Hs(Si)<∞. Since each Si is a subset of

S, the hypothesis on S is also true for each Si. Thus, by the previous part of the proof,

we know that each R(Si) is residual, and hence so is

R∗ :=
⋂
i∈N

R(Si).

If f∈R∗, then Hs(f(Si))=0 for each i∈N, and so

Hs
(
f

(⋃
i

Si

))
= 0

too. Moreover, since Hs(N)=0, we have

Hs(f(N)) = 0

for any f∈Lip(X,V, L). Therefore, Hs(f(S))=0 for any f∈R∗.

6. Typical Lipschitz images of purely unrectifiable sets

We begin with the first theorem stated in the introduction. Recall the definition of

Lip(X,V, L)

from Definition 5.1.

Theorem 6.1. For n∈N, suppose that S⊂X is purely n-unrectifiable and has a

countable measurable decomposition S=
⋃
i Si, where each Si satisfies (∗) and

Hn(Si)<∞.

Then, for any L>0 and any m∈N, the set

{f ∈Lip(X, `m2 , L) :Hn(f(X)) = 0}

is residual in Lip(X, `m2 , L).
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Proof. By applying Theorem 2.21 (3) with s=n, we see that, for any Lipschitz

f :X!Rm, there exists an N⊂S with Hn(N)=0 such that S\N∈Ã(f, n−1). By Ob-

servation 4.2, we know that K̃(`m2 , n)=1. Thus all of the hypotheses of Theorem 5.4 are

satisfied and its conclusion agrees with the conclusion of the theorem.

When the purely unrectifiable set is a subset of some Euclidean space, we may use

Theorem 2.21 (2), and so do not need to assume (∗). In fact, because the hypothesis

and conclusion of Theorem 2.21 (2) are invariant under re-norming, this holds in any

finite-dimensional Banach space.

Theorem 6.2. Let V be a finite-dimensional Banach space and, for n∈N, let S⊂V
be purely n-unrectifiable and have σ-finite Hn measure. Then, for any L>0 and m∈N,

the set

{f ∈Lip(V, `m2 , L) :Hn(f(S)) = 0}

is residual in Lip(V, `m2 , L).

By using the s /∈N case in Theorem 2.21, we prove the result for fractional dimension

sets.

Theorem 6.3. For s /∈N, let S⊂X be Hs-measurable with σ-finite Hs measure.

Then, for any L>0 and any m∈N, the set

{f ∈Lip(X, `m2 , L) :Hs(f(X)) = 0}

is residual in Lip(X, `m2 , L).

If the set is purely 1-unrectifiable, then we prove our results without assuming (∗)
and also for many more targets.

Theorem 6.4. For s>0 let S⊂X have σ-finite Hs measure. Suppose that either

s∈N and S is purely 1-unrectifiable or 0<s<1. Then, for any 16p6∞, m∈N and any

L>0, the set

{f ∈Lip(X, `mp , L) :Hs(f(S)) = 0}

is residual in Lip(X, `mp , L).

Proof. By Theorem 2.21, for any Lipschitz f :X!Rm, there exists an N⊂S with

Hs(N)=0 such that S\N∈Ã(f, 0). Recall from Observation 4.3 that K̃(`mp , 0)=1 for

any 16p6∞ and any m∈N. Thus, all of the hypotheses of Theorem 5.4 are satisfied,

and its conclusion agrees with the conclusion of the theorem.

We now turn out attention to perturbing distances in a compact metric space using

functions with controlled Lipschitz constant.
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Theorem 6.5. For s>0, let X be a compact metric space with Hs(X)<∞. Suppose

that either s∈N, X is purely s-unrectifiable and satisfies (∗), or s /∈N. Then, for any

ε>0, there exists an m∈N and a (2
√
s+1)-Lipschitz function σ:X!`m∞ such that

• for each x, y∈X, ∣∣d(x, y)−‖σ(x)−σ(y)‖∞
∣∣<ε;

• Hs(σ(X))<ε.

Proof. Fix ε>0. Since X is compact, we apply Lemma 4.4 to obtain an m∈N and

a 1-Lipschitz function F :X!`m∞ such that

∣∣d(x, y)−‖F (x)−F (y)‖
∣∣<ε (6.1)

for each x, y∈X. By Theorem 2.21, there exists N⊂S with Hs(N)=0 such that

S\N ∈ Ã(F, d),

where d is the greatest integer strictly less than s. Applying Theorem 4.9 to F gives a

σ:X!`m∞ such that

|F (z)−σ(z)|<ε (6.2)

for each z∈X and Hs(σ(S))<ε. Note that, by Observation 4.3, σ is (2
√
d+1)-Lipschitz.

Using (6.1), (6.2) and the triangle inequality gives∣∣d(x, y)−‖σ(x)−σ(y)‖
∣∣6 ∣∣d(x, y)−‖F (x)−F (y)‖

∣∣
+
∣∣‖F (x)−F (y)‖−‖σ(x)−σ(y)‖

∣∣
6 ε+‖F (x)−F (y)−(σ(x)−σ(y))‖

6 3ε

for each x, y∈X. Since ε>0 is arbitrary, this completes the proof.

Remark 6.6. Note that, if X is a subset of some Euclidean space, then a stronger

conclusion is obtained from Theorem 6.2. Similarly, if X is purely 1-unrectifiable or

0<s<1, then a stronger conclusion is obtained from Theorem 6.4. One simply needs to

choose a Lipschitz function arbitrarily close to the identity in the first case, or a Lipschitz

function arbitrarily close to the function obtained from Lemma 4.4 for the latter two. In

all cases, this perturbation can be chosen to be 1-Lipschitz.

Remark 6.7. If the reader accepts the first statement in Remark 2.23, then the lower

density assumption (∗) is not necessary in any of the previous theorems.
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6.1. Perturbing sets in unconditional Banach spaces

The concepts discussed in §4.1 may be generalised to infinite-dimensional Banach spaces,

as can be found in any introductory book on the geometry of Banach spaces; for example

[5]. A Schauder basis of a Banach space X is a sequence bj∈X such that any x∈X has

a unique representation x=
∑
j λjbj . A well-known application of the Banach–Steinhaus

theorem is that the basis projections

Pn:
∑
j∈N

λjbj 7−!
n∑
j=1

λjbj

are uniformly bounded ([5, Proposition 1.1.4]). This leads to the bounded approximation

property for Banach spaces with a Schauder basis: for any compact S⊂X and any ε>0

there exists an m∈N such that

‖Pm(x)−x‖<ε

for each x∈S. Therefore, any compact subset of X may be ε-perturbed into a finite-

dimensional subspace Vn :=span{b1, ... bn}, using a Lipschitz (in fact linear) function

whose Lipschitz constant is independent of ε.

We will apply Theorem 4.9 to the Pm. For this to be useful, we must consider the

values of K̃(Vm, d). A Schauder basis is unconditional if for every x∈X the sum∑
j

b∗j (x)bj

converges unconditionally (i.e. independently of the order of summation). It follows ([5,

Proposition 3.1.3]) that there exists a constant Ku such that, for any bounded sequence

l=(li) and x∈X, ∥∥∥∥∑
i∈N

lib
∗
i (x)bi

∥∥∥∥6Ku‖l‖∞‖x‖.

Therefore, for any m∈N, Vm satisfies (4.1) for this value of Ku. Consequently, K̃(Vm, d)

is uniformly bounded in m for each d>0. We denote this bound by K̃(X, d).

Therefore, we can prove the following.

Theorem 6.8. Let X be a Banach space with an unconditional basis and, for

s>0, let S⊂X be compact with Hs(S)<∞. Suppose that either s∈N, S is purely s-

unrectifiable and satisfies (∗), or s /∈N. Then, for any ε>0, there exists a Lipschitz

function σ:X!X such that

• ‖σ(x)−x‖<ε for each x∈S and

• Hs(σ(S))<ε.

The Lipschitz constant of σ depends only upon X and s.
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Proof. Let M>0 be a uniform bound for the basis projections Pm and, for ε>0, let

m∈N be such that

‖Pm(x)−x‖<ε

for each x∈S. By applying Theorem 2.21, there exists N⊂S, with Hs(N)=0, such that

S\N ∈ Ã(Pm, d),

where d is the greatest integer strictly less than s. By Theorem 4.9, there exists a

K̃(X, d)M -Lipschitz σ:X!Vm such that Hs(σ(X))<ε and

‖σ(x)−Pm(x)‖<ε

for each x∈S. Thus, the triangle inequality concludes the proof.

In certain situations this can be improved.

Theorem 6.9. Let X=`p for some 16p<∞, or X=c0, and for s>0 let S⊂X be

Hs measurable with σ-finite Hs measure. Suppose that either

• S is purely 1-unrectifiable;

• X=`2 and s /∈N;

• X=`2, S is purely s-unrectifiable and has a countable measurable decomposition

S=
⋃
i

Si,

where each Si satisfies (∗) and Hs(Si)<∞.

Then, for any ε>0, there exists a 1-Lipschitz σ:X!X such that

• ‖σ(x)−x‖<ε for each x∈S and

• Hs(σ(S))=0.

Proof. In this case, Vm=`mp or Vm=`m∞ for each m∈N, and Pm is the projection to

the first m standard basis vectors, so that LipPm=1. If X=`2, we use Theorem 6.1 or

Theorem 6.3 to find a σ∈Lip(X,Vm, 1) arbitrarily close to Pm with

Hs(σ(X)) = 0.

If S is purely 1-unrectifiable, then we use Theorem 6.4 instead.

7. Typical Lipschitz images of rectifiable sets

We now show that a typical image of an n-rectifiable metric space (of positive measure)

has positive Hn measure:
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Theorem 7.1. Let S⊂X be n-rectifiable with Hn(S)>0. For any finite-dimensional

Banach space V with dimV >n and L>0, the set

{f ∈Lip(X,V, L) :Hn(f(S))> 0}

is open and dense.

The most fundamental results regarding rectifiable metric spaces are due to Kirch-

heim. Specifically, we will make use of [26, Lemma 4], which we paraphrase as follows.

Lemma 7.2. Let E⊂Rn be a Borel set and h:E!X be a Lipschitz function. Then,

there exists a countable number of Borel sets Ei⊂E such that

• Hn
(
h(E)\

⋃
i h(Ei)

)
=0;

• h is biLipschitz on each Ei.

In particular, for any n-rectifiable S⊂X, there exists a countable number of biLip-

schitz yhi:Ai!S with

Hn
(
S\
⋃
i

hi(Ai)

)
= 0.

7.1. The set is open

Our preliminary results will concern arbitrary metric space targets. This will allow us

to also prove the converse to Theorem 6.5.

By the result of Kirchheim above and the Vitali covering theorem, any n-rectifiable

metric space is, up to a set of measure zero, given by a countable disjoint union of

biLipschitz images of subsets of balls in Rn. Each of these subsets may be chosen to have

arbitrarily large Lebesgue density in each of their respective ball. In this subsection, we

will prove results about perturbations of such high-density subsets of balls, and use them

to deduce that the set of Theorem 7.1 is open.

We begin with a topological observation. For this subsection we fix n∈N and let B
be the unit ball of Rn.

Lemma 7.3. Let f :B!B continuous. For some 0<ε< 1
2 , suppose that

‖f(x)−x‖<ε

for each x∈∂B. Then, f(B)⊃B(0, 1−ε).

Proof. There are many ways to prove this lemma. We give a proof that does not

rely on the constructions of algebraic topology, only Brouwer’s fixed point theorem.
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First, let P :B!B be defined by

P (λv) =


v, if λ∈ [1−ε, 1],

λ

1−ε
v, if λ∈ [0, 1−ε],

whenever v∈∂B and λ∈[0, 1]. Then, P �f :B!B is continuous and maps ∂B to ∂B.

Moreover,

‖P (f(x))−x‖6 ‖P (f(x))−f(x)‖+‖f(x)−x‖6 2ε

for each x∈∂B.

Suppose that x∈B(0, 1−ε)\f(B). Since P is bijective on B(0, 1−ε),

P (x)∈B(0, 1)\P (f(B)).

Let %:B!∂B be the radial projection from P (x). Then, F=%�P �f :B!∂B is continuous

with ‖F (x)−x‖<2ε<1 for each x∈∂B. In particular, −F (x) 6=x for each x∈B. Thus, −F
is a continuous function from B to itself without a fixed point, contradicting Brouwer’s

fixed point theorem.

We obtain the following consequence for metric space targets.

Lemma 7.4. For any L,K>0, there exists an ε>0 such that the following is true.

For any metric space (Y, %) and any continuous f :B!Y with

‖x−y‖
K

−ε6 %(f(x), f(y))6L‖x−y‖ (7.1)

for each x, y∈∂B, one has

Hd(f(B))>

√
n

2K
.

Proof. We simply construct a Lipschitz function Pε that maps f(B) back to Rm in

such a way that the hypotheses of the previous lemma are satisfied. By controlling the

Lipschitz constant of Pε, this gives a lower bound to the measure of f(B).

To this end, for ε>0 to be determined later, let N be a maximal ε-net in ∂B and

let f satisfy (7.1) with the choice ε=ε2/K. Then, for any s, t∈N ,

%(f(s), f(t))>
‖s−t‖
K
− ε

2

K
>
‖s−t‖(1−ε)

K
,

and so

f−1|f(N)
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is K/(1−ε)-Lipschitz. Therefore, it may be extended to a K
√
n/(1−ε)-Lipschitz function

P ′: f(B)−!Rn.

Observe that Pε :=P ′�f fixes N and is KL
√
n/(1−ε)-Lipschitz on ∂B, so that

|Pε(x)−x|<ε
(

1+
KL
√
n

1−ε

)
=: ε∗

for every x∈∂B.

By Lemma 7.3,

Pε(B)⊃B(0, 1−ε∗)

whenever ε is sufficiently small such that 0<ε∗< 1
2 . Therefore,

Hn(Pε(B))> (1−2ε∗)n.

However, Pε(B)=P ′(f(B)) and so, since P ′ is K
√
n/(1−ε)-Lipschitz,

Hn(f(B))>
(1−2ε∗)n(1−ε)

K
√
n

>
1

2K
√
n
,

provided we reduce ε>0 further if necessary.

By a suitable Lipschitz extension, we may remove the topological assumptions on

the domain.

Lemma 7.5. For any L,K>0, there exists ε>0 such that the following is true. For

any metric space (Y, %), any Borel E⊂B with

Ln(E)> (1−ε)Ln(B)

and any L-Lipschitz function f :E!Y with

%(f(x), f(y))>
‖x−y‖
K

−ε

for each x, y∈E, one has

Hn(f(E))>
1

4K
√
n
.

Proof. The lemma follows by simply extending any function defined on a E⊂B to

the whole of B and observing that, if E has sufficiently large measure, the hypotheses of

the previous lemma apply.

To this end, suppose that δ, ε>0 and E⊂B satisfies

Ln(E)> (1−δ)Ln(B),
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(Y, %) is a metric space and f :E!Y is L-Lipschitz with

%(f(x), f(y))>
‖x−y‖
K

−ε

for each x, y∈E.

Since f(E)⊂Y is separable, we may isometrically embed f(E) into `∞ and extend

it, component by component, to an L-Lipschitz function

f :B−!Y ′ := f(B)⊂ `∞.

If 0<δ<
(

1
2ε
)n

, then we have B(E, ε)⊃B and so, given x, y∈B, there exists x′, y′∈E with

‖x−x′‖, ‖y−y′‖<ε.

In particular,

‖f(x)−f(y)‖∞> ‖f(x′)−f(y′)‖∞−‖f(x)−f(x′)‖∞−‖f(y)−f(y′)‖∞

>
‖x′−y′‖

K
−2Lε

>
‖x−y‖
K

−2

(
L+

1

K

)
ε.

Now, suppose that ε1>0 is given by the previous lemma and ε>0 is sufficiently small

such that

2

(
L+

1

K

)
ε6 ε1.

Then, we may apply the previous lemma to f to see that

Hn(f(B))>
1

2K
√
n
.

However, since f is L-Lipschitz,

Hd(f(B\E))6LnHn(B\E)6Lnδ.

In particular, provided δ61/4KLn
√
n, we have

Hn(f(E))>
1

4K
√
n
,

as required. Thus, choosing

ε= min

{
1

4KLn
√
n
,

ε1

2(L+1/K)

}
is sufficient.
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Finally, by scaling, we may apply the previous result to a ball of any radius.

Lemma 7.6. For any L,K>0, there exists ε>0 such that the following is true. For

any metric space (Y, %), any x∈Rn, r>0, E⊂B(x, r) with

Ln(E)> (1−ε)Ln(B(x, r))

and any L-Lipschitz function f :E!Y with

%(f(x), f(y))>
‖x−y‖
K

−εr

for each x, y∈E, one has

Hn(f(E))>
rn

4K
√
n
.

Proof. This simply follows from the previous lemma by a scaling argument. Consider

the scaled metric space Yr :=(Y, %/r) and the function

G:B(0, 1)−!Yr,

y 7−! f
(y−x

r

)
,

Then, because of the choice of metric in Yr, G is L-Lipschitz and

%(G(x), G(y))

r
=
%(f(x), f(y))

r
>
‖x−y‖
rK

−ε.

Moreover, the scaled copy (E−x)/r of E inside B(0, 1) satisfies

Ln
(
E−x
r

)
> (1−ε)Ln(B(0, 1)).

Therefore, we may apply the previous lemma to conclude that

Hn
(
G

(
E−x
r

))
>

1

4K
√
n

with respect to the metric %/r. That is,

Hn(f(E))>
rn

4K
√
n
.

We are now in the position to prove the converse direction to Theorem 1.2. Following

this, we will use it to prove that the set from Theorem 7.1 is open.
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Theorem 7.7. Let S⊂X be n-rectifiable with Hn(S)>0. Then,

inf
L>1

lim
ε!0

infHn(σε(S))> 0,

where the second infimum is taken over all metric spaces (Y, %) and all L-Lipschitz

σε:X −!Y

with

|d(x, y)−%(σε(x), σε(y))|<ε

for each x, y∈S.

Proof. By applying Lemma 7.2, there exists a Borel E⊂Rn of positive measure and

K-biLipschitz h:E!S, for some K>1. Observe that, if ε>0, (Y, %) is a metric space

and σ:X!Y is L-Lipschitz with

|d(x, y)−%(σ(x), σ(y))|<ε

for each x, y∈S, then

‖x−y‖
K

−ε6 %(σ(h(x)), σ(h(y)))6KL‖x−y‖ (7.2)

for each x, y∈E.

Fix L>1 and let ε2>0 be given by the previous lemma for the choice of KL in place

of L. By applying the Vitali covering theorem, there exists a finite collection of disjoint

closed balls Bi⊂Rn such that

Ln
(
E\

M⋃
i=1

Bi

)
<
Ln(E)

2
(7.3)

and

Ln(E∩Bi)>max
{

1−ε2,
1
2

}
Ln(Bi) (7.4)

for each i∈N. Since the Bi are a finite number of disjoint closed balls, there exists an

ε0>0 such that B(Bi, ε0)∩B(Bj , ε0)=∅ whenever i 6=j. For each 16i6M let ri be the

radius of the Bi and r=min ri. We now fix

0<ε<min
{
rε2,

ε0

K

}
,

a metric space (Y, %) and a L-Lipschitz σ:X!Y with

|d(x, y)−%(σ(x), σ(y))|<ε
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for each x, y∈X.

Note that, since the Bi are separated by a distance at least ε0>Kε, equation (7.2)

shows that the σ(h(Bi)) are disjoint. Therefore, by applying Lemma 7.6 to each Bi for

16i6M , we see that

Hn
(
σ

(
h

(
E∩

M⋃
i=1

Bi

)))
>

M∑
i=1

rni
4K
√
n

=
Ln
(⋃

iBi
)

Ln(B)4K
√
n
>

Ln(E)

Ln(B)16K
√
n
.

Note that the final inequality uses equations (7.3) and (7.4). Since

σ(X)⊃σ(h(E)),

and the right-hand side of this expression involves quantities depending only on E, this

completes the proof.

As a consequence, we now prove that the set in Theorem 7.1 is open. In fact, we

prove the following stronger result.

Proposition 7.8. Let S⊂X be n-rectifiable. For any L>0, any metric space Y and

any L-Lipschitz f :X!Y with Hn(f(S))>0, there exists an ε>0 such that Hn(g(S))>0

for any L-Lipschitz g:S!Y with %(f(x), g(x))<ε for each x∈S.

Proof. Fix a metric space (Y, %) and Lipschitz f :X!Y . Note that, if f were injec-

tive, then any perturbation of f would also induce a perturbation of f(S), so that the

previous theorem can be applied. If f were biLipschitz, then any Lipschitz perturbation

of f would introduce a Lipschitz perturbation of f(S). We will prove the proposition by

reducing to this case.

By Lemma 7.2, there exists a countable number of biLipschitz hi:Ai⊂Rn!S with

Hn
(
S\
⋃
i

hi(Ai)

)
= 0.

Since Hn(f(S))>0, there exists some Ai with

Hn(f(hi(Ai)))> 0.

Moreover, by applying Lemma 7.2 to f �hi, there exists some A⊂Ai of positive measure

on which f �hi is biLipschitz. In particular, f is M -biLipschitz on hi(A) for some M>1.

Let Y ′=f(hi(A)).

Now fix L>0. By Theorem 7.7, there exists an ε>0 such that Hn(σ(Y ′))>0 for

each LM -Lipschitz σ:Y ′!Y with

|%(x, y)−%(σ(x), σ(y))|<ε
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for each x, y∈Y ′. Notice that, if g:S!Y is L-Lipschitz with

%(f(x), g(x))< 1
2ε for each x∈S, (7.5)

then σ :=g�f−1:Y ′!Y is LM -Lipschitz and

|%(w, z)−%(σ(w), σ(z))|= |%(f(f−1(w)), f(f−1(z)))−%(g(f−1(w)), g(f−1(z)))|

6 |%(f(f−1(w)), f(f−1(z)))−%(f(f−1(z)), g(f−1(w)))|

+|%(f(f−1(z)), g(f−1(w)))−%(g(f−1(w)), g(f−1(z)))|

6 %(f(f−1(w)), g(f−1(w)))+%(f(f−1(z)), g(f−1(z)))

6 1
2ε+ 1

2ε

= ε,

using the reverse triangle inequality for the penultimate inequality and (7.5) for the final

inequality. Therefore, we may apply the conclusion of the previous theorem to σ to see

that Hn(σ(Y ′))>0. Since

σ(Y ′) = g(f−1(Y ′)) = g(hi(A))⊂ g(S),

we have Hn(g(S))>0, as required.

7.2. The set is dense

We now prove that the set in Theorem 7.1 is dense. The main step is to prove that we can

perturb any Lipschitz function between two Euclidean spaces to have positive measure

image. Recall that the set of invertible linear functions is a dense open subset of all

linear functions Rn!Rn. Moreover, T 7!‖T−1‖ is continuous on this set. The main step

follows naturally by modifying a Lipschitz function around a point of differentiability, in

such a way that the derivative of the modified function is invertible. This leads to the

required result.

Lemma 7.9. Let A⊂Rn be a Borel set with positive measure, m>n and f :A!Rm

be Lipschitz. For any ε>0, there exists a Lipschitz T ∗:Rn!Rm, with

LipT ∗<ε and ‖T ∗‖∞<ε,

such that

f∗ := f+T ∗

satisfies

Hn(f∗(A))> 0.
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Proof. Since f is Lipschitz, its derivative Df(x) exists for almost every x∈A. More-

over, standard measure theoretic techniques show that Df is a Borel function defined

on a full measure Borel subset of A. Thus, there exists a A′⊂A of positive measure on

which Df is continuous. Further, standard techniques also show that, for any ε>0, the

function Rε(x) defined to be the greatest R such that

‖f(y)−f(x)−Df(x)(y−x)‖<ε‖y−x‖ for all y ∈B(x,R) (7.6)

is also Borel. Thus, there exists A′′⊂A′ of positive measure and, for every ε>0, Rε>0

such that Rε<R(x) for each x∈A′′. We let x0 be a density point of A′′.

Since m>n, there exists an n-dimensional subspace W6Rm that contains the image

of Df(x0). Given ε>0, there exists an invertible linear S:Rn!W with

‖Df(x0)−S‖<ε.

Moreover, there exists a δ>0 and M∈N such that ‖L−1‖6M for each L∈B(S, δ). We

let T=S−Df(x0) and f̃=f+T . Note that LipT<ε.

Since Df is continuous on A′′, there exists R∗>0 such that

‖Df(x)−Df(x0)‖<δ

whenever ‖x−x0‖<R∗. In particular, this implies that

‖S−(T+Df(x))‖= ‖Df(x)−Df(x0)‖<δ,

so that T+Df(x) is invertible with ‖(T+Df(x))−1‖6M . That is,

‖y−x‖6M‖(Df(x)+T )(y−x)‖ for all y ∈Rn and x∈A′′∩B(x0, R∗). (7.7)

Moreover, if x∈A′′ and ‖y−x‖<R1/2M , then, by (7.6),

‖f̃(y)−f̃(x)−(Df(x)+T )(y−x)‖= ‖f(y)−f(x)−Df(x)(y−x)‖6 ‖y−x‖
2M

.

Thus, by the reverse triangle inequality and (7.7),

‖f̃(y)−f̃(x)‖> ‖y−x‖
2M

whenever y∈Rn and x∈A′′∩B(x0, R) for R=min{R∗, R1/2m}. That is, f̃ is biLipschitz

on A′′∩B(x0, R). Since x0 is a density point of A′′, A′′∩B(x0, r) has positive measure

for each 0<r<R, and hence so does f̃(A′′∩B(x0, r)).
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Finally, we define

T ∗(x) =


T (x−x0), if ‖x−x0‖6 1,

T (x−x0)

‖x−x0‖
, otherwise.

Then LipT ∗6LipT<ε, ‖T ∗(x)‖<ε for all x∈Rn and T ∗=T on B(x0, 1). Thus, if we set

f∗=f+T ∗, we have

Hn(f∗(A))> 0,

as required.

To apply this in the metric case, we apply the results of Kirchheim.

Proposition 7.10. Let S⊂X be n-rectifiable with Hn(S)>0. Suppose that V is a

finite-dimensional Banach space with dimV >n and L>0. Then, for any f∈Lip(X,V, L)

and any ε>0, there exists a g∈Lip(X,V, L) with ‖f−g‖<ε such that Hn(g(S))>0.

Proof. First note that it suffices to prove the result for V =Rm for some m>n, since

the result is invariant under biLipschitz mappings of V . This allows us to apply the

previous lemma.

By Lemma 5.2, there exists a δ>0 and an f̃∈Lip(X,Rm, L−δ) with ‖f−f̃‖< 1
2ε.

By Lemma 7.2, there exists a biLipschitz h:A⊂Rn!S with Ln(A)>0. We extend h−1

to a Lipschitz function h−1:X!Rn. Finally, by applying Lemma 7.9 to f̃ �h−1:A!Rm,

we see that there is a Lipschitz T ∗:Rn!V with LipT ∗<δ/Liph−1 and ‖T ∗‖∞< 1
2ε such

that f∗ :=f̃+T ∗ has

Hn(f∗(A))> 0.

We claim that g :=f∗�h−1 is the required function. Certainly g(S)⊃f∗(A), so that

Hn(g(S))>0. Also note that, for any x∈X,

‖g(x)−f(x)‖6 ‖g(x)−f̃(x)‖+‖f̃(x)−f(x)‖< ‖T ∗(x)‖+ 1
2ε6 ε.

Therefore, ‖g−f‖<ε. Finally,

Lip f∗6Lip f+LipT ∗6L−δ+δ,

so that g∈Lip(X,Rm, L), as required.

The previous proposition completes the proof of Theorem 7.1.

We may also deduce the following topological consequence of our perturbation re-

sults. Note that, in Euclidean space, this can be deduced using the Besicovitch–Federer

projection theorem in place of our perturbation theorem. Recall that B is the unit ball

of Rn.
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Theorem 7.11. Let f :B!X be continuous and biLipschitz on ∂B. Suppose that

there exists a countable Borel decomposition

f(B) =
⋃
i

Xi

such that each Xi satisfies (∗) and Hn(Xi)<∞. Then, f(B) contains an n-rectifiable

subset of positive Hn measure. That is, f(B) is not purely n-unrectifiable.

If n=1, then this is true for any f(B) with σ-finite H1 measure.

Proof. Consider

g := f−1|f(∂B): ∂B−! ∂B.

This is a Lipschitz function, and so may be extended to a Lipschitz function g: f(B)!Rn.

Since f(B) is compact, g is bounded, and so g∈Lip(f(B),Rn, L) for some L>0.

Suppose that f(B) is purely n-unrectifiable. As each Xi satisfies (∗) and

Hn(Xi)<∞,

we may apply Theorem 6.1 to get h∈Lip(f(B),Rn, L) with ‖g−h‖< 1
4 and

Ln(h(f(B))) = 0.

In particular, h(f(B)) 6⊃B
(
0, 1

10

)
. However, for any x∈∂B,

‖h(f(x))−x‖6 ‖h(f(x))−g(f(x))‖+‖g(f(x))−x‖6 ‖h−g‖+‖f−1(f(x))−x‖< 1
4 .

Thus, we obtain a contradiction with Lemma 7.3.

If n=1, then we may apply Theorem 6.4 instead of Theorem 6.1 to deduce the same

conclusion without assuming that each Xi satisfies (∗).

Remark 7.12. As previously, by using the contents of Remark 6.7, we may remove

the lower density assumption (∗) from the hypotheses of the previous theorem.
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