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1. Introduction

The main goal of this article is to present a technique of constructing finitely generated

groups such that given (infinite) graphs embed isometrically into their Cayley graphs.

This allows one to obtain groups with some features resembling the ones of those graphs.

In particular, we construct groups without Guoliang Yu’s property A that are coarsely

embeddable into a Hilbert space (see §1.2 below in this introduction), and we construct

groups, into whose Cayley graphs some expanders embed isometrically (see §1.3). The

latter groups are therefore not coarsely embeddable into Hilbert spaces, and various

versions of the Baum–Connes conjecture fail for them. The general tool we use is the

graphical small cancellation theory, and the main technical point is then finding appro-

priate small cancellation labellings of the graphs in question (see the next §1.1).

1.1. Small cancellation labellings of some graphs

A labelling of a graph may be seen as an assignment of labels to directed edges; see details

in §2. A labelling satisfies some small cancellation condition when no labelling of a long

path (long with respect to the girth) appears in two different places; see §2.3. For our

purposes, we are interested in a finite set of labels, and in graphs being infinite disjoint

unions of finite graphs with degree bounded uniformly. Examples are sequences of finite

D-regular graphs, for a fixed degree D>2. For such graphs the only ‘small cancellation’

labelling provided till now was the famous Gromov labelling of some expanders [Gro] (cf.

some explanations of this construction in [AD], [Cou]). Gromov’s labelling is in a sense
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generic, and as such cannot satisfy the small cancellation condition we work with (see

the discussion in §2.4). Therefore Gromov’s labelling defines a weak embedding in the

sense of [Os2, Definition 7.2], but not a coarse embedding of the graphs (relators) into

the corresponding group (see §2.4 for details). (Recall that a map f : (X, dX)!(Y, dY )

between metric spaces is a coarse embedding when dY (f(xn), f(yn))!∞ if and only if

dX(xn, yn)!∞ for all sequences (xn)n∈N and (yn)n∈N.) We study sequences (Θn)n∈N of

finite graphs of uniformly bounded degree, with growing girth, and diameters bounded

in terms of girth (see §2 for details). For them, we construct labellings satisfying much

more restrictive conditions than the Gromov labellings do.

Theorem 1. (See Theorem 2.7 in the text.) For every λ>0 there exists a C ′(λ)-

small cancellation labelling of (Θn)n∈N over a finite set of labels.

It is well known (see e.g. [Gro], [Ol]) that satisfying such strong small cancellation

condition implies that for groups that we construct using this labelling, the graphs Θn

are isometrically embedded into the Cayley graphs.

For constructing the desired labellings, we use techniques coming from combinatorics

(graph colorings) [AGHR] and relying on the Lovász local lemma (see e.g. [AS]). This

is a novelty in the subject. Note that whereas the core of our method is probabilistic

(similarly as Gromov’s techniques), there is a fundamental difference with Gromov’s

approach: we look for any labelling with required properties, while in the other method

the properties of the generic labelling are explored. This is crucial for getting stronger

features, as explained in §2.4. The tools used in both approaches are different. Our

argument is also relatively short compared to Gromov’s one, as presented in [AD].

Below we describe the actual applications of the small cancellation labellings we

construct. Nevertheless, we believe that the construction itself, and the overall com-

binatorial technique developed in this article, are important tools that will find many

applications beyond the scope presented here.

1.2. Non-exact groups with the Haagerup property

Property A, or coarse amenability, was introduced by Guoliang Yu [Y] for his studies on

the Baum–Connes conjecture. A uniformly discrete metric space (X, d) has property A

if, for every ε>0 and R>0, there exist a collection of finite subsets {Ax}x∈X , Ax⊆X×N
for every x∈X, and a constant S>0 such that

(1) |Ax4Ay|/|Ax∩Ay|6ε when d(x, y)6R;

(2) Ax⊆B(x, S)×N.

A finitely generated group has property A if it is coarsely amenable for the word

metric with respect to some finite generating set.
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Property A may be seen as a weak (non-equivariant) version of amenability, and

similarly to the latter notion it has many equivalent formulations and a large number of

significant applications; see e.g. [Wil1], [NY]. For countable discrete groups, property A

is equivalent to the existence of a topological amenable action on a compact Hausdorff

space [HR], to the exactness of the reduced C∗-algebra [GK1], [Oz], to nuclearity of the

uniform Roe algebra [R], and to few other geometric and analytic properties; see e.g.

[NY, pp. 81–82].

Property A implies coarse embeddability into a Hilbert space [Y]. Analogously,

amenability implies the Haagerup property (that is, a-T-menability in the sense of Gro-

mov). The following diagram depicts relations (arrows denoting implications) between

those properties for groups; see e.g. [NY, p. 124]. Observe that the notions on the right

may be seen as non-equivariant counterparts of the ones on the left:

amenability //

��

property A

��

Haagerup property // coarse embeddability into l2.

In view of the above a natural question, which was open till now, arose: Do groups

coarsely embeddable into a Hilbert space have property A? See e.g. [A-D, Remark 3.8 (2)],

[HG, Problem 3.4], [GK2, pp. 257 and 261], [NSW, p. 6], [AD, footnote p. 27], [Wil1,

p. 251], or [NY, Open question 5.3.3]. Approaches to answer this question (also in the

positive) attracted much research in the area and triggered many new ideas. Following

a program towards a negative answer initiated in [AO2], we prove a stronger statement.

Theorem 2. (See Theorem 6.3 in the text.) There exist finitely generated groups

acting properly on CAT(0) cubical complexes and not having property A.

Acting properly on a CAT(0) cubical complex is equivalent to acting properly on a

space with walls [HP], [Ni], [CN], that is to having property PW (in a language of [Cor]).

This implies in particular the Haagerup property, and hence equivariant coarse embed-

dability into a Hilbert space. Theorem 2 shows that the diagram above is complete—there

are no other implications between the properties there; see [NY, p. 124]. Besides the Gro-

mov monsters [Gro], the groups constructed in the current paper (see also §1.3 below)

are the only finitely generated groups without property A known at the moment; see e.g.

[No], [NSW, p. 6], [AD, p. 28], [Wil1, p. 251 and §7.5], or [NY, Open question 4.5.4] for

related remarks and questions. Note that coarsely non-amenable spaces embeddable into

l2 were constructed in [No] (locally finite case) and in [AGŠ] (bounded geometry case).

Our construction relies on examples constructed in [Os1].
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Let us remark here that the lack of property A for a group was believed to be an

essential obstacle to various Baum–Connes conjectures by some experts. This question is

clarified by Theorem 2: there are groups without property A but satisfying the Haagerup

property. For such groups, the strong Baum–Connes conjecture holds [HK].

Coarsely non-amenable groups embeddable into a Hilbert space constructed in this

article are given by infinite graphical small cancellation presentations (see §6.2 for de-

tails). The infinite family of graphs being relators consists of some coverings of regular

graphs with girths growing to infinity. Relators are graphs with walls (see §4), and thus

there is a walling for the group itself (see the proof of Theorem 6.3). Therefore, the group

acts on a space with walls. This action is proper if some additional conditions are sat-

isfied. We study such a condition—the proper lacunary walling condition— in §5. This

is a theory of independent interest that relies on, and extends in a way, the preceding

work of the author with Goulnara Arzhantseva [AO2] (cf. also [AO1]). In particular, we

obtain the following analogue of [AO2, Main theorem and Theorem 1.1].

Theorem 3. (See Theorem 5.6 in the text.) Let X be a complex satisfying the proper

lacunary walling condition. Then, the wall pseudo-metric is proper. Consequently, a

group acting properly on X acts properly on a CAT(0) cubical complex.

A group as in Theorem 2 is constructed so that the proper lacunary walling condition

is satisfied for a space acted properly upon by the group. Therefore, the group acts

properly on a CAT(0) cubical complex. On the other hand, by the small cancellation

condition, the infinite family of relators embeds isometrically into the Cayley graph.

Since, by a result of Willett [Wil2], such a family has not property A, we conclude that

the whole group is coarsely non-amenable.

1.3. Groups with expanders in Cayley graphs

Using his labelling of expanders Gromov constructed a finitely generated group, for

which there exists a weak embedding in the sense of [Os2, Definition 7.2] of an expander

[Gro]. A weak embedding is not necessarily a coarse embedding and with Gromov’s

construction one cannot obtain the latter; see the discussion in §2.4. Having weakly

embedded expanders is enough to claim that the group does not coarsely embed into

a Hilbert space [Gro], or that the Baum–Connes conjecture with coefficients fails for

such groups [HLS] (cf. our Corollaries 3.3 and 3.4). However, in many other situations

it seems to be necessary to have an actual coarse embedding of an expander to obtain

desired properties; see e.g. [WY]. Our labelling allows us to provide groups with such a

property and more, as the following result shows.
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Theorem 4. (See Corollary 3.3 in the text.) There exist finitely generated groups

with expanders isometrically embedded into their Cayley graphs.

The existence of such examples is crucial for some analyses of failures of the Baum–

Connes conjecture with coefficients, as in [WY, Theorem 8.3] (see Corollary 3.4) or in

[BGW, §7]. Besides Gromov’s monsters (and groups derived from them), our examples

are the only finitely generated counterexamples to the Baum–Connes conjecture with

coefficients, and the only finitely generated groups not coarsely embeddable into Hilbert

space, known at the moment.

As direct consequence of Theorem 4 and a result by Sapir [S], we obtain that there

exist closed aspherical manifolds whose fundamental groups contain coarsely embedded

expanders; see Corollary 3.5. Those are the first examples of this type.

Note that, in some situations, it may be necessary to have the actual isometric

embedding of given graphs into groups—this happens for example in our construction of

PW non-A groups; see §1.2 above and §6. There we need it for the delicate construction

of walls. We believe that it may be crucial for further applications.
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2. Small cancellation labellings of some graphs

The goal of this section is proving Theorem 1 from the introduction or, more precisely,

Theorem 2.7 below. Considering a metric on a graph we always mean a metric on the

set of vertices, being a path metric within connected components.

Throughout this paper, we work with the sequence Θ=(Θn)n∈N of disjoint finite

connected graphs of degree bounded by D>0. Furthermore, we have girth Θn!∞ as

n!∞ and Θ satisfies the following condition:

diam Θn6A girth Θn, (1)
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Figure 1. Three representations of the same labelling.

where diam denotes the diameter, girth is the length of the shortest simple cycle, and A

is a universal (not depending on n) constant. For this section we fix a small cancellation

constant λ∈
(
0, 1

6

]
. We also assume that 1<bλ girth Θnc<bλ girth Θn+1c.

Observe that, for a sequence (Θn)n∈N with growing girths, the last assumption can

be fulfilled by passing to a subsequence—this is allowed from the point of view of our

applications.

By a labelling (Γ, f) of an undirected graph Γ we mean a graph morphism f : Γ!W

into a bouquet of finitely many loops W , that is a graph with one vertex end several

edges. Usually, we refer however to the following interpretation of the labelling f . Orient

edges of W and decorate every directed edge (loop) by an element of a finite set S. Then,

the labelling f is determined by the following data: We orient every edge of Γ and we

assign to it the corresponding element of the set S or an element of the set 	S of formal

inverses of elements of S. We call the set S∪	S the (symmetrized) set of labels, and by s̄

we denote the inverse of s. Using this interpretation, we identify the labelling assigning

the label s to an oriented edge vw with the labelling of wv by s̄; see Figure 1. The

labelling (Γ, f) is reduced if f : Γ!W is locally injective, that is, for every vertex and

every two edges leaving the vertex their labels are different. We will usually not specify

the (symmetrized) set of labels (although it will change often)—we will just mention that

it is finite.

We construct the small cancellation labelling (Θ,m)=((Θn,mn))n∈N in three steps.

First, in §2.1 we construct a labelling (Θ, l)=((Θn, ln))n∈N such that ln-labellings of long

(relative to girth Θn) paths in Θn do not appear in (Θn′ , ln′), for n 6=n′; see Lemma 2.3.

Then, in §2.2 we construct a labelling (Θ, l′)=((Θn, l
′
n))n∈N with the property that, for

each n, long paths in Θn are labelled differently; see Lemma 2.6. Finally, in §2.3 we

combine (Θ, l) and (Θ, l′) to obtain the required small cancellation labelling (Θ,m); see

Theorem 2.7.
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2.1. The labelling (Θ, l): small cancellation between graphs

Recall the following version of the Lovász local lemma (see e.g. [AS]) that can be found

in [AGHR, Lemma 1]. Here, Pr(A) denotes the (discrete) probability of an event A, and

Ā denotes the opposite event (complementary set).

Lemma 2.1. (Lovász local lemma) Let A=A1∪A2∪...∪Ar be a partition of a finite

set of events A, with Pr(A)=pi for every A∈Ai, i=1, 2, ..., r. Suppose that there are real

numbers 06a1, a2, ..., ar<1 and ∆ij>0, i, j=1, 2, ..., r, such that the following conditions

hold :

(i) for any event A∈Ai there exists a set DA⊆A, with |DA∩Aj |6∆ij for all j=

1, 2, ..., r, such that A is independent of A\(DA∪{A});
(ii) pi6ai

∏r
j=1(1−aj)∆ij for all i=1, 2, ..., r.

Then,

Pr

( ⋂
A∈A

Ā

)
> 0.

Let γn=bλ girth Θnc. Observe that λ girth Θn−1<γn, and thus

girth Θn

γn
<

1

λ
+

1

λγn
<

2

λ
. (2)

We will find a labelling (Θ, l)=((Θn, ln))n∈N with L labels such that ln-labellings of paths

of length at least γn do not appear as ln′ -labellings, for n′>n. Unless stated otherwise,

we always assume that paths are without backtracking. It implies that all paths shorter

than the girth are simple. Define L as follows (here e denotes the Euler constant):

L := d2De4D2A/λ+1e. (3)

The number en of edges of Θn is bounded by en6Ddiam Θn . Thus, by the condition (1),

we have

en6DA girth Θn . (4)

We construct ((Θn, ln))n∈N inductively: (Θ1, l1) is an arbitrary labelling with L

labels, and further we execute an inductive step. Assume that (Θ1, l1), ..., (Θn−1, ln−1)

are defined. Let Mi denote the number of words appearing as labels of paths of length

γi in (Θi, li). Let Ni denote the number of possibilities of labelling a fixed simple path

of length γi by L letters. Observe that, for i=1, ..., n−1, we have

Mi<eiD
γi , (5)

and

Ni =Lγi . (6)

The labelling (Θn, ln) is then one given by the following lemma.
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Lemma 2.2. There is a labelling (Θn, ln) with L labels such that, for i=1, 2, ..., n−1,

no li-labelling of a path of length γi in Θi appears as an ln-labelling of a path of length

γi in Θn.

Proof. We use the Lovász local lemma (Lemma 2.1) following closely the proof of

[AGHR, Theorem 1]. Randomly label the edges of Θn by L labels. For a path p in Θn

of length γi, let A(p) denote the event that its ln-labelling is the same as an li-labelling

of some path in Θi of length γi, for i<n. Set

Ai = {A(p) : p is a path of length γi in Θn}.

Recall (see Lemma 2.1) that pi denotes the probability Pr(A) for every A∈Ai. Then, by

(5), (6), (4), and (2), we have

pi6
eiD

γi

Lγi
6
DA girth Θi+γi

Lγi
=

(
DA girth Θi/γi+1

L

)γi
<

(
D2A/λ+1

L

)γi
. (7)

Each path of length γi shares an edge with not more than γiγjD
γj paths of length

γj , so that we may take ∆ij=γiγjD
γj . Let ai=a

−γi , where a=2D. Then, by using

subsequently: formulas (7) and (3), the definition of ai, the fact that
∑∞
j=1 j/2

j=2, the

definitions of a, ∆ij , and aj , we obtain

pi<

(
D2A/λ+1

L

)γi
6 2−γiD−γie−4γi = ai exp

(
−2

∞∑
j=1

γi
j

2j

)
6 ai exp

(
−2
∑
j

γi
γj
2γj

)

= ai exp

(
−2
∑
j

γiγj

(
D

a

)γj)
= ai exp

(
−2
∑
j

∆ijaj

)
= ai

∏
j

e−2aj∆ij .

Since, by aj6 1
2 , we have e−2aj6(1−aj) (because for the function f :R!R that sends x

to e−2x, we have f(0)=1−0, f
(

1
2

)
<1− 1

2 , and f ′ is increasing), we finally obtain

pi6 ai
∏
j

(1−aj)∆ij .

Therefore, the hypotheses of the Lovász local lemma are fulfilled, and we conclude that

there exists a labelling ln as required.

The labelling (Θ, l)=((Θn, ln))n∈N with L labels obtained by the inductive construc-

tion has the following property.

Lemma 2.3. For each n∈N, no ln-labelling of a path of length at least λ girth Θn is

a labelling of a path in (Θn′ , ln′), with n′ 6=n.
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Figure 2. Case I.

2.2. The labelling (Θ, l′): small cancellation within Θn

For this subsection we fix n and we will work only with Θn. Again, unless stated oth-

erwise, we always assume that paths are without backtracking, in particular all paths

shorter than the girth are simple. First we show that if two distinct relatively long

paths in Θn have the same labelling, then a path with a specific labelling appears; see

Lemma 2.4. Then, we use this observation to find a required labelling (Θn, l
′
n), by an

application of the Lovász local lemma, similarly as in the proof of Lemma 2.2.

Let ṽ=(v0, v1, ..., vk) and w̃=(w0, w1, ..., wk) be two paths with the same labelling

and with k=bλ girth Θnc (here, vi and wi are consecutive vertices). Denote the labelling

of the directed edge vi−1vi by ai, for i=1, 2, ..., k. We consider separately the cases when

ṽ and w̃ share an edge, and when they do not.

Case I: ṽ and w̃ do not share an edge. Then, there exists a path

ũ= (u0 := vs, u1, ..., ur :=wt)

of minimal length connecting ṽ and w̃. Possibly r=0, that is, ũ is one vertex u0 :=vs=wt.

Without loss of generality (subject to renaming), we may assume that s>t> 1
2k (if s<t

we may exchange ṽ with w̃, if t< 1
2k, then we exchange wi with wk−i—this corresponds

to difference in labellings in Cases Ia and Ib below); see Figure 2. By our assumptions,

we have r6diam Θn6A girth Θn. We consider the following two cases separately.
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Figure 3. Case Ia (left) and Case Ib (right).

Case Ia: The labelling of a directed edge wi−1wi is ai (see Figure 3 on the left).

Then, we have the path p:=(v0, ..., vs, u1, ..., ur−1, wt, ..., w0). By (1), its length |p| may

be bounded from above by

2k+r6 2λ girth Θn+A girth Θn = (2λ+A) girth Θn. (8)

In its labelling, the initial sub-path of length t is labelled the same way—up to changing

orientation—as the ending sub-path of length t, that is, it has the form (where ‘repetitive’

parts are underlined)

(a1, a2, ..., at, ..., āt, ..., ā2, ā1), (9)

with

t> 1
2k >

1
4λ girth Θn. (10)

(The last inequality is a rough estimate coming from k>λ girth Θn−1.)

Case Ib: The labelling of a directed edge wi+1wi is ak−i (see Figure 3 on the right).

In this case again we consider separately two subcases:

(i) If t6 3
4k, then we consider the path p′ :=(v0, ..., vs, u1, ..., ur−1, wt, ..., wk). Its

length may be again bounded from above by (8), and its labelling is of the form similar

to (9):

(a1, a2, ..., ak−t, ..., āk−t, ..., ā2, ā1),
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with

k−t> k− 3
4k= 1

4k >
1
8λ girth Θn. (11)

(ii) If t> 3
4k, then we consider the path p′′ :=(vk−t, ..., vs, u1, ..., ur−1, wt, ..., wk−s).

We bound its length from above by (8), and its labelling is of the form

(ak−t+1, ak−t+2, ..., as, ..., ak−t+1, ak−t+2, ..., as),

with the lengths of the ‘repetitive’ pieces at least

s−(k−t+1)+1 = s+t−k > 1
2k+ 3

4k−k= 1
4k >

1
8λ girth Θn. (12)

Case II: ṽ shares an edge with w̃. Then, there are r>1, and s and t, such that

vs+i=wt+i, for i=1, 2, ..., r, and vi 6=wj in other cases (because the paths are much shorter

than the girth). Similarly, as in Case I, without loss of generality (subject to renaming)

we may assume that s>t; see Figure 4. We consider the following two cases separately.

Case IIa: The labelling of a directed edge wi−1wi is ai (see Figure 5 on the left).

In this case, we consider separately two subcases:

(i) If s=t, then we consider the path (vs−1, vs, ws−1), if s>0, or otherwise the path

(vs+r+1, vs+r, ws+r+1). We obtain the labelling

(as, ās) or (ās+r+1, as+r+1).
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Figure 5. Case IIa (left) and Case IIb (right).

(ii) If s>t, then we obtain a path p:=(vt, vt+1, ..., wt, wt+1, ..., ws) of length bounded

from above by

2k6 2λ girth Θn. (13)

Its labelling has the form

(at+1, at+2, ..., as, at+1, at+2, ..., as). (14)

(The two above cases are ‘repetitive’ labellings as in [AGHR].)

Case IIb: The labelling of a directed edge wi+1wi is ak−i (see Figure 5 on the right).

In this case, we consider separately three subcases:

(i) If s> 1
3k and t< 2

3k, then we consider the path p′ :=(v0, ..., vs, wt+1, ..., wk). Its

length is bounded from above by (13), and its labelling has the form

(a1, a2, ..., aq, ..., āq, ..., ā2, ā1),

with

q > 1
3k. (15)

(ii) If t> 2
3k, then s>t> 2

3k. In this case, we consider the path

p′′ := (vk−t, ..., vs, wt−1, ..., wk−s).
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Its length is bounded from above by (13), and its labelling has the form

(ak−t+1, ..., as, ak−t+1, ..., as). (16)

(iii) If s6 1
3k, then for s+r< 2

3k we are in one of the previous cases (with s> 1
3k)

after changing indexes i to k−i and renaming. Thus, we may assume that s+r> 2
3k.

Then, we consider the path p′ :=(v0, v1, ..., vs, wt+1, ..., wk). Its length is bounded from

above by (13), and its labelling has the form

(a1, a2, ..., aq, ..., āq, ..., ā2, ā1), (17)

with

q> 1
3k. (18)

Lemma 2.4. Let E :=λ/(16λ+8A) and F :=(2λ+A) girth Θn. Assume that there

are two different paths in (Θn,mn), of length at least λ girth Θn, with the same labelling.

Then, one of the following situations happens:

(A) there is a path p with the labelling (ai1 , ai2 , ..., aiq , ..., ai1 , ai2 ..., aiq ), for |p|6F
and q>E|p|;

(B) there is a path p with the labelling (ai1 , ai2 , ..., aiq , ..., āiq , ..., āi2 , āi1), for |p|6F
and q>E|p|;

(C) there is a path p with the labelling (ai, āi).

Proof. We show that all the cases analyzed earlier in this section lead to (A), (B)

or (C). This covers all the possible configurations.

(A) corresponds to the cases Ib (ii), IIa (ii) and IIb (ii). The estimates on |p| and q

follow then from: formula (8) and formula (12), or from (14), or from (16), and from the

fact that

E=
λ

16λ+8A
<

1

16
. (19)

(B) corresponds to one of the cases: Ia, Ib (i), IIb (i) or IIb (iii). The estimates on

|p| and q follow then from (8) and (10) or (11), or from (13) and (15) or (18), using (19).

(C) corresponds to Case IIa (i).

Now we show, similarly as in the preceding §2.1, that there exists a labelling (Θn, l
′
n)

such that none of the patterns (A), (B) or (C) from Lemma 2.4 appears. This will imply

that no two different paths in Θn of length at least λ girth Θn have the same l′n-labelling.

This will also mean that l′n is reduced. The labelling l′n will use L′ labels. Define L′ as

(here e denotes the Euler constant)

L′ := d(4De4)1/Ee, (20)
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where E=λ/(16λ+8A) is the constant from Lemma 2.4. Call a labelling of a path p

bad if it is of the form (A), (B) or (C) as in Lemma 2.4. Let Mi denote the number of

possibilities of labelling a fixed simple path of length i in a bad way by L′ letters. Let

Ni denote the number of possibilities of labelling a fixed simple path of length i by L′

letters. Observe that

Mi6 2L′(1−E)i, (21)

and

Ni =L′i. (22)

Lemma 2.5. There exists a labelling (Θn, l
′
n) with L′ labels such that, for 26i6F=

(2λ+A) girth Θn, no l′n-labelling of a path of length i is bad.

Proof. We use the Lovász local lemma 2.1 as in the proof of Lemma 2.2. Randomly

label the edges of Θn with L′ labels. For a path p in Θn of length i, let A(p) denote the

event that its labelling is bad. Set

Ai = {A(p) : p is a path of length i in Θn}.

Recall (see Lemma 2.1) that pi denotes the probability Pr(A) for every A∈Ai. Then, by

(21) and (22), we have

pi6
2L′(1−E)i

L′i
6

(
2

L′E

)i
. (23)

Each path of length i shares an edge with no more than ijDj paths of length j, so that we

may take ∆ij=ijD
j . Let ai=a

−i, where a=2D. Then, by using subsequently formulas

(23) and (20), the definition of ai, the fact that
∑∞
j=1 j/2

j=2, and the definitions of a,

∆ij , and aj , we obtain

pi6

(
2

L′E

)i
6 2−iD−ie−4i = ai exp

(
−2

∞∑
j=1

i
j

2j

)

<ai exp

(
−2
∑
j

ij

(
D

a

)j)
= ai exp

(
−2
∑
j

∆ijaj

)
= ai

∏
j

e−2aj∆ij .

Since, by aj6 1
2 , we have e−2aj6(1−aj) (see the end of the proof of Lemma 2.2), we

obtain finally

pi6 ai
∏
j

(1−aj)∆ij .

Therefore, the hypotheses of the Lovász local lemma are fulfilled, and we conclude that

there exists a labelling l′n as required.



small cancellation labellings of graphs and applications 173

Lemma 2.6. (C ′(λ)-small cancellation labelling of Θn) The labelling (Θn, l
′
n) with

L′ labels is reduced and no two paths in Θn of length at least λ girth Θn have the same

l′n-labelling.

Proof. The labelling (Θn, l
′
n) is reduced because the situation (C) from Lemma 2.4

does not appear. The second assertion follows from Lemma 2.4 and the fact that none

of the situations (A) and (B) appears for l′n, by Lemma 2.5.

2.3. Small cancellation labelling of Θ

Let (Θ, l)=((Θn, ln))n∈N and (Θ, l′)=((Θn, l
′
n))n∈N be the labellings with, respectively,

L and L′ labels given by Lemmas 2.3 and 2.6. Let (Θ,m)=((Θn,mn))n∈N be a labelling

being the product of (Θ, l) and (Θ, l′). That is, to every directed edge e in Θn we assign

a pair (l(e), l′(e)). By Lemmas 2.3 and 2.6, we obtain the following main technical result

of the paper (see Theorem 1 in the introduction).

Theorem 2.7. (C ′(λ)-small cancellation labelling of Θ) The labelling (Θ,m) is

reduced and no mn-labelling of a path of length at least λ girth Θn in Θn appears as

the m-labelling of some other path in Θ.

Remark 2.8. Observe that, for every n, a given finite labelling (Θ1, l1), (Θ2, l2), ...,

(Θn, ln) from §2.1 can be extended to (Θn+1, ln+1) by using the brute-force algorithm

(see Lemma 2.2). The same holds for the labelling (Θ, l′) from §2.2. Therefore, if the

sequence Θ of finite graphs is recursive, the small cancellation labelling (Θ,m), as well

as the resulting small cancellation presentation (see §3) are recursive. This observation

is important in particular in view of applications described in §3.2.2 below.

Recursive sequences of finite graphs Θ (satisfying our assumptions from the begin-

ning of §2) exist. Examples are expander graphs given by Cayley graphs of some finite

linear groups; see §2.4 for some details.

2.4. Remarks on the Gromov labelling

In this subsection we recall the idea of Gromov’s construction of a ‘small cancellation’

labelling of some expanders [Gro], following its exposition presented in [AD]. We remark

that a construction of a labelling as in Lemma 2.6 could be obtained using Gromov’s

construction. (Let us also remark that it could be concluded from [OW, Proposition

7.4].) Further, we explain why one cannot obtain the small cancellation labelling out of

the one of Gromov, that is, why Lemma 2.3 does not hold for the generic labelling.
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For primes p 6=q congruent to 1 modulo 4 and with the Legendre symbol(
p

q

)
=−1,

let Xp,q be the Cayley graph of the projective linear group PGL2(q), for some particular

set of p+1 generators, as in [AD, §7.2]. Fix p. Throughout this subsection we consider

subsequences of the sequence Θ=(Θn)n∈N, where Θn=Xp,qn , with qn denoting the nth

prime. Then, the family Θ is an expander with the constant degree D:=p+1, with

girth Θn!∞, as n!∞, and for which there exists a constant A such that (1) holds.

Gromov [Gro] constructs a labelling (Θ, l′)=((Θn, l
′
n))n∈N (also for a class of expanders)

satisfying some small cancellation conditions.

Let G0 be the free group generated by a finite set S. The labelling l′ is a map

l′: Θ!W onto the bouquet of |S| oriented loops labelled by S (whose fundamental group

is G0). The labelling (Θ, l′) is obtained inductively.

We begin with Θ1 and we find a labelling l′1: Θ1!W satisfying some small cancel-

lation conditions. We obtain a hyperbolic group G1 being the quotient of the free group

G0 by the normal subgroup generated by images of l′1. At the inductive step, having a

hyperbolic group Gn−1 generated by S, a random (generic) labelling l′n: Θn!W satisfies

the very small cancellation conditions for the small cancellation constant arbitrarily close

to zero by [AD, Proposition 5.9]. The labelling l′ may be used to construct a labelling

with properties as in Lemma 2.6.

However, out of l′, one cannot derive the required small cancellation labelling as in

Theorem 2.7. Since at each step Gromov’s labelling is the generic labelling appearing as

girth Θn!∞, it is clear that the following holds: For any fixed labelling of a path of a

fixed length, with overwhelming probability this labelling will appear among labellings of

Θn as n!∞. In particular, labellings of all cycles in graphs obtained at earlier inductive

steps will appear as labellings of paths in later steps. This is the reason why Gromov’s

labelling is not a graphical small cancellation labelling. Let G be the group being the

limit of (Gn)n∈N. Observe that endpoints of a simple path in Θn (for large n) labelled

the same as a cycle in some Θm with m�n will be mapped to a same point by the map

Θn!G defined by the labelling. Since there are such paths of arbitrarily large length,

this labelling does not define a coarse embedding of Θ into G. There is only a weak

embedding or, stronger, a map f : Θ!G satisfying the following condition: for x, y∈Θn,

one has

dG(f(x), f(y))>BdΘ(x, y)−cn,

where B is a universal constant, and additive constants cn>0 grow to infinity with n!∞;

see [Gro, §4.8] and [AD, Theorem 7.7].
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3. Groups with Θ in Cayley graphs

In this section we construct groups, such that Θ embeds isometrically into their Cayley

graphs—this means that the vertex set of every connected component Θn embeds iso-

metrically. The groups are defined by graphical small cancellation presentations. The

graphical small cancellation theory is a straightforward generalization of the classical

small cancellation theory—see e.g. the book by Lyndon and Schupp [LS] for the expo-

sition of the latter. The introduction of the graphical theory is attributed to Gromov

[Gro], but the methods had appeared implicitly before, e.g. in the work of Rips and Segev

[RS]. In order to apply small cancellation, we use the sequence Θ as follows. Let Γ be

a finite graph and let (ϕn: Θn!Γ)n∈N be a family of local isometries of graphs. They

form a graphical presentation

〈Γ |Θ〉, (24)

defining a group

G :=π1(Γ)/〈〈ϕ∗(π1(Θn))n∈N〉〉.

In our case, we choose Γ to be a bouquet of loops with local isometries ϕn corresponding

to the labellings mn. Each loop in the bouquet corresponds to one generator of G.

3.1. C′(λ)-small cancellation complexes

This subsection follows closely [AO2, §2]. Here, we describe the spaces that we will work

with further. Let (ϕi: ri!X
(1))i∈N be a family of local isometries of finite graphs ri. We

will call these finite graphs relators. The cone over the relator ri is the quotient space

cone ri := (ri×[0, 1])/{(x, 1)∼ (y, 1)}.

The main object of our study in this section is the coned-off space

X :=X(1)∪(ϕi)

⋃
i∈N

cone ri,

where ϕi is the map ri×{0}!X(1). We assume that X is simply connected. The space

X has a natural structure of a CW complex and we call X a ‘complex’. If not specified

otherwise, we consider the path metric, denoted by d( · , ·), defined on the 0-skeleton X(0)

of X by (combinatorial) paths in the 1-skeleton X(1). Geodesics are the shortest paths in

X(1) for this metric. (In other words, a geodesic between vertices p, q∈X(0) is a shortest

sequence p0 :=p, p1, ..., pk :=q of vertices such that pi and pi+1 are connected by an edge

in X(1).)
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A path in X is a locally injective simplicial map p!X from a graph p homeomorphic

to a segment. A path p!X is a piece, if there are relators ri and rj such that p!X

factors as p!ri
ϕi−−!X and as p!rj

ϕj−−!X, but there is no isomorphism ri!rj that

makes the following diagram commutative:

p //

��

rj

��

ri //

??

X

This means that p occurs in ri and rj in two essentially distinct ways.

For λ∈(0, 1), we say that the complex X satisfies the C ′(λ)-small cancellation condi-

tion (or that X is a C ′(λ)-complex ) if every piece p!X factorizing through p!ri
ϕi−−!X

has length (that is, the number of edges in p) strictly less than λ girth ri.

For a given graphical presentation 〈Γ|Θ〉, we define an associated complex X as

follows. The coned-off space is obtained by gluing, using the (labelling) maps Θn!Γ,

cones over graphs Θn to Γ. The fundamental group of this space is G. The Cayley graph

of 〈Γ|Θ〉 is the 1-skeleton (X ′)(1) of the universal cover X ′ of the coned-off space. We

define maps ϕ′i: ri!X
(1) as lifts of the maps Θn!Γ. In particular, the graphs ri are

copies of graphs Θn, for various n. Finally, we define X as the quotient complex of X ′,

where we identify the cones attached by ϕ′i: ri!(X ′)(1) and ϕ′j : rj!(X ′)(1) when there

is an isomorphism of labelled (by the labelling induced by Θn!Γ) graphs ri!rj such

that ϕ′i factors as ri!rj
ϕ′

j−−!(X ′)(1). The maps ϕi: ri!X are the compositions of the

maps ϕ′i with the quotient map X ′!X. If the complex X is a C ′(λ)-complex then we

call the presentation 〈Γ|Θ〉 a graphical C ′(λ)-small cancellation presentation.

The following lemma attributed to Gromov is crucial for our results.

Lemma 3.1. ([Ol, Theorem 1] and [Gru, Theorem 5.10]) For the Cayley graph X(1)

of a graphical C ′
(

1
6

)
-small cancellation presentation 〈Γ|Θ〉 the maps ϕi: ri!X

(1) are

isometric embeddings.

3.2. The groups

In this section we use the labelling (Θ,m) as in Theorem 2.7, obtained for λ6 1
24 .

Theorem 3.2. (Groups containing Θ) Let G be the group defined by the graphical

presentation 〈Γ|Θ〉, where the local isometries Θn!Γ are defined by labellings mn. Then,

each Θn embeds isometrically into the Cayley graph of G given by 〈Γ|Θ〉.

Proof. By Lemma 2.7, the complex X associated with 〈Γ|Θ〉 satisfies the C ′(λ)-small

cancellation condition. By Lemma 3.1, every ri embeds isometrically into X(1).
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In the following subsections we study more specific applications of Theorem 3.2.

3.2.1. Groups containing expanders

Expanders do not admit coarse embeddings into Hilbert spaces [M]. It follows from

[HLS, §7] that groups containing coarsely expanders do not satisfy the Baum–Connes

conjecture with coefficients. The following is a direct consequence of the results above

and Theorem 3.2.

Corollary 3.3. If Θ is an expanding sequence of graphs then the group 〈Γ|Θ〉 is

not coarsely embeddable into a Hilbert space, and it does not satisfy the Baum–Connes

conjecture with coefficients.

The next result has been proved in [WY] for groups with coarsely embedded ex-

panders. As explained in §2.4, for Gromov’s monster only the weak embedding is estab-

lished. Therefore, our construction provides the first examples of groups, for which the

conclusion of the following corollary holds.

Corollary 3.4. ([WY, Corollary 1.7]) Let G be a group defined by the graphical

presentation 〈Γ|Θ〉, where the local isometries Θn!Γ are defined by labellings mn, and

where Θ is the sequence of expanding graphs with growing girth. Let X be the image of

the isometric embedding of Θ into the Cayley graph Y of G. For each n∈N, let

Xn = {y ∈Y : dY (y,X)6n}.
Let An=l∞(Xn,K) and A=limn!∞ l∞(Xn,K), where K is the algebra of compact op-

erators on a given infinite-dimensional separable Hilbert space. Then, the right action of

G on Y gives A the structure of a G-C∗-algebra and

(1) the Baum–Connes assembly map for G with coefficients in A is injective;

(2) the Baum–Connes assembly map for G with coefficients in A is not surjective;

(3) the maximal Baum–Connes assembly map for G with coefficients in A is an

isomorphism.

Similarly, the existence of groups with coarsely embedded expanders is crucial for

[BGW, §7].

3.2.2. Exotic aspherical manifolds

Sapir [S] developed a technique of embedding groups with combinatorially aspherical

recursive presentation complexes into groups with finite combinatorially aspherical pre-

sentation complexes. The presentation (24) defined by the labelling (Θ,m) from Theo-

rem 2.7 is aspherical; see e.g. [Ol]. It is also recursive—the brute-force algorithm can be
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used to find the labelling (Θ,m)—see Remark 2.8. By embedding, the group 〈Γ|Θ〉 from

Corollary 3.3 into a finitely presented group we obtain the first examples of such groups

coarsely containing expanders. Therefore, using Sapir’s techniques and Theorem 3.2, we

obtain the first examples of manifolds as follows.

Corollary 3.5. There exist closed aspherical manifolds of dimension 4 and higher

whose fundamental groups contain coarsely embedded expanders.

4. Walls

In this section and in the next §5 we develop a theory that will allow us in §6 to show

that the group we construct there acts properly on a space with walls. We use here the

notation from §3.1 concerning C ′(λ)-complexes. The current section is very similar to

[AO2, §3].

Recall that, for a set Y and a family W of partitions (called walls) of Y into two

parts, the pair (Y,W) is called a space with walls [HP] if the following holds. For every

two distinct points x, y∈Y the number of walls separating x from y (called the wall

pseudo-metric), denoted by dW(x, y), is finite.

In this section, following the method of Wise [Wis3] (see also [Wis2]), we equip the

0-skeleton of a C ′(λ)-complex with the structure of space with walls. To be able to do

it, we have to make some assumptions on relators.

A wall in a graph Γ is a collection w of edges such that removing all open edges of

w decomposes Γ in exactly two connected components. We call Γ a graph with walls, if

every edge belongs to a unique wall. This is a temporary abuse of notations with respect

to ‘walls’ defined as above, which will be justified later.

If not stated otherwise, we assume that for a C ′
(

1
24

)
-complex X associated with

a graphical presentation as explained in §3.1, with given relators ri, each graph ri is a

graph with walls. In the current section and in the following §5, using Lemma 3.1, we

treat the relators ri as isometric subgraphs of X. This slight abuse of notation should

not lead to confusion. Following [Wis3, §5], we define walls in X(1) as follows: two edges

are in the same wall if they are in the same wall in some relator ri. This relation is then

extended to an equivalence relation on the set of all edges of X. In particular, every edge

is contained in a wall (possibly consisting of only that edge).

In general, the above definition may not result in walls for X(0). We require some

further assumptions on walls in relators, which are formulated below.

Definition 4.1. ((β,Φ)-separation) For β∈
(
0, 1

2

]
and a homeomorphism

Φ: [0,+∞)−! [0,+∞),
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a graph r with walls satisfies the (β,Φ)-separation property if the following two conditions

hold:

(1) (β-condition) for every two edges e and e′ in r belonging to the same wall, we

have

d(e, e′)+1>β girth r;

(2) (Φ-condition) for every geodesic γ in r, the number of edges in γ whose walls

have only one edge in common with γ (and thus, in particular, separate the end-points

of γ) is at least Φ(|γ|).
A complex X satisfies the (β,Φ)-separation property if every its relator does so.

Proposition 4.1. ([AO2, Lemma 3.3]) For every β∈
(
0, 1

2

]
there exists λ6 1

24 such

that, for every C ′(λ)-complex X satisfying the β-condition, the following holds. Re-

moving all open edges from a given wall decomposes X(1) into exactly two connected

components. The family of the corresponding partitions induced on X(0) defines the

structure of a space with walls (X(0),W).

In what follows we assume that a C ′(λ)-complex X is as in the proposition. We

recall further results on (X(0),W) that will be extensively used in §5.

For a wall w, its hypergraph Γw is a graph defined as follows (see [Wis3, Defini-

tion 5.18] and [Wis1]). There are two types of vertices in Γw (see e.g. Figure 6 below):

• edge-vertices correspond to edges in w;

• relator-vertices correspond to relators containing edges in w.

An edge in Γw connects an edge-vertex to a relator-vertex whenever the correspond-

ing relator contains the given edge.

The hypercarrier of a wall w is the 1-skeleton of the subcomplex of X consisting of

all relators containing edges in w or of a single edge e, if w={e}. The following theorem

recalls the most important facts concerning walls; see [AO2, §3.3].

Theorem 4.2. Each hypergraph is a tree. Relators and hypercarriers are convex

subcomplexes of X(1).

Observe that, if edges e and e′ are in the same relator r and, moreover, they belong

to the same wall in X(1), then e and e′ belong to the same wall in r (for the initial

wallspace structure on r).

5. Proper lacunary walling

In this section we introduce the condition of proper lacunary walling (see Definition 5.1),

and we show that for complexes satisfying this condition the wall pseudo-metric is proper;
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see Theorem 3 in the introduction and Theorem 5.6 below. We follow the notation from

§3.1 and §4. The section is based on [AO2, §4]. Note however that, whereas the proper

lacunary walling condition from the current paper is weaker than the corresponding

lacunary walling condition from [AO2], consequences of the former are also weaker: We

obtain properness of the wall pseudo-metric, and in [AO2] a linear separation property

is established. Unfortunately, we are not able to use the lacunary walling condition

from [AO2] to construct corresponding groups (and we believe it may be not possible).

Therefore, for the sake of the constructions in this article, we introduced the proper

lacunary walling conditions studied further in this section. Note also that the notions

used here may be sometimes quite different from the ones used in [AO2], and hence we

have to provide new proofs of the corresponding results.

For a relator r and a vertex v∈r, let Pv(r) denote the number of edges in
⋃
r′ r∩r′,

where r′ varies through all relators r′ 6=r containing v. Let P (r) denote the maximal

number among Pv(r) for v∈r.

Definition 5.1. (Proper lacunary walling) Let β∈
(
0, 1

2

]
, and let D be a natural

number larger than 1. Let 0<λ< 1
2β be as in Proposition 4.1 (that is, such that (X(0),W)

is a space with walls). Let Φ,Ω,∆: [0,+∞)![0,+∞) be homeomorphisms. We say that

X satisfies the proper lacunary walling condition if

• X(1) has degree bounded by D;

• (small cancellation) X satisfies the C ′(λ)-condition;

• (separation) X satisfies the (β,Φ)-separation property;

• (lacunarity) Φ((β−λ) girth ri)−4P (ri)>Ω(girth ri);

• (large girth) girth ri>∆(diam ri).

Assumption. For the rest of this section, we assume that the complex X satisfies

the proper lacunary walling condition from Definition 5.1 with parameters β, D, λ, Φ,

Ω, and ∆.

It is clear that dW(p, q)6d(p, q). The rest of this section is devoted to bounding the

wall pseudo-metric dW from below. Let γ be a geodesic in X (that is, in its 1-skeleton

X(1)) with endpoints p and q. Let A(γ) denote the set of edges in γ whose walls meet γ in

only one edge (in particular such walls separate p from q). Clearly, dW(p, q)>|A(γ)|. We

thus estimate dW(p, q) by closely studying the set A(γ). The estimate is first provided

locally (in §5.1 below), and then we use the local bounds to obtain a global one. In what

follows, by E(Y ) we denote the set of edges of a subcomplex Y ⊆X.

We begin with an auxiliary lemma. Let r be a relator. Since, by Theorem 4.2, r

is convex in X, its intersection with γ is an interval p′q′, with p′ lying closer to p; see

Figure 6.
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Figure 6. Lemma 5.1.

Consider the set C of edges e in p′q′, whose walls w meet γ at least twice and,

moreover, have the following properties. Let e′∈w (considered as an edge-vertex in the

hypergraph Γw of the wall w) be a closest vertex to e in Γw, among edges of w lying

on γ. In the hypergraph Γw of the wall w, which is a tree by Theorem 4.2, consider the

unique geodesic γw between vertices e and e′. We assume that there are at least two

distinct relator-vertices on γw, one of them being r.

Lemma 5.1. In the situation as above, we have |C|62P (r).

Proof. The proof is basically the same as the one of [AO2, Lemma 4.2]. Since we need

to express the statement in a slightly different way, we recall the proof for completeness.

Suppose that q′ lies between e and e′ (on γ). Let e′′ 6=e be the edge-vertex on γw adjacent

to r and, subsequently, let r′′ 6=r be the relator-vertex on γw adjacent to e′′; see Figure 6.

By convexity and the tree-like structure of the hypercarrier of w containing e and e′ (see

Theorem 4.2), we have that q′∈r′′. Since r∩r′′ contains both e′′ and q′, we have that

the number of edges e′′ as above is at most P (r). The same number bounds the quantity

of the corresponding walls. By our assumptions, every such wall contains only one edge

in p′q′. Thus, the number of edges e as above is at most P (r). Taking into account the

situation when p′ lies between e and e′, we have |C|62P (r).

5.1. Local estimate on |A(γ)|

For a local estimate, we need to define neighborhoods Nγ
e —relator neighborhoods in γ—

one for every edge e in γ, for which the number |E(Nγ
e )∩A(γ)| of edges can be bounded

from below.

For a given edge e of γ we define a corresponding relator neighborhood Nγ
e as follows.

If e∈A(γ) then Nγ
e ={e}. Otherwise, we proceed in the way described below.
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Since e is not in A(γ), its wall w crosses γ in at least one more edge. In the wall

w, choose an edge e′⊆γ being a closest edge-vertex to e 6=e′ in the hypergraph Γw of the

wall w. We consider separately the two following cases.

Case I: The edges e and e′ do not lie in a common relator. In the hypergraph Γw

of the wall w, which is a tree by Theorem 4.2, consider the geodesic γw between vertices

e and e′. Let rγe be the relator-vertex in γw adjacent to e. Let e′′ be an edge-vertex in

γw adjacent to rγe . Consequently, let r′′ be the other relator-vertex in γw adjacent to e′′.

The intersection of rγe with γ is an interval p′q′. Assume without loss of generality, that

q′ lies between e and e′; see Figure 6.

We define the relator neighborhood Nγ
e as the interval p′q′=rγe ∩γ. The following

lemma is the same as [AO2, Lemma 4.3].

Lemma 5.2.

|E(Nγ
e )|> (β−λ) girth rγe .

Case II: The edges e and e′ lie in a common relator rγe . We may assume (exchanging

e′ if necessary) that e′ is closest to e (in X) among edges in w lying in rγe ∩γ.

The relator neighborhood Nγ
e is now defined as the interval p′q′=rγe ∩γ. By the

β-condition of the (β,Φ)-separation property, we have

|E(Nγ
e )|>β girth rγe . (25)

In the following two lemmas we estimate the local density of A(γ) separately in the

two cases. The lemmas correspond to, respectively, Lemmas 4.4 and 4.5 from [AO2].

Lemma 5.3. (Local density of A(γ)—Case I) The number of edges in Nγ
e , whose

walls separate p from q is estimated as follows:

|E(Nγ
e )∩A(γ)|>Φ((β−λ) girth rγe )−4P (rγe ).

Proof. To estimate |E(Nγ
e )∩A(γ)|, we consider first a set B of edges in Nγ

e defined

in the following way. An edge f belongs to B if its wall wf has only one edge in common

with Nγ
e . In particular, wf separates p′ from q′.

By the Φ-condition from Definition 4.1, and by Lemma 5.2, we have

|B|>Φ(|E(Ne)|)>Φ((β−λ) girth rγe ). (26)

We estimate further the number of edges in A(γ)∩B. To do this, we explore the set

of edges f in B outside A(γ). We consider separately the two ways in which an edge f

of B may fail to belong to A(γ)—these are studied in Cases C and D below.



small cancellation labellings of graphs and applications 183
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q′
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f ′′

f ′

wf

f

rf = rγe

f ′

f ′′

Γwf
X

Figure 7. Lemma 5.3, Case I (C).

Since f∈B\A(γ), there exists another edge of the same wall wf in γ outside rγe . Let

f ′ be a closest to f such edge-vertex in the hypergraph Γwf
. Denote by γwf

the geodesic

in Γwf
between f and f ′. Let rf be the relator-vertex on γwf

adjacent to f .

Case C: rf=rγe . Observe that then there are at least two distinct relator-vertices

between f and f ′ on γwf
; see Figure 7. The cardinality of the set C of such edges f is

bounded, by Lemma 5.1, as follows:

|C|6 2P (rγe ). (27)

Case D: rf 6=rγe . Let the set of such edges f be denoted by D. Let rf∩γ=p′′q′′. We

claim that p′∈p′′q′′ or q′∈p′′q′′. Therefore

|D|6 2P (rγe ). (28)

To show the claim we proceed by contradiction. Suppose the claim is not true. Then,

p′′q′′⊆p′q′. By Lemma 5.2, we have then (treating rf as rγf ) |p′′q′′|>(β−λ) girth rf .

However, by our choice of β, this contradicts the small cancellation condition.

We now combine Cases C and D, to obtain the following bound in Case I (see

estimates (26)–(28) above):

|E(Nγ
e )∩A(γ)|> |B∩A(γ)|> |B|−|C|−|D|>Φ((β−λ) girth rγe )−4P (rγe ).

Lemma 5.4. (Local density of A(γ)—Case II) The number of edges in Nγ
e whose

walls separate p from q is estimated as follows:

|E(Nγ
e )∩A(γ)|>Φ(β girth rγe )−4P (rγe ).
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Proof. Again, let B be the set of edges f in Nγ
e such that their wall wf intersects

Nγ
e in exactly one edge. Then, wf separates p′ and q′. As in Case I (see (26)), by (25),

we have the following lower bound:

|B|>Φ(|E(Ne)|)>Φ(β girth rγe ).

We estimate again the number of edges f in B\A(γ). As in Case I (Lemma 5.3),

we consider separately two possibilities (C and D) for such an edge f to fail belonging

to A(γ). The same considerations as in Case I lead to the estimates

|C|6 2P (rγe ) and |D|6 2P (rγe ).

Combining all the inequalities above, we get

|E(Nγ
e )∩A(γ)|> |B∩A(γ)|> |B|−|C|−|D|>Φ(β girth rγe )−4P (rγe ).

We are ready to combine all the previous estimates to obtain the final local estimate.

Lemma 5.5. (Local density of A(γ)) For e /∈A(γ), the number of edges in Nγ
e whose

walls separate p from q is estimated as follows:

|E(Nγ
e )∩A(γ)|>Ω(girth rγe ).

Proof. We use the lacunarity condition from Definition 5.1, and Lemma 5.3 or

Lemma 5.4.

5.2. Properness of the wall pseudo-metric

Using the local estimate on the density of A(γ) from Lemma 5.5, we now estimate the

overall density of edges with walls separating p and q, thus obtaining the properness of

the wall pseudo-metric dW .

Theorem 5.6. (Properness) There exists a homeomorphism Ψ: [0,+∞)![0,+∞)

such that

d(p, q)> dW(p, q)>Ψ(d(p, q)).

Proof. The left inequality is clear. Now we prove the right one. Define

Ψ: [0,+∞)−! [0,+∞)
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as a homeomorphism such that Ψ(d)6min
{

1
2

√
d,Ω(∆(

√
d))
}

. For given p and q, we

denote d:=d(p, q). If d=1, then

1 = dW(p, q)>Ψ(d(p, q)) = Ψ(1).

Further, we assume d>2.

We work with the family {Nγ
e }e⊆γ of relator neighborhoods, as defined in §5.1. We

consider separately the following two cases.

Case 1. There is and edge e in γ with |E(Nγ
e )|>

√
d. Observe that then e /∈A(γ).

For such an edge e, by the large girth condition from Definition 5.1, we have

girth rγe >∆(diam rγe )>∆(|E(Nγ
e )|)>∆(

√
d ),

and thus, by Lemma 5.5, we obtain

|A(γ)|> |A(γ)∩E(Nγ
e )|>Ω(girth rγe )>Ω(∆(

√
d )). (29)

Case 2. For every edge e in γ we have |E(Nγ
e )|<

√
d. Then, as in the proof of [AO1,

Lemma 2.1], there is a family {e1, e2, ..., ek} of edges in γ, such that Nγ
ei∩Nγ

ej =∅, for

i 6=j and k> 1
2

√
d. Therefore, by Lemma 5.5 and by the fact that |A(γ)∩E(Nγ

ei)|=1 for

ei∈A(γ), we have

|A(γ)|>
k∑
i=1

|A(γ)∩E(Nγ
ei)|>

k∑
i=1

1>

√
d

2
. (30)

Combining formulas (29) and (30), we obtain

dW(p, q)> |A(γ)|>Ψ(d(p, q)).

6. PW non-A groups

In this section we prove Theorem 2 from the introduction; see Theorem 6.3 below. For

the whole section, we assume that Θ consists of D-regular graphs, for some D>3. (This

assumption could be ‘coarsely weakened’; see [Wil2].) We fix λ∈
(
0, 1

24

]
and, using Theo-

rem 2.7, a labelling (Θ,m)=((Θn,mn))n∈N with the following property: no mn-labelling

of a path of length at least λ girth Θn in Θn appears as the m-labelling of some other

path in Θ.

First, in §6.1, we derive from (Θ,m) an appropriate sequence of labelled graphs

(Θ̂, m̂)—it consists of coverings of graphs (Θn) with the induced labelling. Then, in §6.2,

we use the sequence (Θ̂, m̂) to define a graphical small cancellation group G with the

required properties.
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6.1. From (Θ,m) to (Θ̃, m̃) and (Θ̂, m̂)

In this subsection, we define pieces in (Θ,m) (resp. (Θ̃, m̃), (Θ̂, m̂)) and P (Θn) (resp.

P (Θ̃), P (Θ̂)) in the following way, corresponding to definitions from §3.1 and §5.

Let p1: p!Θ be a path in Θ, that is, a locally injective simplicial map from a graph

p homeomorphic to a segment. The path p1 is a piece in (Θ,m) if there exists a different

path p2: p!Θ inducing the same labelling of p. In particular, every piece in (Θn,mn)

has length smaller than λ girth Θn. For a vertex v∈Θn, by Pv(Θn) we denote the number

of edges of Θn contained in (images of) all pieces containing v. Consequently, P (Θn)

denotes the maximal number among Pv(Θn), for vertices v of Θn. Observe that, for

the graphical presentation 〈Γ|Θ〉 given by the labelling m, the associated complex X,

as defined in §3.1, has the following property. The pieces in X (as defined in §3.1) are

exactly the compositions p!ri
ϕi−−!X, where p!ri is a piece in a copy ri of some Θn as

defined above.

Labelled graphs (Θ̃, m̃) and (Θ̂, m̂) will be defined below as appropriate coverings

of labelled graph (Θ,m), that is, graph coverings with labellings induced from m by the

covering map. A path p1: p!Θ̃ (resp. p1: p!Θ̂) is a piece in (Θ̃, m̃) (resp. (Θ̂, m̂)) if

there is a different path p2: p!Θ̃ (resp. p2: p!Θ̂) inducing the same labelling of p, and

such that the following holds. There do not exist n and a covering graph automorphism

α: Θ̃n!Θ̃n (resp. α: Θ̂n!Θ̂n) that make the following diagrams commutative:

p
p1 //

p2
��

Θ̃n

Θ̃n

α

??

and

p
p1 //

p2
��

Θ̂n

Θ̂n

α

??

The numbers P (Θ̃n) and P (Θ̂n) are defined correspondingly. Again, pieces in (Θ̃, m̃) and

(Θ̂, m̂) correspond to pieces in the complexes associated with the graphical presentations

〈Γ|Θ̃〉 and 〈Γ|Θ̂〉.
In what follows, the labelled graph covering (Θ̃, m̃) will be chosen so that girth Θ̃n

is large compared to P (Θ̃n); see Lemma 6.2. We assume that all the coverings Θ̃n!Θn,

Θ̂n!Θ̃n, and Θ̂n!Θn are regular (in other words, normal), that is, the corresponding

subgroups of fundamental groups are normal. This implies that the groups of covering

graph automorphisms act transitively on fibers. Recall, that the Z2-homology cover

Σ̃!Σ is the cover corresponding to the characteristic subgroup of π1(Σ) being the kernel

of the abelianization map π1(Σ)!H1(Σ;Z2). The covers Θ̂n!Θ̃n are Z2–homology

covers, and the covers Θ̃n!Θn may be (thought of as) iterated Z2-homology covers.

Observe that then all the coverings Θ̃n!Θn, Θ̂n!Θ̃n, and Θ̂n!Θn are regular. It is so,

because characteristic subgroups of normal subgroups are themselves normal subgroups.
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Lemma 6.1. Every piece in (Θ̃n, m̃n) (resp. in (Θ̂n, m̂n)) has length smaller than

λ girth Θn. Furthermore, P (Θn)=P (Θ̃n)=P (Θ̂n).

Proof. We treat the case of (Θ̃n, m̃n)—the other case can be treated the same way.

Suppose there is a piece p1: p!Θ̃n with p of length at least λ girth Θn. Restricting the

domain, we may assume that |p|<girth Θn. Then, necessarily, there is a different path

p2: p!Θ̃n inducing the same labelling of p (otherwise we would get too long piece in

(Θ,m)). As the group of covering automorphisms acts transitively on fibers of Θ̃n!Θn,

if there did not exist a covering automorphism α: Θ̃n!Θ̃n such that the diagram

p
p1 //

p2
��

Θ̃n

Θ̃n

α

>>

commutes, then the compositions of p1 and p2 with the covering map Θ̃n!Θn would

result in different paths in Θn inducing the same labelling of p. This would lead to

contradiction. Hence, such α exists for every p2 and it follows that p1 is not a piece,

which again yields a contradiction.

The second statement follows from the fact that the union of (images of) all the pieces

containing a given vertex v in Θ̃n is mapped isometrically onto the union of (images of)

all the pieces containing the image of v in Θn.

For the Z2-homology cover Θ̂n!Θ̃n, as observed by Wise (see [Wis3, §9] and [Wis2,

§10.3]), every Θ̂n is equipped with a structure of graph with walls—a wall consists of

edges in Θ̂n being preimages of a given edge in Θ̃n (see also [AGŠ, §3] and [Os1, Lemma

6]). With this system of walls, we obtain the following lemma, which will allow us

to conclude that the C ′(λ)-complex associated with the graphical presentation 〈Γ|Θ̂〉
satisfies the proper lacunary walling condition from Definition 5.1.

Lemma 6.2. There exist coverings (Θ̃n, m̃n)!(Θn,mn) of appropriately large girth

such that the following holds. There exist β∈
(
0, 1

2

]
and homeomorphisms

Φ,Ω,∆: [0,+∞)−! [0,+∞)

such that, for every n∈N, the following conditions hold :

(1) the degree of Θ̂n is bounded by D;

(2) the length of each piece in Θ̂n is at most λ girth Θ̂n;

(3) Θ̂n satisfies the (β,Φ)-separation property ;

(4) Φ((β−λ) girth Θ̂n)−4P (Θ̂n)>Ω(girth Θ̂n);

(5) girth Θ̂n>∆(diam Θ̂n).
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Proof. (1) is immediate. (2) follows from Lemma 6.1. The existence of ∆ satisfying

(5) follows from the fact that girth Θ̂n!∞ as n!∞.

For (3), the β-condition from Definition 4.1 holds with β= 1
2 , by [AO2, Lemma 7.1].

Now, we show how to choose Φ: [0,+∞)![0,+∞) such that the Φ-condition holds. First,

we choose inductively the coverings (Θ̃n, m̃n)!(Θn,mn) so that the following condition

(*) is satisfied, for every n:

1
3 girth Θ̃n−4P (Θ̂n)> 1

4 girth Θ̃n and

there does not exist a geodesic of length at least 1
3 girth Θ̃n in Θ̂j , for j <n.

(*)

Such a choice is obviously possible because geodesics are simple paths, the graphs Θ̃j are

finite, and P (Θn)=P (Θ̃n)=P (Θ̂n), by Lemma 6.1. Now, for a given number N∈N, we

define a number Φ̃(N) as follows: Φ̃(0)=0, and for N>0 we find a maximal n such that

N> 1
3 girth Θ̃n, and we set

Φ̃(N) := min{N, girth Θ̃n}.

Consider a geodesic γ of length N in some Θ̂j . By the condition (*), we have j>n,

for n as above. Let γ̃ be the image of γ by the projection Θ̂j!Θ̃j . Then, γ̃ is an

admissible path in Θ̃j in the sense of [AGŠ, Definition 3.5], and the edge-length of γ̃ is

N as well [AGŠ, Lemma 3.6 and Proposition 3.8]. Since γ is a geodesic, the path γ̃ has

no backtracks [AGŠ, Remark 3.9]. Hence, if γ̃ does not contain any loop, then every

edge in γ̃ is traversed only once, and consequently, the number of edges in γ whose walls

have exactly one edge in common with γ is N . If γ̃ contains a loop then, necessarily, the

length of this loop is at least girth Θ̃n. By [AGŠ, Lemma 3.12], every edge on the loop is

traversed exactly once, so the number of edges in γ whose walls have exactly one edge in

common with γ is at least girth Θ̃n. Combining the two cases, we get that the number

of edges in γ whose walls have exactly one edge in common with γ is at least Φ̃(N).

Therefore, there exists a homeomorphism Φ: [0,+∞)![0,+∞) satisfying Φ(x)>Φ̃(x),

for all x∈[0,+∞), and ensuring the Φ-condition. Observe that, additionally, Φ can be

chosen so that Φ
(

1
3 girth Θ̃n

)
> 1

3 girth Θ̃n, for all n.

Since β= 1
2 and λ6 1

24 , by the choice of Φ we have

Φ((β−λ) girth Θ̂n)>Φ
(

1
3 girth Θ̃n

)
> 1

3 girth Θ̃n.

Hence, by the condition (*), there exists Ω as in (4).
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6.2. The group

Now we construct a coarsely non-amenable group acting properly on a CAT(0) cubical

complex announced in Theorem 2. The group is defined by a graphical small cancellation

presentation over the sequence Θ̂; see §3 for the notation. Again, Γ is a bouquet of loops,

and the local isometries ϕn: Θ̂n!Γ are defined by the labellings m̂n. We use (Θ̂, m̂) from

Lemma 6.2, that is, satisfying the conditions (1)–(5) there.

Theorem 6.3. (PW non-A group) Let G be the group defined by the graphical

presentation 〈Γ|Θ̂〉, where the local isometries Θ̂n!Γ are defined by labellings m̂n. Then,

G acts properly on a CAT(0) cubical complex and G does not have property A.

Proof. Let X be the complex associated with the graphical presentation 〈Γ|Θ̂〉, as

defined in §3.1. By Lemma 6.2 (2), X is a C ′(λ)-complex, where relators ri are copies of

graphs Θ̂n.

Therefore, by Lemma 3.1, the graphs Θ̂n embed isometrically into the Cayley graph

X(1) of G. Since Θ̂n are regular of degree D>3 and with girths tending to infinity, by a

result of Willett [Wil2], the graph X(1) and, consequently G, have no property A.

To show that G acts properly on a CAT(0) cubical complex, it is enough [Ni], [CN]

to show that G acts properly (with respect to the wall pseudo-metric) on a space with

walls. Clearly, G acts properly on X(0), and thus it remains to show that X satisfies the

proper lacunary walling condition to conclude, from Theorem 5.6, that G acts properly

on (X(0),W). The proper lacunary walling condition follows from Lemma 6.2: separation

follows from (3), lacunarity from (4), and the large girth condition follows from (5).
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