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1. Introduction

The problem of giving asymptotic formulas for moments of large-degree L-functions

has proven challenging. In approaching this problem, one encounters difficult analytic

questions in the representation theory of reductive Lie groups, involving complicated

multi-dimensional oscillatory integrals.

The orbit method (see, e.g., [Ki2], [Vo3]) is a philosophy for, among other purposes,

reducing difficult problems in the representation theory of Lie groups to simpler problems

in symplectic geometry. It has been widely applied in the algebraic side of that theory.

This paper develops the orbit method in a quantitative analytic form. We com-

bine the tools thus developed with an indirect application of Ratner’s theorem to study

moments of automorphic L-functions on higher-rank groups.

1.1. Overview of results

We refer the reader who is not familiar with automorphic forms to §1.3 and onwards for

an introduction, in explicit terms, to the main ideas of this paper.

Let H �
�
// G be an inclusion of reductive groups over a number field F . Let Π and

Σ be cuspidal automorphic representations of G and H, respectively. Assuming that

H �
�
// G is a strong Gelfand pair, and under a temperedness assumption, one may define

an “automorphic branching coefficient” L(Π,Σ)>0 which quantifies how vectors in Π
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correlate with Σ. We recall this definition in a simple setting in §1.4 and more fully in

§25.4.

We focus on the “Gan–Gross–Prasad” case (§13) in which

(G,H) is a form of either (SOn,SOn−1) or (Un,Un−1).

The definition of L(Π,Σ) then applies, at least for tempered Π and Σ, and one expects

L(Π,Σ) to be related to special values of L-functions: Ichino–Ikeda [II] and N. Harris

[HarN] conjecture the formula

L(Π,Σ) = 2−β
L(R)

(
1
2 ,−,Π×Σ∨

)
L(R)(1,Ad,Π×Σ∨)

∆
(R)
G , (1.1)

whose terms are as follows (see [II] and [HarN] for details):

• R is a fixed set of places outside of which Π and Σ are spherical (and thus L(Π,Σ)

depends upon R);

• Σ∨ denotes the contragredient of the unitary representation Σ; it is isomorphic to

the conjugate representation 	Σ, and we will occasionally use the latter notation;

• L(R) denotes an L-function without Euler factors in R;

• 2β is the size of the Arthur component group of Π�Σ∨ on G×H;

• ∆G is the L-function whose local factor at almost every prime p equals

pdim(G)

#G(Fp)

(see [Gr]); e.g., ∆G=ζ(2)ζ(4) ... ζ(2n) for G=SO2n+1; ∆
(R)
G omits factors at R.

The formula (1.1) has been proved in the unitary case, under local assumptions

which allow one to use a simple form of the trace formula, by W. Zhang [Z1] (see also

[Z2, §2.2] and [BP4]).

Fix one such Π. What are the asymptotic statistics of L(Π,Σ), as Σ varies over a

large family? For example, what are the moments? Predictions for these may be obtained

via (1.1) and random matrix heuristics (§1.2) for families of L-functions. To verify such

predictions rigorously has proved an interesting challenge, testing our understanding of

families of automorphic forms and L-functions. It has been successfully undertaken in

many low-degree cases, where obtaining strong error estimates remains an active area of

research (see, e.g., [BFK+], [BM], [KMS], [BFS+] and references).

We aim here to explore some first cases of arbitrarily large degree. Our main result

(Theorem 31.11) may be summarized informally as follows.
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Theorem 1.1. Assume certain local conditions, including the compactness of the

quotients G(F )\G(A) and H(F )\H(A). For each sufficiently small positive real h, let

Fh be the family of all Σ as above which are locally distinguished by Π, have Satake

parameters at some fixed archimedean place inside the rescaling h−1 Ω of some nice fixed

compact set Ω, and have “fixed level” at the remaining places in R. Then, the branching

coefficient L(Π,Σ), averaged over Σ∈Fh, is asymptotic to 1
2 :

lim
h!0

1

|Fh|
∑

Σ∈Fh

L(Π,Σ) =
1

2
. (1.2)

For “typical” Π and Σ, we expect that (1.1) holds with β=2 (see §25.5 for further

explanation). Our result should thus translate, under (1.1), as follows:

The average value of
L(R)

(
1
2 ,−,Π×Σ∨

)
L(R)(1,Ad,Π×Σ∨)

∆
(R)
G is 2. (1.3)

We outline in §1.2 why (1.3) agrees with random matrix theory heuristics for orthogonal

families of L-functions with positive root number.

One way to normalize the strength of (1.2) is to note (§31.4) that the size of the

family Fh is roughly the fourth power of the analytic conductor of the relevant L-function.

By ignoring all but one term and slowly shrinking the family, we obtain a “weakly

subconvex” bound

L(Π,Σ) = o(cond(Π×Σ)1/4) (1.4)

(compare with [So], [SoTh]). The hypotheses relevant for (1.4) are that Π is fixed, while

Σ traverses a sequence whose archimedean Satake parameters all tend off to ∞ at the

same rate.

The new ideas used to obtain (1.2) are based on the orbit method, applied in two

ways:

• To determine the asymptotics of complicated oscillatory integrals on higher-rank

groups. For instance, Theorem 19.3 gives general and uniform asymptotic expansions

of relative characters away from the conductor-dropping locus. This analysis gives a

robust supply of analytic test vectors for the local matrix coefficient integrals as in the

conjecture of Ichino–Ikeda. We hope these to be of general use in analytic problems

involving families of automorphic forms in higher rank.

• To obtain invariant measures towards which we can apply measure-theoretic tech-

niques. Indeed, a major global ingredient for (1.2) is an application of Ratner’s theorem

to the case of measures invariant by the centralizer of a regular nilpotent element in

G(F ). The estimate (1.2) is ineffective, and the application of Ratner is solely responsi-

ble for the ineffectivity. We expect that an effective version of Ratner’s theorem for the



the orbit method and analysis of automorphic forms 5

case at hand would lead to a subconvex estimate for L(Π,Σ); this perhaps contributes

interest to the problem of effectivization.

To implement these, we develop a microlocal calculus for Lie group representations,

which may be understood as a quantitative, analytic form of the orbit method and the

philosophy of geometric quantization.

These basic ideas do not interact with the arithmetic nature of the setting; in par-

ticular, we do not use Hecke operators. However, the problem of averaging and bounding

L-functions seems to be the most interesting source of applications at the moment.

1.2. Compatibility with random matrix heuristics

We briefly outline why our result (1.3) should be compatible with the standard heuristics.

Random matrix theory heuristics (see, e.g., [BK] and references, such as [KaSa], [CF],

[CFK+], [KeSn1], [KeSn2]) suggest, for a family of L-functions L( 1
2 , f) parameterized by

elements f of some nice enough family F , that

1

|F|
∑
F
L(R)

(
1

2
, f

)
≈ (global factor g)×

∏
p

〈ap〉,

where

• p runs over the finite primes of F outside R,

• 〈ap〉 is the expectation

〈ap〉 :=
1

|F|
∑
F
Lp

(
1

2
, f

)

of the central value of the pth Euler factor, and

• the “global factor” g is described by random matrix theory, and given here by the

following limit of integrals taken with respect to probability Haar measures:

g= lim
N!∞

∫
x∈SO(2N)

det(1−x).

Indeed, the symmetry type [KaSa] of the family of L-functions implicit in (1.2) is O(2N),

i.e., it is an orthogonal family with positive root numbers. One may see this by, for

instance, considering the analogous situation with the number field replaced by a function

field (see also [ShTe] and [SST]).

Each integral ∫
x∈SO(2N)

det(1−x)
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equals 2, independent of N . Indeed, det(1−x) is the (super-)trace of x∈SO(2N) on∧∗
(C2N ). The average trace of x on

∧j
(C2N ) computes the dimension of invariants,

which is 1 for j∈{0, 2N} and 0 otherwise. Thus, g=2.

We sketch here why 〈ap〉=1 for every p. We expect the families Fh considered here

to have the (provable) property that the local component σp at p of a uniformly random

element Σ∈Fh becomes distributed, as h!0, according to the Plancherel measure dσp,

thus

〈ap〉=
∫
σp

Lp
(

1
2 ,−, πp×σ

∨
p

)
Lp(1,Ad, πp×σ∨p )

∆G,p︸ ︷︷ ︸
=:I(πp,σp)

dσp.

Ichino and Ikeda [II, Theorem 1.2] have shown in the orthogonal case, and N. Harris

[HarN, Theorem 2.12] in the unitary case, that this integral can be rewritten as a matrix

coefficient integral:

I(πp, σp) =

∫
h∈Hp

〈hv, v〉〈u, hu〉 dh,

where v∈πp and u∈σp are spherical unit vectors and dh is the Haar measure assigning

unit volume to a hyperspecial maximal compact subgroup. Using the Plancherel formula,

one can show (§18) that ∫
σp

I(πp, σp) dσp = 1,

as required.

We have not discussed yet the quantity β as in (1.1). As mentioned above, we expect

for “typical” Π and Σ that β=2. However, for “atypical” Π (i.e., endoscopic lifts), one

can have β>2 in the entire family. In that case, the limit of (1.3) is instead a larger

power of 2. Correspondingly, the L-function in question factors. It seems to us that our

result continues to match with L-function heuristics after appropriately accounting for

this factorization and variation of root numbers, but we have not checked all details.

The random matrix theory predictions for higher moments involve somewhat more

complicated coefficients than the quantity g=2 appearing above. It may be possible to

study higher moments by adapting our method to periods of Eisenstein series, and would

be interesting to obtain in that way some geometric perspective on those predictions.

1.3. Basic setup

We now simultaneously outline the contents of this paper and sketch the main arguments.

Suppose given a pair of unimodular Lie groups G and H, with H6G. An example

relevant for our main theorem is when

G and H are the real points of the split forms of SOn+1 and SOn.
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We assume that representations of G have “multiplicity-free restrictions” to H, as hap-

pens in the indicated example (see [SZ] for a precise statement and proof).

Suppose also given a lattice Γ in G for which ΓH :=Γ∩H is a lattice in H. We

assume that both quotients

[G] := Γ\G and [H] := ΓH \H

are compact. We equip them with Haar measures.

For the motivating applications to L-functions, we must consider adelic quotients.

This entails some additional work at “auxiliary places” (see §24), which we do not discuss

further in this overview.

1.4. Branching coefficients: comparing global and local restrictions

Let

π⊆L2([G])

be an irreducible unitary subrepresentation, with the group G acting by right transla-

tion. We assume that π is tempered. The branching coefficients of interest arise from

comparing the two natural ways to restrict π to H:

• (Globally) Take a smooth vector v∈π. It defines a function on [G]. We may

restrict it to obtain a function v|[H] on [H]. The L2-norm of that restriction may be

decomposed as ∫
[H]

|v|2 =
∑

irreducible σ⊆L2([H])

‖projection of v|[H] to σ‖2. (1.5)

• (Locally) Consider π as an abstract unitary representation of G. We may restrict

it to obtain an abstract unitary representation π|H of H. We verify in the examples of

interest (see §18) that this restriction decomposes as a direct integral

π|H =

∮
σ

mσσ,

weighted by multiplities mσ∈{0, 1}, and taken over tempered irreducible unitary repre-

sentation σ of H with respect to Plancherel measure. We may define the components

prσ(v)∈σ of a smooth vector v∈π with respect to this decomposition, and we have

‖v‖2 =

∫
σ

‖prσ(v)‖2. (1.6)

A priori, ‖prσ(v)‖ is defined only as a measurable function of σ, but there is a natural

way to define it pointwise in the cases of interest.
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Let σ⊆L2([H]) be an irreducible tempered subrepresentation for which mσ=1; we

refer to such σ as π-distinguished. By the multiplicity-1 property, we may define a

proportionality constant L(π, σ)>0 by requiring that, for every smooth vector v∈π,

‖projection of v|[H] to σ‖2 =L(π, σ)·‖prσ(v)‖2. (1.7)

We note that L(π, σ) depends upon the choices of Haar measure.

1.5. Objective

Let h traverse a sequence of positive reals tending to zero, and let Fh be a corresponding

sequence of families consisting of irreducible tempered representations σ⊆L2([H]) for

which mσ=1.

Assume that each family Fh arises from some nice subset F̃h of the π -distinguished

tempered dual of H as the set of all irreducible σ⊆L2([H]) for which the class of σ

belongs to F̃h. Assume that |Fh|!∞ as h!0. (In our main theorem, we take for F̃h

the set of σ whose infinitesimal character belongs to the rescaling h−1 Ω of some fixed

non-empty bounded open set Ω.) Our aim is to determine the asymptotics of the sums∑
σ∈Fh

L(π, σ).

In our motivating examples, these are (in some cases conjecturally) proportional to sums

of special values of L-functions.

We drop the subscript h in what follows for notational simplicity.

1.6. Strategy

The rough idea of our proof is to find a vector v∈π which simultaneously “picks out the

family F” in that

‖prσ(v)‖2≈
{

1, if σ ∈ F̃ ,

0, if σ /∈ F̃ ,
(1.8)

and “becomes equidistributed” in that∫
[H]
|v|2

vol([H])
∼

∫
[G]
|v|2

vol([G])
. (1.9)

The vector v will of course depend upon the family F=Fh, hence upon the asymp-

totic parameter h>0, and the above estimates are to be understood as holding asymp-

totically in the h!0 limit. Note that (1.8) is a purely local problem of harmonic analysis



the orbit method and analysis of automorphic forms 9

in the representation π, whereas (1.9) is a global problem: it relates to the specific way

in which π is embedded in L2([G]).

The Weyl law on [H] says that the cardinality of F is approximately the volume of

[H] times the Plancherel measure of F̃ , and thus, by (1.8) and (1.6),

|F|≈ vol([H])‖v‖2. (1.10)

Comparing (1.5), (1.7) and (1.8) with (1.10) yields the required asymptotic formula

1

|F|
∑
σ∈F
L(π, σ)∼ 1

vol([G])
. (1.11)

In applications, the volumes are defined using Tamagawa measure and given then by

vol([H]) = vol([G]) = 2.

Thus, (1.11) leads to (1.2).

Observe, finally, that it suffices to produce families of vectors vi, i∈I, for which the

analogues of (1.8) and (1.9) hold on average over the index set I.

We note that this basic strategy has appeared (sometimes implicitly) in several

antecedent works (see, e.g., [Sar], [BR2], [Ve], [MV]). We would like to note, in particular,

the influence of the ideas of Bernstein and Reznikov in exploiting the uniqueness of an

invariant functional. The novelty here is that we execute this strategy successfully in

arbitrarily large rank.

1.7. Microlocal calculus for Lie group representations

To implement this strategy, we need some way to produce and analyze (families of)

vectors in the representation π. Our approach, inspired by microlocal analysis, is to

work with vectors implicitly through their symmetry properties under group elements

g∈G within a suitable shrinking neighborhood of the identity element. Since we do

not expect our readers to have extensive prior familiarity with microlocal analysis, we

describe here its content in our setting. The discussion in this section is rather informal,

but we hope that the reader will find it helpful in navigating the many technical estimates

of the text.

Let g denote the Lie algebra of G, and g∧ the Pontryagin dual of g; we identify g∧

with the imaginary dual ig∗, and denote by exξ∈C(1) the image of (x, ξ)∈g×g∧ under

the natural pairing.
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The shrinking neighborhood in question depends upon an infinitesimal scaling pa-

rameter h!0. Informally, we say that a vector v∈π is microlocalized at ξ∈g∧ if

π(exp(x))v≈ exξ/ hv (1.12)

for all x∈g of size |x|=O(h). In practice, we choose h small enough in terms of π that such

vectors exist. For instance, if π is generated by a Maass form ϕ of Laplace eigenvalue λ on

a locally symmetric space Γ\G/K, then we choose h comparable to or smaller than the

“wavelength scale” |λ|−1/2 of ϕ; similar considerations apply more generally, with the role

of wavelength scale played by the inverse root norm |λπ|−1/2 of the infinitesimal character

of π (see §9.8). We quantify the heuristic (1.12) in several different ways throughout this

paper, typically by working with sequences of representations π=πh and vectors v=vh

that vary with h and asking that the difference between the left- and right-hand sides of

(1.12) decay at some specified rate as h!0.

The group elements g=exp(x) with |x|=O(h) approximately commute as h!0, and

so the operators π(g) may be approximately simultaneously diagonalized; their common

approximate eigenvectors are the microlocalized vectors. We might thus hope for an

approximate decomposition

π≈
⊕
ξ

Cvξ, (1.13)

where ξ traverses a subset of g∧ and vξ∈π is microlocalized at ξ, and to have an approx-

imate functional calculus

Oph: {symbols g∧!C}−! {operators on π}, (1.14)

Oph(a)vξ ≈ a(ξ)vξ, (1.15)

where “symbol” refers to a class of functions with suitable regularity.

To implement such ideas rigorously, we write down an operator assignment (1.14)

and verify that it has the properties suggested by the heuristics (1.13) and (1.15). The

assignment is similar to the classical Weyl calculus in the theory of pseudodifferential

operators, which may be recovered (more-or-less) by specializing our discussion to stan-

dard representations of Heisenberg groups. The definition and basic properties of this

assignment are philosophically unsurprising. If a: g∧!C is the Fourier mode correspond-

ing to a small enough element x in the Lie algebra of G, then Oph(a)=π(exp(hx)). If

a is real-valued, then Oph(a) is self-adjoint. If a is positive, then Oph(a) is asymptot-

ically positive as h!0. The association a 7!Oph(a) is nearly G-equivariant. One has

composition formulas relating Oph(a)Oph(b) to Oph(a?hb) for a suitable star product

a?hb, bounds for operator and trace norms, and so on; see Theorems 4.5–5.8, 6.3–8.11

and 12.2.
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Our main input concerning π is the Kirillov character formula, due in this case to

Rossmann, which asserts roughly (see §12 for a precise statement) that

tr(Oph(a))≈
∫

hOπ
a dω, (1.16)

where Oπ⊆g∧ is a G-orbit (or finite union thereof), called the coadjoint orbit attached

to π. In the metaphor of microlocal analysis, the coadjoint orbit Oπ is the “phase space”

underlying π; it bears the same relationship to π as the cotangent bundle T ∗M of a

manifold M does to L2(M). The coadjoint orbit is equipped with a canonical symplectic

structure, and dω is the associated symplectic volume form.

For each real-valued symbol a, we may informally identify the self-adjoint operator

Oph(a) with a family of vectors (vi)i∈I by writing it in the form
∑
i∈I vi⊗v̄i for some

vi∈π; here we have identified operators on π with elements of (a suitable completion of)

π⊗π̄. If the symbol a is taken to be suitably concentrated near a regular point ξ∈g∧, then

the corresponding family is essentially a singleton (i.e., of cardinality O(h−ε)), consisting

of vectors microlocalized at ξ. By decomposing the constant symbol a=1 associated with

the identity operator Oph(a)=1 and appealing to (1.16), we may write any reasonable

vector as a linear combination of microlocalized vectors vξ, taken over representatives

ξ/ h for a partition of the coadjoint orbit Oπ into pieces of unit symplectic volume. We

may thus regard the microlocalized vectors as giving an approximate basis (1.13), with

respect to which the Oph(a) act as the approximate multipliers (1.15); in other words,

Oph(a)≈
∑

ξ∈hOπ

a(ξ)vξ⊗v̄ξ.

In this way, the Oph-calculus parameterizes weighted families of microlocalized vectors.

These considerations apply uniformly across the various classes of tempered representa-

tions of G (principal series, discrete series, etc.) and without reference to any explicit

model.

Informally, if the dominant contribution to the decomposition of a vector v∈π as a

sum
∑
vξ of microlocalized vectors comes from those ξ belonging to some nice subset of

hOπ, then we refer to that subset as the microlocal support of v; equivalently, it describes

where the distribution on g∧ given by a 7!〈Oph(a)v, v〉 is concentrated. A vector is then

microlocalized if its microlocal support is concentrated near a specific point.

These notions from microlocal analysis play a central role throughout the paper, so

we illustrate their content in a couple basic examples. Figure 1 depicts coadjoint orbits

for certain representations π of the groups

G= SO(3) and G= SO(1, 2)∼= PGL2(R),
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Figure 1. Coadjoint orbits for (SO3, SO2).

respectively; in the latter case, π belongs to the holomorphic discrete series.(1) Each of

these groups contains the compact subgroup H=SO(2). The circles drawn on the orbits

are level sets for the “z-coordinate” projection g∗!h∗ dual to the inclusion h
� � // g

of Lie algebras. They divide the orbits into strips of equal symplectic volume, say of

volume 1, which correspond under the orbit method philosophy to the basis of π given

by H -isotypic weight vectors en; the strip should be regarded as the microlocal support

of the corresponding weight vector. We may normalize the weights n to be even integers

lying in {
[−k, k], if G= SO(3),

(−∞,−k−2]∪[k+2,∞), if G= SO(1, 2)∼= PGL2(R),
(1.17)

for some non-negative even integer k.

Let us now take k tending off to∞, but simultaneously zoom out our camera by the

factor k, so that the above picture of the coadjoint orbit Oπ remains constant. Which

weight vectors should we then consider to be “microlocalized”? That is to say, for which

vectors does the “zoomed out” microlocal support concentrate within some small distance

of a specific point in the picture as k!∞? The strength of this notion depends upon

the definition of “small distance”, which can sensibly range from the weakest scale o(1)

to the Planck scale O(k−1/2).

Vectors of highest or lowest weight (e±k or e±(k+2)) are microlocalized, even at

the Planck scale, since the corresponding strips are concentrated near the “caps” of the

coadjoint orbit (i.e., the regions of extremal z-coordinate). By contrast, “typical” weight

vectors—such as the weight-zero vector e0 in the representation of SO(3), corresponding

to the equatorial strip—are not microlocalized, even at the weakest scale. In particular,

weight vectors do not give an approximate basis of microlocalized vectors as in (1.13).

The partition of the coadjoint orbit corresponding to a microlocalized basis would instead

(1) The pictures were created using the online graphing calculator GeoGebra [Hoh].



the orbit method and analysis of automorphic forms 13

Figure 2. Rescaling to the nilcone.

have every partition element concentrated near a specific point.

Microlocalized vectors occasionally go in the literature by other names, such as

“coherent states”. They are extremely useful for the sort of asymptotic analysis pursued

in this paper. Among other desirable properties, their matrix coefficients behave simply

near the identity, and are as concentrated as possible; we discuss this phenomenon further

in §1.10.

In the body of this paper, we do not often refer explicitly to microlocalized vectors.

We instead work with them implicitly through their approximate projectors Oph(a). We

hope that by phrasing the introduction in terms of microlocalized vectors, it may serve

as a useful guide to the ideas behind the arguments executed in the body.

1.8. Measure classification; equidistribution

In the discussion starting in §1.7, we allowed both π and h to vary simultaneously.

Let us suppose now that the representation π is held fixed, independent of the scaling

parameter h. As h!0, the rescaled coadjoint orbit hOπ then tends to a subset of the

nilcone N⊆g∧. Figure 2 depicts this for the coadjoint orbits corresponding to fixed

principal series representations of G=SO(1, 2)∼=PGL2(R). The operators Oph(a) are

negligible unless a is supported near N .

We thereby obtain in the h!0 limit a sequence

{functions N !R} Oph−−−! {self-adjoint T ∈End(π)}−! {measures on [G]}, (1.18)

where the final map sends T=
∑
i vi⊗v̄i∈End(π)∼=π⊗π̄ to

∑
i |vi|2(x) dx, with dx the

chosen Haar measure on [G]. In §26, we implement this informal discussion rigorously

and construct a G-equivariant limit map from functions on N to measures on [G]. We

emphasize that this limit map is insensitive to the shape of the unscaled coadjoint orbit

Oπ, whose role becomes replaced in the limit by a subset of the nilcone N .

A key observation is now that the limits of the measures on [G] obtained via (1.18)

may be understood using Ratner’s theorem. The application of Ratner is indirect, be-
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cause these measures themselves do not acquire any obvious additional invariance; rather,

they may be decomposed into measures having unipotent invariance.

Indeed, after suitably rescaling, we may describe the limiting behavior of the se-

quence (1.18) in terms of a G-invariant measure µ on the product space N×[G]. Let

Nreg⊆N denote the regular subset; it is the union of the open G-orbits on the nilcone

N , and its complement N \Nreg has lower dimension. We assume that π is generic,

or equivalently, has maximal Gelfand–Kirillov dimension (cf. §11.4.2); for instance, the

principal series satisfy this assumption. Then, the support of µ intersects Nreg×[G]. By

disintegrating the restriction of µ to Nreg×[G] over the projection to Nreg, we obtain a

non-trivial family of measures µξ on [G] indexed by ξ∈Nreg. Speaking informally, we

may regard µξ as the h!0 limit of an average of L2-masses |vξ|2(x) dx taken over all

vectors vξ microlocalized at ξ. In any case, each such measure µξ is invariant by the

centralizer of the regular nilpotent element ξ. In favorable situations, an application of

Ratner’s theorem then forces the µξ and hence µ itself to be uniform.

This last paragraph mimics, in the context of Lie group representations, some of

the semiclassical ideas behind the construction of the microlocal lift. We discuss this

connection at more length in a sequel to this paper.

The argument just described gives a rich supply of families (vi)i∈I of vectors vi∈π
for which ∫

[G]

|vi|2Ψ∼

∫
[G]
|vi|2

vol([G])

∫
[G]

Ψ, on average over i∈ I, (1.19)

for fixed continuous functions Ψ on [G]. Although the characteristic function of [H]⊆[G]

is not itself continuous, we may deduce an averaged form of (1.9) by applying a similar

argument to the derivatives of the functions obtained via (1.18) and appealing to the

Sobolev lemma. This approach may be understood as an infinitesimal variant of the

“period thickening” technique of Bernstein–Reznikov [BR1].

1.9. Branching and stability

Having indicated how we achieve the objective (1.9), we turn now to the problem of

producing (families of) vectors v which pick out the family F as in (1.8).

This is a quantitative version of the branching problem in representation theory: we

wish to understand not only how a representation of G restricts to H, but in fact the

behavior of individual vectors under the restriction process. Our approach is inspired by

the following basic principle of the orbit method: restricting π to H should correspond

to

disintegrating the coadjoint orbit Oπ along the projection g∧−! h∧. (1.20)
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For example, the distinction of σ by π should be equivalent, at least asymptotically, to

the existence of a solution to the equation

ξ|h = η, (1.21)

with (ξ, η)∈Oπ×Oσ⊆g∧×h∧.

The geometry of the projection (1.20) plays an important role in our argument, so

we devote a fair amount of space to studying it in a purely algebraic context (see §13,

§14 and §16). Of particular significance is the branch locus of (1.20), i.e., the locus where

the map Oπ!h∧ induced by (1.20) fails to have surjective differential. Many features of

our analysis break down near this branch locus.

We recall, from geometric invariant theory, that ξ∈g∧ is called stable if the following

conditions are satisfied (see §14 for details):

• ξ does not lie in the branch locus; equivalently, ξ has trivial h-stabilizer;

• ξ has closed H-orbit, where H is the algebraic group underlying H.

This notion plays a fundamental role in our paper, and appears to be analytically

significant: the complement of the stable locus is where the analytic conductor C(π×σ̄)

of the Rankin–Selberg L-function L(π×σ̄, s) drops (see §15.4).

For instance, in the basic examples depicted in Figure 1, with G∈{SO(3),SO(1, 2)}
and H=SO(2), the coadjoint orbits for H are just singletons {η}, corresponding to 1-

dimensional representations, and the equation (1.21) says that ξ should have z-coordinate

given by η; in other words, the solutions to (1.21) are the horizontal slices shown in the

diagram.

The stable case, in Figure 1, is when ξ is not at the north or south poles of the

sphere. Note that the group H=SO(2) of rotations fixing the z-axis acts transitively on

any circle in Oπ with z-coordinate η, and freely away from the poles. This is a general

pattern: the set of solutions to (1.21)—if non-empty—admits a diagonal action by H,

which is simply transitive in the stable case (cf. §14.3 and §17).

Figure 3 depicts the coadjoint orbit of a principal series representation π of G=

SO(1, 2)∼=PGL2(R), with H being the diagonal subgroup SO(1, 1)∼=GL1(R). One sees

again that H acts simply transitively on generic fibers (i.e., away from the “cross”).

1.10. Analysis of matrix coefficient integrals; inverse branching

Having set up the necessary preliminaries regarding the geometry of orbits, we return to

the problem of producing (families of) vectors v which pick out the family F as in (1.8).

The solution involves several steps which may be of independent interest:

(i) We prove in §19 some asymptotic formulas for ‖prσ(v)‖2, on average over v, when

the pair (π, σ) is tempered and the infinitesimal characters of π and σ satisfy a stability
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Figure 3. H -orbits on the one-sheeted hyperboloid.

condition (see §14.2 for the exact definition). In more technical terms, we compute

asymptotically the Fourier transform of relative characters in a small neighborhood of

the identity. The asymptotic formulas readily give a solution (§22) to the inverse problem

of producing (families of) v approximating a given function σ 7!‖prσ(v)‖2. The proofs

depend heavily upon the operator calculus discussed in §1.7.

(ii) We must estimate the “undesirable” contributions to (1.5) coming from σ which

are either non-tempered, non-stable or of “high frequency”. The proofs (see, e.g., §22.3

and §29) apply the operator calculus. We refer to §28 for some discussion of the relevant

subtleties.

As illustration, let us indicate how the methods underlying steps (i) and (ii) address

the analytic test vector problem for a tempered pair (π, σ) in the stable case, i.e., away

from conductor-dropping. Informally speaking, that problem is to find

“nice” vectors v ∈π and u∈σ for which the local period |〈prσ(v), u〉|2 is “large”.

Solutions to this problem have appeared in period-based approaches to the subconvexity

period (see, e.g., [MV, §3.6.1], [NPD2, §2.17.1], [BR2], [Re], [DN], [Bl], [NPD1, Re-

mark 50], [HNS, Theorem 1.2]); the point is that the period formula (1.7) and a “trivial”

estimate for the global period
∫

[H]
vū often suffice to recover the convexity bound for

L-function, suggesting the possibility for improvement in arithmetic settings via Hecke

amplification.

The problem reduces to a robust understanding of the asymptotics of the local

periods, which may be expressed in terms of matrix coefficient integrals as follows (see

§18):

|〈prσ(v), u〉|2 =

∫
s∈H
〈π(s)v, v〉〈u, σ(s)u〉. (1.22)

Such integrals had previously been estimated in some low-rank examples (see, e.g., [Wa],

[Wo], [BR2], [NPS], [FS2], [FS1]) via explicit calculation.
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To analyze (1.22), first decompose as in §1.7 to reduce to the case that v and u are

microlocalized at some elements ξ∈hOπ and η∈hOσ of the rescaled coadjoint orbits. If

ξ and η do not satisfy (1.21), at least up to some small error, then the resulting integral

is readily seen to be negligible.

We thereby reduce to giving an asymptotic expansion for (1.22) when v and u

are microlocalized at a stable solution (ξ, η) to (1.21). One of the main local results

of this paper (§19) establishes such expansions after averaging over small families of

microlocalized vectors, of cardinality O(h−ε) for any fixed ε>0 . Such averages are

harmless for the applications pursued here; we note that the basic technique applies

also in p-adic settings, where such averages may often be omitted (see [HNS, §3] for

illustration in a basic example). Our expansions give in particular a solution to the

test vector problem (modulo taking small averages), which appears to be new even in

some low-rank cases (e.g., for discrete series representations in the triple product setting

H=GL2(R)6G=GL2(R)2).

We summarize the proof of the local result just described. The stability hypothesis

ensures that, if a group element s∈H is not too close to the identity, then it moves any

solution to (1.21) a fair bit (cf. §19.7 for details), so the microlocal support of the pair

of vectors π(s)v and σ(s)v is disjoint from that of v and u, and so the matrix coefficient

integrand in (1.22) is negligible. We may thus truncate the integral (1.22) to the range

where s is small. We evaluate the contribution from this range asymptotically (§19.5),

after a small average over v and u, by applying the Kirillov formula for π and σ. The

application involves some pleasant book-keeping (§16 and §17) concerning disintegration

of volume forms (e.g., of dω on Oπ under Oπ!h∧//H).

The methods described here are more than adequate to produce families of v which

pick out the fairly coarse families F required by our motivating application; see §22. We

hope that they will be useful in many other problems involving asymptotic analysis of

special functions arising from representations of higher-rank groups. There are several

avenues for extending our methods further. For instance, it seems to us an intriguing

problem to obtain analogous asymptotic expansions in non-stable cases.

1.11. Comparison with other work

We briefly discuss the relationship of the ideas of this paper to some others:

(i) The general philosophy that equidistribution results lead to mean value theorems

for L-functions was advocated in [Ve], but the source of the equidistribution in this paper

is quite different from that in [Ve]. The latter dealt exclusively with translates of a given

vector by a large group element, which do not pick out sufficiently flexible families to be
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useful for the higher-rank applications pursued here.

(ii) Bernstein and Reznikov initiated the systematic application of identities such

as (1.7), with a carefully chosen vector, to the estimation of branching coefficients (on

average or individually). Their ideas have deeply influenced our basic strategy (§1.6).

(iii) The orbit method [Ki2] is very well known in the representation theory of Lie

groups and widely used in the algebraic side of that theory. It is particularly satisfactory

in the nilpotent case [Ki1], [ShTs]. However, it does not seem to have been used much

in the way of this paper—that is to say, developed quantitatively along the lines of

microlocal analysis and used as an analytical tool. One example where it has been

applied in such a context is the asymptotic analysis of Wigner 6j symbols; see [Rob]. We

hope it will be useful in many other contexts like this.

Although we have focused on applications to the averaged Gan–Gross–Prasad pe-

riod, we hope that the ideas and methods of this paper, especially those related to the

orbit method, should be helpful in a broader class of problems involving analysis of

automorphic forms in higher rank.

1.12. Reading suggestions

The reader might wish to peruse Part I and then to skip directly to Part V, referring

back to earlier results as needed.
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1.14. General notation and conventions

We collect these here together for the reader’s convenience. We have attempted to include

reminders where appropriate throughout the text.

1.14.1. Asymptotic notation

We write X=O(Y ) or X�Y or Y�X to denote that |X|6c|Y | for some quantity c

which is “constant” or “fixed”, with precise meanings clarified in each situation. We

write X�Y to denote that X�Y�X. “Implied constants” are allowed to depend freely

upon any local fields, groups, norms, or bases under consideration.

1.14.2. The asymptotic parameter h

Throughout this paper, the symbol h will denote a parameter in (0, 1]. Whenever we use

this notation, there will always be an implicit subset H⊆(0, 1] in which the parameter h

takes values; this subset will usually (but not always) be a discrete set with 0 as its only

limit point, reflecting, e.g., the wavelength scale of a family of Laplace eigenfunctions.

We always require the implied constants in any asymptotic notation to be indepen-

dent of h. We use notation such as O(h∞) to denote a quantity of the form O(hN ) for

any fixed N .

By an “h-dependent element” s of some set S, we mean an element that depends,

perhaps implicitly, upon the parameter h∈H, thus s=s(h). We might understand s

more formally as an assignment H!S, h 7!s(h). For instance, an h-dependent positive

real c=c(h)∈R×+ is a map H!R×+ . The parameter h itself may be understood as an

h-dependent positive real, corresponding to the identity map. The terminology applies

even if the set itself varies with h, thus S=S(h); an h-dependent element of S is then an

element of the Cartesian product
∏

h S(h).

1.14.3. Translating between h-dependent and absolute formulations

The results stated in this paper in terms of h-dependent elements can often be refor-

mulated quantitatively for individual h. Namely, a theorem formulated in terms of an

arbitrary h-dependent sequence πh is formally equivalent to an “absolute” statement valid

for all π and all h∈(0, 1]. More frequently, we encounter theorems involving an arbitrary

h-dependent sequence πh of representations and an h-dependent sequence fh of func-

tions which remain bounded with respect to certain norms, where the norms themselves

are typically h-dependent. Such theorems may likewise be reformulated as quantitative
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bounds valid for all π, f and h∈(0, 1]. We illustrate this translation in Remark 6.4. As

one sees in this example, the resulting absolute statements are more explicit but less

succinct. For this reason, we have usually preferred the h-dependent formulation.

1.14.4. Groups

Let k be a field of characteristic zero. We denote by k̄ an algebraic closure of k.

We generally denote by X the set of k-points of a k-variety X (and vice versa, if X

is clear by context). We identify X with X when k=k̄.

By a reductive group G over k, we will always mean a connected reductive algebraic

k-group G. The set G of k-points of G is then Zariski dense (see [Bo2, Corollary 18.3]).

We will frequently use restriction of scalars to regard reductive groups over C also

as reductive groups over R.

For an algebraic k-group G, we denote by G, g and g∗ the respective sets of k-points

of G, of its Lie algebra, and of the k-dual of its Lie algebra. The group G acts on g

and g∗. Recall that an element of one of the latter spaces is regular if its orbit has

maximal dimension, or equivalently, if its centralizer has minimal dimension. We use a

subscripted “reg” to denote subsets of regular elements.

Suppose now that G is an algebraic group over an archimedean local field F , thus

F=R or F=C. We may then regard G as a real Lie group; complex Lie groups do not

play a role in this paper.

For a Lie group G, we write g for its Lie algebra and g∧ for the Pontryagin dual

of g. We identify g∧ with ig∗ (see §2.1 for details).

1.14.5. Unitary representations

Let G be a reductive group over a local field k of characteristic zero. As above, we

denote by G the group of k-points of G. By definition, a unitary representation π of G

is a Hilbert space V equipped with a strongly continuous homomorphism π from G to

the group of unitary operators on V . In Part I, Part II and Appendix A, we commit the

standard abuse of notation by writing π for the Hilbert space V ; we then denote by π∞

the subspace of smooth vectors (where in the non-archimedean case, “smooth” means

“open stabilizer”). In §18, §19, Part IV and Part V, it will be convenient instead to write

π for the subspace of smooth vectors in V . It will occasionally be useful also to confuse

“unitary” with “unitarizable”. The reader will be reminded locally of these conventions.
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1.14.6. Topologies on vector spaces

When given a vector space V defined as the subset of some larger space Ṽ on which some

[0,+∞]-valued seminorms take finite values, we define I(V ) to be the set of restrictions

to V of those seminorms, and equip V with its evident topology : that for which an open

base at v0∈V is given by the sets {v∈V :‖v−v0‖i<ε for all i∈M}, where ε runs over the

positive reals and M over the finite subsets of I(V ). In all examples we consider, the

seminorms will separate points, so V will be a Hausdorff locally convex space.

Example 1.2. This discussion applies to V =C∞(U), for U an open subset of Rn,

taking for I(V ) the set of pairs (K,D), where K⊆U is compact and D is a differential

operator (with smooth coefficients, say) on Rn, with

‖f‖(K,D) := sup
x∈K
|Df(x)|.

It applies also to the Sobolev spaces πs, s∈Z∪{∞}, defined below (§3.2) for a unitary

representation π of a Lie group.

Unwinding the definitions, a linear map T :V!W between two spaces so equipped

is continuous if for each j∈I(W ) there is a finite subset M⊆I(V ) and a scalar C>0 such

that

‖Tv‖j 6C
∑
i∈M
‖v‖i for all v ∈V , (1.23)

while a family of such linear maps Tα:V!W is equicontinuous if, for each j, we may

choose M and C uniformly with respect to the family’s indexing parameter α. We might

also describe the latter situation by saying that Tα is continuous, uniformly in α.

We can make an analogous definition even if the spaces themselves vary, provided

that the indexing sets for their seminorms admit natural identifications. Thus, suppose

Tα:Vα!Wα is a family of linear maps between spaces as above, and suppose also given

identifications I(Vα)=I(Vβ) and I(Wα)=I(Wβ) for all α and β. We may then speak as

above of Tα being continuous, uniformly in α.

Example 1.3. Fix a Lie group G and an element x of its Lie algebra. As π varies

over the unitary representations of G, the family of operators π∞!π∞ defined by x is

continuous, uniformly in π.

Let V be a vector space arising as the increasing union of a sequence of topological

vector subspaces Vm as above, with continuous inclusions.

Example 1.4. C∞c (U), for U as in Example 1.2, can be described in this way, as can

the space π−∞=
⋃
s∈Z π

s of distributional vectors defined below (§3.2).
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By the evident topology on V , we then mean the “locally convex inductive limit”

topology, which may be characterized in either of the following ways:

(i) it is the finest for which the inclusions Vm
� � // V are continuous;

(ii) for every locally convex space T , the continuous maps V!T are precisely those

that restrict to continuous maps Vm!T for each m.

Given another space W as above, we say that a family of maps Tα:V!W is contin-

uous, uniformly in α if for each m, the family of restrictions Tα:Vm!W has the property

explained above.

We consider several examples (§4.5, §5.4 and §12.1) of vector spaces V consisting

of “h-dependent vectors in a varying family of vector spaces, equipped with the evident

topology”. More formally, suppose given:

• h-dependent vector spaces V (h);

• an indexing set I for h-dependent seminorms on V (h); thus, for each i∈I, we are

given an h-dependent seminorm i(h):V (h)![0,∞].

Let V denote the subspace of the Cartesian product
∏

h V (h) consisting of h-

dependent vectors v=v(h) for which the seminorm

‖v‖V,i := sup
h
‖v(h)‖i(h) (1.24)

is finite for each i∈I. We then topologize V by means of these seminorms.

Still in the situation just described, suppose given an h-dependent positive real

c>0. We denote by cV the image of V ⊆
∏

h V (h) under the bijection v 7!cv=c(h)v(h),

equipped with the seminorms and topology transported from V via this bijection. Thus,

an h-dependent vector v=v(h)∈V (h) belongs to cv if every seminorm

‖v‖cV,i := sup
h∈(0,1]

‖c(h)−1v(h)‖i(h)

is finite. For instance, we may speak of the space h10 V ; it is the image of V under

multiplication by h10. We denote by h∞ V the intersection
⋂
η hη V , topologized in the

evident way. In practice, h∞ V consists of h-dependent vectors which are “negligible” in

the h!0 limit.

Example 1.5. Let V be a finite-dimensional real vector space. We topologize the

Schwartz space S(V ), as usual, by means of the seminorms f 7!‖Df‖L∞ indexed by the

polynomial-coefficient differential operators D on V . Per the above conventions, hη S(V )

is the space of h-dependent Schwartz functions f=f(h) whose seminorms satisfy, for each

D as above,

sup
h

h−η ‖Df(h)‖L∞ <∞.

We apply this notation even when η=0; elements of h0 S(V ) are then h-dependent

Schwartz functions whose seminorms are bounded uniformly with respect to h.
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1.14.7. Miscellaneous

For an element ξ of a normed space, we often write

〈ξ〉 := (1+|ξ|2)1/2.

This quantifies the size of ξ, but is never smaller than 1.

When we have equipped some space X (e.g., a group G as above) with a “standard”

measure µ (e.g., a Haar measure), we often write
∫
x∈X f(x) as shorthand for the integral∫

x∈X f(x) dµ(x) taken with respect to the standard measure.

We extend addition to a binary operation + on the extended real line R∪{±∞},
given by

∞+(−∞) = (−∞)+∞ :=−∞,

and in other cases in the obvious way; this extension is used starting in §4.5.

Part I. Microlocal analysis on Lie group

representations I: definitions and basic properties

Let G be a unimodular Lie group over R, with Lie algebra g. Let π be a unitary

representation of G. This part (Part I) and its sequel (Part II) will study the basic

quantitative properties of an assignment Op from functions on the dual of g to operators

on π. We will describe the contents of both parts here; we suggest that the reader peruse

Part I and consult Part II as needed.

§2–§5 and their sequels §7–§8 concern aspects of this assignment which apply to

any unitary representation π, such as π=L2(G).(2) Their results may be equivalently

formulated in terms of the convolution structure on L1(G), and more generally on spaces

of distributions supported near and singular only at the identity element. In particular,

all estimates in these sections are uniform in π.

In §9, we record some preliminaries concerning the relationship between representa-

tions of real reductive groups and their infinitesimal characters. These are relevant for

us because our main result concerns averages over automorphic representations having

infinitesimal character in a prescribed region.

§6 and its sequel §12 establish finer properties of Op for G reductive and π irreducible

and tempered. The relevant consequence of these assumptions is the Kirillov-type for-

mula.

(2) It may be possible to reduce from the general case to this particular one and then to appeal to

the pseudodifferential calculus as in [T, Proposition 1.1], but doing so does not seem to yield an overall
simplification, so we have opted instead for a direct and self-contained treatment.
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We note that §19 in Part III applies the results of Part I to determine (under

certain assumptions) the “asymptotic decomposition” of Op under restriction to certain

subgroups.

The contents of Part I may be understood as generalizations of standard results

in the theory of pseudodifferential operators (see [Hör], [Bea1] and references), which

corresponds roughly to the case in which G is 2-step nilpotent. We note some minor

differences:

(i) The exponential map is neither injective nor surjective for the groupsG of interest

to us, so we work within a fixed small enough neighborhood of the identity element of G.

(ii) The Baker–Campbell–Hausdorff formula is much simpler when G is 2-step nilpo-

tent; for the G of interest, it contains arbitrarily nested commutators. It was not obvious

to us at the outset whether this would present an obstruction.

(iii) The appropriate way to generalize the standard operator classes in the theory

of pseudodifferential operators was not obvious to us; Definition 3.1, given in §3, took

some work to identify.

We note that the ?-product implicit in our operator calculus on the Lie algebra

has been previously considered by Rieffel [Ri], who observed that it gives a deformation

quantization of the Poisson structure. As Rieffel observes in [Ri, p. 658]: “At the heuristic

level, our results also mesh nicely with Kirillov’s orbit method for the theory of group

representations, and perhaps the connection can be made stronger”. The results of this

paper concerning the operator calculi may be seen as steps in this direction. We mention

also the work of Cahen and B. Harris (see for instance [Cah], [HarB]).

Notation

We denote by π∞6π the (dense) subspace of smooth vectors, by U the universal envelop-

ing algebra of gC, and by π:U!End(π∞) the induced map. For u∈U, we occasionally

write simply u instead of π(u) when it is clear from context that u is acting on π.

2. Operators attached to Schwartz functions

We define here the basic construct of the microlocal calculus on representations: an

assignment from Schwartz functions on the dual of the Lie algebra to operators. See

(1.14) and surrounding discussion for motivation. We extend and refine this assignment

in later sections.
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2.1. Measures, Fourier transforms, etc.

We fix an open neighborhood G of the origin in the Lie algebra g, taken sufficiently small.

In particular, exp:G!G is an analytic isomorphism onto its image.

We choose Haar measures dg on G and dx on g satisfying the following compatibility:

for x∈G and g=exp(x), we have dg=j(x) dx, where the analytic function j:G!R>0

satisfies j(0)=1.

Since G is small, the image j(G) is a precompact subset of R>0. We assume also

that −x∈G whenever x∈G.

We use the letters {x, y, z} for elements of g and {ξ, η, ζ} for elements of its imaginary

dual ig∗ :=HomR(g, iR). We denote the natural pairing by xξ :=ξx:=ξ(x)∈iR.

Recall that g∧=Hom(g,C(1)) denotes the Pontryagin dual. We identify ig∗ with g∧

via the canonical isomorphism ξ 7![x 7!exξ]; we will find it clearer to work with g∧ for

analytic purposes, ig∗ for algebraic purposes. In particular, we identify g with the space

of iR-valued linear functions on g∧.

We write S(... ) for the Schwartz space. We equip g∧ with the Haar measure dξ for

which the Fourier transforms S(g)3φ 7!φ∧∈S(g∧) and S(g∧)3a 7!a∨∈S(g) defined by

φ∧(ξ) :=

∫
x∈g

φ(x)exξ dx and a∨(x) :=

∫
ξ∈g∧

a(ξ)e−xξ dξ

are mutually inverse.

We let G act on g by the adjoint action g ·x:=Ad(g)x, on g∧=ig∗ by the coadjoint

action x(g ·ξ):=(g−1 ·x)ξ, and on functions f on either space by g ·f :=f(g−1 ·−).

2.2. The basic operator map

For a neighborhood G of the origin in g as above, we let X (G) denote the set of all

“cut-offs” χ∈C∞c (G) with the following properties:

(i) χ is even: χ(x)=χ(−x) for all x;

(ii) χ(x)∈[0, 1] for all x; in particular, χ is real-valued;

(iii) χ(x)=1 for all x in some neighborhood of the origin.

For G as above, χ∈X (G) and a∈S(g∧), we define the bounded operator

Op(a, χ :π)∈End(π)

by the formula

Op(a, χ :π)v :=

∫
x∈g

χ(x)a∨(x)π(exp(x))v dx. (2.1)

We abbreviate Op(a, χ):=Op(a, χ:π) when π is clear from context. Starting in §5.4, we

further abbreviate Op(a):=Op(a, χ).
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Recall that h denotes a parameter in (0, 1]. For a as above, we define the rescaled

function ah(ξ):=a(h ξ) and the correspondingly rescaled operator

Oph(a, χ) := Op(ah, χ) =

∫
x∈g

χ(hx)a∨(x)π(exp(hx)) dx. (2.2)

As informal motivation for this definition, recall from (1.15) the desiderata that

Oph(a)v≈ a(ξ)v

for v∈π microlocalized at ξ∈g∧, i.e., for which

π(exp(hx))v≈ exξv

whenever |x|�1. Indeed, since a∨(x) is small unless |x|�1, in which case χ(hx)=1, we

see from (2.2) that

Oph(a, χ)v≈
(∫

x∈g
a∨(x)exξ dx

)
v= a(ξ)v.

2.3. Adjoints

Our assumptions on χ imply that the adjoint Op(a, χ)∗ of Op(a, χ), regarded as a

bounded operator on π, is given by Op(ā, χ).

2.4. Equivariance

Let a∈S(g∧), g∈G and χ∈X (G).

Assume that Ad(g)supp(χ)⊆G. Then, g ·χ∈X (G), and we verify readily that

π(g)Op(a, χ)π(g)−1 = Op(g ·a, g ·χ).

2.5. Composition: preliminary discussion

For f∈C∞c (G), we define π(f)∈End(π) by

π(f)v :=

∫
g∈G

f(g)π(g)v dg.

Then,

π(f1)π(f2) =π(f1∗f2), (2.3)
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where ∗ denotes convolution. This fact unwinds to a composition formula for Op(a, χ):

Suppose given a pair of open neighborhoods G and G′ of the origin as above and

cut-offs χ∈X (G) and χ′∈X (G′) for which the following conditions hold:

(i) exp(G) exp(G)⊆exp(G′), so that we may define ∗:G×G!G′ by

x∗y := log(exp(x) exp(y)).

(ii) χ′(x∗y)=1 for all x, y∈supp(χ).

Let us denote temporarily by φ 7!f the topological isomorphism

C∞c (G)−!C∞c (exp(G))

defined by the rule f(exp(x)):=φ(x)j(x)−1. Then, f(g) dg is the push-forward of φ(x) dx,

and so

π(f) =

∫
x∈g

φ(x)π(exp(x)) dx.

We may define continuous bilinear operators ? on C∞c (G), and then on S(g∧), by requiring

that the diagram

C∞c (exp(G))2 ∗ //

∼= φ 7!f

��

C∞c (exp(G′))

f 7!φ ∼=

��

C∞c (G)2 ∗ // C∞c (G′)

φ7!φ∧

��

S(g∧)2

a 7!χa∨

OO

∗ // S(g∧)

commute. The top arrow is defined thanks to (i). The middle arrow may be described

conveniently in terms of the Fourier transform: for φ1, φ2∈C∞c (G) and ζ∈g∧,∫
z∈g

φ1?φ2(z)ezζ dz=

∫
x,y∈g

φ1(x)φ2(y)e(x∗y)ζ dx dy. (2.4)

(Indeed, by definition, φ1?φ2(z) dz is obtained from φ1(x)φ2(y) dx dy by pushing forward

to the group, convolving, and then pulling back to the Lie algebra; testing this definition

against z 7!ezζ gives (2.4).) The bottom arrow, which we refer to as the star product, is

given by a1?a2=(χa∨1 ?χa
∨
2 )∧. Note that ? depends upon χ.

Lemma 2.1. For a1, a2∈S(g∧),

Op(a1, χ)Op(a2, χ) = Op(a1?a2, χ
′). (2.5)
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Proof. Set φi :=χa
∨
i ∈C∞c (G), and let fi∈C∞c (exp(G)) be as associated above. The

identity (2.5) follows from (2.3) upon unwinding the definitions and noting that χ′≡1 on

the support of χa∨1 ?χa
∨
2 .

We also have the rescaled composition formula

Oph(a, χ)Oph(b, χ) = Op(a?hb, χ
′),

where the rescaled star product a?hb is defined by requiring that

(a?hb)h = ah?bh.

We note that ? is recovered from ?h by taking h=1.

3. Operator classes

The operator map (2.1) has been defined for functions a belonging to the Schwartz space

of g∧. We want to extend it to other functions, e.g., functions a that are permitted

polynomial growth at ∞. In that case, Op(a) is no longer a bounded map π!π; rather,

it behaves more like the (densely defined) operator on π induced by an element of the

universal enveloping algebra.

Motivated by this, we define certain classes of densely defined operators on π. These

classes will eventually serve as the target of Op, after we extend its definition to various

symbol classes.

3.1. The operator ∆ and its inverse

Let us fix a basis B :=B(g) of g, and set

∆ := ∆G := 1−
∑
x∈B

x2 ∈U.

We will often confuse ∆ with its image π(∆)∈End(π∞). It has the following properties:

(i) It induces a densely-defined self-adjoint positive operator on π with bounded

inverse ∆−1 (see [NS]). The operator norm of ∆−1 is 61.

(ii) For n>0, let D(∆n)⊆π denote the domain of the densely-defined self-adjoint

operator extending π(∆n). Then, π∞=
⋂
n>0D(∆n) (see [NE, Corollary 9.3]). Conse-

quently, ∆−1 acts on π∞.
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3.2. Sobolev spaces

For s∈Z, we define an inner product 〈−,−〉πs on π∞ by the rule

〈v1, v2〉πs := 〈∆sv1, v2〉.

We denote by πs the Hilbert space completion of π∞ with respect to the associated norm

‖v‖πs :=〈v, v〉1/2πs . These norms increase with s, and so, up to natural identifications,

π∞=
⋂
s

πs6 ...6πs+16πs6πs−16 ...6π−∞ :=
⋃
s

πs.

These spaces come with evident topologies (§1.14.6).

The inner product on π induces a duality between πs and π−s.

We note that, for each s∈Z>0, there exist Cs>cs>0, depending upon B, such that

cs‖v‖2πs 6
s∑
r=0

∑
x1,...,xr∈B

‖x1 ... xrv‖26Cs‖v‖2πs (3.1)

(see, e.g., [NE, proof of Lemma 6.3]).

3.3. Definition of operator classes

By an operator on π, we mean simply a linear map T :π∞!π−∞. For each x∈g, the

commutator

θx(T ) := [π(x), T ]

is likewise an operator on π. Indeed, by (3.1), we have for s>1 that π(x):πs!πs−1. By

duality, it follows that π(x):π1−s
!π−s. In particular, π(x) acts on both π∞ and π−∞,

so both compositions π(x)�T and T �π(x) are defined.

The map x 7!θx extends to an algebra morphism U!End({operators on π}), de-

noted u 7!θu. For example, for x1, ..., xn∈g,

θx1...xn(T ) = [π(x1), [π(x2), ..., [π(xn), T ]]].

Definition 3.1. For m∈Z, we say that an operator T on π has order 6m if, for each

s∈Z and u∈U, the operator θu(T ) induces a bounded map

θu(T ):πs−!πs−m.

Remark 3.2. When π is a standard representation of a Heisenberg group, this defi-

nition is closely related to Beals’s characterization [Bea2] of pseudodifferential operators.
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We denote by Ψm :=Ψm(π) the space of operators on π of order 6m, by Ψ−∞ :=⋂
m Ψm the space of “smoothing operators”, and by Ψ∞ :=

⋃
m Ψm the space of “finite-

order operators”. Then,

Ψ−∞⊆ ...⊆Ψm−1⊆Ψm⊆Ψm+1⊆ ...⊆Ψ∞. (3.2)

These spaces come with evident topologies (§1.14.6); thus, for m∈Z, the relevant semi-

norms on Ψm are T 7!‖θu(T )‖πs!πs−m , taken over s∈Z and u∈U. The inclusions (3.2)

are continuous.

We note that Ψm depends, implicitly, upon the group G which we regard as acting

on π.

3.4. Composition

Observe that finite-order operators act on the space of smooth vectors, i.e.,

Ψ∞⊆End(π∞).

We may thus compose such operators.

Lemma 3.3. For m1,m2∈Z∪{±∞}, composition induces continuous maps

Ψm1×Ψm2 −!Ψm1+m2 ,

where, as usual, ∞+(−∞):=−∞.

Proof. For T1∈Ψm1 , T2∈Ψm2 and u∈U, we may write θu(T1T2) as a sum of expres-

sions θu1
(T1)θu2

(T2) with u1, u2∈U. For s∈Z, the compositions of bounded maps

πs
θu2 (T2)
−−−−−!πs−m2

θu1 (T1)
−−−−−!πs−m1−m2

are bounded, and so θu(T1T2) induces a bounded map πs!πs−m1−m2 , as required.

3.5. Differential operators

It is easy to see that Ψ0 contains the identity operator. We record some further examples.

Lemma 3.4. Let m∈Z. Then

• π(∆)m∈Ψ2m;

• π(x1 ... xm)∈Ψm if m>0 and x1, ..., xm∈g.

The proof is elementary but somewhat tedious, hence postponed to §8.5.
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3.6. Smoothing operators

Lemma 3.5. An operator T on π belongs to Ψ−∞ if and only if, for each N∈Z>0,

the operator ∆NT∆N induces a bounded map π!π. The corresponding seminorms

T 7−! ‖∆NT∆N‖π!π

describe the topology on Ψ−∞.

Proof. This follows readily from (3.1) and the definitions.

Lemma 3.6. For f∈C∞c (G), one has π(f)∈Ψ−∞, and the induced map

C∞c (G)−!Ψ−∞

is continuous.

Proof. Set f ′ :=∆N ∗f ∗∆N . We note that ∆Nπ(f)∆N=π(f ′), ‖π(f ′)‖π!π6‖f ′‖L1 ,

and that the map f 7!f ′ on C∞c (G) is continuous.

4. Symbol classes

As promised, we now define various enlargements of the Schwartz space; we will later

extend Op to these spaces.

We also study the behavior of the star products ? and ?h, defined above, on these

enlarged spaces. Eventually, under Op, these products will be intertwined with operator

composition.

4.1. Multi-index notation

Temporarily, denote by n:=dim(G) the dimension of the underlying Lie group. For

convenience, we choose a basis for g. This choice defines coordinates g3x 7!(x1, ..., xn)∈
Rn and g∧3ξ 7!(ξ1, ..., ξn)∈iRn for which xξ=x1ξ1+...+xnξn.

For each “multi-index” α∈Zn>0 we set

|α| :=α1+...+αn, α! :=α1! ... αn!, xα :=xα1
1 ... xαnn ∈R, ξα := ξα1

1 ... ξαnn ∈ i|α|R.

We define the differential operators ∂α on C∞(g∧) and on C∞(g) by requiring that

(∂αa)∨(x) =xαa∨(x) and (∂αφ)∧(ξ) = (−ξ)αφ∧(ξ) (4.1)

for a∈C∞(g∧) and φ∈C∞(g); the formal Taylor expansions then read

a(ζ+ξ) =
∑
α

ξα

α!
∂αa(ζ) and φ(z+x) =

∑
α

xα

α!
∂αφ(z).

We fix norms | · | on g and g∧. Recall that we abbreviate 〈ξ〉:=(1+|ξ|2)1/2.
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4.2. Formal expansion of the star product

Let ∗, ? and ?h be as in §2.5. We define the analytic map {· , ·}:G×G!g to be the “re-

mainder term” {x, y}:=x∗y−x−y in the Baker–Campbell–Hausdorff formula. It follows

then from (2.4) that, for a, b∈S(g∧),

a?b(ζ) =

∫
x,y∈g

a∨(x)b∨(y)exζeyζe{x,y}ζχ(x)χ(y) dx dy. (4.2)

The factor e{x,y}ζ∈C(1) defines an analytic function of (x, y, ζ)∈G×G×g∧, and so admits

a power series expansion

e{x,y}ζ =
∑
α,β,γ

cαβγx
αyβζγ . (4.3)

The estimate {x, y}=O(|x| |y|) controls which monomials xαyβζγ actually appear

in this expansion. Using superscript to indicate degree, the terms appearing are 1, then

xrysζ1, r, s>1, then xrysζ2, r, s>2, and so on. In particular, xaybζc appears only if

j=a+b−c is a non-negative integer, and each j corresponds to finitely many terms.

By grouping the right-hand side of (4.3) in this way, substituting into (4.2) and

casually discarding the truncations χ, we arrive at the formal asymptotic expansion

a?b∼
∑
j>0

a?j b, (4.4)

where ?j is the finite bidifferential operator on C∞(g∧) defined by

a?j b(ζ) :=
∑
α,β,γ

|α|+|β|−|γ|=j
|γ|6min(|α|,|β|)
max(|α|,|β|)6j

cαβγζ
γ∂αa(ζ)∂βb(ζ). (4.5)

(We have introduced some redundant summation conditions for emphasis.) The operator

?j has order 6j with respect to both variables and is homogeneous of degree j with

respect to dilation, i.e.,

ah?
j bh = hj(a?j b)h,

thus (4.4) and (4.5) suggest the rescaled formal expansion

a?hb∼
∑
j>0

hj a?j b. (4.6)

The leading term is a?0b=ab (pointwise multiplication of functions), while the next term

a?1b is a multiple of the Poisson bracket (cf. Gutt [Gu] for explicit formulas for general j).
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4.3. Basic symbol classes

Definition 4.1. Let m∈R. We write Sm for the space of smooth functions a: g∧!C
so that for each multi-index α there exists Cα>0 (depending upon a) so that, for all

ξ∈g∧,

|∂αa(ξ)|6Cα〈ξ〉m−|α|, (4.7)

where, as usual, 〈ξ〉=(1+|ξ|2)1/2. We extend this definition to m=−∞ by taking in-

tersections and to m=+∞ by taking unions. We refer to elements a∈Sm as symbols of

order 6m.

We equip Sm with its evident topology (§1.14.6).

Example 4.2. If m∈Z>0, then a polynomial of degree 6m defines an element of Sm.

The space S−∞ coincides with the Schwartz space S(g∧).

For finite m, we may characterize the elements a∈Sm informally as those which

oscillate dyadically and are bounded by a multiple of 〈ξ〉m. To see why this is the

case, take m=0 for concreteness. For R>1, the estimate (4.7) says that the rescaled

function ξ 7!a(Rξ) is smooth, with fixed bounds for all derivatives inside the dyadic

annulus 1<|ξ|<2. In fact, it is bounded by C0, its derivatives bounded by max|α|=1 Cα,

its second derivatives bounded by max|α|=2 Cα, and so on.

4.4. h-dependent symbol classes

We encourage the reader to skim this section, and all further discussion of h-dependent

symbol classes, on a first reading; these classes will be exploited in the proofs of our core

technical results (Parts II and III), but not in their applications (Parts IV and V).

Recall that h denotes a small positive parameter, and that symbols in Sm oscillate

on dyadic ranges. We will occasionally need to consider symbols that vary in a controlled

manner with h and oscillate on slightly smaller than dyadic ranges.

Recall (§1.14.2) that an h-dependent function a: g∧!C is a function which depends,

perhaps implicitly, upon h:

a(ξ) := a(ξ; h).

We still denote, as before, by ah the rescaled h-dependent function

ah(ξ) := a(h ξ) = a(h ξ; h).

Definition 4.3. Let m∈R, δ∈[0, 1). Let a: g∧!C be a smooth h-dependent function.

We write

a∈Smδ
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if for each multi-index α there exists Cα>0 such that, for all ξ∈g∧ and h∈(0, 1],

|∂αa(ξ)|6Cα h−δ|α|〈ξ〉m−|α|. (4.8)

For instance, a∈Sm0 means that

• a( · ; h) belongs to Sm for each h;

• the constants Cα defining the membership a( · ; h)∈Sm may be taken independent

of h.

Informally, Smδ consists of elements which oscillate at the scale ξ+O(hδ〈ξ〉) (see §7.6

for details); it is obtained from Sm0 by “adjoining smoothened characteristic functions of

balls of rescaled radius hδ”. As explained below, δ= 1
2 corresponds to the Planck scale.

The most important range for us is when δ∈
[
0, 1

2

)
; taking δ=0 means we work at dyadic

scales, while taking δ close to 1
2 means we work “just above the Planck scale”.

We write Smδ (g∧) when we wish to indicate explicitly which Lie algebra g is being

considered. We extend the definition to m=±∞ as before, and equip these spaces with

their evident topologies. We note that, as m and δ increase, the spaces Smδ are related

by continuous inclusions.

We may combine the notation Smδ introduced here with the notation hη V introduced

in §1.14.6 to obtain the space

hη Smδ ,

consisting of smooth h-dependent functions a: g∧!C satisfying

|∂αa(ξ)|6hη Cα h−δ|α|〈ξ〉m−α.

Example 4.4. Fix f∈C∞c (R>0) (independent of h) and define the h-dependent ele-

ments a, b∈C∞c (g∧\{0}) by the formulas

a(ξ) := f

(
|ξ|−1

hδ

)
and b(ξ) := hδf(|ξ|).

Then, a belongs to S−∞δ and b belongs to hδS−∞0 , but not in general the other way

around.

For a treatment of h-dependent classes in the setting of microlocal analysis on man-

ifolds, we mention [Küs].

4.5. Basic properties

Pointwise multiplication defines continuous maps

(−·−):Sm1×Sm2 −!Sm1+m2 ,



the orbit method and analysis of automorphic forms 35

where, as usual, ∞+(−∞):=−∞. For any multi-index α, differentiation and monomial-

multiplication give continuous maps

∂α:Sm−!Sm−|α|,

ξα:Sm−!Sm+|α|.

For the h-dependent classes, we have analogously

(−·−):Sm1

δ1
×Sm2

δ2
−!Sm1+m2

max(δ1,δ2),

∂α:Smδ −!h−δ|α| S
m−|α|
δ ,

ξα:Smδ −!S
m+|α|
δ ,

(4.9)

with notation as in §4.4.

4.6. Star product asymptotics

Using the properties of ?j indicated in §4.2, we verify readily that

?j :Sm1×Sm2 −!Sm1+m2−j , (4.10)

?j :Sm1

δ ×S
m2

δ −!h−2δj Sm1+m2−j
δ . (4.11)

From (4.10), we see that the expansion (4.6) of the star product converges formally with

respect to the symbol classes Sm. From (4.11) and its proof, we see that the same holds

for Smδ if δ< 1
2 , but not if δ> 1

2 . Indeed, if the symbols a and b oscillate substantially at

scales finer than about h1/2, then the summands in the formal expansion
∑
j>0 hj a?j b

do not decay as h!0 and j!∞. The scale h1/2 is thus the natural limit of our calculus,

corresponding to the “Planck scale”, or in the language of §1.7, to projections onto

individual vectors; we discuss the latter point further in Remark 6.6.

These observations may motivate the following result.

Theorem 4.5. (i) There is a unique continuous bilinear extension

?:S∞×S∞−!S∞ (4.12)

of the star product ?, defined initially on Schwartz spaces as in §2.5. It induces continuous

bilinear maps

?:Sm1×Sm2 −!Sm1+m2 (4.13)

and, for δ∈
[
0, 1

2

)
,

?h:Sm1

δ ×S
m2

δ −!Sm1+m2

δ .
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(ii) Fix J∈Z>0. If a∈Sm1 and b∈Sm2 , then

a?b≡
∑

06j<J

a?j b mod Sm1+m2−J ,

where the remainder term

r := a?b−
∑

06j<J

a?j b∈Sm1+m2−J

varies continuously with a and b. In particular,

a?hb≡ ab mod hSm1+m2−1,

a?hb≡ ab+h a?1b mod h2 Sm1+m2−2.

Similarly, for δ∈
[
0, 1

2

)
, a∈Sm1

δ and b∈Sm2

δ ,

a?hb≡
∑

06j<J

hj a?j b mod h(1−2δ)J Sm1+m2−J
δ ,

with continuously-varying remainder.

We verify this (in a slightly more general form) in §7 below. The proof is an appli-

cation of integration by parts and Taylor’s theorem to the integral representation (4.2).

Remark 4.6. Our discussion applies with minor modifications to slightly more gen-

eral symbol classes, e.g., for m∈R, ρ∈(0, 1] and δ∈[0, 1), to the class Smδ,ρ defined by the

condition

|∂αa(ξ)|6Cα h−δ|α|〈ξ〉m−ρ|α|,

with the most important range being when ρ∈
(

1
2 , 1
]

and δ∈
[
0, 1

2

)
. One could also rescale

in more general ways than we do here, or work with symbols that are substantially rougher

in directions transverse to the foliation of g∧ by coadjoint orbits. We are content here

to develop the minimal machinery required for our motivating applications, leaving such

extensions to the interested reader.

5. Operators attached to symbols

5.1. Weak definition of the operator map

Let χ∈X (G) (cf. §2.2). By §3.6, the assignment Op( · , χ):S−∞!Ψ−∞ is defined and

continuous. We calculate that

〈Op(a, χ)u, v〉=
∫
ξ∈g∧

a(ξ)

(∫
x∈g

e−xξχ(x)〈π(exp(x))u, v〉 dx
)
dξ (5.1)
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for all u, v∈π∞.

We observe that, for any tempered distribution a on g∧, the formula (5.1) defines

an operator Op(a, χ):π∞!π−∞, sending smooth vectors to distributional vectors. (To

see this, we need only note that the function g3x 7!χ(x)〈π(exp(x))u, v〉 belongs to the

Schwartz space.) This observation applies in particular to a∈S∞. We may similarly

extend the definition of the rescaled analogue Oph(a, χ).

5.2. Polynomial symbols

The identification of g with the space of iR-valued linear functions on g∧ extends to

identify Sym(gC) with the space of polynomial symbols. For instance, if p=y1 ... yn with

each yi∈g, then p(ξ):=y1(ξ) ... yn(ξ). Which operators arise from such symbols?

Lemma 5.1. For p∈Sym(gC), we have

Op(p, χ) =π(sym(p)).

Here sym: Sym(gC)!U denote the symmetrization map, i.e., the linear isomorphism

that sends a monomial to the average of its permutations. The proof is given in §8.1.

We assume henceforth when working with Op that the norm | · | is chosen so that

B(g) is an orthonormal basis. Then, for p(ξ):=1+|ξ|2=〈ξ〉2, we have Op(p)=∆ (cf. §3.1).

5.3. h-dependence

When working with the rescaled operator assignment Oph, we allow the representation

π to be h-dependent, i.e., to vary implicitly with the small parameter h∈(0, 1]:

π=π(h).

We emphasize that the variation of π with h is arbitrary (without, e.g., continuity or mea-

surability requirements); indeed, in our applications, we consider only those h belonging

to some discrete subset of (0, 1].

Definition 5.2. Let π be an h-dependent unitary representation of G. Fix δ∈[0, 1).

We denote by Ψm
δ the space of h-dependent operators T=T (h) on π=π(h) with the

property that, for each u∈U and s∈Z, there exists Cu,s>0 (independent of h) so that,

for all h∈(0, 1],

‖θδu(T )‖πs!πs−m 6Cu,s,

where u 7!θδu denotes the linear map given, for u=x1 ... xn (x1, ..., xn∈g), by θδu :=hnδ θu,

with θ0
u=θu as in §3.3. We extend the definition to m=±∞ by taking intersections or

unions.
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For example, in the (most important) special case δ=0, the space Ψm
0 consists of

h-dependent elements of Ψm whose seminorms are uniformly bounded with respect to h.

In general, Ψm
δ consists of h-dependent elements of Ψm whose seminorms vary with h in

the indicated manner, depending upon the exponent δ. The results in §3.4 remain valid

for Ψm
δ (with the same proof), while the results in §3.5 hold for Ψm

0 , hence for any Ψm
δ .

The classes Ψm
δ enter into our applications only in a crude way, in the estimation

of remainder terms and the proofs of a-priori bounds. For such purposes, it is useful to

note that estimates involving Ψm yield slightly modified estimates for Ψm
δ .

Lemma 5.3. Let π and δ be as in the definition above.

(i) Fix m∈Z. Let ν: Ψm
!R>0 be an h-dependent h-uniformly continuous semi-

norm. Then, for large enough fixed M>0 and all T∈Ψm
δ , we have ν(T )�h−M .

(ii) Fix N>0. Let `: Ψ−N!C be an h-dependent h-uniformly continuous linear

map. Then, for some fixed N ′>N , the restriction of ` to Ψ−N
′

satisfies |`(T )|6ν(T )

for all T∈Ψ−N
′

δ and some continuous seminorm ν on Ψ−N
′

δ .

Proof. (i) By definition, we may find a finite family of pairs (u, s) such that, for

each T∈Ψm, the quantity ν(T ) is bounded by a constant multiple of ‖θu(T )‖πs!πs−m
for some such pair. We may assume that u=x1 ... xn with xj∈g. The conclusion then

holds for any M larger than the maximum value of nδ.

(ii) We may bound |`| in terms of finitely many pairs (u, s) as in the proof of

(i), with u=x1 ... xn. We take for N ′−N the maximum value of n and use that each

π(xj)∈Ψ1.

For an h-dependent positive scalar c=c(h), we denote, as in §1.14.2, by cΨm
δ the

image of Ψm
δ under the map T 7!cT=c(h)T (h).

We define

h∞Ψm
δ :=

⋂
η

hη Ψm

and topologize it as in §1.14.2. This space is independent of δ; for instance, for finite m,

it consists of h-dependent operators T on π that induce continuous maps T :πs!πs−m

having operator norms O(hN ) for all fixed s and N . We often drop the subscript δ and

simply write h∞Ψm.

5.4. Variation with respect to the cut-off

Our operator assignment is not particularly sensitive to the choice of cut-off.
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Lemma 5.4. Fix χ1, χ2∈X (G).

(i) For a∈S∞,

Op(a, χ1)≡Op(a, χ2) mod Ψ−∞, (5.2)

with remainder R:=Op(a, χ1)−Op(a, χ2)∈Ψ−∞ varying continuously with a.

(ii) More generally, for a∈S∞δ ,

Oph(a, χ1)≡Oph(a, χ2) mod h∞Ψ−∞, (5.3)

with continuously-varying remainder.

The latter continuity means explicitly that, for all M,N>0, we may write

Oph(a, χ1)−Oph(a, χ2) = hN R,

with R∈Ψ−M , and the induced map a 7!R is continuous, uniformly in h.

The proof, given in §8.3, amounts to noting that the Fourier transforms of our

symbols are represented away from the origin in g by smooth functions of rapid decay.

The singularity at the origin is related to the order of the symbol. These observations

are the analogue, in our setup, of the fact that kernels of pseudodifferential operators are

smooth away from the diagonal.

We henceforth fix χ and χ′ as in §2.5, and abbreviate

Op(a) := Op(a :π) := Op(a, χ) = Op(a, χ :π),

and similarly for Oph.

5.5. Equivariance

By combining §2.4 and §5.4, we see that Op is nearly G-equivariant. Indeed, for each

fixed group element g∈G, we may find a cut-off χ1∈X (G) such that g−1 ·χ1∈X (G); then,

with all congruences taken modulo Ψ−∞,

Op(g ·a) := Op(g ·a, χ)≡Op(g ·a, χ1) = Op(a, g−1 ·χ1)≡Op(a).

This estimate remains valid for g in any fixed compact subset of G modulo the center.

A finer assertion holds for the h-dependent classes.

Lemma 5.5. Fix δ∈[0, 1) and ε>0. Let g∈G be an h-dependent group element such

that

‖Ad(g)‖�h−1+δ+ε . (5.4)

Then, for a∈S∞δ , the h-dependent symbol g ·a satisfies

Oph(g ·a)≡π(g)Oph(a)π(g)−1 mod h∞Ψ−∞.

The proof is given in §8.4.
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5.6. Operator class memberships

The symbol and operator classes have been defined so as to interact nicely.

Theorem 5.6. For any m∈Z∪{±∞}, we have

Op(Sm)⊆Ψm,

and the induced map is continuous. In particular, elements of Op(S∞) act on π∞, and

so may be composed. Their compositions satisfy

Op(Sm1)Op(Sm2)⊆Op(Sm1+m2)+Ψ−∞;

more precisely,

Op(a)Op(b) = Op(a?b, χ′)≡Op(a?b) mod Ψ−∞,

with continuously-varying remainder.

The proof is given in §8.7. By combining with the asymptotic expansion of the star

product (Theorem 4.5), we obtain the following result.

Corollary 5.7. Fix m1,m2<∞ and J∈Z>0. Then, for a∈Sm1 and b∈Sm2 , we

have

Op(a)Op(b)≡
∑

06j<J

Op(a?j b) mod Ψm1+m2−J ,

with continuously-varying remainder.

We also have the following rescaled analogues.

Theorem 5.8. Fix δ∈
[
0, 1

2

)
. For m∈Z, we have

Oph(Smδ )⊆hmin(0,m) Ψm
δ .

For a, b∈S∞δ , we have

Oph(a)Oph(b) = Oph(a?hb, χ
′)≡Oph(a?hb) mod h∞Ψ−∞.

The proof is given in §8.8. The following consequence will be very useful.

Corollary 5.9. Let m1,m2<∞ and δ∈
[
0, 1

2

)
. For M,N∈Z>0 there exists J∈

Z>0, depending only upon (m1,m2,M,N, δ), such that, for all a∈Sm1

δ and b∈Sm2

δ ,

Oph(a)Oph(b)≡
∑

06j<J

hj Oph(a?j b) mod hN Ψ−Mδ . (5.5)
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Proof. By Theorems 4.5 and 5.8, the two sides of (5.5) agree modulo

E := h∞Ψ∞+Oph(h(1−2δ)J Sm1+m2−J
δ ).

We choose M ′, N ′∈Z>0, with m1+m2−M ′6−M , (1−2δ)M ′>M and (1−2δ)N ′>N .

We take J :=M ′+N ′. Then, (1−2δ)J>M+N and m1+m2−J6−M−N ′6−M , so

h(1−2δ)J Sm1+m2−J
δ ⊆hM+N S−Mδ .

By another application of Theorem 5.8, we conclude that E⊆hN Ψ−Mδ .

A very useful generalization, involving proper subgroups G1 and G2 of G, will be

given in §8.9.

6. The Kirillov formula

Our discussion thus far has been quite general: π was any unitary representation of

a unimodular Lie group G. Conversely, the only control we have established over the

operators we have constructed on π is through their operator norms. We now consider a

more restrictive situation and derive correspondingly stronger control.

Let G be a reductive algebraic group over an archimedean local field F . (Our

discussion applies somewhat more broadly, e.g., to nilpotent groups, but we focus on the

case relevant for our applications.) By restriction of scalars, we may suppose F=R. Per

our general conventions, G denotes the group of real points of G.

Let π be a tempered irreducible unitary representation of G. We can then apply the

character formula for π (§6.2), expressed in Kirillov form in terms of coadjoint orbits

(§6.1), to study the traces and trace norms of the operators constructed via our calculus.

6.1. Coadjoint orbits

The survey article [Ki2] is a useful reference for the following discussion. A coadjoint orbit

O is an orbit of G on g∧∼=ig∗. Being an orbit of a Lie group, it is a smooth manifold.

Each such orbit carries moreover a canonical G-invariant symplectic structure

σ :=σO,

given at each ξ∈O by the alternating form

σξ(ad∗xξ, ad∗yξ) :=
[x, y]ξ

i
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on the tangent space Tξ(O)={ad∗xξ :x∈g}.
In particular, O is even-dimensional. We denote by

d := d(O) := 1
2 dimR(O)

half the real dimension of O; it is an integer with 2d6dim g.

The d-fold wedge product σd defines a volume form on O. We refer to the measure

induced by the volume form

ω :=ωO :=
1

d!

(
σ

2π

)d
as the normalized symplectic measure on O.

If we choose local coordinates xi and ξj on O, 16i, j6d, with respect to which

σ=
∑
j

dxj∧dξj ,

then

ω=
∏
j

(
dxj∧

dξj
2π

)
.

Integration with respect to ω defines a measure on g∧ [Rao]. One verifies readily

that these measures enjoy the homogeneity property: if t∈R×+ and f∈C∞c (g), then∫
x∈O

f(x) dωO(x) = t−d(O)

∫
x∈tO

f(t−1x) dωtO(x). (6.1)

A coadjoint orbit is called regular if it consists of regular elements, or equivalently,

has maximal dimension among all coadjoint orbits.

To each coadjoint orbit O we may assign an infinitesimal character [O] in the geo-

metric invariant theory (GIT) quotient [g∧] of g∧ by G; we recall the details below in §9
and §12.

By a coadjoint multiorbit, we will mean a finite union of coadjoint orbits sharing

the same infinitesimal character. A regular coadjoint multiorbit is a coadjoint multiorbit

whose elements are regular. The notation and terminology introduced above carries over

with minor modifications; for instance, given a non-empty coadjoint multiorbit, we may

speak of its infinitesimal character or its normalized symplectic measure. We note that

the number of coadjoint orbits having a given infinitesimal character is bounded by a

constant depending only upon G (see [Kos2, Theorem 3 and Remark 16] and [Wh, §3]),

so a coadjoint multiorbit consists of a uniformly bounded number of orbits.
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6.2. The Kirillov character formula

Harish–Chandra showed (see, e.g., [Kn, §X]) that there is a locally L1-function χπ:G!C,

the character of π, with the following property. Having fixed a Haar measure dg on G,

we may associate with each f∈C∞c (G) a smooth compactly-supported measure f(g) dg

on G and an operator

π(f) =

∫
g∈G

π(g)f(g) dg.

Then, π(f) is trace class, with trace given by

χπ(f) =

∫
g∈G

χπ(g)f(g) dg.

The facts recalled thus far apply to any irreducible admissible representation. Recall

now that π is assumed tempered. A fundamental theorem of Rossmann [Ros1], [Ros2],

[Ros4] gives the validity of the Kirillov formula for π, i.e., gives an exact formula for the

“Fourier transform” of χπ in a neighborhood of the identity element. Recall from §2.1

the definition of j.

Theorem 6.1. There is a unique non-empty regular coadjoint multiorbit Oπ⊆g∧

such that, for all x in some fixed neighborhood of the origin in g, we have the identity of

distributions

χπ(ex)
√
j(x) = Fourier transform of normalized symplectic measure on Oπ

: =

∫
ξ∈Oπ

exξ dωOπ (ξ).
(6.2)

Moreover, the following statements hold :

(i) The infinitesimal character of Oπ is the infinitesimal character of π (cf. §9).

(ii) If the infinitesimal character of π is regular, then Oπ is a coadjoint orbit.

We emphasize the following:

• The statement of (6.2) is independent of choices of Haar measure.

• In general, G may have several orbits with the same infinitesimal character as π.

It is remarkable that only a single one contributes in the case of regular infinitesimal

character. (We do not directly use this fact in this paper.)

• We have defined Oπ only for tempered π.

We henceforth denote by d the maximal dimension of any coadjoint orbit, so that

for each π as above, every orbit in Oπ is 2d-dimensional.

Remark 6.2. In the p-adic case, the Harish-Chandra/Howe local character expan-

sion gives a result of similar spirit but less precise. It describes the Fourier transform of

the character, but only in a neighborhood of the identity that depends on the represen-

tation π. As a result, it detects only the geometry of the coadjoint orbit “at infinity”.



44 p. d. nelson and a. venkatesh

6.3. Trace estimates

The Kirillov formula implies that

tr(Op(a)) =

∫
Oπ

( j−1/2χa∨)∧ dωOπ (6.3)

for all a∈S−∞(g∧). By simple estimates (see §8.2 and Appendix A.3), this conclusion

extends continuously to a∈S−N for large enough N∈Z>0. By appeal to the homogeneity

property (6.1), we see more generally that

tr(Oph(a)) = h−d
∫

hOπ
( j
−1/2
h χha

∨)∧ dωhOπ , (6.4)

where jh(x):=j(hx) and χh(x):=χ(hx). Using these formulas, we will establish in §12.3

some refined and generalized forms of the following result.

Theorem 6.3. Fix N sufficiently large in terms of the reductive Lie group G.

(i) Let a∈S−N , let π be a tempered irreducible unitary representation of G, and let

h∈(0, 1]. Then,

tr(Oph(a)) = h−d
(∫

hOπ
a dωhOπ+O(h)

)
. (6.5)

The implied constant is independent of π and h, and may be taken to depend continuously

upon a.

(ii) Let π be a tempered irreducible unitary representation of G. Any

T ∈Ψ−N := Ψ−N (π)

(see §3.3) defines a trace class operator on π. The trace norm depends continuously

upon T , uniformly in π (in the sense of §1.14.6).

(iii) Let a∈S−Nδ for some fixed δ∈
[
0, 1

2

)
. Let π be an h-dependent tempered irre-

ducible unitary representation of G. Then, the trace norms of hd Oph(a) are bounded,

uniformly in π and h, and continuously with respect to a.

We note that part (i) follows readily from (6.3), a Taylor expansion of jh and χh, and

some a-priori bounds for integrals over coadjoint orbits, while part (ii) follows from the

uniform trace class property of ∆−N . Part (iii) is established using the symbol/operator

calculi.

Remark 6.4. To illustrate the content of our “h-dependent” notation, we record an

equivalent formulation of part (iii) of Theorem 6.3. Let N∈Z>0 be large enough in terms

of G. Let δ∈
[
0, 1

2

)
. There exist C>0 and J∈Z>0 such that, for each tempered irreducible
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unitary representation π of G, each symbol a∈S−N and each scaling parameter h∈(0, 1],

the trace norm of the operator hd Oph(a) on π is bounded by C
∑
|α|6J να,h(a), where

να,h(a) := sup
ξ∈g∧

|∂αa(ξ)|
h−δ|α|〈ξ〉−N−|α|

denotes the infimum of all scalars Cα>0 for which the specialization to m:=−N of the

inequality (4.8) holds for all ξ∈g∧.

Remark 6.5. In our applications of Theorem 6.3, it is important that π and h may

vary simultaneously, but our calculus is interesting only if the rescaled orbit hOπ does not

“escape to ∞” as h!0. In many examples of interest, it happens that (hOπ, dωhOπ )

converges to some “limit orbit” (O, dω) (§11.4); studying the limiting behavior of the

calculus will be a major concern of the later parts of the paper (§26, §27). A special case

relevant (but not sufficient) for our aims is when π is independent of h and generic; the

limit orbit O is then contained in the regular subset of the nilcone (§11.4.2).

Remark 6.6. We have noted already (in §4.6) that the h1/2 scale is a natural limit

to our calculus. Using (6.5), this may now be understood as follows: If the symbol

a is a smooth approximation to the characteristic of a ball, with origin some regular

element ξ∈hOπ and with radius C h1/2, then §2.3 and (5.5) suggest that Oph(a) should

approximate a self-adjoint idempotent, i.e., an orthogonal projector onto a subspace V

of π, consisting of vectors “microlocalized within C h−1/2 of h−1 ξ” (cf. §1.7). But (6.5)

suggests that dim(V )�C2d, which makes sense only if C is not too small. Conversely,

our calculus allows one to work with such symbols provided that C�h−ε for fixed but

arbitrarily small ε>0, hence to construct and manipulate approximate projectors onto

subspaces of size h−o(1); in other words, to work with an approximate orthonormal basis

of π consisting of vectors microlocalized at elements ξ∈hOπ.

Part II. Microlocal analysis on Lie group

representations II: proofs and refinements

We now give proofs of results in Part I, as well as certain refinements that will be useful

at localized points of the later treatment. The reader might wish to skim or skip Part II

on a first reading.

7. Star product asymptotics

The aim of this section is to prove Theorem 4.5 in a generalized form (Theorem 7.4) that

will be very convenient in applications.
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7.1. Setup

Let g1 and g2 be subalgebras of g. We assume that they arise as the Lie algebras of

some unimodular Lie subgroups G1 and G2 of G. The most important example is when

g1=g2=g.

We fix some sufficiently small even precompact open neighborhoods G⊂g, G1⊂g1

and G2⊂g2 of the respective origins, with G1 and G2 small enough in terms of G. In

particular, the maps ∗, {· , ·}:G1×G2!G given (as in §2.5 and §4.2) by

x∗y := log(exp(x) exp(y)) and {x, y} :=x∗y−x−y

are defined and analytic.

We assume that g1+g2=g, or equivalently, that the multiplication map G1×G2!G

is submersive near the identity element. The restriction map

g∧ 3 ζ 7−! (ζ1, ζ2)∈ g∧1 ×g∧2

is then injective.

Convolution defines a continuous map

C∞c (exp(G1))×C∞c (exp(G2))−!C∞c (exp(G)).

By fixing cut-offs χj∈X (Gj) as in §2.2, and arguing as in §2.5, we may define a “star

product”

?:S(g∧1 )×S(g∧2 )−!S(g∧)

by the formula a?b:=(a∨χ1?b
∨χ2)∧; it admits the integral representation

a?b(ζ) :=

∫
x,y

a∨(x)b∨(y)exζ1eyζ2e{x,y}ζχ1(x)χ2(y).

Here, the integral is over (x, y)∈g1×g2 with respect to some fixed Haar measures.

For a unitary representation π of G, we may define Op(a, χ1) and Op(b, χ2) as in

§2, acting on π via its restrictions to G1 and G2. We then have

Op(a, χ1)Op(b, χ2) = Op(a?b, χ′)

for any cut-off χ′ on g taking the value 1 on G.

We wish to extend the domain of definition of ? and understand its asymptotic

behavior. As in §4.2, we may expand into homogeneous components, namely

Ω(x, y, ζ) := e{x,y}ζ =
∑
α,β,γ

|γ|6min(|α|,|β|)

cαβγx
αyβζγ =

∑
j>0

Ωj(x, y, ζ), (7.1)
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where Ωj denotes the contribution from |α|+|β|−|γ|=j. This again suggests the formal

asymptotic expansion a?b∼
∑
j>0 a?

j b, where

a?j b(ζ) :=

∫
x,y

a∨(x)b∨(y)exζ1eyζ2Ωj(x, y, ζ) =
∑
α,β,γ

|γ|6min(|α|,|β|)
|α|+|β|−|γ|=j

cαβγζ
γ∂αa(ζ)∂βb(ζ).

7.2. When should the star product map symbols to symbols?

Let m1,m2∈Z∪{±}. For j=1, 2, we introduce the temporary abbreviation

Smj :=Smj (g∧j ),

and similarly

S
mj
δ :=S

mj
δ (g∧j ).

When does ? extend naturally to a continuous map with domain Sm1×Sm2 and

codomain one of our symbol classes? We might ask first whether the finite-order dif-

ferential operators ?j admit such an extension, starting with the simplest case j=0, for

which

a?0b(ζ) = a(ζ1)b(ζ2).

Example 7.1. Suppose g2 6=g. Take for a∈S0(g∧1 ) a constant symbol and for b∈
S−∞(g∧2 ) a compactly-supported symbol, both non-zero. One can verify then that a?0b∈
C∞(g∧) does not belong to S∞(g∧).

Definition 7.2. We say that the pair (m1,m2) is admissible (relative to g1, g2⊆g) if

both of the following implications are satisfied:

• if g1 6=g, then m2=−∞;

• if g2 6=g, then m1=−∞.

For instance, if g1=g2=g, then any pair is admissible, while if g1 6=g and g2 6=g, then

(−∞,−∞) is the only admissible pair. One verifies readily that, if (m1,m2) is admissible,

then

?j :Sm1×Sm2 −!Sm1+m2−j(g∧),

and more generally

?j :Sm1

δ ×S
m2

δ −!h−2δj Sm1+m2−j
δ (g∧),

are defined and continuous. In fact, the converse holds as well.
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Lemma 7.3. For (m1,m2) as above, the following are equivalent :

(i) a?0b∈S∞(g) for all (a, b)∈Sm1×Sm2 ;

(ii) a?j b∈S∞(g) for all (a, b)∈Sm1×Sm2 and j∈Z>0;

(iii) the pair (m1,m2) is admissible.

We have included this lemma for motivational purposes only; the proof is left to the

reader.

7.3. Main result

Theorem 7.4. The star product ? extends uniquely to a compatible family of con-

tinuous maps

?:Sm1(g∧1 )×Sm2(g∧2 )−!Sm1+m2(g∧),

taken over the admissible pairs (m1,m2).

Fix δ1, δ2∈[0, 1) with δ1+δ2<1, J∈Z>0 and an admissible pair (m1,m2). Then, for

all a∈Sm1

δ1
(g∧1 ) and b∈Sm2

δ2
(g∧2 ), we have the asymptotic expansion

a?hb≡
∑

06j<J

hj a?j b mod h(1−δ1−δ2)J Sm1+m2−J
max(δ1,δ2) (g∧), (7.2)

with continuously-varying remainder.

The proof is given in §7.7, after some preliminaries.

Remark 7.5. In all applications of Theorem 7.4, except that in §19.5, we take

δ1 = δ2 ∈
[
0, 1

2

)
.

7.4. Taylor’s theorem

Lemma 7.6. Fix J∈Z>0 and a multi-index δ∈Zdim(g)
>0 . For (x, y, ζ)∈G1×G2×g∧,

abbreviate

ρ := max(|x|, |y|, |x| |y| |ζ|).

Then,

∂δζΩ(x, y, ζ)−
∑

06j<J

∂δζΩj(x, y, ζ)� ρJ , (7.3)

where the implied constant may depend upon (J, δ) but not upon (x, y, ζ).
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Proof. Recall (7.1). We note first that, if |γ|6min(|α|, |β|) and |α|+|β|−|γ|=j, then

|xαyβζγ |6 |x||α| |y||β| |ζ||γ|6 ρj ,

as follows readily by induction on |γ|. Thus,

∂δζx
αyβζγ� (|x| |y|)|δ|ρj� ρj . (7.4)

We observe next, by the analyticity of Ω, that there is a constant R>0 so that

|cαβγ |�R|α|+|β|−|γ|.

From this and (7.4), we obtain

∂δζΩj(x, y, ζ)� (1+j)O(1)(Rρ)j (7.5)

for all j>0. By (7.5) (applied with j<J) and the trivial estimate

∂δζΩ(x, y, ζ)� (|x| |y|)|δ|� 1,

we deduce the claim (7.3) in the special case that ρ is bounded uniformly from below, say

by 1
2R. In the remaining case ρ6 1

2R, we deduce (7.3) by summing (7.5) over j>J .

7.5. Integration by parts

For (ξ, η, ζ)∈g∧1 ×g∧2 ×g∧, we set

F (ξ, η, ζ) :=

∫
x,y

exξ+yηχ1(x)χ2(y)Ω(x, y, ζ). (7.6)

Recall that G1 and G2 have been taken sufficiently small, and that g=g1+g2. It will

be convenient now to normalize the norms | · | on the dual spaces g∧, g∧1 and g∧2 to be

euclidean norms with the property that, for ζ∈g∧,

|ζ|2 = |ζ1|2+|ζ2|2. (7.7)

Lemma 7.7. Fix N∈Z>0 and a multi-index γ. Set t:=
√
|ξ|2+|η|2. Then,

t> 1
2 |ζ| =⇒ ∂γζ F (ξ, η, ζ)� t−N . (7.8)

The implied constant may depend upon (N, γ), but not upon (ξ, η, ζ).
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The conclusion holds with 1
2 replaced by any fixed fraction, provided that G1 and

G2 are taken sufficiently small. The basic idea is that the hypothesis t> 1
2 |ζ| implies that

the integral (7.6) has no stationary point.

Proof. We may write

∂γζ F (ξ, η, ζ) =

∫
x,y

f(x, y)etφ(x,y),

where f(x, y):={x, y}γχ1(x)χ2(y) and φ:G1×G2!iR is given by

φ(x, y) :=
xξ+yη

t
+{x, y}ζ

t
.

Since G1 and G2 are small and |ζ|/t62, the total derivative

∂φ:G1×G2−! ig∗1×ig∗2

approximates the unit vector (ξ/t, η/t). In particular, the euclidean norm |∂φ|(x, y) of

the total derivative is bounded from below by (say) 1
2 for all (x, y)∈G1×G2. Moreover,

φ lies in a fixed bounded subset of C∞(Ω). The required estimate follows by “partial

integration”, as summarized by the following lemma.

Lemma 7.8. Fix n,N∈Z>0 and ε>0. Let Ω be an open subset of Rn and φ: Ω!iR
be smooth. Assume that the total derivative ∂φ:Ω!iRn has euclidean norm |∂φ|: Ω!

R>0 bounded from below by ε. Then, for all f∈C∞c (Ω) and t>0,∫
Rn
fetφ� t−N

∑
|α|6N

‖∂αf‖L1 ,

where the implied constant is independent of (f, t) and depends continuously upon

φ∈C∞(Ω).

Proof. We may assume that N is even, say N=2r. Let ∆ denote the multiple of

the standard Laplacian for which eφ=|∂φ|−2∆(eφ), and set D :=|∂φ|−2∆. Integrating by

parts repeatedly, we obtain

I = t−N
∫
fDr(etφ) = t−N

∫
Dr(f)eφ,

so that |I|6t−N
∫
|Drf |. Set b:=|∂φ|−2. We may expand

Drf =
∑

C(α, β(1), ..., β(r)) (∂αf) (∂β
(1)

b) ... (∂β
(r)

b),

with the sum taken over multi-indices α, β(1), ..., β(r) satisfying |α|+|β(1)|+...+|β(r)|=N .

By the quotient rule for derivatives, we have

‖∂βb‖L∞(Ω)� 1.

The required estimate follows.
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7.6. Decomposition into localized symbols

Let m∈Z, δ∈[0, 1) and ω∈g∧. Observe that each a∈Smδ varies mildly over the ball

Uω := {ξ ∈ g∧ : |ξ−ω|6 1
2 hδ〈ω〉}.

Definition 7.9. We say that the symbol a∈Smδ is localized at ω if it is supported on

Uω.

Note that this terminology depends implicitly upon δ.

Lemma 7.10. If a∈Smδ is localized at ω∈g∧, then

a(ξ) = 〈ω〉mφ
(
ξ−ω
hδ〈ω〉

)
,

where φ∈C∞c (g∧) depends continuously upon a. In particular,

• The rescaled Fourier transform of a has the form

a∨h (x) = 〈ω〉me−xω/ hAdim(g)φ∨(Ax), A := hδ−1〈ω〉, (7.9)

where φ∨∈S(g) depends continuously upon a.

• For fixed n∈Z>0, ∫
x∈g
|a∨h (x)| |x|n�A−n, (7.10)

with continuous dependence upon a.

Proof. Each assertion follows readily from the definition of Smδ .

It is not difficult to decompose any symbol into localized symbols. To that end, the

following partition of unity is convenient.

Lemma 7.11. Fix δ∈(0, 1]. There is an h-dependent countable collection Ω=Ωδ,h⊆
g∧ of points ω∈g∧ with the following properties:

(i) the balls Uω, for ω∈Ω, cover g∧;

(ii) for X>1, we have #{ω∈Ω:|ω|6X}�h−O(1)XO(1);

(iii) supω1∈Ω #{ω2∈Ω:Uω1∩Uω2 6=∅}�1;

(iv) we have ∑
ω∈Ω

φω

(
ξ−ω
hδ〈ω〉

)
= 1 for all ξ ∈ g∧,

where φω belongs to a fixed bounded subset of C∞c (g∧) and is supported on {ξ :|ξ|6 1
2}.
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Proof. We construct Ω and φω, leaving the remaining verifications to the reader.

Fix an element q∈[2, 3] which is generic in a sense to be clarified below. Fix a dyadic

partition of unity

1 =ψ0(ξ)+
∑
n>1

ψ1(q−nξ),

where ψ0∈C∞c (g∧) and ψ1∈C∞c (g∧\{0}). For n>1, write ψn(ξ):=ψ1(q−nξ). Fix a suf-

ficiently dense lattice L⊆g∧ and an additive partition of unity

1 =
∑
`∈L

ρ(ξ−`),

with ρ∈C∞c (g∧). Then, for n>0,

ψn(ξ) =
∑
`∈L

ψn(ξ)ρ

(
ξ

hδ qn
−`
)
. (7.11)

Take for Ω the set consisting of all ω=hδ qn` for which the corresponding summand in

(7.11) is non-zero; the genericity assumption on q implies that these elements are pairwise

distinct as n varies. Take for φω the corresponding summand.

Lemma 7.12. Each a∈Smδ may be decomposed as a=
∑
ω∈Ω〈ω〉maω, with Ω as above,

where aω∈S0
δ is localized at ω and depends continuously upon a.

Proof. Take

aω := 〈ω〉−ma(ξ)φω

(
ξ−ω
hδ〈ω〉

)
.

7.7. Proof of Theorem 7.4

The claimed uniqueness follows from the fact that C∞c has dense image in S−∞ and

also in S∞ (note that Cm⊆Sm, the closure of the image of C∞c , contains Sm
′

whenever

m′<m). The existence follows, via a limiting procedure, from the continuity established

below in the course of the proof of the asymptotic expansion. For the latter, we may

assume that m1,m2<∞. It suffices to consider the following cases:

(a) m1=m2=−∞;

(b) m1=−∞, m2∈Z and g1=g;

(c) m1∈Z, m2=−∞ and g2=g;

(d) m1∈Z, m2∈Z and g1=g2=g.

Abbreviate δ :=max(δ1, δ2). We must verify then that

r := a?hb−
∑

06j<J

hj a?j b
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belongs to h(1−δ1−δ2)J Sm1+m2−J
δ (g∧), i.e., that, for each fixed multi-index γ∈Zdim(G)

>0 ,

∂γr(ζ)�h(1−δ1−δ2)J−δ|γ|〈ζ〉m1+m2−J−|γ|, (7.12)

where the implied constant may depend upon (m1,m2, J, δ1, δ2) and continuously upon

a and b, but not upon h, ζ. If either m1 or m2 is −∞, then the meaning of (7.12) is that

∂γr(ζ)�h(1−δ1−δ2)J−δ|γ|〈ζ〉−N

holds for each fixed N .

In fact, since the spaces h(1−δ1−δ2)j Sm+n−j
δ decrease as j increases, the terms hj a?j

b, for fixed j>J , satisfy the analogue of the estimate (7.12) required by r. The proof of

Theorem 7.4 thereby reduces to that of the following assertion: for each fixed N∈Z>0

and multi-index γ, one has for large enough J∈Z>0 that

∂γr(ζ)�hN 〈ζ〉−N . (7.13)

If mk=−∞ for some k=1, 2, then it will suffice to show that (7.13) holds under the

weaker assumption that mk is any fixed (negative) integer taken sufficiently small in

terms of N . In particular, we may assume that m1,m2∈Z.

We may decompose

a=
∑
ω1∈Ω1

〈ω〉m1aω1
and b=

∑
ω2∈Ω2

〈ω〉m2bω2

as in §7.6, where aω1∈S0
δ1

(g∧1 ) and bω2∈S0
δ2

(g∧2 ) are localized at ω1 and ω2, respectively.

We may assume N chosen large enough that

hN/3
∑
ωj∈Ωj

〈ωj〉mj−N� 1, j= 1, 2,

say. The proof of (7.13) thereby reduces to that of the following result.

Proposition 7.13. Fix δ1, δ2∈[0, 1) such that δ1+δ2<1. Fix N∈Z>0. Fix a multi-

index γ∈Zdim(G)
>0 . Fix J,M∈Z>0 sufficiently large in terms of N and γ. Let a∈S0

δ1
(g∧1 )

and b∈S0
δ2

(g∧2 ) be localized at ω1∈g∧1 and ω2∈g∧2 , respectively. Set δ :=max(δ1, δ2) and

r := a?hb−
∑

06j<J

hj a?j b.

We then have the following estimates, in which implied constants may depend upon

(δ1, δ2, N, γ) and continuously upon a and b, but not upon (h, ζ, ω1, ω2):

(a) ∂γr(ζ)�hN 〈ζ〉−N 〈ω1〉M 〈ω2〉M ;

(b) if g1=g, then ∂γr(ζ)�hN 〈ζ〉−N 〈ω1〉M 〈ω2〉−N ;

(c) if g2=g, then ∂γr(ζ)�hN 〈ζ〉−N 〈ω1〉−N 〈ω2〉M ;

(d) if g1=g2=g, then ∂γr(ζ)�hN 〈ζ〉−N 〈ω1〉−N 〈ω2〉−N .
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Proof. To simplify the presentation, we focus on the case γ=0; the general case

follows by the same arguments applied with a, b, Ω(x, y, ζ) and F (ξ, η, ζ) replaced by

some fixed derivatives (with respect to ζ, in the latter two cases); note that our inputs

(§7.4 and §7.5) apply to such derivatives.

We define Q∈R>1 in the various cases as follows:

(a) Q:=h−1〈ζ〉;
(b) Q:=h−1〈ζ〉〈ω2〉;
(c) Q:=h−1〈ζ〉〈ω1〉;
(d) Q:=h−1〈ζ〉〈ω1〉〈ω2〉.
We first note that, for fixed j, the element

hj a?j b∈ h(1−δ1−δ2)j S−jδ ⊆S
0
δ

is localized at both ω1 and ω2. Thus, hj a?j b(ζ)=0 unless 〈ω1〉�〈ω2〉�〈ζ〉, in which case

hj a?j b(ζ)� 1.

Next, set A:=h−1+δ1 〈ω1〉 and B :=h−1+δ2 〈ω2〉, so that, by (7.10), we have∫
x,y

|a∨h (x)b∨h (y)| |x|m |y|n�A−mB−n (7.14)

for fixed m,n>0. By specializing this estimate to the case m=n=0, and recalling that

|Ω(x, y, ζ)|�1 and hj a?j b(ζ)�1 for fixed j, we deduce in particular that r(ζ)�1. This

gives an adequate estimate for r(ζ) in the special case Q�1. We may and shall thus

assume that Q is sufficiently large.

We now fix ε>0 small in terms of δ1+δ2, assume that M is chosen large in terms of

(N, ε), and treat the various cases separately:

(a) The required estimate is trivial unless |ω1|6Qε and |ω2|6Qε, as we henceforth

assume.

Suppose that |ζ|>Q2ε. In that case, a?j b(ζ)=0 for all j, so it will suffice to show

that a?hb(ζ)�Q−N . To that end, recall the function F : g∧1 ×g∧2 ×g∧!C defined in §7.5;

we have

a?hb(ζ) = h−2 dim(g)

∫
ξ,η

a(ξ)b(η)F

(
ζ1−ξ

h
,
ζ2−η

h
,
ζ

h

)
. (7.15)

For ξ and η with a(ξ)b(η) 6=0, we have |ξ|�〈ω1〉�Qε and |η|�〈ω2〉�Qε, while

|ζ|=
√
|ζ1|2+|ζ2|2�Q2ε.
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Therefore,

t :=

√∣∣∣∣ζ1−ξh

∣∣∣∣2+

∣∣∣∣ζ2−ηh

∣∣∣∣2> 1

2

∣∣∣∣ ζh
∣∣∣∣ (7.16)

and t�Q2ε. The required estimate thus follows from §7.5, together with the trivial

estimate O(QO(1)) for the L1-norms of a and b.

We have reduced to the case that |ω1|, |ω2|, |ζ|6Q2ε. We then verify readily, using

that δ1+δ2<1 and that ε is small enough in terms of δ1+δ2, that

max

(
1

A
,

1

B
,
|ζ|

hAB

)
�Q−ε. (7.17)

Informally, the key point here is that we have reduced to a case in which

〈ω1〉≈ 〈ω2〉≈ 〈ζ〉, (7.18)

so that
|ζ|

hAB
�h1−δ1−δ2 〈ζ〉

〈ω1〉〈ω2〉
/h1−δ1−δ2〈ζ〉−1/Q−ε.

We now split r(ζ)=r′(ζ)+r′′(ζ), where

r′(ζ) :=

∫
x,y

a∨h (x)b∨h (y)

(
Ω

(
x, y,

ζ

h

)
−
∑

06j<J

Ωj

(
x, y,

ζ

h

))
(7.19)

and

r′′(ζ) :=

∫
x,y

a∨h (x)b∨h (y)(χ1(x)χ2(y)−1)Ω

(
x, y,

ζ

h

)
.

Since Ω(x, y, ζ)�1, we obtain using (7.14) the estimate r′′(ζ)�(AB)−n for any fixed n,

which is adequate due to (7.17). We estimate r′(ζ) using §7.4, (7.14) and (7.17), giving

the adequate estimate r′(ζ)�Q−εJ .

(b) We may assume that |ω1|6Qε, since the required estimate is otherwise trivial.

We may assume that |ζ|6Q2ε, since otherwise (7.16) holds with t�Q2ε, and we may con-

clude as above; in particular, |ζ2|6Q2ε. We may assume that |ω2|6Q3ε, since otherwise

(7.16) holds with t�Q3ε. We then verify (7.17) and conclude as before.

(c) By the same argument, but with the roles of ω1 and ω2 reversed.

(d) If for some k=1, 2 we have either

• |ζ|6Qε and |ωk|>Q2ε, or

• |ζ|>Qε and |ωk| /∈[Q−ε
2 |ζ|, Qε2 |ζ|],

then (7.16) holds with t�Qε2 , so we may conclude as above. In the remaining cases, we

have either

• |ζ|6Qε and |ω1|, |ω2|6Q2ε, or

• |ζ|>Qε and Q−ε
2 |ζ|6|ω1|, |ω2|6Qε

2 |ζ|.
In either case, we verify (7.17) and conclude as before.
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7.8. Asymptotic expansions for certain convolutions

Here we record a miscellaneous estimate to be applied occasionally. Fix δ∈[0, 1), m<∞,

and ψ∈C∞c (g). For a∈Smδ , we may define b: g∧!C by requiring that

b∨h =ψa∨h .

It is the Fourier transform of a compactly-supported distribution, hence is smooth.

Lemma 7.14. We have b∈Smδ . Moreover, for each fixed J∈Z>0,

b≡
∑

06j<J

(−h)j
∑
|α|=j

∂αψ(0)

α!
∂αa mod h(1−δ)J Sm−Jδ ,

with remainder depending continuously upon a.

The proof is similar to, but much simpler than, that of Theorem 7.4, hence left to

the reader.

8. Proofs concerning the operator assignment

The main aim of this section is to supply the proofs of Theorems 5.6 and 5.8, as well as

some of the miscellaneous results stated in §5. We retain their notation and setup. We

also establish a generalization (Theorem 8.11) that will be very useful in applications.

8.1. Polynomial symbols: proofs

We now prove Lemma 5.1. We first recall a characterization of the map sym. Each

p∈Sym(gC) defines a translation-invariant differential operator on C∞(g), that we denote

by ∂p: if p=y1 ... yn, then

∂pφ(x) = ∂t1=0 ... ∂tn=0φ(x+t1y1+...+tnyn).

On the other hand, each r∈U defines a left-invariant differential operator on C∞(G),

that we denote simply by r: if r=y1 ... yn, then

rf(g) = ∂t1=0 ... ∂tn=0f(g exp(t1y1) ... exp(tnyn)).

As one verifies readily using Taylor’s theorem, the symmetrization map intertwines the

two actions near the origin: if f(exp(x))=φ(x), then

∂pφ(0) = sym(p)f(1). (8.1)
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Now fix u, v∈π∞. After the change of variables ξ 7!−ξ in the definition, we must

verify that

〈π(sym(p))u, v〉=
∫
ξ∈g∧

p(−ξ)
(∫

x∈G
exξ〈π(exp(x))u, v〉 dx

)
dξ. (8.2)

Define φ∈C∞c (G) and f∈C∞c (exp(G)) by

f(exp(x)) :=φ(x) :=χ(x)〈π(exp(x))u, v〉.

Since χ≡1 in a neighborhood of the origin, we have rf(1)=〈π(r)u, v〉 for r∈U. The left-

hand side of (8.2) is thus sym(p)f(1), while the right-hand side is (p−φ∧)∨(0)=∂pφ(0),

where p−(ξ):=p(−ξ). We conclude by (8.1).

8.2. Smoothness away from the origin

The following simple estimates, suggested in §5.4, will be employed occasionally.

Lemma 8.1. (i) For any a∈S∞, the distributional Fourier transform a∨ is repre-

sented away from the origin by a smooth function.

(ii) Fix integers m and N , and a multi-index α with |α|+m−N6− dim(g)−1.

Then, for a∈Sm and x∈g\{0}, we have

∂αa∨(x)�|x|−N ,

where the implied constant depends continuously upon a. More generally, for a∈Smδ ,

∂αa∨h (x)�h− dim(g)

∣∣∣∣ x

h1−δ

∣∣∣∣−N . (8.3)

(iii) Let n∈Z>0. If a∈Sm with m6−dim(g)−1−n, then a∨ is represented near

the origin by an n-fold differentiable function.

Proof. We integrate by parts repeatedly in the integral defining a∨.

8.3. Variation with respect to the cut-off: proofs

We now prove Lemma 5.4. It suffices to prove (ii). Define the h-dependent element

f∈C∞c (G) by a∨hχ1=a∨hχ2+f . Fix ε>0 small enough that χ1(x)=χ2(x) whenever |x|6ε.
Then, f(x) 6=0 only if |x|>ε; in that case, we may apply (8.3) to see that, for any fixed

N>0, the h-dependent elements h−N f belong to a fixed bounded subset of C∞c (G). As

discussed in §3.6, the map C∞c (G)!Ψ−∞ is continuous. The conclusion follows.
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8.4. Equivariance: proofs

We now prove Lemma 5.5. We may assume that ε∈(0, 1) is such that δ+ 1
2ε∈(0, 1), say.

Recall that g∈G is assumed to satisfy condition (5.4), which we copy here for convenience:

‖Ad(g)‖�h−1+δ+ε . (5.4)

We fix h0>0 sufficiently small in terms of ε, δ and the cut-off χ implicit in the

definition of Op. We treat separately the cases h>h0 and h<h0. In the range h>h0, the

rescaled symbol ah lies in a bounded subset S∞, and we see from (5.4) that g lies in a

fixed compact subset of G modulo the center. The required conclusion thus follows from

the same argument as in §5.5. It remains to treat the range h<h0.

Define b∈S∞δ so that b∨ is a smooth truncation of a∨ to A:={x:|x|6h−δ−ε/2}. Using

§8.2, we see that

a≡ b mod h∞ S−∞ and g ·a≡ g ·b mod h∞ S−∞, (8.4)

hence

Oph(a)≡Oph(b) mod h∞Ψ−∞, (8.5)

Oph(g ·a)≡Oph(g ·b) mod h∞Ψ−∞. (8.6)

We may also verify directly, using the identity

π(g)[π(x), T ]π(g)−1 = [π(Ad(g)x), T ]

for x∈g and its n-fold iterate, that

T ∈h∞Ψ−∞ =⇒ π(g)Tπ(g)−1 ∈h∞Ψ−∞. (8.7)

For x∈A, we have

|g ·x|6 ‖Ad(g)‖ h−δ−ε/26h−1+ε/2 .

Since h<h0, it follows (having chosen h0 suitably) that the cut-off χ implicit in the

definition of Oph satisfies χ(hx)=χ(h(g ·x))=1, and so the identity

Oph(g ·b) =π(g)Oph(b)π(g)−1 (8.8)

holds exactly. We conclude by combining (8.5)–(8.8).
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8.5. Membership criteria for operator classes

We establish a basic criterion for membership in the operator classes Ψm defined in §3.5.

This will be applied to establish Lemma 3.4, and then further in §8.7.

Proposition 8.2. For m∈Z, an operator T on π belongs to Ψm if and only if the

following holds for each u∈U:

if m> 0, then sup
06=v∈π∞

‖θu(T )v‖2

〈∆mv, v〉
<∞; (8.9)

if m6 0, then sup
06=v∈π∞

sup
x1,...,x−m∈{1}∪B

‖θu(T )x1 ... x−mv‖
‖v‖

<∞. (8.10)

Moreover, the seminorms defining Ψm may be bounded in terms of such quantities.

The proofs occupy the remainder of §8.5.

We extend π:U!End(π∞) to π :U[∆−1]!End(π∞). (Here U[∆−1] is the localization

of U at ∆: it is the universal ring equipped with a morphism from U in which ∆ becomes

invertible. Although this ring is difficult to describe precisely, we will use it in a rather

formal fashion.) We define on U[∆−1] a Z-filtration by assigning weight 1 to elements of

g and weight −2 to ∆−1.

Definition 8.3. For m∈Z, we say that t∈U[∆−1] has order 6m if it may be expressed

as a linear combination of products w1 ... wn, n∈Z>0, for which

(i) for each i∈{1..n}, either

(a) wi∈g, or

(b) wi=∆−1.

(ii) If cases (a) and (b) occur n1 and n2 times, respectively, then n1−2n26m.

We denote by U3u 7!θu∈End(U[∆−1]) the algebra morphism extending θx(t):=[x, t]

for x∈g, so that θx1...xn(t)=[x1, ..., [xn, t]] for x1, ..., xn∈g. Observe that

θx(∆−1) = [x,∆−1] =−∆−1[x,∆]∆−1 for x∈ g. (8.11)

Lemma 8.4. Let t∈U[∆−1], u∈U and m∈Z. If t has order 6m, then also θu(t)

has order 6m.

Proof. By repeated application of (8.11).

Lemma 8.5. If t∈U[∆−1] has order 60, then π(t) induces a bounded operator π!π.

Proof. By repeated application of (8.11), we may write t as a linear combination of

products of factors of the form xy∆−1, with x, y∈{1}∪B. To each such factor we apply

the case s=2 of (3.1), giving ‖π(xy∆−1)v‖2�〈∆2∆−1v,∆−1v〉=‖v‖2.



60 p. d. nelson and a. venkatesh

Proof of Proposition 8.2. The forward implications are straightforward: if T∈Ψm,

then θu(T ):πm!π0 is bounded, so (8.9) holds, while if T∈Ψ−m, then θu(T ):π0
!π−m

is bounded, so (8.10) follows from (3.1). We turn to the converse implications, which

we treat now in a unified manner. For quantities A and B depending upon an element

v∈π∞, we write A�B to denote that |A|6c|B| for some c>0 not depending upon v,

and write A�B if A�B�A. Let m∈Z. Assume that, for each u∈U,

if m> 0, then ‖θu(T )v‖� sup
x1,...,xm∈{1}∪B

‖x1 ... xmv‖, (8.12)

if m6 0, then sup
x1,...,x−m∈{1}∪B

‖θu(T )x1 ... x−mv‖�‖v‖. (8.13)

We must show then, for each u∈U and s∈Z, that

〈∆s−mθu(T )v, θu(T )v〉� 〈∆sv, v〉. (8.14)

To that end, choose k∈Z>0 sufficiently large in terms of m and s; it will suffice to assume

that 2k>max(m−s,−s). Then,

〈∆s∆kv,∆kv〉= 〈∆s+2kv, v〉� sup
x1,...,xs+2k∈{1}∪B

‖x1 ... xs+2kv‖2,

so by the invertibility of ∆, our task (8.14) reduces to showing that

〈∆s−mθu(T )∆kv, θu(T )∆kv〉� sup
x1,...,xs+2k∈{1}∪B

‖x1 ... xs+2kv‖2. (8.15)

In the case s>m, we expand the definitions of ∆k and ∆s−m and use identities such as

θu(T )π(x)=π(x)θu(T )−θxu(T ) for x∈g to write the left-hand side of (8.15) as a linear

combination of expressions

〈θu′(T )x1 ... xs−m+2kv, θu′′(T )y1 ... ys−m+2kv〉, (8.16)

where xi, yi∈{1}∪B and u′, u′′∈U. We then apply the Cauchy–Schwarz inequality to each

such expression and invoke the assumed bound for T to conclude. We argue similarly in

the case m>s, but only expand ∆k. We arrive then at expressions of the form

〈Aθu′(T )x1 ... xs−m+2kv, θu′′(T )y1 ... ys−m+2k〉 (8.17)

with

A= z1 ... zm−s∆
s−mw1 ... wm−s, (8.18)

where xi, yi, zi, wi∈{1}∪B and u′, u′′∈U are as above. By Lemma 8.5, each such operator

A is bounded on π0. We may thus apply Cauchy–Schwarz to (8.17) and argue as before

to conclude.
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We now establish Lemma 3.4 in a general form.

Proposition 8.6. Let m∈Z. If t∈U[∆−1] has order 6m, then π(t) has order 6m,

i.e., π(t)∈Ψm.

Proof. By Lemma 3.3, it suffices to consider the following special cases:

(a) t∈g and m=1;

(b) t=∆−1 and m=−2.

We appeal to the criterion of Proposition 8.2. Let u∈U. In case (a), we have

θu(t)∈g, so the required estimate (8.9) reduces to the case s=1 of (3.1). In case (b), we

have, by Lemma 8.4, that θu(t) has order 6−2, hence that θu(t)x1x2 has order 60 for

x1, x2∈{1}∪B, so the required estimate (8.10) reduces to Lemma 8.5.

8.6. Operator norm bounds

We record some estimates to be applied below in the proofs of Theorems 5.6 and 5.8.

Proposition 8.7. (i) If a∈S0, then Op(a) defines a bounded operator on π, with

operator norm bounded continuously in terms of a.

(ii) If a∈S0
δ for some fixed δ∈

[
0, 1

2

)
, then Oph(a) defines an h-dependent bounded

operator on π, with operator norm bounded uniformly in h and continuously in terms

of a.

The proof occupies the remainder of this section. It suffices to establish assertion (ii),

which recovers assertion (i) upon taking δ=0 and restricting to h-independent symbols.

We begin with some preliminaries. Let N denote the norm on S(g∧) given by

N (a):=‖a∨‖L1(g). It is dilation-invariant: N (a)=N (ah).

Denote by ‖ · ‖ the operator norm on End(π). We have the following trivial estimate.

Lemma 8.8. For a∈S(g∧), we have ‖Oph(a)‖6N (a).

We note the following consequence of Lemma 7.10.

Lemma 8.9. Let a∈S0
δ be localized at some element ω∈g∧. Then, N (a)�1; the

implied constant may depend upon δ, and continuously upon a, but not upon ω.

We recall the Cotlar–Stein lemma (see [Hör, Lemma 18.6.5]).

Lemma 8.10. Let V1 and V2 be Hilbert spaces. Let Tj :V1!V2 be a sequence of

bounded linear operators. Assume that

sup
j

∑
k

‖T ∗j Tk‖1/26C and sup
j

∑
k

‖TjT ∗k ‖1/26C, (8.19)
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Then, the series T :=
∑
j Tj converges in the Banach space of bounded linear operators

from V1 to V2, and has operator norm ‖T‖6C.

We now prove assertion (ii) of the proposition. Let a∈S0
δ . As in §7.6, we may write

a=
∑
ω∈Ω aω, where aω∈S0

δ is localized at ω, and depends continuously upon a. Since∑
ω aω converges to a distributionally, we have Oph(a)=

∑
ω Oph(aω) as maps π∞!π−∞.

As noted in §2.3, we have Op(aω)∗=Op(āω), so Op(aω1
)∗Op(aω2

)=Op(āω1
?haω2

, χ′). By

Lemmas 8.8 and 8.10, it will thus suffice to show that

sup
ω1∈Ω

∑
ω2∈Ω

N (āω1 ?haω2)1/2� 1, (8.20)

with continuous dependence upon a. To that end, we fix N∈Z>0 large enough, then fix

J∈Z>0 large enough in terms of N , and write

āω1
?haω2

=
∑

06j<J

hj āω1
?jaω2︸ ︷︷ ︸

=:bω1,ω2

+rω1,ω2
.

Using Proposition 7.13, we see that

N (rω1,ω2
)�hN 〈ω1〉−N 〈ω2〉−N .

In particular, rω1,ω2 gives an acceptable contribution to (8.20). On the other hand, the

symbol bω1,ω2 is localized at ω1 and depends continuously upon a; moreover, for given

ω1, we have bω1,ω2 =0 for ω2 outside a set of cardinality O(1). By Lemma 8.9, we deduce

that bω1,ω2 gives an acceptable contribution to (8.20). The proof is complete.

8.7. Proofs of operator class memberships: without rescaling

We now prove Theorem 5.6. We must verify for m∈Z (hence for m∈Z∪{±∞}) that

Op(Sm)⊆Ψm, (8.21)

with the induced map continuous, and that

Op(a)Op(b) = Op(a?b, χ′) (8.22)

for a, b∈S∞. Recall that (8.21) implies that

Op(S∞)π∞⊆π∞, (8.23)
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so that the composition in (8.22) makes sense. In fact, we will prove (8.22) and (8.23)

simultaneously, and then combine these with §8.6 to deduce (8.21).

We observe first that, for a polynomial symbol p, the corresponding operator Op(p)

acts both on π∞ and on π−∞. This observation is a consequence of §5.5. It applies in

particular when p(ξ)=〈ξ〉2N , in which case Op(p)=∆N .

We observe next that the composition law (8.22) holds if both a and b are compactly-

supported, as is clear from the preliminary discussion in §2.5.

We observe next that the composition law (8.22) holds under the assumption that

either a or b is a polynomial. In view of the previous observations, this assumption

permits us to define the composition in (8.22), following §5.1.

Suppose first that b is a polynomial. Let u, v∈π∞. We must check that the quantities

〈Op(a)Op(b)u, v〉=
∫
ξ∈g∧

a(ξ)

(∫
x∈g

e−xξχ(x)〈π(exp(x))Op(b)u, v〉 dx
)
dξ (8.24)

and

〈Op(a?b)u, v〉=
∫
ξ∈g∧

(a?b)(ξ)

(∫
x∈g

e−xξχ(x)〈π(exp(x))u, v〉 dx
)
dξ (8.25)

are equal. Note that in either expression, the parenthetical integral over x defines a

Schwartz function of ξ.

To verify the required equality, we note first from the star product asymptotics that

for given b, the tempered distributions a and a?b depend continuously upon a∈S∞.

Using that C∞c has dense image in S∞ (cf. the beginning of §7.7), we may thus reduce

to the case that a lies in C∞c . Then, Op(a) and its adjoint Op(a)∗=Op(ā) act on π∞.

We may rewrite (8.24) as

〈Op(b)u,Op(a)∗v〉
∫
ξ∈g∧

b(ξ)

(∫
x∈g

e−xξχ(x)〈π(exp(x))u,Op(a)∗v〉 dx
)
dξ, (8.26)

where, since Op(a)∗v∈π∞, the parenthetical over x again defines a Schwartz function of ξ.

Using now that, for given a, the tempered distributions a?b and b depend continuously

upon b∈S∞, we may reduce the comparison of (8.25) and (8.26) to the case that also

b∈C∞c . As noted above, the conclusion is known in that case.

If instead a is a polynomial, then we must check that (8.25) and (8.26) are equal.

We argue as before, reducing first to the case that b lies in C∞c .

We next verify (8.23). It will suffice to show that

∆NOp(S∞)π∞⊆π0

for each N∈Z>0. Let us say that T∈Op(S∞) is good if Tπ∞⊆π0.
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We have

∆NOp(S∞)⊆Op(S∞)+Ψ−∞

by the special case of (8.22) already established, so it will suffice to show that every

element of Op(S∞) is good.

Let m∈Z, a∈Sm, T :=Op(a). If m60, so that T∈Op(Sm)⊆Op(S0), then Tπ0⊆π0

by Proposition 8.7, so T is good. For the case m>0, we show now by induction on m

that T is good. Define p∈S2 by p(ξ):=〈ξ〉2. Then, a/p∈Sm−2. By the case of (8.22)

established above and the result of §5.4, we see that

Op(a/p)Op(p) = Op(a/p?p, χ′) = Op(a/p?p)+R,

where R∈Ψ−∞. By Theorem 4.5, we have a/p?p=a+r with r∈Sm−1. Thus,

T = Op(a/p)∆−Op(r)−R.

In particular,

T ∈Op(Sm−2)∆+Op(Sm−1)+Ψ−∞. (8.27)

By our inductive hypotheses, we conclude that T is good.

We next verify the general case of (8.22). Let u, v∈π∞. Having established (8.23),

we know that, in each of (8.24), (8.25) and (8.26), the parenthetical integral over x defines

a Schwartz function of ξ. By a continuity argument as above, we may reduce first to the

case that a is compactly supported, then to the case that b is compactly supported, in

which the conclusion is known.

In summary, we have established (8.23) and the general case of (8.22). We now

establish (8.21). (Continuity will be clear from the proof.) We may assume that m∈Z.

We appeal to the criterion in §8.5.

By iterated application of (8.22) (with one symbol a polynomial), it will suffice to

verify this criterion in the special case u=1. Our task is then to show for T∈Op(Sm)

that there exists C>0 so that for all v,

‖Tv‖26C〈∆mv, v〉, if m> 0, (8.28)

−m∑
k=0

sup
x1,...,xk∈B(g)

‖Tx1 ... xkv‖6C‖v‖, if m6 0. (8.29)

When m=0, either assertion follows from §8.6. The case of (8.29) in which m<0 reduces

to the case m=0 by the composition law (8.22): for k6−m, we have

Tx1 ... xk ∈Op(Sm)Op(S1)k ⊆Op(Sm+k)+Ψ−∞⊆Op(S0)+Ψ−∞.

For m>0, we may then use the decomposition (8.27) to establish (8.28) inductively.
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8.8. Proofs of operator class memberships: with rescaling

We now prove Theorem 5.8.

8.8.1. Composition formula

Fix δ∈
[
0, 1

2

)
. From the h=1 case treated above and §5.4, we have for a, b∈S∞δ that

Oph(a)Oph(b) = Oph(a?hb, χ
′)≡Oph(a?hb) mod h∞Ψ−∞. (8.30)

8.8.2. Operator bounds: overview

It remains to verify for each m∈Z that

Oph(Smδ )⊆hmin(0,m) Ψm
δ . (8.31)

We know by Theorem 5.6 that, for each a∈Smδ , the operator Oph(a) defines an h-

dependent element of Ψm. Our task is to estimate suitably the variation of its seminorms

with respect to h. We carry this out in the remainder of §8.8.

Before proceeding, it may be instructive to give a plausibility argument for why

(8.31) is the natural bound to expect. We focus on the following consequence of (8.31):

for a∈Smδ and fixed s∈Z, we have

‖Oph(a)‖πs!πs−m�hmin(0,m) .

(Conversely, in §8.8.5, we will apply the composition formula (8.30) to reduce the proof

of (8.31) to that of this consequence.) We consider the case that G is the vector space

Rn, regarded as an abelian Lie group, and that π=L2(Rn) is the regular representation.

In this case, we may omit the cut-off χ in our definition of Op. The assignment Op then

attaches to each symbol the corresponding Fourier multiplier. The Sobolev norms ‖ · ‖πs
may be given in terms of the Fourier transform v 7!v∧ on L2(Rn) by

‖v‖2πs =

∫
ξ

|v∧(ξ)|2〈ξ〉m dξ,

where as usual 〈ξ〉=(1+|ξ|2)1/2. It follows that, for b∈Sm,

‖Op(b)‖πs!πs−m = sup
ξ∈g∧

|b(ξ)|
〈ξ〉m

.

Recalling the definition ah(ξ)=a(h ξ) of our rescaling and the estimate a(ξ)�〈ξ〉m con-

tained in the definition of Sδm, it follows that

‖Oph(a)‖πs!πs−m = sup
ξ∈g∧

|a(ξ)|
〈ξ/h〉m

� sup
ξ∈g∧

〈ξ〉m

〈ξ/h〉m
.
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It is not hard to see that this last supremum is comparable to hmin(0,m) (consider sepa-

rately the cases in which ξ=0 and in which ξ is large).

The case of general G is more involved due to the absence of an analogue for general

π of the Fourier transform on L2(Rn). In the special case δ=0, we will reduce readily to

the h-independent estimates established in §8.7, with the aid of the membership criteria

in §8.5. We argue similarly in the case of general δ, but using the composition formula

(8.30) as a substitute for the commutator-theoretic arguments in §8.5, which are less

efficient when δ>0.

8.8.3. The case δ=0

We treat first the simplest (and most important) case δ=0. Let a∈Sm0 , so that

∂αa(h ξ)�〈h ξ〉m−|α|.

Writing b(ξ):=ah(ξ)=a(h ξ) for its rescaling, we see by the chain rule that

∂αb(ξ) = h|α| ∂αa(h ξ).

Using the estimates

〈h ξ〉m�hmin(0,m)〈ξ〉m and h〈ξ〉� 〈h ξ〉,

it follows that

∂αb(ξ)�hmin(0,m)〈ξ〉m−|α|

In other words, b∈hmin(0,m) Sm0 . By the continuity of Op=Op1:Sm!Ψm established in

Theorem 5.6, we deduce that

Oph(a) = Op(b)∈hmin(0,m) Ψm
0 ,

as required.

8.8.4. Reduction to symbols supported away from the origin

Turning to the case of general δ∈[0, 1), we treat first the subcase in which a∈Smδ is

supported on elements ξ of size O(hδ). Set b(ξ):=a(hδ ξ), so that ah=bh1−δ . By the

chain rule, ∂αb(ξ)=hδ|α| ∂αa(hδ ξ)�1. Since b is supported on elements of size O(1), we

have b∈Sm0 (in fact, b∈S−∞0 ). By the construction of b and the case δ=0 treated above

(applied with h replaced by h1−δ), we see that

Oph(a) = Oph1−δ(b)∈ (h1−δ)min(0,m)Ψm
0 ⊆ hmin(0,m) Ψm

δ ,
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as required. By smoothly decomposing a general symbol, it will suffice from now on to

treat the case of symbols supported on {ξ :|ξ|>hδ}, say.

We henceforth fix δ∈[0, 1) and take a∈Smδ supported on elements ξ satisfying |ξ|>hδ.

By smoothly decomposing a inside Smδ , we may assume that there exists a basis element

z∈B⊆g such that |z(ξ)|�|ξ| for all ξ∈supp(a). We define the h-dependent operator

T := Oph(a)

and must verify that T∈Ψm
δ , i.e., that for each fixed u∈U and s∈Z, the operator norm

‖θδu(T )‖πs!πs−m is O(hmin(0,m)), uniformly in h (recall from §5.3 the definition of θδu).

8.8.5. Reduction to the case u=1

It will be convenient to reduce to the case u=1. By linearity, we may suppose that

u=x1 ... xn for some x1, ..., xn∈g. Regarding xj as a linear function on g∧, we have

π(xj)=h−1 Oph(xj). Using the composition formula (8.30), we see that

θδu(T )≡Oph(h−n θδu(a)) mod h∞Ψ−∞,

where θδu(a) is defined inductively by

θδu(a) = hδ θδx1...xn−1
(xn?ha−a?hxn) for n> 1

and θδ1(a):=a for n=0. The star-product asymptotics (Theorem 7.4) imply that, for each

fixed y∈g and b∈Smδ , both y?hb and b?hy are congruent to the pointwise product yb

modulo h1−δ Smδ . By induction, it follows that

h−n θδu(a)∈Smδ .

Thus, the required operator norm bounds πs!πs−m for each element of Oph(Smδ ) imply

the same for their images under θδu. The claimed reduction to the case u=1 follows.

It remains to verify that T :πs!πs−m has operator norm O(hmin(0,m)) for each fixed

s∈Z. As in §8.5, we fix k∈Z>0 large enough in terms of s and m, and reduce to verifying

that, for each v∈π,

〈∆s−mT∆kv, T∆k〉� (hmin(0,m) ‖v‖πs+2k)2. (8.32)

8.8.6. The case s−m>0

We argue separately according to the sign of s−m, supposing first that s−m>0.
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Recall that the symbol a is assumed supported on elements ξ with |ξ|>hδ. Let us

assume for the moment the stronger support condition |ξ|>1.

By expanding the definition of ∆s−m and appealing to Cauchy–Schwarz, we reduce

to verifying for all x1, ..., xs−m∈{1}∪B �
�
// U that

‖x1 ... xs−mT∆kv‖�hmin(0,m) ‖v‖πs+2k .

To see this, we first evaluate x1 ... xs−mT∆k using the composition formula. Since

π(x) = h−1 Oph(x) for x∈ g,

we obtain

x1 ... xs−mT∆k ≡h−(s−m+2k) Oph(x1?h ...?hxs−m?ha?hp
k),

where p(ξ):=h2 +|ξ|2 and ≡ denotes congruence modulo h∞Ψ−∞. (Strictly speaking, ?h

is not associative due to the cut-off χ, so we should specify that this iterated star product

is evaluated (say) left-to-right. Changing the order of evaluation introduces negligible

errors lying in h∞Ψ−∞, so we do not belabor this point.)

By Theorem 5.6, we may find a continuous seminorm ν on Ss+2k such that, for all

c∈Ss+2k and v∈π, we have

‖Op(c)v‖6 ν(c)‖v‖πs+2k . (8.33)

Since the evaluation at ch of any Ss+2k-seminorm is bounded polynomially in h−1, we

see that, if N∈Z>0 is fixed large enough (in terms of m, s, k and δ), then

h−(s−m+2k) ν(ch)�hmin(0,m) for all c∈hN Ss+2k
δ . (8.34)

Fix J∈Z>0 large enough in terms of m, s, k and N . Let b denote the approximation to

x1?h ...?hxs−m?ha?hp
k obtained by replacing each star product ?h with the finite part

of its asymptotic expansion obtained by summing over 06j<J , as in the statement of

Theorem 4.5. Then,

b∈Ss+2k
δ and supp(b)⊆ supp(a).

Since J was chosen large enough, we have

x1?h ...?hxs−m?ha?hp
k = b+c, c∈ hN S−Nδ .

We deduce from (8.34) and (8.33) the acceptable bound

h−(s−m+2k) ‖Oph(c)v‖�hmin(0,m) ‖v‖πs+2k .
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Our task thereby reduces to verifying that

h−(s−m+2k) ‖Oph(b)v‖�hmin(0,m) ‖v‖πs+2k . (8.35)

Recall from §8.8.4 that we are given an element z∈B such that |z(ξ)|�|ξ| for all ξ

in the support of a, hence also for ξ in the support of b. We now “approximately divide

b by zs+2k on the right” with respect to the star product; precisely, we construct q∈S0
δ

for which b≈q?hz
s+2k in the sense that

b≡ q?hz
s+2k mod hN S−Nδ

for fixed large enough N . To that end, we take q=
∑

06j<M hj qj , where M is fixed large

enough in terms of N and the qj are chosen so that the required approximation holds in

a formal sense; explicitly,

q0 :=
b

zs+2k
, q1 :=

−b?1q0

zs+2k
and q2 :=

−b?2q0+b?1q1

zs+2k
,

and so on. We see by induction on j that qj∈h−δj S
−(s+2k)j
δ . It follows from the com-

position formula (8.30) that q has the indicated properties.

By another application of the composition formula, we see that the left-hand side of

(8.35) is given up to negligible error by

h−(s−m+2k) ‖Oph(q)Oph(zs+2k)v‖= hm ‖Oph(q)zs+2kv‖.

Our task thereby reduces to showing that

hm ‖Oph(q)zs+2kv‖�hmin(0,m) ‖v‖πs+2k .

To see this, we appeal to part (ii) in Proposition 8.7, which tells us that Oph(q) defines

a bounded operator π!π with operator norm O(1). Thus,

‖Oph(q)zs+2kv‖�‖zs+2kv‖.

By appeal to the lower bound in (3.1) for ‖v‖πs+2k and the obvious inequality

hm6hmin(0,m),

we obtain the required estimate.

This completes our treatment under the assumption that a is supported on |ξ|>1.

By smooth decomposition inside Smδ , it suffices now to treat the complementary case in

which a is supported on hδ6|ξ|62, say.
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We consider first the subcase in which a is supported on R6|ξ|62R for some h-

dependent positive real R with hδ�R�1. The general strategy is then as above, but

taking into account that the polynomial symbols xj and p have respective sizes �R and

�R2 on the support of a. The symbol b constructed as above now lies in Rs−m+2kS−∞δ .

By choosing N and J suitably, the remainder term c remains acceptable. The “quotient”

q obtained by approximately dividing b on the right by zs+2k now lies in R−mS0
δ . Since

h6hδ�R�1, we have hmR−m�hmin(0,m). We may thus conclude as before.

In the general case that a is supported on hδ6|ξ|62, we take a smooth dyadic

decomposition a=
∑
R a

(R), where R runs over powers of two satisfying hδ�R�1 and

a(R) is as in the previous paragraph. The quotient q obtained as before has the form∑
R q

(R), where q(R)∈R−mS0
δ . For each R, the number of R′ for which the supports of

q(R) and q(R′) overlap is O(1). Thus, q∈max(1,h−δm)S0
δ , and we may conclude as in the

previous paragraph.

8.8.7. The case s−m60

The argument is similar in structure to that in the case s−m>0 considered above: we

treat separately the subcases in which a is supported on |ξ|>1 or on hδ6|ξ|62, and

dyadically decompose in the latter case. The only difference is that we arrange the

composition and division arguments slightly differently.

We begin by using the composition formula to write the left-hand side of (8.32), up

to negligible error, as

h−4k〈∆s−mOph(b)v,Oph(b)v〉,

where b is a truncation of the asymptotic expansion of a?hp
k, with p(ξ)=h2 +|ξ|2. We

then approximately divide the symbol b on the left by zm−s and on the right by zs+2k,

giving a symbol q for which b≈zm−s?hq?hz
s+2k in the same sense as before. In the case

that a is supported on |ξ|>1, the symbol q lies in S0
δ , while in the case that a is supported

on |ξ|�R, we have q∈R−mS0
δ . We reduce in either case to verifying that

h2m〈π(z)s−m∆s−mπ(z)s−mOph(q)v,Oph(q)v〉� (hmin(0,m) ‖v‖πs+2k)2.

To that end, we see, by Proposition 8.6, that

π(z)s−m∆s−mπ(z)s−m

has operator norm O(1). By Cauchy–Schwarz, we reduce further to showing that

hm ‖Oph(q)v‖�hmin(0,m) ‖v‖πs+2k .

We now conclude exactly as in the case s−m>0.



the orbit method and analysis of automorphic forms 71

8.9. Generalization to proper subspaces

Let g1, g26g and accompanying notation be as in §7.1; in particular, g1+g2=g. We

assume, for convenience, that the cut-offs χ1 and χ2 have support taken small enough

in terms of the cut-off χ using to define the operator map on S(g∧); this assumption

matters little in practice (cf. §5.4).

Let a∈S(g∧1 ) and b∈S(g∧2 ). As mentioned in §7.1, one can then define operators

Oph(a) and Oph(b) on π, preserving π∞, and acting via the restrictions of π to the

subgroups G1 and G2. These operators typically do not belong to any of the operator

classes we have defined, but their composition belongs to Ψ−∞; indeed,

Op(a)Op(b) = Op(a?b)

with a?b∈S(g∧). Some analogues of the above results hold in this setting. For instance,

we have the following.

Theorem 8.11. Fix m1,m2∈Z with (m1,m2) admissible (§7.2). Fix δ∈
[
0, 1

2

)
. Let

a∈Sm1

δ (g∧1 ) and b∈Sm2

δ (g∧2 ). Then, Oph(a)Oph(b)=Oph(a?hb). Moreover, for each fixed

M,N∈Z>0, there is a fixed J∈Z>0 such that

Oph(a)Oph(b)≡
∑

06j<J

hj Oph(a?j b) mod hN Ψ−Mδ (8.36)

Proof. We apply the general star product asymptotics (Theorem 7.4) and argue as

in the proof of Corollary 5.9.

8.10. Disjoint supports

We retain the notation of the previous subsection, and record a simple consequence.

Lemma 8.12. Let (δ,m1,m2, a, b) be as in the hypotheses of Theorem 8.11. Assume

that the preimages in g∧ of the supports of a and b are disjoint. Then, Oph(a)Oph(b)∈
h∞Ψ−∞, with continuous dependence upon a and b.

The precise meaning of “continuous dependence” is that for any seminorm ` defining

the topology on h∞Ψ−∞ and any N>0, we have

`(Oph(a)Oph(b))6 ν1(a)ν2(b) hN

for some continuous seminorms νj on S
mj
δ (g∧j ).

Proof. We apply (8.36) with large J and use that a?j b=0 for all j∈Z>0 and

h∞Ψ−∞=
⋂

M,N∈Z>0

hN Ψ−Mδ .



72 p. d. nelson and a. venkatesh

9. Infinitesimal characters

9.1. Overview

Let G be a reductive group over R. (Our discussion applies, by restriction of scalars,

also to groups over C.) We denote by G the Lie group of real points of G, by g the

Lie algebra, by gC=g⊗RC the complexification, by g∗C its complex dual, and by ig∗ the

imaginary dual of g, which we may identify with the Pontryagin dual g∧ (cf. §2.1). We

regard ig∗ as a real form of the complex vector space g∗C.

We denote by

[g∗C] = g∗C//G

the GIT quotient, i.e., the spectrum of the ring of G-invariant polynomials on g∗C. This

variety has a natural real form, denoted [ig∗], corresponding to the polynomials taking

real values on ig∗. We will identify [g∗C] with its set of complex points and likewise [ig∗]

with its set of real points inside [g∗C]. As we recall below, these varieties are affine spaces:

the inclusion [ig∗] �
�
// [g∗C] looks like Rn �

�
// Cn .

Example 9.1. Suppose G=GLn(R). Using the trace pairing, we may identify g∗C
with the space of n×n complex matrices ξ. The map sending ξ to the characteristic

polynomial of ξ/i induces isomorphisms

[g∗C]
∼−!monic polynomials Xn+p1X

n−1+...+pn−1X+pn ∈C[X],

[ig∗]
∼−!monic polynomials Xn+p1X

n−1+...+pn−1X+pn ∈R[X].

Let U denote the universal enveloping algebra of gC, and Z its center; the latter acts

by scalars on any irreducible representation of G. Harish–Chandra defines an algebra

isomorphism

γ:Z'{regular functions on [g∗C]}, (9.1)

to be recalled below. Each irreducible representation π of G thus gives rise to a point

λπ∈[g∗C], which we refer to as the infinitesimal character of π.

The first aim of this section is to record some preliminaries concerning the assignment

π 7!λπ. We then aim to prove, using our operator calculus, some basic estimates involving

the λπ.

9.2. Basics concerning the quotient

We denote temporarily by R and RC the rings of regular functions of the varieties [ig∗] and

[g∗C] defined above. By definition, RC∼=Sym(gC)G is the ring of G-invariant polynomials

on g∗C; its real form

R∼= Sym(ig)G⊆RC
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consists of the polynomials taking real values on ig∗.

The R-algebra R admits a finite set p1, ..., pn of algebraically independent homoge-

neous generators. Indeed, the corresponding assertion for RC is a theorem of Chevalley

[Ch], and remains true for R due to the following fact whose proof we leave to the reader:

if K⊂L are fields and R=
⊕

mRm is a graded K-algebra with the property that R⊗KL
is polynomial on homogeneous generators, then the same is true for R.

Thus, R=R[p1, ..., pn] and RC=C[p1, ..., pn] are polynomial rings.

Recall that [g∗C] denotes the set of complex points of the spectrum of RC and [ig∗]

the set of real points of the spectrum of R; by definition, [g∗C] consists of C-algebra

maps RC!C and [ig∗] consists of R-algebra maps R!R. There is a natural inclusion

[ig∗] �
�
// [g∗C]. Fixing generators as above, we may identify

[ig∗]∼=Rn⊆ [g∗C]∼=Cn.

In particular, we may speak of the euclidean distance between elements of [g∗C]. This

depends on the choice of generators pi above; however, on any fixed compact subset,

the notions of distance arising from different choices of generators are comparable, i.e.,

bounded from above and below in terms of one another.

We denote by ξ 7![ξ] the natural maps g∗C![g∗C] and ig∗![ig∗]. The first of these

maps is surjective. More precisely, let tC be a Cartan subalgebra of gC, with corresponding

Weyl group WC. Then, gC splits as n−C⊕tC⊕nC, and we may identify t∗C with the subspace

of g∗C orthogonal to n−C⊕nC. By Chevalley’s theorem, the natural composition

t∗C−! g∗C−! [g∗C]

induces an isomorphism of complex varieties

t∗C/WC∼= [g∗C]. (9.2)

The map ig∗![ig∗] is not in general surjective (e.g., for G=SO(3)), but its image is

readily verified to be Zariski dense.

The complex conjugation ξ 7!ξ̄ on gC descends to an involution on [g∗C] that we

continue to denote by λ 7!λ̄. Similarly, the scaling action of t∈C∗ on g∗C given by ξ 7!tξ
descends to a scaling action λ 7!tλ on [g∗C]. The unique fixed point [0] of the scaling

action gives an origin on [g∗C].

For p∈R and ξ∈g∗C, one has p(ξ)=p(−ξ̄ ); it follows readily that

[ig∗] = {λ∈ [g∗C] :λ=−λ̄}. (9.3)
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9.3. The regular set; description by Cartan subalgebras

We recall that an element of [g∗C] is regular if it identifies with a regular point of t∗C/WC,

i.e,. a point having |WC| distinct preimages in t∗C; equivalently, λ is regular if its preimages

in g∗C are regular semisimple. We note that ξ∈g∗C is regular whenever [ξ] is regular (cf.

§1.14), but not conversely. As usual, we use a subscripted “reg” to denote the subset of

regular elements.

The subset [ig∗]reg of [ig∗] is dense and open. We recall how to parameterize

[ig∗]reg∩image(ig∗)

in terms of (real) Cartan subgroups T of G (compare with, e.g., [Kn, Theorem 5.22]). For

each such T , the complexified Lie algebra tC is a Cartan subalgebra of gC. As T varies

over a finite set of conjugacy representatives, the images of the maps (it∗)reg![ig∗]reg

partition [ig∗]reg∩image(ig∗).

9.4. Harish–Chandra isomorphism

We recall the construction of the map γ as in (9.1). (see, e.g., [Kn, p. 220] for further

details). Fix a Cartan subalgebra t⊆g and a corresponding decomposition

gC = n−C⊕tC⊕nC.

Let H denote the universal enveloping algebra (equivalently, symmetric algebra) of tC.

One has the decomposition

U= (n−CU+UnC)⊕H. (9.4)

Let ρ∈t∗ denote the half-sum of positive roots and σ:H!H the algebra automorphism

extending tC3t 7!t−ρ(t)1H. Given z∈Z with component zT ∈H relative to the decom-

position (9.4), Harish–Chandra defines the element γ(z):=σ(zT )∈H. This element turns

out to be Weyl-invariant, and thus identifies, via (9.2), with a regular function on [g∗C].

9.5. Basics on infinitesimal characters

Let π be a U-module on which Z acts by scalars. For instance, this happens when π

comes from an irreducible representation of G. The infinitesimal character λπ∈[g∗C] is

then defined by the following property: each z∈Z acts on π by the scalar γ(z)(λπ).

For any U-module π, we may define the dual module π∗ and the complex conjugate

module π̄.



the orbit method and analysis of automorphic forms 75

We write π+ :=�π∗ for the conjugate dual. We note that, if π comes from a unitary

representation of G, then π∼=π+. If Z acts on π by scalars, then it also acts by scalars on

the modules π∗, π̄ and π+, whose infinitesimal characters may be described as follows.

Lemma 9.2. λπ∗=−λπ and λπ̄=λ̄π and λπ+ =−λ̄π.

Proof. This is presumably well known, but we were unable to locate a reference. It

suffices to prove for each λ∈[g∗C] that the required identities hold for some U-module π

with λπ=λ.

Let gs⊆gC be a split real form, with split Cartan t6gs, and fix a reductive group

Gs with Lie algebra gs. Lift λ to a representative λ∈t∗C, and form the corresponding

normalized principal series representation I(λ) of Gs via induction from some Borel

containing exp(t). Then, I(λ) is a U-module whose infinitesimal character is the image

of λ (by, e.g., [Kn, Proposition 8.22]), while I(λ) has dual I(−λ) (by, e.g., calculations

as in [Kn, p. 170]) and complex conjugate I(λ̄) (by construction).

In particular, by (9.3), we obtain the following.

Corollary 9.3. If π is an irreducible unitary representation of G, then λπ∈[ig∗].

9.6. Langlands classification

Recall that a representation of G is tempered if it is unitarizable and weakly contained

in L2(G), or equivalently, if its central character is unitary and the matrix coefficients

of its K-finite vectors (with K some maximal compact subgroup of G) belong to L2+ε

modulo the center (see [CHH]). The Langlands classification (see [Kn, Theorem 8.54])

asserts that for each irreducible representation(3) π of G, there is a unique G-conjugacy

class of pairs (P, σ), consisting of a parabolic subgroup P of G and a representation σ of

the Levi quotient M such that the following statements hold:

• π is the unique irreducible quotient of the induced representation iGPσ;

• σ is tempered on the derived group of M ;

• the absolute value of the central character of σ is strictly dominant.

The infinitesimal characters of σ and π coincide with reference to the natural map

[m∗C]=m∗C//MC![g∗C] (see [Kn, Proposition 8.22]).

9.7. Infinitesimal criterion for temperedness

The infinitesimal characters of non-tempered representations are located near irregular

elements; for lack of a reference, we record the proof.

(3) in the sense of (g,K)-modules, but this includes unitary representations, see [Kn, Corollary 9.2].
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Lemma 9.4. For each compact subset Ω of [ig∗]reg there exists h0>0 such that, for

each h∈(0,h0), every irreducible unitary representation π with hλπ∈Ω is tempered.

Proof. First, fix a Cartan subalgebra tC of gC and let λ∈h−1 Ω. Since λ is regular,

any preimage λ̃∈tC under (9.2) satisfies w·λ̃ 6=λ̃ for all non-trivial elements w of the Weyl

group for tC. Since Ω is compact, it follows that

|w·λ̃−λ̃|> ch−1 (9.5)

for some c>0 depending only upon tC and Ω.

Next, let π be an irreducible unitary representation with hλπ∈Ω. We may realize

π as the Langlands quotient of iGPσ for some (P, σ) as in §9.6. Let |ωσ| denote the

(dominant) absolute value of the central character of σ. Assume that π is non-tempered.

Then, P 6=G and |ωσ| is strictly dominant, and in particular non-trivial.

Unitarity also imposes a constraint on |ωσ|. Choose a Levi subgroup M of P .

Write m for the Lie algebra of M , and a for the center of m. Let ρP be the half-sum

of positive roots for a on the unipotent radical of P . It follows from boundedness of

matrix coefficients that ρP |ωσ|−1, considered as a character a!C∗, is bounded above on

the dominant cone [Kn, Chapter XVI, §5, Problems 6 and 7]. This, together with the

condition that |ωσ| is dominant, confines |ωσ| to a compact subset of a∗. (Compare with

[SVo, Proposition 7.18].)

Now, passing to a smaller parabolic subgroup if necessary, we may assume that π is

a quotient of iGPσ, where

• the restriction of σ to the derived group of the Levi subgroup M of P belongs to

the discrete series, and

• the absolute central character |ωσ| is non-trivial and confined to a compact subset

of a∗.

Let m0 denote the derived subalgebra of m. We then have the splitting m=a⊕m0,

which induces a bijection

[m∗C]' a∗C×[m0∗
C ].

By our assumptions on σ, its infinitesimal character decomposes as

λσ = (κ+µ, ν),

where κ∈a∗, µ∈ia∗ and ν∈[im0∗]; moreover, κ is non-zero and confined to a compact

set.

By the classification of discrete series [Kn, Theorems 9.20 and 12.21], the parameter

ν comes from an imaginary parameter for some (compact) Cartan subgroup of M0. We

may thus find a Cartan subgroup T of G, contained in M and containing its center, such
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that λπ is the image of λ+κ for some λ∈it∗; here we identify κ∈a∗ with its pull-back

to t∗C. The unitarity of π implies that λπ=−λ̄π; since λ̄=−λ and κ̄=κ, it follows that

λ+κ=w·(λ−κ)

for some w in the Weyl group of tC. Since κ 6=0, the element w is non-trivial.

In summary, we have shown that there exists a Cartan subgroup T of G (which we

may assume taken in a finite set of conjugacy representatives), a lift λ̃π of λπ to t∗C, and

a non-trivial Weyl group element w for tC such that

w·λ̃π ∈ λ̃π+C

for some compact C⊆t∗C. But if h is small enough, this contradicts (9.5).

9.8. Norms

Let us introduce a norm | · | on [gC]∗, i.e. a continuous non-negative function such that

|tλ|=|t| |λ| for t∈C∗, and that vanishes only at the origin. Any two such choices are

bounded above and below in terms of each other:

| · |1� | · |2,

and so the explicit choice will not matter.

For example, choosing coordinates λ=(p1, ..., pn) on [g∗C] as in §9.2, where pj has

degree dj>1, the function

|λ| := max
j
|pj |1/dj

gives a norm. Alternately, identifying [g∗C] with the quotient of a Cartan subalgebra by

the Weyl group, any Weyl-invariant norm on the Cartan subalgebra gives a norm on [g∗C].

Now, let π be an irreducible unitary representation of G. Recall the positive-definite

densely-defined self-adjoint operator ∆:=π(∆) on π, as defined in §3.1. Then, the norm

|λπ| of the infinitesimal character λπ of π gives a reasonable notion of a “norm of π”.

Lemma 9.5. There is an eigenvalue of ∆ on π of size O(1+|λπ|2). The implied

constant depends at most upon G and the choice of norm.

Proof. The assertion does not depend on the basis B of g used to define ∆. Choose

a Cartan decomposition g=k⊕p and let {yi} and {zj} be orthonormal bases for k and p,

respectively, as defined with respect to the (possibly-negated) Killing form. Take

B := {yi}∪{zj}
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such that ∆=2∆K−1−C with

∆K := 1−
∑
i

y2
i and C :=−

∑
i

y2
i +
∑
j

z2
j .

Recall that C (the Casimir operator) defines a quadratic element of Z whose eigenvalue

on π is thus O(1+|λπ|2). We thereby reduce to verifying that ∆K has an eigenvalue of

size O(1+|λπ|2).

For this we use Vogan’s theory of minimal K-types (see [Vo2] or [Kn, §XV]). Let µ

be a minimal K-type of π. Then, Vogan shows that there exists a parabolic subgroup P

and a (possibly not unitary) relative discrete series representation σ of the Levi quotient

such that:

• π is a subquotient of an induced representation IGP (σ), and

• µ is a minimal K-type of IGP (σ).

This permits us to reduce the question to the case that π is induced from a discrete

series, and in turn to the case of discrete series. In that case, the desired result follows

from Blattner’s formula (see [HS] or [Kn, Theorem 12.26 c]).

9.9. Harish–Chandra versus symmetrization

The symmetrization map (cf. §5.2) is the linear isomorphism Sym(gC)G
sym−−−!Z given by

averaging over permutations. We consider the composition

Sym(gC)G
sym−−−!Z

γ−−!Sym(gC)G. (9.6)

Lemma 9.6. Let n∈Z>1, and let p∈Sym(gC)G have order 6n. Then,

γ�sym(p)−p has order 6n−1. (9.7)

Proof. We use that the component sym(p)T ∈H of sym(p) with reference to (9.4)

coincides modulo terms of degree 6n−1 with the restriction of p via t∗C
� � // g∗C.

10. Localizing

Here we record some results of the following theme: if a vector v is “microlocalized” at

a point ξ∈g∧ (§1.7), and a symbol a is supported away from that point, then Op(a)v is

negligibly small. The method of proof—to approximately divide one symbol by another—

is ubiquitous in microlocal analysis. The main result is Lemma 10.4, which we apply

below in a few places (§19.2, §22.3, §22.4 and §29.3) as an a-priori estimate.

In §10.1 and §10.2, π is an h-dependent unitary representation of a unimodular Lie

group G; in §10.3, we specialize further.
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10.1. Division

Lemma 10.1. Fix 06δ1, δ2< 1
2 and M,N∈Z>0. Set δ :=max(δ1, δ2). For each a∈

S−∞δ1 and q∈S∞0 for which

a(ξ) 6= 0 =⇒ |q(ξ)|>hδ2 ,

there exist b, b′∈h−δ2 S−∞δ such that

Oph(a)≡Oph(q)Oph(b) mod hN Ψ−Mδ ,

Oph(a)≡Oph(b′)Oph(q) mod hN Ψ−Mδ .

Remark 10.2. One can extend this result to M=N=∞ via “Borel summation” as

in [Hör, Proposition 18.1.3], but we have no need to do so.

Proof. (The idea of the proof was applied already in §8.8.6.) We construct b; one

may similarly construct b′. Set b0 :=a/q. By the quotient rule, we see that b0∈h−δ2 S−∞δ .

We now inductively construct bj for j>1 so that

q?h

∑
j>0

hj bj ∼ a

in the formal sense (i.e., comparing coefficients of powers of h). Explicitly,

b0 :=
a

q
, b1 :=

−q?1b0
q

, b2 :=
−q?2b0+q?1b1

q
,

and so on. We see by induction that supp(bj)⊆supp(a) and that

bj ∈h−δ2−2δj S−∞δ . (10.1)

We now take

b :=
∑

06j<J

hj bj ,

with J∈Z>0 large but fixed, and appeal to (5.5).

10.2. Localizing near the locus of a symbol

Suppose now given an h-dependent h-uniformly continuous map

H: Ψ−∞−!C
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and a symbol p∈S∞0 with the property that there is an (h-dependent) scalar λ∈C such

that either of the following conditions hold:

H(Oph(p)T ) =λH(T ) for all T ∈Ψ−∞, (10.2)

H(TOph(p)) =λH(T ) for all T ∈Ψ−∞. (10.3)

We will verify that H(Oph(a)) is small if a is supported away from the vanishing locus

of p. Let us first choose (as we may) an h-uniformly continuous seminorm ν on Ψ−∞

such that |H|6ν.

Lemma 10.3. Fix δ∈
[
0, 1

2

)
and N∈Z>0. Let a∈S−∞δ . Then,

H(Oph(a))�h−M 〈λ〉−N , (10.4)

where M is fixed large enough in terms of the seminorm ν. If moreover

a(ξ) 6= 0 =⇒ |p(ξ)−λ|> hδ,

then

H(Oph(a))�hN 〈λ〉−N . (10.5)

Proof. We assume (10.2); a similar proof applies under (10.3). By Lemma 5.3, we

may choose M so that the restriction of ν to Ψ−Mδ is continuous. We have

H(Oph(a)) =λ−NH(Oph(p)NOph(a)),

Oph(p)NOph(a)⊆Oph(S−∞δ )+h∞Ψ−∞,

Oph(S−∞δ )⊆Oph(S−Mδ )⊆h−M Ψ−Mδ .

By applying these both with the given value of N and with N=0, we obtain (10.4). We

turn to (10.5). Fix ε>0 with δ+ε< 1
2 . By applying (10.4) with N with sufficiently large,

we reduce to the case that |λ|6h−ε. We must verify then that

H(Oph(a))�hN . (10.6)

Set q :=hε(p−λ)∈S∞0 . We have |q|>hδ+ε on the support of a. By §10.1, we may write

Oph(a)≡Oph(q)Oph(b) and hN Ψ−Mδ for some b. Since H(Oph(q)Oph(b))=0 and H
induces a continuous map Ψ−Mδ !C, the required estimate (10.6) follows.
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10.3. Localizing near an infinitesimal character

We now establish an analogue of §10.2 which will be very useful in applications. Fix an

inclusion H
� � // G of reductive groups over R. Let π and σ be h-dependent irreducible

unitary representation of G and H, respectively. Let

H: Ψ−∞(π)−!C

be an h-dependent h-uniformly continuous map which factors as an (H×H)-equivariant

h-uniformly continuous composition

Ψ−∞(π)−!Ψ−∞(σ)−!C.

We quantify the rescaled frequencies of π and σ via their infinitesimal characters:

〈hλπ〉 := (1+|hλπ|2)1/2 and 〈hλσ〉 := (1+|hλσ|2)1/2.

Define

Op:Sm :=Sm(g∧)−!Ψm := Ψm(π),

as usual. Let a∈S−∞. We will verify that H(Oph(a)) is small unless a is supported on

elements ξ∈g∧ for which

([ξ], [ξ|h])≈ (hλπ,hλσ)∈ [g∧]×[h∧].

More precisely, let us choose an h-uniformly continuous seminorm ν on Ψ−∞(π) such

that |H|6ν. Then, we have the following result.

Lemma 10.4. Fix δ∈
[
0, 1

2

)
and N∈Z>0. Fix M>0 large enough in terms of ν.

Let a∈S−∞δ . Then, H(Oph(a)) satisfies the “a-priori estimate”

H(Oph(a))�h−M 〈hλπ〉−N 〈hλσ〉−N . (10.7)

Suppose now that a is supported on the complement of

{ξ ∈ g∧ : dist([ξ],hλπ)6hδ and dist([ξ|h],hλσ)6hδ}, (10.8)

with dist being the euclidean distance function defined by the coordinates fixed in §9.

Then, H(Oph(a)) is negligible:

H(Oph(a))�hN 〈hλπ〉−N 〈hλσ〉−N . (10.9)
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Proof. We denote as in §9.2 by RC∼=Sym(gC)G and R=Sym(ig)G the rings of G-

invariant polynomials on ig∗ taking complex and real values, respectively. Recall (from

§5.2, equation (9.1)) that, for p∈RC,

Op(p) acts by the scalar (γ�sym(p))(λπ). (10.10)

For p∈R, we denote by p′∈R the element for which

γ�sym(p′h) = ph. (10.11)

Regarding p′ as a polynomial symbol on g∧, we see that

Oph(p′) acts by the scalar ph(λσ) = p(hλσ). (10.12)

On the other hand, if we fix p and regard p′ as an h-dependent polynomial symbol, then

Lemma 9.6 gives

p′=O(1) and p′= p+O(h); (10.13)

more precisely, (10.13) says that p′∈h0 S∞0 and p′−p∈h1 S∞0 .

Fix a set {p}={pG}t{pH}, where

• pG runs over a system of generators for the ring Sym(ig)G, corresponding to the

coordinate functions defining the distance function on [g∧], and

• pH runs over a similar system for Sym(ih)H .

Let the assignment p 7!p′ be as above, applied either to H or to G. For each such p,

our assumptions concerning H imply that

H(Oph(p′)T ) = p(hλσ)H(T ) (10.14)

for all T∈Ψ−∞. We have |hλπ|+|hλσ|�maxp |p(hλσ)|, so the first estimate (10.7)

follows immediately from (10.14) and §10.2. In verifying (10.9), we may thus suppose

that |hλπ|+|hλσ|6h−ε for any fixed ε>0. By (10.13), we have

|p(ξ)−p′(ξ)|�h1−ε,

so that, for small enough h,

dist([ξ|h],hλσ)>hδ =⇒ max
p
|p(ξ)−p(hλσ)|�hδ

=⇒ max
p
|p′(ξ)−p(hλσ)|>hδ+ε,

say, and similarly if dist([ξ],hλπ)>hδ. Having fixed ε small enough, we may suppose

that δ+ε< 1
2 . If a is supported on the complement of (10.8), then we may decompose it

into pieces indexed by p supported on the sets

{ξ : |p′(ξ)−p(hλσ)|>hδ+ε}.

We conclude by applying §10.2 to each such piece.
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11. Regular coadjoint multiorbits

G is the set of real points of a real reductive group G, with notation as above.

11.1. Notation and terminology

For each infinitesimal character λ∈[g∧], we may form the fiber Oλ :={ξ∈g∧ :[ξ]=λ}. For

example, if λ=[0], then Oλ is the nilcone N . As noted already in §6.1, each such fiber

Oλ consists of a uniformly bounded finite number of G-orbits. We recall that a coadjoint

multiorbit O⊆g∧ is a G-invariant set contained in Oλ for some λ, and that O is regular

if it consists of regular elements; then,

O is regular ⇐⇒ O is relatively open ⇐⇒ O has maximal dimension,

where “relatively open” is with respect to Oλ, and “maximal” means with respect to all

coadjoint orbits.

Recall that to each coadjoint orbit O we may attach its normalized symplectic

measure ω :=ωO on O. Let a∈Cc(g∧). By a result of Rao [Rao], the integral
∫
O a dω

converges. Hence, ω may be regarded as a measure on g∧.

11.2. Topology

We temporarily denote by R the set of regular coadjoint multiorbits O⊆g∧reg. We equip

R with the topology induced from the inclusion

O 7−!ωO ∈{locally finite Radon measures on g∧},

where we endow the target with the weak-∗ topology. Thus, a sequence Oj of regular

coadjoint multiorbits converges to O in R if the corresponding symplectic measures ωOj
tend to ωO. We note that the infinitesimal character map R\{∅}![g∧] is continuous,

and has finite fibers.

We note that the topology on R is Hausdorff: the topology on the target of the

above inclusion is Hausdorff, and the map O7!ωO is injective in view of the regularity

of O.

It is a non-trivial fact that the topology on R may be described more simply.

Theorem 11.1. Let Oj∈R be a sequence of regular coadjoint multiorbits. Set

O := {ξ ∈ g∧reg: ξj! ξ for some ξj ∈Oj}.

(i) If Oj has a non-empty limit Olim∈R, then Olim=O.

(ii) If O is non-empty and contains all regular subsequential limits of the sequence

Oj , then O∈R and Oj!O.
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This follows from arguments of Rossmann [Ros2], [Ros3], who also gives in [Ros3]

some characterizations of when O is non-empty. Since it does not appear to have been

stated explicitly in the above form, we outline the proof. We consider first the special

case involving full preimages under the map g∧reg![g∧]. To that end, for λ∈[g∧], set

ωλ :=ωλOreg
,

where by convention ωλ :=0 if Oλreg=∅.

Lemma 11.2. The measures ωλ vary continuously with respect to λ∈[g∧].

Proof. Suppose that λj!λ. We must verify that ωλj!ωλ. By a diagonalization

argument, we may assume that the λj are regular. After passing to a subsequence, we

may assume that there is a Cartan subalgebra h of g such that λj is the image of tj∈hreg,

with the tj lying in the same connected component C⊆hreg and having a limit t∈
C⊆h.

The required conclusion in that case is stated explicitly in the second paragraph of [Ros2,

p. 59] and follows from [Ros2, Lemma D] and the arguments of [Ros2, pp. 59–62], which

rely in turn upon results of Harish–Chandra.

Lemma 11.3. Fix ξ0∈g∧reg, and let ξ0∈U⊆g∧reg be a sufficiently small open neigh-

borhood. Let O be any regular coadjoint multiorbit. Clearly, ωO|U is non-zero if and

only if O∩U 6=∅. In that case, ωO|U=ωG·ξ|U for any ξ∈O∩U . The family of measures

ωG·ξ|U varies continuously with respect to ξ∈U .

Proof. We have for each λ∈[g∧] that the intersection U∩Oλ=U∩Oλreg is non-empty

precisely when there is some ξ∈U with [ξ]=λ. Since the differential of the map g∧reg![g∧]

is surjective at every point [Kos2, Theorem 0.1], we have in that case—for sufficiently

small U—that U∩Oλ=U∩(G·ξ). The claims then follow from the prior lemma.

Proof of Theorem 11.1. Let λj=[Oj ]∈[g∧] denote the infinitesimal character of Oj .
Suppose first that the Oj have a non-empty limit Olim∈R, with infinitesimal charac-

ter λ:=[Olim]. Then, λj!λ; it follows that O is non-empty. It is therefore a non-empty

regular coadjoint multiorbit with infinitesimal character λ. Using Lemma 11.3, we see

that

(restriction to g∧reg of ωOj )−! (restriction to g∧reg of ωO). (11.1)

Since Oj!Olim, this forces Olim=O.

Conversely, suppose that O is non-empty and contains the regular subsequential

limits of the Oj . We can find a sequence ξj∈Oj converging to some ξ∈O, so that

λj=[ξj ] likewise tends to λ:=[ξ]. Since every element of O arises in this way, we see that

O is a non-empty regular coadjoint multiorbit with infinitesimal character λ. We aim to



the orbit method and analysis of automorphic forms 85

verify that Oj!O. Using Lemma 11.3, we see that (11.1) holds. The remaining point is

to understand what happens on g∧−g∧reg. Since ωOj6ωλj , we see from Lemma 11.2 that

ωOj admits (after passing to a subsequence) a limit measure ω′ which is G-invariant and

bounded by ωλ, hence is a non-negative linear combination of the measures ωO′ attached

to G-orbits O′⊆Oλreg. By (11.1), we deduce that ω′=ωO. Thus, Oj!O.

11.3. Bounds for symplectic measures

In what follows, we denote by supO a supremum taken over all non-empty regular coad-

joint multiorbits.

Lemma 11.4. For each a∈Cc(g∧),

sup
O

∣∣∣∣∫
O
a dω

∣∣∣∣<∞. (11.2)

Proof. It will suffice to show that supλ∈[g∧] |ωλ(a)|<∞, with ωλ attached to Oλreg as

in §11.2. Recall that |ωλ(a)|<∞. The image in [g∧] of the support of a is compact, so

we may conclude via the continuity noted in Lemma 11.2.

Combining this with the homogeneity property (6.1) of the symplectic measures, we

obtain a basic estimate valid uniformly over g∗. Recall the discussion of norms from §9.8

and the abbreviation 〈λ〉:=(1+|λ|2)1/2, which applies in particular with λ=[O].

Lemma 11.5. For each ε>0,

sup
O
〈[O]〉ε

∫
ξ∈O
〈ξ〉−d(O)−ε dωO(ξ)<∞.

Proof. The contribution from |ξ|61 may be estimated using the prior lemma, noting

that this contribution vanishes identically if 〈[O]〉>1. For the remaining contribution,

we split the ξ-integral into dyadic shells A6|ξ|62A, with A=2n for n∈Z>0. By (6.1)

and (11.2), the contribution from each such shell is bounded by a constant multiple of

A−ε, while the smallest A giving a non-zero contribution has size �〈[O]〉. We conclude

by summing dyadically over A.

11.4. Limit orbits

Let π be a tempered irreducible unitary representation of G, the real points of a reductive

group G over R. We now allow π to vary with a positive parameter h!0 traversing some

sequence {h}⊆(0, 1). We emphasize again that the dependence of π and σ upon h is not

assumed to be (e.g.) continuous or measurable.
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11.4.1. Definition

Let O be a regular coadjoint multiorbit. We say that O is the limit orbit of π (or,

pedantically speaking, limit multiorbit) if limh!0 hOπ=O in the sense of §11.2. We then

often abbreviate ωO to simply ω.

We note that π admits at most one limit orbit, since the topology on R is Hausdorff

(see §11.2). We note also that if π admits the non-empty limit orbit O, then hλπ

converges to the infinitesimal character λ:=[O] of the limit orbit.

11.4.2. The h-independent case

Recall that π is generic if

• G is quasi-split, i.e., contains a Borel subgroup defined over R, and

• π admits a Whittaker model (with respect to some non-degenerate character of

the unipotent radical of that Borel).

We refer to [Vo1] for definitions concerning Gelfand–Kirillov dimension.

Lemma 11.6. Suppose that π is h-independent. Then, π has a limit orbit O, where

O is contained in the regular subset Nreg of the nilcone. The following are equivalent :

(i) O is non-empty ;

(ii) π has maximal Gelfand–Kirillov dimension;

(iii) π is generic.

Proof. The initial assertions and the equivalence of (i) and (ii) follow from [BV] and

[Ros5, Theorem C and D]. (The initial assertions also follow readily from Theorem 11.1.)

The equivalence of (ii) and (iii) follows from [Kos3, Theorem 6.7.2].(4)

Remark 11.7. Condition (i) is what is relevant for the purposes of this paper; we

have invoked its equivalence with (ii) and (iii) only to simplify the statement of our result.

12. Trace estimates

We now prove (a sharper form of) Theorem 6.3. We retain the setup of §11.4, and define

Op:Sm :=Sm(g∧)!Ψm :=Ψm(π) as usual. Recall that we write

〈ξ〉 := (1+|ξ|2)1/2

for an element ξ of a normed space.

(4) Kostant proves what is required here modulo the possibility of replacing π by another Hilbert
space representation π′; Kostant’s Hilbert space representations do not preserve the inner product, so

it is not obvious that π and π′ are “the same”. But Casselman [Cas1] shows that the spaces of smooth
vectors in the two representations are isomorphic.
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12.1. Spaces of operators associated with various norms

For T :π!π and p=1, 2 or∞, we let ‖T‖p denote respectively the trace, Hilbert–Schmidt

or operator norm of T . We let Tp :=Tp(π) denote the space of operators T on π with the

property that for each u∈U, the operator θu(T ) (defined as in §3.3) induces a bounded

map π!π for which ‖θu(T )‖p<∞. We equip Tp with its evident topology (§1.14.6).

Note (by §8.5) that T∞=Ψ0 is not a new space.

Given an h-dependent positive real c, we denote as in §1.14.2 and §5.3 by cTp the

space of h-dependent T∈Tp for which the seminorms of c−1T are bounded uniformly

in h. As usual, expressions involving h∞ are to be understood as holding whenever ∞ is

replaced by an arbitrary fixed number N .

12.2. Approximate inverses for ∆

Set

∆h := 1−h2
∑

x∈B(g)

x2.

By the spectral theory of the self-adjoint operator ∆, the operator π(∆h) is invertible,

and its inverse has operator norm 61. The following lemma allows one to control its

inverse via integral operators.

Lemma 12.1. For each N∈Z>0 there exist positive reals h0 and C, depending upon

G and χ but not upon π, so that the following holds for 0<h6h0.

Define b∈S0 by b(ξ):=〈ξ〉−N . Then,

A(h) := ∆N
h Oph(b)2

defines an invertible operator on π. Moreover, the operator norms of A(h) and A(h)−1

are bounded by C.

Proof. By applying the composition formula, we see that the h-dependent operator

A(h) belongs to 1+h Ψ−1⊆1+h Ψ0. For small enough h, it follows by the Neumann

lemma that A(h) is invertible with inverse of operator norm O(1), as required.

12.3. Results

Let π be an h-dependent irreducible tempered representation of G. We adopt here the

convention that implied constants in any asymptotic notation are independent of π and h,

and must depend continuously upon any symbols under consideration. Recall from §6.1

the definition of d∈Z>0.
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Theorem 12.2. Let assumptions and conventions be as above. Let N∈2Z>0 satisfy

N >d.

(i) For δ∈[0, 1) and a∈S−Nδ , we have

tr(Oph(a))�h−d〈hλπ〉d−N (12.1)

and

hd tr(Oph(a)) =

∫
hOπ

a dωhOπ+O(h1−δ〈hλπ〉d−N−1). (12.2)

In particular, if a is h-independent and π admits the limit orbit (O, π), then

lim
h!0

hd tr(Oph(a)) =

∫
O
a dω. (12.3)

For each j∈Z>0, there is a constant coefficient differential operator Dj on g∧ of

pure degree j, so that for a∈S−∞δ and fixed J,N ′∈Z>0,

hd tr(Oph(a)) =
∑

06j<J

hj
∫

hOπ
Dja dωhOπ+O(h(1−δ)J〈hλπ〉−N

′
). (12.4)

(ii) ∆
−N/2
h (cf. §12.2) is trace class, with ‖∆−N/2h ‖1=tr(∆

−N/2
h )�h−d〈hλπ〉d−N .

(iii) For any operator T on π, the trace norm is majorized as follows:

‖T‖16C〈λπ〉d−N‖T‖π0
!πN , (12.5)

where C depends only upon G and N . For p=1, 2, we have Ψ−N⊆Tp; the normalized

map

Ψ−N −! Tp,

T 7−! 〈λπ〉N−dT,
(12.6)

is continuous, uniformly in π. These conclusions remain valid also for non-tempered π,

possibly with a larger value of N .

(iv) For fixed x, y∈U and any T∈h0 Ψ−∞, we have ‖xTy‖2�1, with continuous

dependence upon T .

(v) We have

Oph(S−N0 )⊆h−d〈hλπ〉d−NT1,

Oph(S−N0 )⊆h−d/2〈hλπ〉(d−N)/2T2.
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(vi) For k∈Z>1 and a1, ..., ak∈S−N0 ,

Oph(a1) ...Oph(ak)∈h−d〈hλπ〉d−NT1, (12.7)

hd Oph(a1) ...Oph(ak)≡hd Oph(a1 ... ak) mod h〈hλπ〉d−NT1. (12.8)

(vii) Fix ε>0. Let g∈G be an h-dependent element with ‖Ad(g)‖6h−1+ε. Let

a∈S∞0 . Then,

hd Oph(g ·a)≡hd π(g)Oph(a)π(g)−1 mod h∞〈hλπ〉d−NT1. (12.9)

Proof. We will frequently apply Theorems 4.5–5.8.

(i) The first assertion reduces to the estimate

sup
h∈(0,1]

sup
O:d(O)=d

〈h[O]〉ε hd
∫
ξ∈O
〈h ξ〉−d−ε dωO(ξ)<∞, (12.10)

which follows in term from (6.1) and the results in §11.3. The remaining assertions follow

by expanding ( j−1/2χa∨)∧ using §7.8 and recalling that j(0)=1.

(ii) By spectral theory, we may assume that h is sufficiently small. Set

b(ξ) := 〈ξ〉−N/2.

By §12.2, we have

tr(∆
−N/2
h )� tr(Oph(b)2).

By applying the proof of (i) to

tr(Oph(b)2) = tr(Oph(b?hb, χ
′)),

we obtain an adequate estimate for tr(Oph(b)2).

(iii) Let T∈Ψ−N . By (ii) and the inequality

‖A‖16 ‖∆−N/2h ‖1 ‖∆N/2
h A‖∞, (12.11)

applied with A:=θu(T ) and h:=1, we obtain the estimate (12.5), as well as the required

inclusion for p=1. We deduce the case p=2 via ‖A‖26‖A‖1/21 ‖A‖
1/2
∞ .

The necessary input in this argument was the uniform trace class property of ∆−N/2.

This is presumably well known, and holds also non-tempered π, as follows, e.g,. from

the proof of part (i) of Lemma A.3.

(iv) By a similar argument as in (iii).
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(v) We must estimate ‖θu(Oph(a))‖p for fixed u∈U and p=1, 2. By differentiating

the composition formula, we have

θu(Oph(a))≡Oph(θu(a)) mod h∞Ψ−∞.

By (iii), we thereby reduce to the case u=1. Using the identity

‖Oph(a)‖22 = tr(Oph(a)Oph(a)∗) = tr(Oph(a)Oph(ā)),

the composition formula, and (iii), we reduce further to the case p=1, in which it remains

to show that ‖Oph(a)‖1�h−d〈hλπ〉d−N . For this we apply (12.11) with A:=Oph(a) and

appeal to (ii) and the consequence ‖∆N/2
h Oph(a)‖∞�1 of the composition formula.

The remaining results (vi) and (vii) may be proved similarly (for (vii), cf. §8.4).

Part III. Gan–Gross–Prasad pairs: geometry and asymptotics

Let k be a field of characteristic zero.

For our purposes, a Gan–Gross–Prasad pair (henceforth “GGP pair”) over k is a

pair (G,H) of algebraic k-groups equipped with

• an inclusion H
� � // G of algebraic k-groups, isomorphic to one of the standard

inclusions

SOn
� � // SOn+1, Un

� � // Un+1 or GLn
� � // GLn+1, (III.1)

and

• an action (called the “standard action”) of G on some vector space V , i.e., an

embedding G
� � // GL(V ). See below for complete details.

We make this definition precise in §13.2. The general linear example may be un-

derstood as a special case of the unitary example, as we will find very convenient in our

proofs. We refer to the first case as the orthgonal case, and the latter two as unitary

cases.

The study of such pairs, locally and globally, was initated (in the special orthogonal

case) by Gross and Prasad [GP]. A broader formalism was developed in the paper of

Gan, Gross and Prasad [GGP]. The cases of (SO2,SO3) and (SO3,SO4) have played an

important role in the analytic theory of L-functions for GL2. It is therefore very natural

to consider the analytic theory of Gan–Gross–Prasad periods in higher rank.

Part III contains several algebraic and analytic preliminaries concerning GGP pairs,

many of which may be of independent interest.
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The main aim of §13 and §14 is to study in detail certain algebraic properties of

the restriction to H of the adjoint (equivalently, coadjoint) representation of G. In the

language of §1.10, we are studying how H acts on the system of solutions to

ξ|h = η, ξ ∈ g∧ and η ∈ h∧;

this is relevant for us because (for k a local field) it models the “asymptotic decompo-

sition” of the restriction to H of a unitary representation of G. The “nice” solutions

will turn out to form a smoothly-varying family of H-torsors. The definition of “nice” is

formulated in §14 in terms of the GIT notion of stability and then related in §15 to the

absence of “conductor dropping” for the associated Rankin–Selberg L-function. In §16,

we study, e.g., how integrals over G-orbits in g∧ can be disintegrated in terms of integrals

over the H -orbits discussed previously. In §17, we apply our results to archimedean GGP

pairs. The main output is that we can write the integral over a coadjoint orbit O for G

explicitly in terms of integrals over the H -orbits on O, with control over how everything

varies in families. The main aim of §18 and §19 is then to prove a “quantum analogue”

of such integral formulas, involving the asymptotic decomposition of the restriction to H

of a tempered irreducible representation of G.

The pictures in §1.7 and §1.10 may usefully illustrate the discussion below.

13. Basic definitions and invariant theory

13.1. Orthogonal groups and unitary groups

As above, let k be a field of characteristic zero. Let k1 be either a quadratic étale

k-algebra or k itself, thus either

k1 = k, k1/k is a quadratic field extension, or k1 = k×k. (13.1)

The three cases indicated in (III.1) will arise accordingly. In the third case, k is embedded

diagonally in the product.

Let ι denote the involution of k1 fixing k, and let (V, 〈−.−〉) be a k1-vector space

equipped with a non-degenerate ι-linear symmetric bilinear form. We then denote by

dim(V ), End(V ) and GL(V ) the dimension, endomorphisms and automorphisms of V as

a k1-vector space. We may define the connected automorphism group

G = Aut(V/k1, 〈−,−〉)0.

It is a k-algebraic group which comes with a standard representation G �
�
// GL(V ).
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We denote as usual by g
� � // End(V ) the Lie algebra of G. We write

[g] = g//G

for the set of k-points of the GIT quotient (cf. §9.1 for an example). For x∈g, we write

[x] for its image in [g].

For x∈End(V ), we denote by x∗∈End(V ) the conjugate-adjoint, defined by means

of the rule 〈u, xv〉=〈x∗u, v〉 for all u, v∈V . Then, x 7!x∗ is ι-linear, and (xy)∗=y∗x∗.

The Lie algebra g consists of those x∈End(V ) that are skew-adjoint: x∗=−x.

13.2. Standard inclusions

Retaining the setting of §13.1, fix e∈V for which k1e is a free rank-1 k1-module on which

the form 〈−,−〉 is non-degenerate, and set VH=(k1e)
⊥⊆V . One then has the splitting

V =VH⊕k1e, which induces an inclusion

H := Aut(VH/k1, 〈−,−〉)0 �
�
// G := Aut(V/k1, 〈〉)0.

A GGP pair over k is defined to be such an inclusion, together with the accompanying

standard representations.

13.3. Extension to an algebraic closure

The action of G on V is k1-linear, and so preserves the k-linear decomposition of V into

isotypic subspaces for k1. We explicate this decomposition first in the special case that

k is algebraically closed, so that either k1=k×k or k1=k:

(i) (Unitary case) If k1=k×k, then we have a decomposition of k-vector spaces

V =V +⊕V −,

where k1 acts on V ± via the two projections to k. The form 〈−,−〉 on V +×V − is valued

in the first factor k of k1, and thus induces a k-valued perfect pairing [−,−] between V +

and V −; the Hermitian form is described in terms of [−,−] as

〈v+

1 +v−1 , v
+

2 +v−2 〉= ([v+

1 , v
−
2 ], [v+

2 , v
−
1 ])∈ k×k.

Moreover, G∼=GL(V +) identifies with the set of pairs (g, tg−1) in GL(V +)×GL(V −).

The vector e is given by e++e−, with e+∈V + and e−∈V − satisfying 〈e+, e−〉6=0.

There is a corresponding splitting VH=V +

H⊕V
−
H .

(ii) (Orthogonal case) If k1=k, so that G=SO(V ), then we set

V + :=V − :=V.
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In general, we fix an algebraic closure k̄ of k and apply the above considerations with(
V
⊗

k k̄, k̄, k1

⊗
k k̄
)

playing the role of “(V, k, k1)”. We obtain in this way G-invariant

k̄-subspaces V ± of V
⊗

k k̄.

13.4. Eigenvalues and eigenvectors

13.4.1. Invariants in terms of eigenvalues

We recall the description of the ring of G-invariant polynomial functions on g (“invariant

functions” for short). Each x∈g gives a k1-linear endomorphism of V and thus has a

characteristic polynomial in k1[t]. Since x∗=−x, the nth coefficient of the characteristic

polynomial of x belongs to

k±1 = {x∈ k1 : ι(x) =±x},

where ± depends upon the parity of n. The spaces k±1 are at most 1-dimensional over k;

fixing bases, we obtain invariant functions g!k. These freely generate the ring of invari-

ant functions in all cases except when G is even orthogonal, in which the Pfaffian pf(x)

gives another invariant satisfying pf(x)2=det(x).

We denote by ev(x) the multiset of roots in k̄ of the characteristic polynomial for the

k̄-linear action of x∈g on V +, except that in the odd orthogonal case, we subtract the

“obvious root” zero with multiplicity 1, noting that it always occurs. Thus #ev(x)=n,

where n=dim(V ) in the unitary, linear and even orthogonal cases and n=dim(V )−1 in

the odd orthogonal case. We may descend ev to a function on [g]. The map

[g]3 [x] 7−!
{

the ordered pair (ev(x),pf(x)), in the even orthogonal case,

ev(x), otherwise,

is then well defined and injective, with readily characterized image.

13.4.2. Geometric characterization

We may describe the set underlying the multiset ev(x) more geometrically as follows.

Lemma 13.1. Let x∈g and c∈k. The following are equivalent :

(i) c∈ev(x);

(ii) x has an isotropic eigenvector in V + with eigenvalue c;

(iii) x has an isotropic eigenvector in V − with eigenvalue −c.

Proof. The equivalence of (ii) and (iii) follows from the definitions of V + and V −.
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For the equivalence between (i) and (ii), note that any eigenvector with non-zero

eigenvalue is necessarily isotropic. The required equivalence is thus clear if c 6=0. Suppose

henceforth that c=0. In the unitary case, the space V + is itself isotropic, so (ii) just says

that x has zero as an eigenvalue on V +, which is equivalent to (i).

It remains to show that (i) and (ii) are equivalent in the orthogonal case with

c=0. Let W⊆V + denote the generalized zero-eigenspace for x. Because the general-

ized eigenspaces with eigenvalues λ and −λ are in perfect pairing with one another,

we have dim(W )≡dim(V +) modulo 2; moreover, the restriction of 〈−,−〉 to W is non-

degenerate. Recall that 0∈ev(x) in the even orthogonal case when dim(W )>1 and in

the odd orthogonal case when dim(W )>2. We see in either case that if 0∈ev(x), then

dim(W )>2; since W is non-degenerate, it thus contains a non-zero isotropic vector. Thus

(i) implies (ii). For the converse implication, note that if x has an isotropic eigenvector

with eigenvalue zero, then W contains a non-zero isotropic subspace, whence dim(W )>2;

to complete the proof, it is thus enough to check the following fact.

Claim. If (W, 〈−,−〉) is a non-degenerate quadratic space of dimension at least

2, and x∈End(W ) is skew-symmetric and nilpotent, then there is a non-zero isotropic

vector in the kernel of x.

This is clear if x=0. Otherwise, there is a non-zero vector v∈ker(x) which belongs

to the image of x, say v=xu, and then v does the trick:

〈v, v〉=−〈u, xv〉= 0.

(Said differently, if x in the claim is non-zero, then it arises from the action of
(

0 1

0 0

)
under some homomorphism sl2!soW , and we choose v to be a highest weight vector.)

13.4.3. Regular elements

We note also a related characterization of regular elements.

Lemma 13.2. Let x∈g and suppose that every isotropic subspace of V + on which x

acts by a scalar is at most 1-dimensional. In the orthogonal case, assume moreover that

the kernel of x is at most 2-dimensional. Then, x is regular.

Proof. In the unitary case, this is well-known: the word “isotropic” can be ignored

since the form vanishes on V +, and an n×n matrix is regular if and only if each eigenvalue

corresponds to a single Jordan block. Accordingly, we focus on the orthogonal case.

Write

V + =
⊕
λ

V +

λ =

( ⊕
{λ6=0}/±

V +

λ ⊕V
+

−λ

)
⊕V +

0 (13.2)
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for the decomposition into generalized eigenspaces under x. To prove regularity, we must

show that the dimension of the centralizer of x is minimal. Since any element of this

centralizer preserves each summand in (13.2), the minimal centralizer dimension for SO2n

or SO2n+1 is n, and the summands V +

λ ⊕V
+

−λ are even-dimensional, we reduce to showing

the following:

(i) x induces a regular element of the orthogonal group of V +

λ +V +

−λ for each λ 6=0:

Our condition implies that x−λ is a regular nilpotent on V +

λ , so its centralizer in

GL(V +

λ ) has minimal dimension, which implies the above claim.

(ii) x induces a regular element of the orthogonal group of V +

0 . In what follows we

denote this restriction simply by x.

By the Jacobson–Morozov theorem, x is the image of a non-zero nilpotent in sl2

under a homomorphism sl2!so(V +

0 ). The assumption on ker(x) implies V +

0 decomposes

into a sum of at most two irreducible representations U⊕U ′. If U and U ′ are each of

dimension >2, then we see by considering weights that ker(x) is contained in image(x);

the skew-symmetry of x then implies that ker(x) is isotropic and of dimension >2, con-

trary to hypothesis. We may thus suppose that dim(U ′)61. We may also suppose that

dim(U)>2; if not, then x is the zero element of so1 or so2 and is regular.

Now dim(U) is necessarily odd-dimensional, otherwise sl2 does not preserve an or-

thogonal form on it. It is now a routine computation with sl2-representations to compute

that the centralizer of x in so(V +

0 ) has the correct dimension; explicitly, this centralizer

is given by {
x, x3, ..., xdim(U)−2, if U ′= {0},
x, x3, ..., xdim(U)−2, if dim(U ′) = 1,

where y is a skew-symmetric transformation sending a generator of U ′ to a non-zero

highest weight vector in U and mapping U to U ′.

13.5. The spherical property

Given a GGP pair (G,H), we will have occasion to consider the diagonal inclusion

H−!G×H (13.3)

This is a spherical pair, in the following well-known sense (see, e.g., [BP3, §6.4,

p. 142, equation (1)]).

Lemma 13.3. H has an open orbit, with trivial stabilizer, on the flag variety of

G×H.
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14. Stability

Recall that k is a field of characteristic zero.

14.1. Preliminaries

Let H be a reductive algebraic k-group which acts (algebraically) on an affine k-variety M.

Recall, following Mumford, that an element x∈M(k) is called H-stable if

(i) the stabilizer of x in H is finite, and

(ii) the orbit H·x is closed.

We summarize some background from geometric invariant theory.

Lemma 14.1. Suppose we are in the setting just described with k algebraically closed.

Let M//H denote the spectrum of the ring of H -invariant regular functions on M , and

φ:M!M//H the canonical map. Then, M//H is an affine variety, and φ is surjec-

tive. Each H -invariant morphism with domain M factors uniquely through φ. If M is

irreducible, then so is M//H.

Let Ms⊆M denote the subset of H-stable elements. Then, Ms and

(M//H)s :=φ(Ms)

are open (but possibly empty). If the isotropy group of every point in Ms inside H is

trivial, then the induced map φs :Ms
!(M//H)s is a principal H -bundle (indeed, it is

locally trivial in the étale topology).

For the last statement, we refer in particular to [MFK, Proposition 0.9] and [Mi,

p. 120].

14.1.1. Moment map interpretation

If M is smooth, then the action of H on M induces an action on the cotangent bundle

T ∗M and, by duality, an H -equivariant moment map

Φ:T ∗M −! h∗.

We then verify readily that condition (i) in the above definition is equivalent to

(i′) The moment map Φ induces, by differentiation, a surjective map T ∗xM!h∗.
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14.2. Characterization for GGP pairs

Let H �
�
// G �
�
// GL(V ) be a GGP pair over k. We retain the accompanying notation

of §13.2. We denote by E∈End(V ) the orthogonal projection with image VH . For

x∈End(V ), we denote by xH∈End(VH) the restriction of ExE to VH . We then have a

commutative H -equivariant diagram

g
∼= //

x 7!xH
��

g∗

restriction

��

h ∼=
// h∗

in which the horizontal isomorphisms are induced by the trace pairing on End(V ). Via

this diagram, the definitions and results below admit equivalent formulations in terms of

the coadjoint representations. We sometimes also write ξH for the restriction of ξ∈g∗ to

h∗.

Theorem 14.2. Let x∈g. The following are equivalent:

(i) x is H-stable.

(ii) ev(x)∩ev(xH)=∅.

Definition 14.3. We say that a pair (λ, µ)∈[g]×[h] is stable if ev(λ)∩ev(µ)=∅.

This condition is equivalent to asking that the multiset sum ev(λ)+ev(−µ) not

contain zero. We will later (§15) interpret that sum in terms of the Satake parameters

of an associated L-function. In this way, the failure of stability will be related to the

situation where the conductor of this L-function drops.

We note that the set {(λ, µ):(λ, µ) is stable} is dense and open in [g]×[h]. Moreover,

for each λ∈[g], the set {µ:(λ, µ) is stable} is dense and open in [h].

We turn to the proof of Theorem 14.2. We may and shall assume that k is alge-

braically closed, so that either k1=k×k (the unitary case) or k1=k (the orthogonal case).

A key ingredient is the following geometric characterization of when x and xH share an

eigenvalue.

Lemma 14.4. Let x∈g and c∈k. The following are equivalent :

(i) c∈ev(x)∩ev(xH);

(ii) x has either

• an isotropic eigenvector in V +

H with eigenvalue c, or

• an isotropic eigenvector in V −H with eigenvalue −c.

To see the significance of the two cases, consider the simple example of G=GL2(k):

if a 2×2 matrix (aij)i,j∈g has an eigenvalue that coincides with the upper-left entry a11,

then either a12 or a21 must vanish, corresponding to the two cases above.
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Proof. Recall from §13.4.2 that c belongs to ev(x) exactly when there is an isotropic

vector in V ± with eigenvalue ±c. Thus, (ii) implies (i).

Conversely, suppose c∈ev(x)∩ev(xH). There is then

• an isotropic eigenvector v∈V +

H for xH with eigenvalue c, and also

• an isotropic eigenvector w∈V − for x with eigenvalue −c.
We have

〈(x−c)v, w〉=−〈v, (x+c)w〉= 0. (14.1)

and thus either

• xv=cv, so that v is an isotropic eigenvector for x in V +

H , or

• xv 6=cv, so that e+ (the V + component of e, as in §13.2) is a multiple of (x−c)v.

By (14.1), it follows that 〈e+, w〉=0, hence w is an isotropic eigenvector for x in V −H .

Recall the Hilbert–Mumford criterion: x is not H-stable if and only if there is a non-

trivial 1-parameter subgroup γ:Gm!H with respect to which x has only non-negative

weights; we say then that γ witnesses the failure of stability for x. Equivalently, consider

the decomposition of V into weight spaces for γ:

V =
⊕
i∈Z

Vi, γ(t) acts on Vi by the scalar ti.

Then,

x is not stable ⇐⇒ there exists γ 6= 1 so that xVi⊆
⊕
j>i

Vj for all i. (14.2)

To prove Theorem 14.2, it is enough to show that the following are equivalent:

(a) x has an isotropic eigenvector in V +

H∪V
−
H ;

(b) Some γ as above witnesses the failure of stability for x.

(a) implies (b): We assume that x has an isotropic eigenvector v1∈V +

H ; the other

case is handled analogously. By a standard lemma, we may choose an isotropic vector

v2∈V −H for which 〈v1, v2〉=1; we refer to [Se, p.29] in the orthogonal case k1=k, while

in the unitary case k1=k×k, we use that the spaces V ±H are themselves totally isotropic

and in duality. The subspace kv1⊕kv2 of VH is then non-degenerate, and so, with

W := (kv1⊕kv2)⊥,

we have

V = kv1⊕W⊕kv2. (14.3)

Write xv1=cv1. Then, 〈(x+c)W, v1〉=0, so xW⊆W+v⊥1 =v1⊕W , and thus the matrix

of x with respect to (14.3) is upper-triangular. The 1-parameter subgroup γ of H given

by γ(t)v1=tv1, γ(t)|W =1 and γ(t)v2=t−1 then witnesses the failure of stability for x.
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(b) implies (a): Suppose γ witnesses the failure of stability for x. Since γ is non-

trivial, some Vi with i 6=0 is non-trivial. The spaces V>0 :=
⊕

i>0 Vi and V<0 :=
⊕

i<0 Vi

are totally isotropic, contained in VH , and in duality, hence both non-zero. The non-zero

x-stable isotropic subspace V>0 of VH thus contains an isotropic eigenvector v for x. In

the unitary case, we further split v=v++v− to get an isotropic eigenvector in V +

H∪V
−
H .

14.3. Fibers of x 7!([x], [xH ])

We retain the setting of §14.2, and assume that k is algebraically closed.

Theorem 14.5. The morphism of varieties

{H -stable x∈ g}−! {stable (λ, µ)∈ [g]×[h]}

x 7−! ([x], [xH ])
(14.4)

defines a principal H -bundle. In particular, for stable (λ, µ)∈[g]×[h], the fiber

Oλ,µ := {x∈ g : [x] =λ and [xH ] =µ}, (14.5)

which consists entirely of H -stable elements, by the prior theorem, is an H -torsor.

As before, it suffices to consider the first map (14.4). We may and shall assume that

k is algebraically closed. We require several lemmas.

Lemma 14.6. The map g![g]×[h] given by x 7!([x], [xH ]) is surjective.

Proof. Recall from §13.5 that the quotient X of G×H by the diagonally embedded

H is a spherical variety, i.e., each Borel subgroup of G×H has an open orbit on X. In

particular, fixing such a Borel B, the associated moment map

T ∗X −! g∗⊕h∗

has image which surjects onto b∗, because B acts simply transitively on an open subset

of X.

This readily implies that the composition T ∗X![g∗]×[h∗] is surjective. Indeed, if t

is the torus quotient of b, and λ∈t∗ �
�
// b∗, all extensions of λ from b∗ to g∗⊕h∗ have the

same image in [g∗]×[h∗]; this common image corresponds to the class of λ in t∗ modulo

the Weyl group.

The map T ∗x0
X![g∗]×[h∗] is thus also surjective, where x0∈X belongs to the open

orbit. The image of the moment map restricted to the fiber T ∗x0
X is thus

orthogonal complement of diag h inside g∗⊕h∗,

which is precisely the set {(ξ,−ξH):ξ∈g∗}. Thus, every element of [g∗]×[h∗] is of the

form [ξ]×[−ξH ]; negating the second coordinate gives the result.
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Lemma 14.7. Let x∈g be H -stable. Then, x and xH are regular.

Proof. Suppose, to the contrary, that either x or xH is irregular. We divide into cases

using §13.4.3 and, in each case, produce an isotropic eigenvector v∈V +

H , contradicting

stability by Lemma 14.4:

(a) x has an isotropic eigenspace W⊂V + of dimension >2. Take v to be any non-

zero element of W∩V +

H .

(a)′ xH has an isotropic eigenspace W⊂V +

H of dimension >2. Take v to be any

non-zero element of the kernel of W
x−!V +/V +

H .

(b) there is a subspace W of V +, of dimension >3, on which x is identically zero.

Take v to be a non-zero isotropic element of W∩V +

H ; it is possible because this space is

at least 2-dimensional.

(b)′ there is a subspace W of V +

H , of dimension >3, on which xH is identically zero.

Take v to be a non-zero isotropic element of the kernel of W
x−!V +/V +

H ; it is possible

because this space is at least 2-dimensional.

The proof of Theorem 14.5 requires also a further stability characterization.

Lemma 14.8. The equivalent conditions (i) and (ii) of Theorem 14.2 are also equiv-

alent to the following :

(iii) The k1[x]-module

k1[x]e⊂V

generated by e (see §13.2) is

– all of V in the unitary cases;

– a non-degenerate subspace of codimension 61 in the orthogonal cases.

Remark 14.9. Rallis and Schiffmann [RS, Theorems 6.1 and 17.1] obtained a re-

lated(5) equivalence. See also [BGW] and [Z1].

Proof. Observe that

U = (k1[x]e)⊥⊂V.

is a k1[x]-stable subspace of VH which is non-degenerate precisely when k1[x]e is. In view

of Lemma 14.4, it is enough to show that the following are equivalent:

(a) x has no isotropic eigenvector in V +

H∪V
−
H ;

(b) U is trivial in unitary cases, and non-degenerate of dimension 61 in orthogonal

cases.

(5) We note that in the orthogonal case, our results do not exactly agree with theirs, due to a
slight inaccuracy in the latter: the first paragraph of the proof of [RS, Theorem 17.1] suggests that the

Lie algebra of the orthogonal group of a non-trivial quadratic space is non-trivial, which fails when the
latter is 1-dimensional.
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If (b) holds, then U is anisotropic; since any eigenvector in V +

H∪V
−
H belongs to U ,

it follows that (a) holds.

Conversely, assuming (a), we proceed separately in the unitary and orthogonal cases:

• In the unitary case, the spaces V ± are isotropic. Since x is k1-linear, our hypothesis

implies that the spaces U± contain no eigenvectors for x. It follows that U±={0} and

thus U={0}.
• In the orthogonal case, there is a maximal isotropic subspace X of U stabilized

by x|U . If X 6={0}, then x|U has an eigenvector in X, hence an isotropic eigenvector,

contrary to our hypothesis. Thus X={0}. Therefore dim(U)61 and, if U is non-zero,

then the quadratic form must be non-zero on it.

We finally prove Theorem 14.5. Consider the unique morphism j fitting into the

commutative diagram

gs

��

x 7!([x],[xH ])

##

gs//H
j
// ([g]×[h])s,

where a superscripted s denotes the subset of stable elements in the sense of either

Theorem 14.2 or the definition that follows it.

By Lemma 14.6 (and again Theorem 14.2), j is surjective. We will show in addition,

with notation as in (14.5), that if (λ, µ)∈([g]×[h])s, then

if x, y ∈Oλ,µ, there is a unique h∈H with h·x= y.

This implies that j is injective; then (by Zariski’s main theorem, using characteristic

zero) j will be an isomorphism. It also implies (see Lemma 14.1) that the map gs!gs//H

is a principal H -bundle.

By Lemma 14.7, x and y belong to the unique regular (open) G-orbit O contained

in the fiber Oλ above λ.

Therefore, there exists g0∈G such that g0 ·y=x. Set e′ :=g0e. From [xH ]=[yH ], we

deduce that

[xH ] = [xH′ ], (14.6)

where we define xH′ :=E
′xE′, with E′ the orthogonal projection onto the orthocomple-

ment of e′. Since H is the G-stabilizer of e, it will suffice to show the following.

Claim. There is a unique g in the G-stabilizer of x for which ge′=e.

Indeed, the element h:=gg0 then belongs to H and satisfies h·y=x, and any such h

arises from some g as in the claim.
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We show first that, for all n∈Z>0,

〈xne, e〉= 〈xne′, e′〉. (14.7)

For this, it suffices to show that the formal power series∑
n∈Z>0

tn〈xne, e〉= 〈e, (1−tx)−1e〉

is unchanged by replacing (x, e) with (x, e′). To that end, it suffices in view of (14.6) to

establish the identity
〈e, (1−tx)−1e〉

〈e, e〉
=

det(1−txH)

det(1−tx)
. (14.8)

For this, we extend e to an orthogonal k1-basis e=e1, e2, ..., en of V . The left-hand side

of (14.8) is then the upper-left matrix entry of (1−tx)−1. The identity (14.8) follows

from Cramer’s rule, noting that the matrix of (1−txH) with respect to the basis e2, ..., en

of VH is the lower-right (n−1)×(n−1) submatrix of the matrix of (1−tx) with respect

to e1, ..., en.

Consider the submodulesW :=k1[x]e andW ′ :=k1[x]e′ of V . Let U and U ′ denote the

orthogonal complements in V of W and W ′, respectively. By Lemma 14.8, the spaces

U and U ′ are non-degenerate, and so V =W⊕U=W ′⊕U ′. Since x is skew-adjoint, it

preserves these decompositions. By (14.7) there is a unique isometric k1[x]-equivariant

isomorphism g :W ′!W for which ge′=e. In particular, dim(W )=dim(W ′), so that

δ := dim(U) = dim(U ′).

If δ 6=0, then we are in the orthogonal case with δ=1. By Witt’s theorem, there is

an extension of g to an isometric isomorphism V!V . There are two such extensions,

which may be obtained from one another by composing with the non-trivial element of

the orthogonal group of the line U . There is thus a unique extension which belongs to

G (the connected component of the orthogonal group of V ). This extension remains x-

equivariant—indeed, gU=U ′, and x acts on the 1-dimensional spaces U and U ′ by zero.

The proof of the claim is thus complete in this case.

Suppose now that δ=0, so that g :V!V is the unique isometric x-equivariant mor-

phism for which ge′=e. If we are not in the orthogonal case, then g defines an element

of G, and so the proof of the claim is likewise complete. What remains to be checked

is that in the orthogonal case, g belongs to G, or equivalently, either that det(h)=1 or

det(g)=1. To do this, we must use the one piece of information not used to date, namely,

that not merely eigenvalues but also Pfaffians match.



the orbit method and analysis of automorphic forms 103

Consider first the case that dim(V ) is odd. Then,

pf(xH) = pf(h·yH) = det(h)pf(yH) = det(h)pf(xH),

so if pf(xH) 6=0, then det(h)=1. Otherwise, pf(xH)=0. Then, 0∈ev(xH), so the kernel

of xH is non-zero, necessarily even-dimensional, and so of dimension >2. Thus, the

kernel of x contains a non-zero element v∈VH (not necessarily isotropic). Clearly, xnv is

orthogonal to e for all n∈Z>0, and hence v∈U , contrary to our assumption that δ=0.

If dim(V ) is even, then we may argue as above that det(g)=1 (since g ·x=x) unless

pf(x)=0. In the case pf(x)=0, the kernel of x is again even-dimensional, and thus

contains a non-zero element v∈VH ; as above, this contradicts the assumption that δ=0.

We thereby deduce as required that det(g)=1.

This completes the proof of the claim, hence of Theorem 14.5.

15. Satake parameters and L-functions

In this section we show that the notion of stability is closely related to the analytic notion

of conductor dropping. This is not used in the proof of our main result but, of course, is

helpful in interpreting it.

15.1. Local Langlands and infinitesimal character

Let us first recall the relationship between the Langlands parameters and infinitesimal

characters (see, e.g., [ALTV, §6] or [Bo1, §11]). Let G be a reductive group over R. Let π

be an irreducible admissible representation of G. The local Langlands parameterization

attaches to π a conjugacy class of representations of the real Weil group:

φπ:WR−!G∨oGal(C/R)︸ ︷︷ ︸
LG

.

Here G∨ is the complex dual group of G, and the right-hand side defines the Langlands

dual LG.

Now restriction to C∗=WC⊂WR gives a homomorphism φ0
π :C∗!G∨, which we may

express uniquely as

φ0
π(et) = exp(tλπ+ t̄µπ)

for some commuting elements λπ and µπ in g∨, the Lie algebra of G∨.

If π is tempered, then the image of φπ is bounded, which imposes the constraint

µπ =−λ̄π, thus φ0
π(et) = exp(2iIm(tλπ)), (15.1)

where we write tλπ=Re(tλπ)+i Im(tλπ).
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Example 15.1. If G=GLn(R) and π is a principal series representation with pa-

rameters iν1, ..., iνn∈iR, then one may choose φπ so that λπ=µπ=diag(iν1, ..., iνn). If

G=GL2(R) and π factors through the discrete series representation of PGL2(R) of lowest

weight k, then one may arrange that

λπ =−µπ = diag
(

1
2 (k−1), 1

2 (1−k)
)
.

We observe next that one may identify

g∨//G∨' [g∗C]. (15.2)

Indeed, if we fix maximal tori T∨⊂G∨ and TC⊂G, then T∨ and TC are dual, canonically

up to the action of the Weyl group. For complex tori T1 and T2, an identification of T1

with the dual of T2 identifies the Lie algebra of T1 with the complex linear dual of the

Lie algebra for T2. So, there is a canonical identification

C[(t∨)∗]W 'C[tC]W

which induces (15.2).

Lemma 15.2. The identification (15.2) carries λπ to the infinitesimal character

of π.

The lemma justifies our notational abuse of using the same symbol λπ above as we

had in §9 for the infinitesimal character.

Proof. Recall (§9.6) that the representation π is a summand of the unitarily normal-

ized parabolic induction from a discrete series representation σ on the Levi factor M of

a parabolic subgroup P⊂G. The Langlands parameters of σ and π are related by means

of the natural inclusion of the L-group of M into the L-group of G, and the natural map

[m∗C]−! [g∗C]

carries the infinitesimal character of σ to that of π. The two maps (of dual groups, and

of dual Lie algebras) are compatible with reference to (15.2).

We thereby reduce to the case of a discrete series representation, and then (by the

characterization of the local Langlands correspondence for discrete series via infinitesimal

characters; see [Bo1, §11.2]) we further reduce to the case of a real torus S. This follows

from [Bo1, §9.3, equation (2)] (note the misprint: the second occurrence of σ ·x should

be σ ·x̄); see also [AV, §6].
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15.2. GGP pairs

For simplicity, we restrict ourselves to the case K=R, and leave the straightforward

extensions to K=C to the reader.

Let (G,H) now be a GGP pair, in the sense of §13, over K=R; let K1/K be

the associated K-algebra, and let n=
[

1
2 dimK(V )

]
, where V is the associated K1-vector

space. Thus,

G = (form of SO2n or SO2n+1 or GLn over K),

H = (form of SO2n−1 or SO2n or GLn−1 over K).

15.2.1. Dual Lie algebra

The K-group G admits a representation by K1-linear automorphisms of V . The form

x, y ∈ g 7−! trV (xy)

is actually K-valued and non-degenerate; it identifies g'g∗ (duality of real vector spaces).

We may assign to each x∈g a multiset ev(x) of complex numbers—namely, the

multiset of eigenvalues of x in the standard representation, where we remove zero with

multiplicity 1 in the odd orthogonal case. By means of the identification above, we may

also make sense of ev(x) for x∈g∗; this is a set of size 2n, 2n and n in the three cases

above. Similarly, ev(y) for y∈h∗ is a set of size 2n−2, 2n and n−1 in the three cases

above.

15.3. Rankin–Selberg L-function for GGP pairs

The tensor product of standard representations on H∨×G∨ extends to a homomorphism

L(H∨×G∨)−!Sp2n−2×O2n or O2n×Sp2n or (GLn−1×GLn(C))o{±1}.

We define the Rankin–Selberg representations ρ to be the natural representations of the

right-hand side of dimensions (2n−2)·2n, (2n)2 and 2n(n−1), respectively; in the last

case we induce the standard representation of (GLn−1×GLn(C)) to the disconnected

group.

Lemma 15.3. The correspondence (15.2)

A∨×B∨ ∈ g∨//G∨×h∨//H∨ !A′×B′ ∈ [g∗C]×[h∗C]
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has the property that

eigenvalues of ρ(A∨×B∨)

= (ev(A′)+ev(B′))×
{
{1,−1}, in the unitary case,

{1}, in the orthogonal cases.

(15.3)

On the right-hand side we interpret the sum of two multisets as all pairwise sums of

elements from the individual multisets.

Proof. Let ΩG be the multiset of weights arising from the standard representation

for gC, where we remove all zero weights. Define ΩH similarly and let Ω=ΩG×ΩH ; this

Ω is a Weyl-invariant multiset inside t∗G,C⊕t∗H,C. (We add subscripts to clarify whether

dealing with a torus for G or a torus for H.)

Let Ω∨ be the multiset of weights for the Rankin–Selberg representation of g∨⊕h∨,

as just described above; it is a Weyl-invariant multiset in (t∨G)∗⊕(t∨H)∗.

Therefore, what we must show is that Ω corresponds to Ω∨ under (15.2) and the

trace duality, i.e., under the sequence of identifications

t∗G,C

trace

pairing
−−−−−! tG,C−! (t∨G)∗, (15.4)

and its analogue for H. The final identification is well defined only up to the Weyl group

(this ambiguity makes no difference for comparing Weyl-invariant multisets).

There is a standard basis for roots for SO2n, SO2n+1 and GLn, labelled as

{±ei±ej}[n], {±ei±ej ,±ej}[n] and {ei−ej}[n],

respectively, where we use [n] as a shorthand for 16i, j6n, and we always omit zero

roots. Label similarly the roots for H as

{±fi±fj ,±fi}[n−1], {±fi±fj}[n] [and] {fi−fj}[n−1],

in the three respective cases. The composition (15.4) carries ei to e∨i (the correspond-

ing standard basis for the space of cocharacters); with these identifications we readily

compute

Ω = {±ei±fj} and Ω∨= {±e∨i ±f∨j }.

15.4. Satake parameters, conductor drop, and stability

The set appearing in (15.3) almost determines the Rankin–Selberg L-function.
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Any irreducible admissible representation of the real Weil group is at most 2-

dimensional. If it has bounded image then its restriction to C∗ is of the form

z 7! |z|it or z 7! zn/2+itz̄−n/2+it⊕z−n/2+itz̄n/2+it, t∈R and n∈Z).

For a complex number z=x+iy, write z+=|x|+iy. The associated L-factor is given

respectively by

ΓR(s+ε+it) or

2∏
i=1

ΓR

(
s+
(n

2
+it
)+

+εi

)
,

where εi∈{0, 1} and where ΓR(s)=π−s/2Γ(s/2) is the real Γ function.

From this, it readily follows that if π is a tempered representation of G with λπ=A∨

(equivalently, in the notation of the prior lemma, with infinitesimal character A′), and

similarly σ a tempered representation of H with λσ=B∨ (equivalently, with infinitesimal

character B′), then we have

LR(π×σ, ρ, s) =
∏
i

ΓR(s+λ+

i +εi),

where the λi range through the multiset appearing in (15.3). For this reason, we will

refer to the multiset on the left-hand side of (15.3) as the multiset of Satake parameters

for the Rankin–Selberg L-function.

We may now reinterpret Theorem 14.2. Here, we denote by σ∨ the contragredient

of σ; its Satake parameters are the negatives of those of σ.

Lemma 15.4. Let π and σ be irreducible representations of G and H, respectively,

with infinitesimal characters λ∈[g∗C] and µ∈[h∗C].

The following conditions are equivalent :

(a) (λ, µ) is stable;

(b) no Satake parameter for the local L-factor L(π×σ∨, ρ, s) is equal to zero.

The significance of this reinterpretation is that (b) is related to an important analytic

phenomenon—dropping of the analytical conductor. It would be interesting to see if this

relation between stability and conductor drop extends to other integral representations.

16. Volume forms

Let k be a field of characteristic zero. A volume form on a smooth k-variety Y is

simply an everywhere non-vanishing global section of the bundle of top-degree algebraic

differential forms. When k=R, volume forms give rise to measures (§17.1).
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The purpose of this section is to describe the various volume forms that exist on a

Lie algebra, its dual, and its coadjoint orbits, as well as the relationships between these

forms that arise in the context of a GGP pair. As we explain in §17.5 and §19, the results

obtained here model the asymptotic representation theory of G and H.

We note that, in order to evaluate the constant in the main theorem of this paper,

we really need the exact relationships between these volume forms (rather than, say, their

relationship up to an unspecified proportionality constant).

Some special cases of the foregoing results have been established for certain compact

groups G and H (see, e.g., [Ba, Proposition 4.2] and [Ol, Proposition 3.1]).

Throughout this section, we work over an algebraically closed field k of characteristic

zero. In the following section, we deduce results over k=R.

16.1. Fibral volume forms

Recall that a short exact sequence X!Y!Z of vector spaces induces a natural isomor-

phism det(Y ∗)∼=det(X∗)⊗det(Z∗), where det denotes the top exterior power.

More generally, given a smooth morphism of varieties, a volume form on source and

target induces a volume form on each fiber. To be precise, let f :Y!Z be a morphism

of smooth irreducible varieties, and fix a regular value z∈Z, i.e., for each y∈f−1(z), the

induced map TyY!TzZ of tangent spaces is surjective. Then, the fiber X=f−1(z) is

smooth, and we have a sequence of maps

X
inclusion // Y

f

��

Z.

We obtain for each x∈X a short exact sequence TxX!TxY!TzZ, and hence an iden-

tification

det(T ∗xY )∼= det(T ∗xX)⊗det(T ∗z Z). (16.1)

Let β and γ be nowhere vanishing volume forms on Y and Z, respectively. There is

then a unique volume form α on X so that β=α⊗γ under (16.1) at each point of X. We

refer to α as the fibral volume form with respect to β and γ, and express this symbolically

by α=β/γ. We shall also say, in this situation, that the sequenceX!Y!Z is compatible

with the volume forms.
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16.2. Haar forms

Let V be a finite-dimensional vector space over k. A Haar form β on V is defined to be

a translation-invariant volume form. It induces a dual form β∗ on the dual space V ∗.

This terminology will be applied most frequently when V =h∗ for a reductive k-group H.

Example 16.1. Suppose H=GL2(k). We may identify h∗ with the space of 2×2

matrices. The Haar forms on h∗ are the non-zero multiples of dξ11∧dξ12∧dξ21∧dξ22.

16.3. Symplectic volume forms

Let G be a reductive k-group. Recall (from §1.14) that regular elements of g∗ are those

whose stabilizer has minimal dimension, and that we denote subsets of regular elements

by a subscripted reg, as in g∗reg. We have the following result.

Lemma 16.2. Every fiber Oλ of g![g] contains a unique open orbit Oλreg. This

orbit consists precisely of the regular elements of that fiber. An element ξ∈g∗ is regular

if and only if the linear map g∗=Tξg
∗
!T[ξ][g

∗] obtained by differentiating the projection

g![g] is surjective.

Proof. See [Kos2, Theorem 0.1 and Theorem 3].

The orbit Oλreg carries a canonical G-invariant symplectic form σ, and so also a G-

invariant symplectic volume form σd/d!, by the algebraic version of the discussion in §6.1:

the symplectic pairing on Tξ(Oλreg)={ad∗xξ :x∈g} is given by

(ad∗xζ, ad∗yζ) 7−! 〈ζ, [x, y]〉. (16.2)

The same discussion applies to any coadjoint orbit, but we require here only the regular

case.

16.4. Affine volume forms

Let H be a reductive k-group. The quotient [h∗] is an affine space (cf. §9.2).

Choose an isomorphism [h∗]!Ar, or equivalently, generators p1, ..., pr for the ring of

G-invariant regular functions on h∗. The volume form dp1∧...∧dpr on [h∗] is independent,

up to scaling, of the choice of generators pi; indeed, any two choices will differ by an

invertible element of C[p1, ..., pr]. An affine volume form on [h∗] is then defined to be a

non-zero multiple of dp1∧...∧dpr.
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Example 16.3. Suppose H=GLr(k). We may identify h∗ with the space of r×r
matrices. By sending a matrix to its characteristic polynomial, we obtain an isomorphism

[h∗]
∼−−!monic polynomials xr+

r∑
1

aix
r−i.

An affine volume form is then given by da1∧...∧ dar.

Lemma 16.4. For each Haar form βH on h∗ there is a unique affine form γH on

[h∗] so that for each µ∈[h∗], the fibral volume form for the sequence

Oµreg−! h∗−! [h∗]

is the symplectic volume form.

Proof. See [Ros2, Lem C].

Later it will be useful to have an explicit formula available for the form on [h].

Choose as usual a Chevalley basis Hi, Xα, X−α for h, where i ranges over simple roots

and α over all positive roots; in particular αi(Hi)=2 and [Xαi , X−αi ]=Hi. Wedging

these together gives a volume form on h∗. Write t for the Cartan subalgebra spanned by

the Hi. Now for µ∈t∗ regular the natural projection gives an identification t∗'Tµ[h∗].

A short computation shows that the pull-back to h∗ of the affine volume form is given

by ∏
α>0

〈µ, α∨〉·
∧
i

Hi; (16.3)

note that the Weyl group acts by the sign character on both factors of (16.3), so the

product is invariant.

Definition 16.5. Given a Haar form βH , the normalized affine form γH on [h∧] is

the one associated by the lemma.

Remark 16.6. When working over a local field, the normalized affine form is closely

related to the scaling limit of the Plancherel measure; see §17.5.

16.5. Orbital volume forms for a GGP pair

Let H
� � // G be a GGP pair over k. Recall, from Theorem 14.5, that for each stable

element (λ, µ)∈[g∗]×[h∗], the corresponding fiber Oλ,µ of the map

g∗×h∗−! [g∗]×[h∗]
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is an H -torsor. Fixing a basepoint ξ∈Oλ,µ, the orbit map gives an identification

H
∼−−!Oλ,µ.

Fix a Haar form βH on h∗. We define the orbital volume form α to be the volume form

on Oλ,µ transferred, via the orbit map, from the volume form on h dual to βH .

Theorem 16.7. Fix Haar volume forms βG and βH on g∗ and h∗, respectively.

Equip [g∗] and [h∗] with the corresponding normalized affine volume forms γG and γH ,

respectively. Let (λ, µ) be stable. Equip Oλreg and Oµreg with their symplectic volume

forms. Let α denote the orbital volume form on Oλ,µ. Then, in each of the following

three sequences, either α or −α is the fibral volume form:

Oλreg×O−µreg

(ξ,η)7!ξ|h+η
// h∗

Oλ,µ

ξ 7!(ξ,−ξ|h)
77

//

''

Oλreg
// [h∗]

g∗reg
// [g∗]×[h∗]

(16.4)

Note that, for the top sequence, 0∈h∗ is a regular value, due to the “trivial stabilizer”

consequence of stability; for the middle sequence, µ∈[h∗] is a regular value because “stable

implies regular”; for the bottom sequence, (λ, µ)∈[g∗]×[h∗] is a regular value because of

the “principle bundle” consequence of stability (see §14.3).

The proof for the upper exact sequence is given in §16.5.1, and for the bottom

sequence in §16.5.2. The claims for the two lower sequences are readily seen to be

equivalent, so this will conclude the proof.

16.5.1. Proof for the top sequence

We examine the top sequence of Theorem 16.7. We equip Oλreg×O−µreg with its symplectic

volume form Ω, and must show that Ω/βH=±α. The differential at τ∈Oλ,µ of the

sequence in question fits into the commutative diagram

Tτ (Oλ,µ) // Tζ(Oλreg×O−µreg )
res // h∗

h

oτ ∼=

OO

oζ�δ

77
(16.5)
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in which ζ :=(τ,−τ |h), oτ and oζ denote differentials of orbit maps, and δ: h!g⊕h and

res: g∗⊕h∗!h∗ are given by δ(x):=(x, x) and res(ξ, η):=ξ|h+η.

We claim that this is a Lagrangian fibration, i.e., that oζ �δ(h) is Lagrangian and

that the duality between h and h∗ is induced by the symplectic structure on the middle

term.

We may then conclude via the definition of symplectic volume forms.

To verify the Lagrangian fibration property, it is enough to check, for each x∈
h and η∈Tζ(Oλreg×O−µreg )⊂g∗×h∗, that σ(oζ �δ(x), η)=〈x, res(η)〉, where σ denotes the

symplectic pairing on Tζ(Oλreg×O−µreg ). Indeed, we may write η=oζ(y) for some y∈g⊕h.

By the definition of the symplectic pairing (see (16.2)), we then have

σ(oζ �δ(x), η) = 〈ζ, [δ(x), y]〉= 〈δ(x), oζ(y)〉= 〈δ(x), η〉= 〈x, res(η)〉.

This concludes the proof.

16.5.2. Proof for the bottom sequence

It will be convenient to deduce the assertion from one that is more explicitly phrased

in the context of spherical varieties. The proof that follows borrows ideas that are well

known in that context (resolving the cotangent bundle, degenerating to the boundary).

Thus, let M be any reductive group over k with Lie algebra m. Suppose that s is

a spherical Lie subalgebra of m, that is to say, that there is a Borel subgroup B of M

whose Lie algebra b is complementary to s; in particular, s is of dimension dim(M/B).

Let ζ∈s⊥⊂m∗. We denote by T[ζ] the tangent space to [m∗] at [ζ], and assume that the

sequence

s
x 7!ad∗xζ−−−−−−! s⊥

project−−−−−!T[ζ]. (16.6)

is short exact; here the final map is

s⊥
� � // m∗∼=Tζm

∗ // T[ζ].

Note that the composition of the sequence (16.6) is always zero.

Claim. This sequence is compatible, up to signs, with volume forms, where

• We fix Haar forms on s and m, and give s⊥ the induced form via

det(s⊥)'det(m)∗⊗det(s).

• The given Haar form on m defines a normalized affine form on [m∗], and hence

a volume form on T[ζ].
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Before proving the claim, let us see how it implies the desired result, namely, that

the bottom sequence of the theorem is compatible with volume forms. We apply the

claim with (M,S):=(G×H,diag H). Then, s=diag h �
�
// g×h=m, and we have an iso-

morphism

ι: s⊥
∼−! g∗,

(ξ,−ξ|h) 7−! ξ,

compatible with the adjoint actions of S∼=H.

Let (λ, µ) be stable. Fix a basepoint ξ∈Oλ,µ⊂g∗. Then, the sequence (16.6) with

ζ :=ι−1(ξ) is isomorphic to the differential of bottom sequence of the theorem, namely:

s
x 7!ad∗x(ξ,−ξH)

//

∼= x 7!ad∗xξ

��

s⊥
[ · ]

//

ι ∼=

��

T(λ,−µ)([g
∗]×[h∗])

(τ1,τ2) 7!(τ1,−τ2) ∼=

��

Tξ(Oλ,µ) // Tξ(g
∗
stab)

ξ 7!([ξ],[ξH ])
// T(λ,µ)([g

∗]×[h∗]).

Here we identify Tξ(g
∗
stab)=g∗, with the subscripted stab denoting the subset of H-stable

elements.

The rightmost vertical arrow preserves volume forms, up to sign. Since the claim

shows that the upper sequence is compatible with volume forms, the lower sequence is

also compatible with the volume forms that are transferred from the upper sequence.

The desired result follows.

Proof of the claim. Consider the set of ζ∈s⊥ for which there exists a Borel subalge-

bra b6m such that

(i) m=b⊕s;
(ii) ζ is the composition of the projection b⊕s!b/[b, b] with a regular character ζ̄

of b/[b, b]. Here “regular” means “regular when identified with a character of the torus

quotient of b”.

We claim that it is sufficient to prove the claim for such ζ. Indeed, condition (ii)

implies that ζ is regular semisimple when considered as an element of m∗. For such a ζ,

the set of Borel subgroups b that satisfy the polarization condition ζ([b, b])=0 is actually

finite. It follows from this that

• For ζ arising as in (i) and (ii), the stabilizer of ζ in m is contained in b, and hence

the stabilizer in s is trivial. Therefore, the first map of sequence (16.6) is injective.

• For ζ arising as in (i) and (ii), the second map of (16.6) is surjective (and so,

counting dimensions, sequence (16.6) is exact). Indeed, writing t for the torus quotient
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of b, there is a natural map P : t∗![m∗], and the second map of (16.6) sends ζ to the

image of ζ̄ under that map. But P is submersive at the regular element ζ̄.

• The dimension of the set of ζ that arise as in (i) and (ii) equals

dim(M/B)+dim(T ) = dim(s⊥).

Let Y be the set of all ζ∈s⊥ for which (16.6) is short exact. Then, Y is a Zariski-

open subset of s⊥, and it contains the constructible set X of ζ arising as in (i) and (ii).

As the dimension of X coincides with the dimension of Y , X is Zariski-dense inside Y .

It follows that it is sufficient to prove the desired assertion for ζ∈X.

We will do this by degeneration. Let L be the variety of pairs

(s′, ζ ′),

where s′ is a subalgebra of m of the same dimension as s, and such that (16.6), with s′

replacing s, is short exact. Comparing the volume forms on the various factors of (16.6)

describes an M -invariant regular function f :L!Gm, where f=1 at any point (s′, ζ ′)

where the sequence is compatible with volume forms. Fixing ζ, ζ̄ and b as in (i) and (ii),

we will show that f(s, ζ)=1.

Let B be the associated Borel subgroup, and fix a maximal torus T⊂B with Lie

algebra t. We get a splitting m=n̄⊕t⊕n, where n=[b, b]. Choose a regular 1-parameter

subgroup γ:Gm!T with 〈γ, α〉<0 for every positive root α, so that γ(t) contracts n as

t!∞.

Let ζt denote the restriction of ζ to t; we regard ζt as an element of m∗ by extending

trivially on n⊕n̄. Then, it is easy to see that (n̄, ζt)∈L; moreover,

lim
t!∞

Adγ(t)·(s, ζ) = (n̄, ζt). (16.7)

Indeed, by the assumption s∩b={0} and a dimension computation, we see that s

projects onto n̄ with respect to the splitting m=n̄⊕b. It follows readily from this that

lim
t

Adγ(t)s= n̄.

Furthermore, the character Ad(γ(t))ζ is trivial on the subspace Ad(γ(t))s⊕n, which

converges in turn to n̄⊕n. This implies that Ad(γ(t))ζ converges in m∗ to the character

ζt, extended trivially on n̄⊕n, and so concludes the proof of (16.7).

Since f is T -invariant and regular, it follows that f(s, ζ)=f(n̄, ζt). It remains to

show that f(n̄, ζt)=1. This is a routine computation with (16.3).
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17. Measures and integrals

We now apply the preceding considerations to define and compare measures on spaces

associated with a GGP pair over an archimedean local field.

17.1. Real varieties

We denote by X=X(R) the set of real points of a smooth real algebraic variety X. For

each Haar measure λ on R there is an assignment (see [We, §2.2])

{R-rational top-degree differential forms ω on X}−! {measures |ω| on X},

which is functorial under pullback by étale maps, compatible with products, satisfies

|fω|=|f | · |ω|, and is normalized by |dx|=λ when X is the affine line A1.

We henceforth take for λ the measure

Lebesgue√
2π

.

On the affine space An, we then have

|dx1∧...∧dxn|=
Lebesgue

(2π)n/2
. (17.1)

We have normalized λ to be Fourier self-dual for the character ψ(x):=eix. This

normalization has the following consequence:

Let V be a real vector space. Using ψ, we may identify the real dual V ∗ with the

Pontryagin dual V ∧ :=Hom(V,C(1)). Then, dual algebraic volume forms on V and V ∗

correspond to (Fourier-)dual measures on V and V ∧.

17.2. Groups

Let G be a reductive group over R. Recall (from §1.14) that we denote by g the real Lie

algebra, by g∗ its real dual, and by g∧ the Pontryagin dual Hom(g,C(1)). Sending ξ∈ig∗

to x 7!exξ∈C(1) gives an identification ig∗'g∧.

We suppose given a Haar measure dg on the Lie group G. There is then a compati-

ble Haar measure dx on g, normalized as in §2.1 by requiring that U⊆g and exp(U)⊆G
have similar volumes when U is a small neighborhood of the origin. We obtain also

a Fourier-dual measure dξ on g∧. We choose an R-rational Haar form β on the real

vector space g∧ by requiring that |β|=dξ; it normalizes a dual form β∨ on g. Ex-

plicitly, if we choose coordinates x=(x1, ..., xn) and ξ=(ξ1, ..., ξn) as in §4.1 so that
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xξ=
∑
j xjξj and dx=dx1 ... dxn, then dξ=(2π)−ndξ1 ... dξn, β=±(2π)−n/2dξ1∧...∧dξn

and β∨=±(2π)n/2dx1∧...∧dxn.

Recall that, for λ∈[g∧], we set

Oλ = {ξ ∈ g∧ : [ξ] =λ}.

On the regular subset Oλreg we have both an algebraic symplectic volume form

ωalg =
1

d!
σd

as in §16.3 and a normalized symplectic measure

ω=
1

d!

(
σ

2π

)d
as in §6.1. We verify readily that the algebraic form is R-rational, and satisfies |ωalg|=ω.

By the recipe in §16.4, β induces a normalized affine volume form γ on [g∧]. (We

use that g∧ and [g∧] are real forms of gC and [gC].) We verify readily that γ is R-

rational, hence induces a normalized affine measure |γ| on [g∧]. By the construction and

compatibilities noted previously, we then have∫
g∧
a=

∫
λ∈[g∧]

(∫
Oreg
λ

a dω

)
(17.2)

for each a∈Cc(g∧).

17.3. GGP pairs

Let (G,H) be a GGP pair over an archimedean local field. By restriction of scalars, we

may regard G and H as reductive groups over R; the discussion and notation in §17.2

thus applies.

17.3.1. Stability consequences

For λ∈[g∧] and µ∈[h∧], we set

Oλ,µ := {ξ ∈ g∧ : [ξ] =λ and [ξ|h] =µ}.

As before, a subscripted “stab” denotes the subset of H-stable elements.
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Theorem 17.1. The map g∧stab!{stable (λ, µ)} is a principal H -bundle over its

image, with fibers Oλ,µ. In particular, if (λ, µ)∈[g∧]×[h∧] is stable, then either

• Oλ,µ=∅, or

• Oλ,µ is an H -torsor, i.e., a closed H -invariant subset of g∧ on which H acts

simply transitively ; moreover, Oλ,µ consists of H-stable regular elements.

Proof. This follows readily from the corresponding properties (§14.3) established

over the algebraic closure C.

More generally, for each regular coadjoint multiorbit O⊆g∧ and µ∈[h∧], we set

O(µ) := {ξ ∈O : [ξ|h] =µ}.

For example, Oλ,µ=Oλ(µ). Then,

Ostab−! [h∧]∩image(Ostab)

is a principal H -bundle, with fibers O(µ).

Let π and σ be tempered irreducible unitary representations of G and H, respec-

tively. We set

Oπ,σ := {ξ ∈Oπ : ξ|h ∈Oσ}.

We note that

Oπ,σ ⊆Oπ(λσ)⊆Oλπ,λσ .

The pictures in §1.7 and §1.10 give some examples to which this notation apply. Theo-

rem 17.1 implies that if (λπ, λσ) is stable and Oπ,σ is non-empty, then Oπ,σ is an H -torsor

consisting of H-stable elements, and hence

Oπ,σ =Oπ(λσ) =Oλπ,λσ . (17.3)

17.3.2. Integral transforms and identities

We assume given a Haar measure on H. As in §17.2, this choice defines a measure [h∧].

By the discussion in §16.5 and §17.1, we obtain also—for stable (λ, µ)∈[g∧]×[h∧]—a

measure on Oλ,µ, which we will see below induces a measure on g∧. More generally,

we adopt the convention that an integral over Oλ,µ is defined to be zero unless (λ, µ)

is stable; in that case, the measure is given explicitly by the push-forward of the Haar

measure from H, i.e., ∫
Oλ,µ

a :=

∫
s∈H

a(s·ξλ,µ)
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for any basepoint ξλ,µ∈Oλ,µ. We note (cf. §14.2) that, for given λ, the pair (λ, µ) is

stable for µ outside a measure-zero subset.

For a regular coadjoint multiorbit O⊆[g∧] and µ∈[h∧], the set O(µ) is either empty

or of the form Oλ,µ with λ=[O]. Thus integration over O(µ) is defined.

Theorem 17.2. Integration defines a continuous map

{stable (λ, µ)∈ [g∧]×[h∧]}×S(g∧)−!C,

(λ, µ, a) 7−!
∫
Oλ,µ

a.

We have ∫
Oλreg

a dω=

∫
µ∈[h∧]

∫
Oλ,µ

a. (17.4)

More generally, for any regular coadjoint multiorbit O⊆g∧,∫
O
a dω=

∫
µ∈[h∧]

∫
O(µ)

a. (17.5)

Proof. The convergence follows from the inequalities recorded below in §17.4, the

continuity from Theorem 14.5, and the integral formulas from Theorem 16.7.

This result will be applied in §22.3.

17.4. A Lojasiewicz-type inequality

We pause to record a technical lemma justifying the convergence and continuity of the

integral transforms defined above.

We fix a norm | · | on g∧ and a faithful finite-dimensional representation of H. We

may use the latter to define an algebraic norm | · | on H: denoting the faithful represen-

tation by R, we set

|h| := max(‖R(h)‖, ‖R(h−1)‖),

where ‖ · ‖ denotes the operator norm on the space of R.

Lemma 17.3. Let ξ∈g∧ be H-stable. There are then positive reals c1 and c2 and a

(topological) neighborhood U of ξ such that, for all η∈U and s∈H,

|s·η|>c1|s|c2 . (17.6)

Proof. The required estimate is in the spirit of the Lojasiewicz inequality, but for

lack of a convenient reference it is simplest for us to argue directly.
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Let Z denote the set of H-stable elements of g∧. By Theorem 14.2, the set Z may

be described explicitly as the non-vanishing locus of a certain resultant ρ: g∧!R. We

may thus regard Z as the set of real points of the real affine variety Z:=SpecR[g∧, 1/ρ].

The group H acts on Z. The orbit map (h, z) 7!(hz, z), regarded as an algebraic

map

H×Z−!Z×Z,

is a closed immersion. Indeed, this property may be checked on complex points, and

Theorem 14.5 says that Z(C)!Z(C)//H(C) is a principal H(C)-bundle. In particular,

the induced map on coordinate rings is surjective.

Choose generators f1, ..., fk for the R-algebra of regular functions on Z. The closed

immersion property noted above implies that each regular function P (h) on H may be

written as a polynomial in fi(z) and fj(h·z). Writing ‖z‖=maxi |fi(z)|, we may thus

find positive constants C and K such that, for all h∈H and z∈Z, we have

P (h)6C(‖z‖+‖h·z‖)K ,

or equivalently,

‖h·z‖>C−1/KP (h)1/K−‖z‖.

The norm |s| defined for s∈H by a finite-dimensional faithful representation is com-

parable to maxi∈I |Pi(s)| for some finite collection (Pi(h))i∈I of regular functions on Z.

Restricting η to a compact subset of Z, we obtain

|s·η|> c1|s|c2−c3 (17.7)

for suitable constants c1, c2, c3>0 (depending only upon the given compact set). When |s|
is large enough, the required estimate follows from (17.7). In the remaining range, s and η

both lie in fixed compact sets and s·η 6=0, giving the adequate estimate |s·η|�1�|s|.

17.5. The scaling limit of Plancherel measure

It is instructive to note that the normalized affine volume measure on [h∧] is closely

related to the Plancherel measure µ on Ĥ (cf. §A.3). We do not use this comparison

directly, and so will be brief and sketchy. For an open set U⊂[h∧], let

Ũ := {σ ∈ Ĥtemp :λσ ∈U}

denote the set of isomorphism classes of tempered irreducible unitary representations

having infinitesimal character in U . We assume for simplicity that we are working over

a complex group, so that, for each σ∈Ĥtemp, we have Oσ=Oµreg with µ:=λσ.
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Lemma 17.4. Fix a non-empty bounded open subset U of [h∧] whose boundary has

measure zero (with respect to any measure in the class of smooth measures). Then,

lim
h!0

Plancherel measure of h̃−1 U

normalized affine measure of h−1 U
= 1.

While one can prove this simply by examining the explicit form of Plancherel mea-

sure, it would then be tedious to check carefully the normalization of constants. We sketch

a different argument, presumably well known, which makes the normalization clear. De-

fine Oph :C∞c (h∧)!End(σ) as usual. Fix a∈C∞c (h∧), with dilates ah(ξ):=a(h ξ) as usual.

By the definition of normalized affine measure,∫
µ∈[h∧]

(∫
Oµ

ah

)
=

∫
h∧
ah.

Recall that Oph(a)=σ(f) for some f∈C∞c (H) supported near 1 and given by

f(exp(x)) := a∨h (x)χ(x)j(x)−1;

since χ(0)=j(0)=1, we have in particular∫
h∧
ah = f(1).

By the Plancherel formula (§A.3),

f(1) =

∫
σ∈Ĥtemp

tr(σ(f)) dµ(σ).

By the Kirillov formula (see §12.3),

tr(σ(f)) = tr(Oph(a))∼
∫
Oσ

ah dωOσ .

(Here and henceforth the precise meaning of ∼ may be inferred from the precise state-

ments in §12.3.) It follows that∫
µ∈[h∧]

(∫
Oµ

ah

)
∼
∫
σ∈Ĥtemp

(∫
Oσ

ah dωOσ

)
dµ(σ). (17.8)

We now choose a so that
∫
Oµ a approximates the characteristic function 1U (λ). The left-

hand side of (17.8) then approximates the affine measure of h−1 U , while the right-hand

side approximates the Plancherel measure of the set Ũ of representations σ for which

λσ∈h−1U .
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18. Relative characters: disintegration

Let (G,H) be a GGP pair over a local field F .

We equip G and H with some Haar measures. To simplify notation, we do not

display these Haar measures in our integration notation. Thus
∫
s∈H f(s) denotes the

integral of f∈L1(H).

By the proofs of [II, Proposition 1.1] and [HarN, §2], the corresponding Harish–

Chandra functions (cf. §A.2) satisfy∫
H

ΞG|H ·ΞH <∞. (18.1)

Let π and σ be tempered irreducible unitary representations of G and H, respec-

tively. More precisely, we denote in this subsection by π and σ the spaces of smooth

vectors in the underlying Hilbert spaces. Choose an orthonormal basis B(σ) consist-

ing of isotypic vectors for the action of some fixed maximal compact subgroup of H.

Similarly, choose an orthonormal basis B(π) for π.

Lemma 18.1. (i) For v1, v2∈π, the formula

Hσ(v1⊗v̄2) :=
∑

u∈B(σ)

∫
s∈H
〈sv1, v2〉〈u, su〉 (18.2)

converges and defines an H -invariant Hermitian form

Hσ:π⊗π̄−!C.

(ii) For T∈π⊗π̄, one has

tr(T ) =

∫
σ∈Ĥtemp

Hσ(T ), (18.3)

where tr:π⊗π̄!C is the linear map for which tr(v1⊗v̄2):=〈v1, v2〉 and the integral is

taken with respect to the Plancherel measure on Ĥtemp dual to the chosen Haar measure

on H. In particular,

〈v1, v2〉=
∫
σ∈Ĥtemp

∑
u∈B(σ)

∫
s∈H
〈sv1, v2〉〈u, su〉. (18.4)

(iii) Suppose that F is archimedean, so that the definitions of Part I apply, and let

N>0 be sufficiently large in terms of G. Then, Hσ extends to a map

Hσ: Ψ−N (π)−!C

which is continuous, uniformly in π and σ, and given by

Hσ(T ) =
∑

u∈B(σ)

∫
s∈H

tr(sT )〈u, su〉=
∑

v∈B(π)

u∈B(σ)

∫
s∈H
〈sTv, v〉〈u, su〉. (18.5)
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Proof. The details of the proof are technical and not particularly interesting, so

we have relegated most of them to Appendix A. Let v1, v2∈π, and define f :H!C by

f(s):=〈sv1, v2〉. Then

f(1) = 〈v1, v2〉, Hσ(v1⊗v̄2) = tr(σ(f)). (18.6)

Observe now that assertions (i) and (ii) are formal consequences of the Plancherel for-

mula. That formula does not directly apply, because f is typically not compactly-

supported, but an approximation argument gives what is needed. We postpone the

details to §A.6.

Remark 18.2. It is expected, and known for F non-archimedean (see [SVe]), that

Hσ satisfies the positivity condition

Hσ(v⊗v̄)> 0 for all v ∈π. (18.7)

Assume this. Since dim HomH(π, σ)61, we may then write∫
s∈H
〈sv, v〉〈u, us〉= |〈`σ(v), u〉|2 (18.8)

for some H -invariant functional `σ :π!σ, determined up to phase. One has

Hσ(v) = ‖`σ(v)‖2.

The continuity of `σ follows from that of Hσ.

19. Relative characters: asymptotics in the stable case

We assume that (G,H) is a GGP pair over an archimedean local field, and retain the

notation and conventions of §17 and §18. In particular, by restriction of scalars, we may

regard G and H as real reductive groups, and the corresponding point sets G and H as

real Lie groups with Lie algebras g and h.

19.1. Motivation

Let π∈Ĝtemp and σ∈Ĥtemp be tempered irreducible unitary representations. We allow

π and σ to vary arbitrarily with a scale parameter h!0, which we normalize so that the

rescaled infinitesimal characters hλπ and hλσ remain bounded.

Fix a∈S−∞(g∧), and set

Oph(a) := Oph(a :π)∈Ψ−∞(π).
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We wish to understand the h!0 asymptotics of the evaluationHσ(Oph(a)) of the relative

character Hσ defined in §18.

To see what to expect, observe the following:∫
σ∈Ĥtemp

Hσ(Oph(a))
(18.3)

= tr(Oph(a))
(12.2)
≈
∫
Oπ

ah dω
(17.5)

=

∫
µ∈[h∧]

∫
Oπ(µ)

ah.

Consideration of the action of the universal enveloping algebra of H suggests that

the above sequence localizes to individual σ, i.e., that

Hσ(Oph(a))≈
∫
Oπ,σ

ah, (19.1)

at least if (hλπ,hλσ) stays away from the boundary of the stable locus.

Strictly speaking, the most one can deduce immediately from such reasoning is an

equality like (19.1), but summed over all σ of fixed infinitesimal character. However,

there is another way to motivate (19.1), again ignoring issues of rigor. If we were to

pretend that the exponential map were an isomorphism with trivial Jacobian and to

ignore the cut-off in Oph(a), we would obtain

Hσ(Oph(a)) =

∫
h∈H

tr(π(h)Oph(a))χσ(h) (19.2)

≈
∫
x∈g

a∨h (x)

∫
y∈h

χπ(ey+x)χσ(e−y), (19.3)

which leads formally to (19.1) via the Kirillov formula.

The expectation (19.1) belongs to the general philosophy of the orbit method,

whereby restricting a representation of G to the subgroup H corresponds to disinte-

grating its coadjoint orbit along the projection g∧ // // h∧ (cf. §1.9). The main result in

§19 (Theorem 19.3 below) confirms this expectation in a sharper form. Our proof will

be along the lines of the second argument discussed above; we will chop the H -integral

up into ranges depending on how far the group element h is from the identity.

19.2. A-priori estimates

For orientation and later applications, we record some crude bounds. We abbreviate

Smδ :=Smδ (g∧), and write a for an element of S−∞δ for some fixed 06δ< 1
2 .

Lemma 19.1. We have the very weak bound

Hσ(Oph(a))�h−N . (19.4)
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Proof. Recall from §18 that for N chosen sufficiently large (relative to G), the map

Hσ: Ψ−N (π)!C is continuous, uniformly in π and σ. By enlarging N suitably and

appealing to Lemma 5.3, we deduce that Hσ induces a continuous map Hσ: Ψ−Nδ (π)!C,

uniformly in the same sense. Since a∈S−Nδ , we know by Theorem 5.8 that Oph(a)∈
h−N Ψ−Nδ . The required estimate follows.

The technique employed in this last proof for passing from Ψ−N to Ψ−Nδ (after

possibly enlarging N) will be applied in the remainder of §19 without explicit mention.

Recall from §9 that we identify [g∧] and [h∧] with euclidean spaces, equipped with

distance functions.

Lemma 19.2. Assume that a is supported in some fixed subset U⊆g∧ (independent

of h, but otherwise arbitrary). Then, the very strong bound

Hσ(Oph(a))�hN 〈hλπ〉−N 〈hλσ〉−N (19.5)

holds unless

(hλπ,hλσ) is within distance oh!0(1) of the image of U in [g∧]×[h∧]. (19.6)

Proof. We observe first that Hσ factors as an (H×H)-equivariant sequence

Ψ−∞(π)−!Ψ−∞(σ)
tr−−!C,

where the first arrow sends T to the operator on σ given by∫
s∈H

tr(sT )σ(s−1).

This sequence is continuous, uniformly in π and σ, by the same argument as in the

proof of part (iii) of Lemma 18.1. These observations allow us to deduce the required

implication (in sharper form) from the results in §10.3.

19.3. Main result

For convenience, we recall some notation and conventions from §17.

• We write Oπ,σ for the intersection of Oπ with the preimage of Oσ under the

projection g∧!h∧.

• Integration over the set Oπ,σ, or over its rescaling hOπ,σ, is defined to be zero

unless that set is non-empty and H-stable; in that case, it is an H -torsor, i.e., a closed

subset of g∧ on which H acts simply transitively, and we equip it with the transport of

the Haar measure from H.
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The simplest case δ=0 of the following result is the relevant one for our applications,

but we will pass to the general case δ>0 in the course of the proof.

Theorem 19.3. Fix a compact subset U⊆g∧ consisting of H-stable elements. Let

h traverse a sequence of positive reals tending to zero. Fix 06δ< 1
2 , and let a∈S−∞δ (g∧)

with supp(a)⊆U . Let π and σ be h-dependent tempered irreducible unitary representa-

tions of G and H. Then,

Hσ(Oph(a)) =

∫
hOπ,σ

a+O(h1−2δ), (19.7)

More precisely, there are differential operators Dj on g∧ with the following properties:

• D0a=a;

• Dj has order 62j and has homogeneous degree j: Dj(ah)=hj(Dja)h;

• for each fixed J∈Z>0,

Hσ(Oph(a)) =
∑

06j<J

hj
∫

hOπ,σ
Dja+O(h(1−2δ)J). (19.8)

We may take the implied constant in (19.8) to be Cν(a), where

• C>0 is a scalar depending at most upon U and δ, and

• ν is a continuous seminorm on S−∞δ (g∧) depending at most upon J .

We note that the maps

a 7−!
∫

hOπ,σ
a,

whose domain we take to be the class of symbols a arising in Theorem 19.3, are h-

uniformly continuous. Indeed, by the support assumption on a, the integral on the right-

hand side vanishes identically unless the pair (hλπ,hλσ) belongs to a fixed compact

subset of the set of stable pairs; the claim thus follows from the discussion in §17.3.2.

Since Dj has order 62j, we deduce in particular that

hj
∫

hOπ,σ
Dja�h(1−2δ)j , (19.9)

which explains why (19.8) remains consistent as J varies.

Theorem 19.3 applies readily to Hσ(Oph(a1) ...Oph(ak)) for fixed k and a1, ..., ak as

in the hypothesis: just expand Oph(a1) ...Oph(ak) using the composition formula (5.5),

then apply the uniform continuity of Hσ: Ψ−N (π)!C to the remainder and the main

formula (19.8) to the other terms. Taking the resulting estimate to leading order gives

in particular that

Hσ(Oph(a1) ...Oph(aj)) =

∫
hOπ,σ

a1 ... ak+O(h1−2δ). (19.10)
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Recall from §17.3.1 the definition of the notation (e.g.) O(hλσ). Using Theorem 17.2, it

follows also that if π admits a limit orbit (O, ω), then

Hσ(Oph(a))'
{ ∫
O(hλσ)

a, if Oπ,σ 6=∅,

0, otherwise,
(19.11)

where pr: g∧!h∧ is the natural projection and A'B means A=B+oh(1). One has also

the analogue of (19.11) for multiple symbols, as in (19.10).

For the proof of Theorem 19.3, we may assume that (19.6) is satisfied, since otherwise

the integrals
∫

hOπ,σ Dja are eventually identically zero, and so the claim (19.8) follows

from the a-priori estimate (19.5).

19.4. Reduction to symbols on the product

We perform here an important technical reduction for the proof of Theorem 19.3. We

introduce the notation

M := G×H, S := diagonal embedding of H in M,

and set

τ :=π�σ̄,

so that τ is a tempered irreducible representation of the reductive group M ; conversely,

every such τ arises in this way. We equip S with the transport of Haar from H. Recall

from (18.5) that

Hσ(Oph(a)) =
∑

v∈B(π)

u∈B(σ)

∫
s∈H
〈sOph(a)v, v〉〈u, su〉.

We may rewrite the integrand as

〈sOph(a)v, v〉〈u, su〉= 〈sOph(a)(v⊗ū), v⊗ū〉,

where here s acts on τ diagonally while Oph(a) acts via the restriction of τ to G. Thus

Hσ(Oph(a)) =
∑

v∈B(τ)

∫
s∈S
〈sOph(a)v, v〉.

We now exploit the S -invariance to “fatten up” Oph(a); this will have the effect of

replacing the symbol a on g∧ by a symbol on m∧ supported close to

s⊥ := {ξ ∈m∧ : ξ|s = 0}.
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To that end, fix b∈C∞c (s∧) supported in a small neighborhood of the origin and identi-

cally 1 in a smaller neighborhood. We may then form Oph(b), which acts on τ via its

restriction to H. By invariance of Haar measure, we have∫
s∈S
〈sOph(b)Oph(a)v, v〉= c0

∫
s∈S
〈sOph(a)v, v〉,

where

c0 :=

∫
s

χb∨h = 1+O(h∞).

Combining this with the a-priori bound Hσ(Oph(a))�h−O(1) (see (19.4)), we obtain

Hσ(Oph(a)) =
∑

v∈B(τ)

∫
s∈S
〈sOph(b)Oph(a)v, v〉+O(h∞). (19.12)

The composition Oph(b)Oph(a) of operators on τ is a bit subtle because the symbols

a and b are defined using different Lie algebras. We may nevertheless compose them using

(8.36); what’s crucial here is that a and b both have order −∞, and m is spanned by s

and g. We obtain in this way—for any fixed N1, N2>0, and large enough fixed J>0—an

expansion

Oph(b)Oph(a)≡Oph(a′) mod hN1 Ψ−N2(τ) (19.13)

where

a′ :=
∑

06j<J

hj Oph(b?ja)∈C∞c (m∧).

Arguing as in §18—using now that
∫
S

ΞM<∞—we see that the formula

H(T ) =

∫
s∈S

tr(sT ) =
∑

v∈B(τ)

∫
s∈S
〈sTv, v〉 (19.14)

defined initially by the first equality for smooth finite-rank tensors T∈τ⊗τ̄ , extends

continuously to

H: Ψ−N (τ)−!C,

uniformly in π and σ, for N sufficiently large but fixed. These observations give an

adequate estimate for the contribution to (19.12) from the remainder term implicit in

(19.13). Thus Hσ(Oph(a)) is given up to acceptable error by H(Oph(a′)).

Recall that a was assumed supported on a fixed compact collection of H-stable

elements of g∧. We claim that if the support of b is chosen small enough, then a′ will be

supported on a compact collection of S-stable elements of m∧. Indeed, if the support of b

is small, then the symbol a′ will be supported close to s⊥. But we have an identification

s⊥= {(ξ,−ξ|h) : ξ ∈ g∧}∼= g∧, (19.15)
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which intertwines the coadjoint actions of S and H, hence identifies S-stable elements

of s⊥ with H-stable elements of g∧. Since the S-stable locus in m∧ is open, the claim

follows.

The coadjoint multiorbit of τ is given by

Oτ =Oπ×Oσ̄ = {(ξ,−η) : ξ ∈Oπ and η ∈Oσ},

so the identification (19.15) induces

Oτ∩s⊥∼=Oπ,σ,

intertwining S and H. In particular, Oτ∩s⊥ is an S -torsor; we equip it with the transport

of Haar from S, which is then compatible with the above identification. We similarly

equip hOτ∩s⊥.

Since b≡1 in a neighborhood of the origin in s∧, we have a′(ξ)=a(ξ|g) for all ξ∈m∧

close to s⊥. In particular, ∫
hOτ∩s⊥

a′=

∫
hOπ,σ

a.

More generally, any homogeneous differential operator D′ on m∧ induces a homogeneous

differential operator D on g∧, of the same homogeneity degree and of no larger order, so

that D′a′(ξ)=Da(ξ|g) for ξ∈s⊥; in particular∫
hOτ∩s⊥

D′a′=
∫

hOπ,σ
Da.

The proof of Theorem 19.3 thereby reduces to that of the following (in which we have

relabeled (a′, τ) to (a, π)).

Theorem 19.4. Fix a compact subset U⊆m∧ consisting of S-stable elements. Let

h traverse a sequence of positive reals tending to zero. Fix 06δ< 1
2 , and let a∈S−∞δ (m∧)

with supp(a)⊆U . Let π be an h-dependent tempered irreducible unitary representation

of M , and Op:Sm(m∧)!Ψm(π) as usual.

There are differential operators Dj on m∧, satisfying properties analogous to those

enunciated in the statement of Theorem 19.3, so that, for each fixed J>0,

H(Oph(a)) =
∑

06j<J

∫
hOπ∩s⊥

Dja+O(h(1−2δ)J). (19.16)

The proof of Theorem 19.4 occupies the remainder of this section. The discussion

in §1.10, phrased in terms of microlocalized vectors, might serve as a useful guide to the

following arguments.
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For the same reasons as explained in §19.2, we may reduce to the case that hλπ is

within o(1) of the image of U in [m∧], so that a 7!
∫

hOπ∩h⊥ is h-uniformly continuous,

and

hj
∫

hOπ∩s⊥
Dja�h(1−2δ)j . (19.17)

We may assume that 06δ< 1
2 is sufficiently large: the problem becomes more gen-

eral as δ increases, and the asymptotic expansion (19.16) for a given δ (taken with J

sufficiently large) implies it for all smaller values.

Recall (from (19.14)) that

H(Oph(a)) =

∫
s∈H

tr(π(s)Oph(a)).

We will analyze below the contribution to the latter from various ranges of ‖s−1‖, where

‖ · ‖ denotes the operator norm on End(m∧). We note that S contains no non-trivial

central elements of M , so that the coadjoint representation of M , restricted to S, is a

faithful representation; thus ‖s−1‖ may be regarded as quantifying the distance from s

to the identity element 1 of S.

19.5. Small elements give the expected main term

Let jS be attached as in §2.1 to the group S.

Lemma 19.5. Fix Θ∈C∞c (s), with Θ≡1 near 0. Fix J∈Z>0 and 1
2>δ

′>δ. Then,∫
y∈s

Θ
( y

hδ
′

)
jS(y)tr(π(exp(y))Oph(a)) =

∑
06j<J

hj
∫

hOπ∩s⊥
Dja+O(h(1−2δ)J), (19.18)

with Dj as in the statement of Theorem 19.4.

The basic idea of the proof is as follows. The left-hand side involves traces of group

elements close to the identity, which may be evaluated with the Kirillov formula. The

conclusion then follows essentially as in the formal sketch (19.2).

In practice, we implement the proof by using the multiplication law for symbols;

the Θ(y/hδ
′
) factor is accounted for, in the proof below, by the symbol s. The simplest

case for the argument is when δ=0. In that case, both a and the symbol s belong to

the “easy” symbol class S0 defined in §4.3, although their supports are on quite different

scales.

Proof. Note first of all that it is permissible to prove the statement with h(1−2δ)J

replaced by hJ
′

so long as J ′!∞ as J!∞; one then applies the modified statement with
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a larger value of J to obtain the version above, noting that (by (19.17)) the contribution

of Dja has size O(h(1−2δ)j).

We will first establish the modified form of (19.18) obtained by omitting the factor

jS(y) from the integrand; we will later explain why including this factor does not affect

the required conclusion. With this modification, we may write the left-hand side as∫
y∈s

Θ
( y

hδ
′

)
tr(π(exp(y))Oph(a)) = tr(Oph(b)Oph(a)), (19.19)

where b∈S(s∧) is defined by requiring that b∧h (y)=Θ(y/hδ
′
), i.e., that

b(h η) = hδ
′ dim(s) Θ∨(hδ

′
η).

Using our assumptions on Θ, we check readily that

b∈hδ
′(dim s) S−∞1−δ′(s

∧) (19.20)

and ∫
η∈s∧

ηαb(η) = 1α=0, (19.21)

for all multi-indices α, where 1X denotes the indicator function for the condition X. The

property (19.21) remains valid up to an additive error O(h∞) if we replace s∧ by a ball

of fixed radius about the origin (or indeed, by a ball of radius O(h1−δ′′), δ′′>δ′). We

should thus think of b as a very strong approximation to the delta function on s∧, with

thickness at scale h1−δ′ .

Although b is defined using a smaller Lie algebra than a, we can compose Oph(a)

and Oph(b) using Theorem 7.4. Due to the crucial assumption δ′>δ (which may be

rewritten δ+(1−δ′)<1), we obtain in this way an asymptotic expansion

Oph(b)Oph(a) =
∑

06j<J

hj Oph(b?ja)+Oph(r),

involving star products

hj b?ja∈h(δ′−δ)j S−∞δ′ (m∧)

and remainder r∈h(δ′−δ)J S−∞δ′ (m∧). By the consequence (12.1) of the Kirillov formula,

we obtain a satisfactory estimate for tr(Oph(r)) provided that J is taken sufficiently large.

To the remaining terms we apply the Kirillov formula expanded in terms of differential

operators (see (12.4)). We obtain an asymptotic expansion for the right-hand side of

(19.19) as a linear combination taken over small j1, j2>0 of integrals

hj1+j2

∫
ζ∈hOπ

∂α
′
(ζγ ·∂αa(ζ)·∂βb(ζ)) (19.22)
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involving multi-indices satisfying |α|+|β|−|γ|=j1, |α|, |β|6j1 and |α′|=j2. By the prod-

uct rule applied to ∂α
′
, followed by partial integration, we may rewrite the above as

hj
∫

hOπ
bDja,

where j=j1+j2 and Dj has the form indicated in the statement of the theorem.

The map hOπ!s∧ has full rank in a neighborhood of ω, so we may fix a small open

neighborhood Nω⊂hOπ of ω and local coordinates

Nω 3 ξ= (ξ1, ξ2)∈ s∧×(hOπ∩s⊥), ξ1≈ 0, ξ2≈ω,

so that

• the coordinate ξ1 defines the projection to s∧, and

• ξ=(0, ξ) for ξ∈hOπ∩s⊥.

The integral of a function f on hOπ supported on Nω may be expressed in such coordi-

nates as ∫
hOπ

f =

∫
ξ1∈s∧

∫
ξ2∈hOπ∩s⊥

f(ξ1, ξ2)w(ξ1, ξ2) dξ1 dξ2,

where dξ1 denotes the given Haar measure, dξ2 the transport of Haar from S, and w

is a smooth Jacobian factor. We have b(ξ)=b(ξ1), and a is supported in Nω for small

enough h, so ∫
hOπ

bDja=

∫
(ξ1,ξ2)∈Nω

b(ξ1)w(ξ1, ξ2)Dja(ξ1, ξ2) dξ1 dξ2.

Using Taylor’s theorem, we may write

w(ξ1, ξ2)Dja(ξ1, ξ2) =w(0, ξ2)Dja(0, ξ2)+
∑

16|α|<A

cα(ξ2)ξα1 +O(|ξ1|A h−δA) (19.23)

for any fixed A. The compatibility of the top sequence in (16.4) tells us that w(0, ξ2)=1,

so the contribution to
∫

hOπ bDja from the first term on the right-hand side of (19.23) is∫
(ξ1,ξ2)∈Nω

b(ξ1)Dja(0, ξ2) dξ1 dξ2 =

(∫
ξ1

b(ξ1) dξ1

)(∫
ξ2

Dja(0, ξ2) dξ2

)
+O(h∞)

=

∫
hOπ∩s⊥

Dja+O(h∞).

The remaining Taylor monomials contribute O(h∞), by (19.21) and the remark there-

after. The contribution from the remainder term is dominated by

h−δA
∫
ξ1

|ξ1|A |b(ξ1)| dξ1�hδ
′ dim(s)+(1−δ−δ′)A,
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due to (19.20) and the definition of b; informally, b(η) is concentrated on |η|�h1−δ′ .

Since δ, δ′< 1
2 , we have 1−δ−δ′>0, so this last estimate is adequate for A sufficiently

large.

This completes the proof of the modified assertion obtained by omitting jS . To

incorporate that factor, we define the symbol c by requiring that c∨h (y)=Θ(y/hδ
′
)jS(y),

and then follow the previous argument up to (19.22), leading us to consider

hj1+j2

∫
ζ∈hOπ

∂α
′
(ζγ ·∂αa(ζ)·∂βc(ζ)) (19.24)

We apply §7.8 to obtain an asymptotic expansion for c given up to acceptable error by

a sum over finitely many multi-indices α of the quantities

∂αjS(0)

α!
(−h)|α|∂αb(ζ);

inserting these into (19.24) yields terms of the form (19.22), which we treat as before.

19.6. Huge elements contribute negligibly

Lemma 19.6. For each fixed N>0 there is a fixed N ′>0 such that∫
s∈S:‖s−1‖>h−N

′
tr(π(s)Oph(a))�hN . (19.25)

Proof. We note that, due to the finitude
∫
S

ΞM<∞ and a Lojasiewicz-type inequal-

ity, the estimate ∫
s∈S:‖s−1‖>X

ΞM (s)�X−η

holds for some fixed η>0. By the matrix coefficient bounds for tempered representations

(see §A) and the trace norm estimate (12.5), we deduce that the left-hand side of (19.25)

is dominated for some fixed L>0 (independent of N ′) by

‖∆LOph(a)∆L‖1
∫
s∈S:‖s−1‖>h−N

′
Ξ(s)�h−4L+ηN ′ .

Taking N ′ large enough gives an adequate estimate.

19.7. Medium-sized elements contribute negligibly

This section contains the most delicate arguments.
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Lemma 19.7. Let Ω⊂m∧ be a compact collection of S-stable elements. For each

ω∈Ω and s∈S there exists u∈m with |u|=1 so that

|s·u| � |(s·u)ω|�‖s‖ε,

where the implied constants and the positive quantity ε depend only upon Ω. (Recall from

§2.1 that the natural pairing between m and m∧ is denoted by juxtaposition.)

Proof. Fix a maximal compact subgroup K of S and maximal split Cartan sub-

algebra a of S such that S=K exp(a)K. We may reduce readily to verifying that the

conclusion holds when s∈exp(a), say s=exp(rz) with r>0, z∈a and |z|=1. Consider the

weight decompositions for the adjoint and coadjoint actions of z:

m=
⊕
t∈R

mt and m∧=
⊕
t∈R

m∧t .

Each ω∈Ω is S-stable, and so has both positive and negative weights (e.g., by applying

Hilbert–Mumford to a dense set of 1-parameter subgroups, or by noting that the S -orbit

of ω must be topologically closed). By compactness, each ω∈Ω has projection onto⊕
t6−εm

∧
t of norm �1. We may choose a weight vector u∈

⊕
t>εmt with |u|=1 and

|uω|�1. Then, s·u is a multiple of u with |s·u|�‖s‖ε. The required estimates follow

for ω. The same choice of u works for all ω′ in a small neighborhood of ω, so we may

conclude by the compactness of Ω.

Lemma 19.8. Suppose s∈S satisfies ‖s−1‖>h1/2−η for some fixed η>0. Then,

tr(π(s)Oph(a))�h∞ .

The informal idea is to write a=
∑
i ai, where each ai has very small microlocal

support; the trace of π(s)Oph(ai) is then small, because the stability condition implies

that s·supp(ai) and supp(ai) are disjoint. It is worth noting that the result is essentially

optimal: if ‖s−1‖�h1/2, that is, if s is just a bit closer to the identity than the scale

prescribed by the lemma, then s does not move Planck-scale balls significantly.

Proof. The problem becomes more general as δ increases, so we may and shall assume

that

δ> 1
2−

1
2η. (19.26)

We fix ε>0 sufficiently small in terms of δ, η and U .

By decomposing a into h−O(1) many pieces, we may assume that it is supported on

a ball

B(ω,hδ) := {ξ ∈m∧ : |ξ−ω|6hδ}
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centered at some ω∈U . We may choose a compactly-supported “envelope” ψ∈S−∞δ with

• 06ψ61,

• ψ≡1 on B(ω, 2 hδ), and

• ψ≡0 on B(ω, 3 hδ).

We may write tr(π(s)Oph(a))=E1+E2, where

E1 := tr(π(s)Oph(a)Oph(1−ψ)) and E2 := tr(Oph(ψ)π(s)Oph(a)).

Since a and 1−ψ have disjoint supports, we see (by §8.10 and §12.3) that E1�h∞.

We turn now to E2. The idea is that the translation by s of the support of the symbol

a is disjoint from the support of ψ. This idea can be implemented rigorously using the

operator calculus when ‖s‖ is not too large. Indeed, suppose first that ‖s−1‖6h−ε,

which means, by (19.26), that

hδ−η/26 ‖s−1‖6h−ε .

The upper bound implies in particular that ‖s‖�h−ε6h−1+δ+ε, so the hypothesis (5.4)

in §5.5 is satisfied; by the conclusion of that section, the operator norm of

π(s)Oph(ψ)π(s)−1−Oph(s·ψ)

is negligible, so we reduce to showing that

‖Oph(s·ψ)Oph(a)‖1

is negligible. As s distorts Lie algebra elements by at most ‖s‖�h−ε, we have s·ψ∈S−∞δ+ε ,

and may assume that δ+ε< 1
2 . It will thus suffice to verify that s·ψ and a have disjoint

supports. To that end, we need only verify for ξ∈B(ω, 3 hδ) that

‖s−1‖>hδ−η/2 =⇒ |s·ξ−ξ|�hδ−ε, (19.27)

say. Note that the union of the sets B(ω, 3 hδ), as ω varies over U and h over suffi-

ciently small positive reals, is contained in a fixed compact collection of stable elements.

The estimate (19.27) follows in the range ‖s−1‖>hε from Hilbert–Mumford, as in the

proof of Lemma 19.7, and in the remaining range hε>‖s−1‖>hδ−η/2 from Lie algebra

considerations, using that ξ has trivial s-centralizer.

It remains to handle the case that ‖s−1‖>h−ε, and hence ‖s‖�h−ε. Direct appli-

cation of the symbol calculus does not work as well here, because s·ψ is overly distorted.

We instead construct convolution operators along well-chosen lines inside m, correspond-

ing to 1-parameter subgroups in G, so that there is no issue of distortion.
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Fix a Fourier transform between R and its Pontryagin dual R∧=iR, and fix Θ∈
C∞c (R∧) and χ∈C∞c (R), each identically 1 in neighborhoods of the respective origins.

Choose u∈m as in Lemma 19.7, so that |u|=1 and |s·u|�h−ε
2

and

s·u
|s·u|

ω� 1. (19.28)

Set r:=h1−ε3/|s·u|, so that r�h1+ε2−ε3 , and

C1 : =

∫
t∈R

Θ∨(t/r)

r
χ

(
hε

3

t

r

)
π(exp(tu)),

C2 : =π(s)C1π(s)−1 =

∫
t∈R

Θ∨(t/h1−ε3)

h1−ε3 χ

(
t

h1−2ε3

)
π

(
exp

(
t
s·u
|s·u|

))
.

Informally, we should think of C1 as a convolution operator in the u direction utilizing

a bump function of width substantially smaller than h, whereas C2 is a convolution

operator in the s·u direction utilizing a bump function of width slightly greater than h.

It will suffice to verify that (with ‖·‖∞ the operator norm)

‖C1Oph(a)−Oph(a)‖∞�h∞, (19.29)

‖Oph(ψ)C2‖∞�h∞, (19.30)

because then, writing ≡ to denote agreement up to O(h∞) and applying §8.10 and §12.3,

we have

E2≡ tr(Oph(ψ)π(s)C1Oph(a)) = tr(Oph(ψ)C2π(s)Oph(a))≡ 0.

To establish (19.29) and (19.30), let l1, l2⊆m denote the lines spanned by u and s·u,

respectively, and observe that we may write Cj=Oph(bj), with b1∈S0
0(l1) and b2∈S−∞ε3 (l2)

satisfying

• b1(ξ)=1+O(h∞) for |ξ|6h−ε
4

, and

• b2(ξ)=O(h∞) for |ξ|>hε
4

,

and similarly for derivatives. In particular, b1 is approximately 1 on the image of the

support of a, while (by (19.28)) b2 is approximately 0 on the image of the support

of ψ. The required estimates (19.29) and (19.30) follow from the asymptotic expansion

(8.36).

19.8. Completion of the proof

We note for X>1 that

vol({s∈S : ‖s−1‖6X})�XO(1) (19.31)
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(cf. [Wll, Lemma 2.A.2.4]). The definition (19.14) and the results in §19.6 and §19.7

show that, for any fixed η>0,

H(Oph(a)) =

∫
s∈S:‖s−1‖>h1/2−η

tr(π(s)Oph(a))+O(h∞).

We now write s=exp(y), pull the integral back to the Lie algebra, and combine §19.7

and §19.5 to derive the required asymptotic expansion.

Appendix A. Some technicalities related to the Plancherel formula

The aim of this appendix, which the reader is encouraged to skip, is to supply the

unsurprising details required by the proofs in §18.

Let F be a local field, either archimedean or non-archimedean. Let G be a reductive

group over F .

We denote as usual by Ĝtemp⊆Ĝ the tempered dual of G, thus each π∈Ĝtemp is a

tempered irreducible unitary representation of G.

We always choose a Haar measure dg on G and a maximal compact subgroup K :=

KG of G. For a unitary representation π of G, we denote by B(π) an orthonormal basis

consisting of K-isotypic vectors. For f∈L1(G) we define

π(f) :=

∫
g∈G

π(f)f(g) dg,

as usual.

When F is archimedean, we retain the notation of Part I (U,∆, ...), applied to the

real Lie group underlying G.

A.1. Uniform bounds for K-types

Assume that F is archimedean. The proof of [Kn, Lemma 10.4] shows that there is an

element κ of the universal enveloping algebra of K with the following properties:

(i) κ acts on each irreducible representation τ of K by a scalar κτ ;(6)

(ii) dim(τ)6κ1/2
τ ;

(iii)
∑
τ∈K̂ κ

−1
τ is finite.

(Explicitly, one may take

κ=−c
∑

x∈B(Lie(K))

x2

for large enough c>0.)

(6) We use the notation κτ for what Knapp denotes d2λ(1+‖λ|Zk
‖2).
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Lemma A.1. Let π be an irreducible admissible representation of G.

(i) Let v∈π be τ -isotypic. Then, dim(Kv)1/2‖v‖6‖κv‖.
(ii) π(κ) is positive and invertible. tr(π(κ)−2)6C, where C depends only upon G.

Proof. (i) By [Kn, Theorem 8.1], we have nτ :=HomK(τ, π)6dim(τ), so that

dim(Kv)6nτ dim(τ)6dim(τ)2.

The conclusion follows from the enunciated properties of κ.

(ii) tr(π(κ)−2)6
∑
τ∈K̂ nτ dim(τ)κ−2

τ 6
∑
τ∈K̂ κ

−1
τ <∞.

A.2. Bounds for matrix coefficients

Assume that π is tempered.

A.2.1. By [CHH], there is a function Ξ:=ΞG :G!R>0 (depending also upon K), called

the Harish–Chandra spherical function, with the following property: for any π∈Ĝtemp

and any K-finite u, v∈π, one has

|〈gu, v〉|6Ξ(g)(dimKu)1/2(dimKv)1/2‖u‖ ‖v‖ (A.1)

for all g∈G. The function Ξ descends to G/Z, where Z denotes the center of G, and

tends to zero at infinity on G/Z.

A.2.2. Assume now that F is archimedean. We may then readily translate the bound

(A.1) in terms of the Sobolev norms defined in §3.2.

Lemma A.2. For π∈Ĝtemp, g∈G and u, v∈πs,

|〈gu, v〉|6 cΞ(g)‖u‖πs ‖v‖πs , (A.2)

where c>0 and s∈Z>0 depend only upon G.

Proof. Let κ be as in §A.1.

Let v∈π be K-finite; write its isotypic decomposition as v=
∑
τ vτ . By part (i) of

Lemma A.1,

∑
τ

dim(Kvτ )1/2‖vτ‖6
∑
τ

κ−1/2
τ ‖κvτ‖6

(∑
τ

κ−1
τ

)1/2
‖κv‖. (A.3)
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To prove (A.2), we may assume by continuity that the vectors u and v are K-finite.

We decompose such vectors into their K-isotypic components, apply (A.1) to the inner

product arising from each pair of components, and then apply (A.3), giving

|〈gu, v〉|6
(∑

κ−1
τ

)
Ξ(g)‖κu‖ ‖κv‖.

We conclude by appeal to the simple consequence (3.1) of the definition of ‖ · ‖πs .

A.3. Plancherel formula

Let π be an irreducible unitary representation of G. We denote by χπ its distributional

character, as in §6.2.

The Plancherel formula asserts that, for f∈C∞c (G), we have the identity

f(1) =

∫
π∈Ĝtemp

χπ(f), (A.4)

with the latter integral taken with respect to a certain measure on Ĝtemp, called the

Plancherel measure dual to dg. For n∈Z>0 large enough in terms of G, the formula

extends by continuity to the class of n-fold differentiable compactly-supported functions.

A.4. Some crude growth bounds

A.4.1. Assume that F is non-archimedean. Let U be a compact open subgroup of G.

For any admissible representation π of G (e.g., any irreducible unitary representation),

the space πU of U -fixed vectors is finite-dimensional. By applying the Plancherel formula

to the normalized characteristic function of U , we see moreover that∫
π∈Ĝtemp

dim(πU )<∞.

A.4.2. Assume that F is archimedean.

Lemma A.3. There is N∈Z>0, depending only upon G, such that

(i) supπ∈Ĝ tr(π(∆−N ))<∞;

(ii)
∫
π∈Ĝtemp

tr(π(∆−N ))<∞.

This is likely well known; we record a proof for completeness.
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Proof. Here we require implied constants to be uniform in π.

(i) Let κ∈U be as in §A.1. Assume that N exceeds twice the degree of κ. By

Lemma 8.5, the operator A:=π(κ)2π(∆−N ) then has uniformly bounded operator norm.

Since π(κ)−2 is positive, it follows that

tr(π(∆−N ))� tr(π(κ)−2).

We conclude by part (ii) of Lemma A.1.

(ii) By spectral theory, it suffices to establish the modified conclusion obtained by

replacing ∆ with the rescaled variant ∆h (cf. §12.2) for some fixed h∈(0, 1]. Set

b(ξ) := 〈ξ〉−N .

Let π∈Ĝtemp. Then, Tπ :=Oph(b:π)2 is positive definite. By §12.2, we have

tr(π(∆−2N
h ))� tr(Tπ)

for h small enough. Let n∈Z>0 large enough that the Plancherel formula holds for n-fold

differentiable functions f∈Cc(G), and assume that N is large enough in terms of n. By

the composition formula, combined with §8.2, we then have Tπ=π(f), where f∈Cc(G)

is n-fold differentiable. Thus,∫
π∈Ĝtemp

tr(π(∆−2N
h ))�

∫
π∈Ĝtemp

tr(π(f)) = f(1)<∞.

A.5. Plancherel formula, II

We record an extension of the Plancherel formula (A.4) to a larger space of functions

that we denote by F :=FG; in brief, it consists of functions whose G×G derivatives lie

in L1(G,Ξ).

• In the non-archimedean case, we define FU , for each compact open subgroup U

of G, to be the space of bi-U -invariant functions f :G!C satisfying∫
g∈G

Ξ(g)|f(g)| dg <∞, (A.5)

equipped with the evident topology (§1.14.6); we then set F :=∪FU , equipped with the

direct limit topology.

• In the archimedean case (so that G is regarded as a real Lie group), we take for

F the space of smooth functions f :G!C each of whose (×G)-derivatives (i.e., allowing

applications of both left- and right-invariant differential operators) satisfies the analogue

of (A.5); we equip F with its evident topology (§1.14.6).
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In either case, observe that C∞c (G) is dense in F and (by the Sobolev lemma) that

point evaluations on F are continuous. Let π∈Ĝtemp. For f∈F , we wish to define and

study an operator π(f) on the space π∞ of smooth vectors in π. It is natural to ask that

this operator satisfies

〈π(f)u, v〉=
∫
g∈G

f(g)〈gu, v〉 dg (A.6)

for u, v∈π∞; note that the right-hand side of (A.6) converges absolutely, due to (A.2)

and (A.5).

Lemma A.4. Let f∈F and π∈Ĝtemp.

(i) There is a unique continuous linear map π(f):π∞!π∞ for which (A.6) holds.

(ii) The map f 7!π(f) is continuous for the trace norm ‖ · ‖1 on the target.

(iii) The map

f 7−!
∫
π∈Ĝtemp

‖π(f)‖1

is finite-valued and continuous.

(iv) The Plancherel formula (A.4) remains valid.

Proof. We may initially define π(f)u as the anti-linear functional on π∞ for which

(A.6) holds. We aim then to verify that π(f)u is represented by a smooth vector and

that the resulting map has the required properties.

In the non-archimedean case, f is U×U -invariant for some open subgroup U of G.

We verify readily that the functional π(f)u is then U -invariant, hence represented by

a unique element of the finite-dimensional space πU . The remaining assertions may be

verified by simpler analogues of the arguments to follow (using §A.4.1 instead of §A.4.2).

We turn henceforth to the details of archimedean case.

(i) Choose N∈Z>0 large enough that we have the bound (cf. §A.2)

〈gu, v〉�Ξ(g) ‖∆Nu‖ ‖∆Nv‖

for u, v∈π∞. Since∫
g∈G

f(g)〈gu, v〉 dg=

∫
g∈G

(∆2N ∗f ∗∆2N )(g)〈g∆−2Nu,∆−2Nv〉 dg,

we then have

|〈π(f)u, v〉|� ν(f)‖∆−Nu‖ ‖∆−Nv‖ (A.7)

for some continuous norm

ν(f) :=

∫
g∈G

Ξ(g) |∆2N ∗f ∗∆2N (g)|
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on F . By summing over v in an orthonormal basis and appealing to §A.4.2, we deduce

that π(f)u is represented by an element of the Hilbert space π0. By a similar argument

applied to ∆nπ(f)u for each n∈Z>0, we deduce that π(f)u∈π∞ and that the induced

map π(f):π∞!π∞ is continuous.

(ii) The trace norm of π(f) is bounded by∑
u,v∈B(π)

|〈π(f)u, v〉|,

so we conclude by summing (A.7) and appealing to §A.4.2.

(iii) We argue similarly, using now also part (ii) of Lemma A.3.

(iv) We appeal to continuity and the density of C∞c (G) in F .

A.6. Proof of Lemma 18.1

By §A.2 and (18.1), the function f defined in (18.6) belongs to the space FH from §A.5.

Assertions (i) and (ii) thus follow from §A.5.

To establish (iii), we first show that the map

Φ:π⊗π̄−!FH ,

v1⊗v̄2 7−! f,

extends continuously to

Φ: Ψ−∞(π)−!FH .

To that end, observe that for each t1, t2∈U, we may write

t1∗Φ(v1⊗v̄2)∗t2 = Φ(t1v1⊗tι2v2 ),

with ι being the standard involution on U. Thus for each continuous seminorm ν on FH
there are C>0 and N∈Z>0 so that

ν(Φ(v1⊗v̄2))6C‖∆Nv1‖ ‖∆Nv2‖.

By summing over orthonormal bases and appealing to §A.4.2, we deduce that

ν(Φ(T ))�‖∆NT∆N‖2

for all T∈π⊗π̄, where ‖ · ‖2 denotes the Hilbert–Schmidt norm. By Theorem 12.2 (iv),

we deduce that Φ extends continuously to Ψ−∞(π) with the required uniformity. By the

definition of the topology on Ψ−∞(π), we may pass to Ψ−N (π) for some fixed N .
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The same argument gives, for T∈Ψ−N (π) and with notation as in (18.5), that each

of the quantities

∑
u∈B(σ)

∣∣∣∣∫
s∈H

tr(sT )〈u, su〉
∣∣∣∣ and

∑
v∈B(π)

u∈B(σ)

∣∣∣∣∫
s∈H
〈sTv, v〉〈u, su〉

∣∣∣∣
is finite and depends continuously upon T . The required identity (18.5) thus follows by

continuous extension from the finite-rank case.

Part IV. Inverse branching

20. Overview

Let (G,H) be a GGP pair over a local field F of characteristic zero. Fix a tempered

irreducible representation π of G. More precisely, we abuse notation in what follows, as

in §18, by working implicitly with underlying spaces of smooth vectors.

Let Ĥ denote the unitary dual of H, Ĥtemp⊆Ĥ the tempered dual, and Ĥπ
temp the

π -distinguished subset, i.e.,

Ĥπ
temp := {σ ∈ Ĥtemp : there is a non-zero H -equivariant map `σ:π!σ}.

For each σ∈Ĥtemp, the discussion in §18 gives us a map Hσ:π⊗π̄!C. It is known

at least for F non-archimedean (see [BP3, Theorem 5] in the unitary case and [Wll,

Proposition 5.7] in the special orthogonal case) that Hσ is non-zero precisely when

σ ∈ Ĥπ
temp.

Recall that Hσ is expected to satisfy the positivity condition (18.7), and that this

expectation is a theorem in the non-archimedean case [SVe].

If σ is tempered and Hσ is non-zero and satisfies the expected positivity condition,

then we may write

Hσ(v1⊗v̄2) =
∑

u∈B(σ)

∫
s∈H
〈sv1, v2〉〈u, su〉= 〈`σ(v1), `σ(v2)〉 (20.1)

for some `σ as above, uniquely defined up to a scalar of magnitude 1. If Hσ vanishes,

then we take `σ=0.

In the unexpected case that the positivity condition (18.7) is violated (necessarily

for F archimedean), we define `σ by requiring that (20.1) hold, up to some scalar of

magnitude 1.
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We crudely extend the definition of `σ to non-tempered σ∈Ĥ by choosing an H -

equivariant map `σ:π!σ, possibly zero but non-zero if possible (and in that case, unique

up to a scalar), and requiring that (20.1) hold. Thus Hσ, for non-tempered σ, is defined

only up to multiplication by a positive real.

We have defined an association

π⊗π̄−! {functions Ĥ!C},

T 7−! [σ 7!Hσ(T )].

Let us pause to speak informally about the relevance of this association to our aims.

Recall, from §1.7, that we may think of self-adjoint elements
∑
j vj⊗v̄j∈π⊗π̄ as weighted

families of vectors in π, and hence the above association as an assignment{
weighted families

of vectors v in π

}
−!

{
weighted families of

representations σ of H

}
.

To implement the basic strategy of this paper (cf. §1.6 and §1.10), we would like to know

that we can approximate any reasonable family of representations in this way, while

retaining some control over the family of vectors achieving the approximation. This

is the “inverse branching problem” alluded to in the title; by comparison, the classical

branching problem concerns how a representation of a group decomposes upon restriction

to a subgroup, or perhaps how individual vectors decompose.

In the global setting (Part V), the pairs (π, σ) as above will arise as the local com-

ponents of a pair (Π,Σ) of automorphic forms over a number field, taken unramified

outside some fixed set R of places containing the archimedean places. We will single

out an individual archimedean place q∈R as the “interesting” one, assume that the rel-

evant groups are compact at all other archimedean places, and aim to study families

with “increasing frequency at q” and “fixed level at p” for all p∈R\{q}, with some fairly

flexible definition of “fixed level”. Motivated by this aim, we consider here in Part IV

the “inverse branching problem” indicated above in the following aspects:

• For varying families of representations σ, taken over a suitable scaling limit, and

with F an archimedean local field (§22).

• For fixed families of σ in either of the following cases:

– (the trivial case in which) H is compact (§21);

– F is non-archimedean (§24), after some general preliminaries (§23).

An important subtlety is that the families of interest to us will not in general be

“microlocally separated” from the complementary series, e.g., via their infinitesimal char-

acter. We must nevertheless exclude the latter from our final formula, due to the absence
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of a general conjecture along the lines of Ichino–Ikeda in the non-tempered case. These

considerations motivate the estimate (22.11) and are responsible for the main difficulties

in §24.

21. The case of compact groups

Suppose that H is compact. Then, Ĥπ
temp is a discrete countable set. The Hermitian

forms Hσ describe the canonical decomposition

π|H ∼=
⊕

σ∈Ĥπtemp

σ.

Thus, for any finitely-supported function k: Ĥπ
temp!C, there exists T∈π⊗π̄ such that

Hσ(T ) = k(σ)

for all σ∈Ĥπ
temp. If k is valued in the non-negative reals, then we may take T to be

positive definite.

22. The distinguished archimedean place

We assume here that F is archimedean. By restriction of scalars, we may regard G and

H as real reductive groups.

22.1. Setup

We allow the tempered irreducible representation π ofG to vary with a positive parameter

h!0. We assume that π has a limit orbit (see §11.4)

(O, ω) = lim
h!0

(hOπ, ωhOπ ).

As in §17, we write Ostab⊆O for the subset of H-stable elements. We recall that, for

each µ∈[h∧]∩image(Ostab), the preimage O(µ) of {µ} in O is an H -torsor. The map

Ostab![h∧]∩image(Ostab) is a principal H -bundle, with fibers O(µ).

We assume given a Haar measure on H; as explained in §17, this choice defines

measures on h, h∧, [h∧], and on the sets O(µ) as above.



the orbit method and analysis of automorphic forms 145

22.2. Orbit-distinction

Let σ∈Ĥtemp. Recall (from §20) that σ is distinguished by π if HomH(π, σ) 6=0. We say

that σ is orbit-distinguished by π if Oπ,σ—the intersection of Oπ with the preimage of

Oσ—is non-empty.

Remark 22.1. Our asymptotic expansion of relative characters (Theorem 19.3) im-

plies that

(i) if hλσ belongs to a fixed compact subset E of [h∧]∩image(Ostab), and

(ii) if h>0 is small enough in terms of E,

then orbit-distinction implies distinction. One expects also the converse implication, that

distinction implies orbit-distinction under the stated hypotheses. This would follow from

the following:

• Strong multiplicity 1 for archimedean L-packets. This is addressed in unitary

cases by the preprint [BP3] and in orthogonal cases by the recent preprint [L].

• That distinction implies non-vanishing of the matrix coefficient integral, known in

p-adic cases (cf. §20) and in the unitary archimedean case [BP3, Theorem 5], and likely

provable in the orthogonal archimedean case.

In any event, orbit-distinction seems easier to check than distinction, so we are

content to formulate our main results in terms of the former notion.

22.3. Main result

Let

k∈C∞c ([h∧]∩image(Ostab)). (22.1)

For each h>0 we define a function kh: Ĥ!C by setting

kh(σ) := k(hλσ)

if σ is tempered and Oπ,σ 6=∅; otherwise, we set kh(σ):=0.

We may find

precompact open subsets U ⊂ [h∧] and V ⊂ g∧, (22.2)

with

V consisting of H-stable elements, (22.3)

such that

supp(k)⊆ image(V ), image(
V )⊆U and 
U ⊂ image(Ostab). (22.4)
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Since Ostab is a submanifold of g∧ and the map Ostab![h∧] is a principal H -bundle

over its image, we may readily find a∈C∞c (V ) such that, for each µ∈[h∧],∫
O(µ)

a= k(µ). (22.5)

From (22.5) and the asymptotic formulas in §19.3 it follows that

Hσ(Oph(a)) = kh(σ)+oh!0(1) for all σ ∈ Ĥtemp with hλσ ∈U. (22.6)

If k is real-valued, then we may arrange that a is real-valued. In the language of §1.10 and

§20, we have achieved our goal of producing a weighted family of vectors—that obtained

by writing Oph(a)=
∑
j vj⊗v̄j—that picks off the weighted family of representations

described by kh. We note in passing also that, by (17.5), we have∫
O
a dω=

∫
µ∈[h∧]

∫
O(µ)

a=

∫
[h∧]

k, (22.7)

with integration over [h∧] defined by the normalized affine measure.

We aim now to elaborate upon this observation in somewhat technical ways that

will turn out to be convenient for our global applications. It will be useful to work with

“positive-definite families”, such as those attached to Oph(a)2 for real-valued a, and to

bound the error in (22.6) in terms of another such family.

We will also need to say something about non-tempered σ. In that case, we have only

thus far (cf. §20) normalized Hσ up to a scalar. It will be convenient now to impose the

following more precise normalization, again motivated by global considerations (cf. §29):

we suppose given an h-dependent family of maps Hσ that factors as a composition

Ψ−∞(π)−!Ψ−∞(σ)
tr−−!C (22.8)

with the first arrow h-uniformly continuous. In practice, this is a fairly weak requirement.

We note that the analogous continuity holds in the tempered case by the discussion

of §19.2.

Theorem 22.2. Let k, U and V be as in (22.1) and (22.2), satisfying the assump-

tions (22.3) and (22.4). Assume that k>0. Then, for each ε>0 and N∈Z>0, there exist

non-negative a, a1, a2, ant∈C∞c (V ) with the following properties:

(i)
∫
O a

2
1 dω is bounded by a constant depending only upon k and V , while

∫
O a

2
2 dω

and
∫
O a

2
nt dω are bounded by ε.

(ii)
∣∣∫

[h∧]
k−
∫
O a

2 dω
∣∣6ε.
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(iii) Assume that h>0 is sufficiently small.

• Let σ be a tempered irreducible unitary representation of H for which hλσ∈U . If

Oπ,σ is non-empty, then

|kh(σ)|6 |Hσ(Oph(a1)2)| (22.9)

and

|kh(σ)−Hσ(Oph(a)2)|6 |Hσ(Oph(a2)2)|. (22.10)

• Let σ be a non-tempered irreducible unitary representation of H such that

hλσ ∈U.

Then,

Hσ(Oph(a)2) =Hσ(Oph(ant)
2)+O(hN ). (22.11)

The implied constant may depend upon (N, k, a, ε), but not upon (π, σ,h).

Remark 22.3. We note that, since Oph(aj)
2 is positive-definite, the absolute values

on the right-hand side of (22.9) and (22.10) should not be necessary; in any event, they

will disappear from our analysis when we pass to the global setting, in which the product

of local Hermitian forms as above is manifestly positive.

Proof. The informal idea for (22.9) and (22.10) is as in the arguments leading to

(22.5) and (22.6): for instance, to get (22.10), we can just choose a such that∫
O(µ)

a2 dω≈ k(µ),

with the difference thus majorized by
∫
O(µ)

a2
1 dω for some small a1; the asymptotics for

Hσ(... ) then give the required estimates.

The informal idea for (22.11) is that the infinitesimal characters of non-tempered

representations are close to irregular elements, which form a set of measure zero. We may

thus construct ant from a by shrinking its support to be concentrated near the inverse

images of irregular elements.

Turning to details, choose a1 as indicated, depending only upon k and V , so that∫
O(µ)

a2
1>k(µ)+1 for µ∈supp(k). Fix an open subset U0⊂[h∧], with supp(k)⊆U0 and


U0⊆image(V ). Choose ε1>0 small enough in terms of k and ε, then choose a2 as

indicated so that
∫
O(µ)

a2
2>2ε1 for µ∈U0 and

∫
O a

2
2 dω6ε. Choose a as indicated so that∣∣k(µ)−

∫
O(µ)

a2
∣∣6ε1 for µ∈U .

The set

W := {ξ ∈ h∧∩image(
V ) : [ξ] /∈ [h∧]reg}
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is compact and has measure zero. We may thus find ant as indicated, with
∫
O a

2
nt dω6ε,

so that a=ant in a small neighborhood of W .

Assertion (i) is clear by construction. Assertion (ii) follows as in (22.7) if ε1 is

sufficiently small. Turning to assertion (iii), let σ∈Ĥ with hλσ∈U .

Suppose first that σ is tempered and Oπ,σ 6=∅. Then, kh(σ)=k(hλσ), while the

asymptotic formulas in §19.3 give

Hσ(Oph(a)2) =

∫
O(hλσ)

a2+oh!0(1),

and similarly for a1 and a2. Thus (22.9) and (22.10) hold for h small enough in terms

of ε1.

Suppose next that σ is non-tempered.

By the composition formula (8.36), we may write

Oph(a)2 = Oph(ant)
2+Oph(c)+E ,

where the following statements hold:

• The h-dependent element c∈C∞c (V ) is bounded with respect to h and vanishes

identically on a small neighborhood of W . Since non-tempered representations have

infinitesimal characters close to irregular elements (cf. §9.7), it follows that c=0 on

{ξ ∈ h∧ : dist([ξ],hλσ)6 ε2}

for some small but fixed ε2>0. By §10.3, we deduce that Hσ(Oph(c))�hN .

• E∈hN
′
Ψ−N

′
, where N ′!∞ as J!∞, so that, by the assumed uniform continuity

of (22.8), we have Hσ(E)�hN .

The required estimate (22.11) follows.

22.4. Auxiliary estimates relevant for Weyl’s law

Recall that our main result concerns the average of an L-function over a family. We

record here, for completeness, a technical estimate relevant for computing the cardinality

of that family (cf. §31.4 for its application).

Let H denote the Hecke algebra of smooth compactly-supported complex measures

on H. Since we have fixed a Haar measure dh on H, we may identify H with C∞c (H); in

particular, we may define the evaluation f(1) at the identity element 1∈H of any f∈H.

Lemma 22.4. Let k and U be as in §22.3, with k>0. Fix ε>0 and N∈Z>0, and

let h>0 be sufficiently small. There are positive-definite elements f, f1∈H, supported on

1+oh!0(1), such that ∣∣∣∣∫
[h∧]

k−hdf(1)

∣∣∣∣6 ε (22.12)
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and

f1(1)6 εh−d, (22.13)

and, for each σ∈Ĥ,

|kh(σ)−χσ(f)|6χσ(f1)+O(hN 〈hλσ〉−N ), (22.14)

where χσ:H!C denotes the character.

Before giving the proof, we record the basic idea. If we argue formally— ignoring

convergence, truncations, etc.—then, for each a∈S−∞(g∧), the function f :H!C defined

by

NNf(s) := tr(π(s−1)Oph(a)),

where Oph(a):=Oph(a:π), satisfies

χσ(f) =
∑

v∈B(π)

u∈B(σ)

∫
s∈H
〈sOph(a)v, v〉〈u, su〉=Hσ(Oph(a)),

and

f(1) = tr(Oph(a)).

To make f positive definite, we can argue instead with Oph(a)2. The lemma should thus

be plausible in view of the analogous passage from (22.5)–(22.7) to Theorem 22.2. The

subtlety is that f as defined above is not compactly-supported, so does not belong to

H as we have defined it. To make matters worse, the integral defining χσ(f) need not

converge when σ is non-tempered. To get around these issues, we truncate f , taking care

to do so in a manner that preserves positive definiteness. For σ tempered and stable

relative to π, we have seen already that the main contribution to the integral over s∈H
defining Hσ(Oph(a)) comes from s fairly small, so the truncation has negligible impact in

that case. We can use the operator calculus and the same argument as in Theorem 22.2

to control the contributions from the remaining σ.

Proof. For b∈S−∞(h∧), let us denote by Õph(b)∈H the element implicit, for a

unitary representation σ of H, in the definition of Oph(b:σ)=σ(Õph(b)).

Choose V as in §22.3, choose ε1>0 small enough in terms of k and ε, assume

that h>0 is small enough in terms of ε1, and choose a, a2∈C∞c (V ) as in the proof of

Theorem 22.2. Define f0∈H by the formula

f0 :=

∫
s1,s2∈H

χ(s1)χ(s2) 〈π(s1)Oph(a), π(s2)Oph(a)〉 δs−1
2 s1

,
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where

• χ∈C∞c (H) denotes a suitable normalized cut-off: supported near the identity,

non-negative-valued, invariant under inversion, constant near the identity, and satisfying∫
H
|χ|2=1;

• Oph(a):=Oph(a:π);

• δs−1
2 s1

is the δ-mass; its integral as above will define a smooth measure;

• we employ the Hilbert–Schmidt inner product on End(π).

Then, f0 is positive definite. Choose an open W⊂h∧ such that W⊇image(
V ) and

U⊇image(�W ). Choose b∈C∞c (h∧) supported in the preimage of U and with b=1 on W .

We note, by (8.36), that

Oph(b :π)Oph(a)≡Oph(a) mod h∞Ψ−∞(π).

Set

f := Õph(b)f0Õph(b).

(Here and below the only relevant product structure on H is given by convolution.) In

the same way that f was defined in terms of a, let f+ be defined in terms of a2. Arguing

as in the proof of Theorem 22.2, let bnt be obtained from b by smoothly truncating to a

sufficiently small neighborhood of those elements in the support of b whose image in [h∧]

is irregular, and set fnt :=Õph(bnt)f0Õph(bnt). Finally, set

f1 := 2ε1f++fnt.

Then, f and f1 are positive definite. By slowly shrinking the support of χ, we may

arrange that they are supported on 1+oh!0(1), or indeed on 1+O(hη) for any fixed

η∈(0, 1); this has no effect on the arguments to follow.

We now verify that these constructions lead to the required estimates. We start

with (22.12). By unwinding the definitions, we see that

f0(1) =

(∫
H

χ2

)
tr(Oph(a)2) = h−d

(∫
O
a2 dω+oh!0(1)

)
.

As in the proof of Theorem 22.2, it follows that

f0(1) = h−d
(∫

[h∧]

k+oε1!0(1)

)
for small enough h, which gives the modified form of (22.12) obtained by replacing f

with f0. To obtain the required assertion concerning f , we calculate first that

f(1) =

∫
s∈H

tr(TsOph(a)2Ts),
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where

Ts :=

∫
t∈H

χ(st)Õph(b)(t)π(t). (22.15)

Note that Ts=0, unless s is small, and the integrand in (22.15) vanishes unless t is small.

By trivially estimating the L1-norm of Õph(b), we see that the operator norm of Ts is

O(1) and the trace norm of Oph(a)2 is O(h−d). Thus, to compute f(1) to accuracy

o(h−d), it suffices to do so after replacing Ts by any modification T ′s differing in operator

norm by o(1). To that end, let us pull the integral (22.15) back to the Lie algebra, writing

t=ey with y∈h. The integrand is concentrated on |y|=O(h), so we may truncate it to

|y|6h1−η for some fixed η>0 and then Taylor expand

χ(sey) =χ(s)+O(h1−η).

The modification

T ′s :=χ(s)

∫
t∈H

Õph(b)(t)π(t) =χ(s)Oph(b :π)

is thus acceptable for our purposes, and we obtain

f(1) =

(∫
H

χ2

)
tr(Oph(b)Oph(a)2Oph(b))+oh!0(h−d), (22.16)

say. We appeal now to the composition formula (8.36) to replace Oph(b)Oph(a)2Oph(b)

with Oph(a)2, and argue as before. This completes the verification of (22.12).

The same arguments applied to f1 lead to the estimate (22.13).

We turn finally to (22.14). Thus, σ be a unitary representation of H. We con-

sider first the case that hλσ /∈U . Then, kh(σ)=0. On the other hand, the results in

§10.3—applied with (G, π) playing the duplicate role of “(H,σ)”, and using the continu-

ity of (12.6) as an a-priori estimate to clean up remainders—give that the trace norm of

Oph(b:σ) is O(hN 〈hλσ〉−N ) for any fixed N . As the operator norms of σ(f0), Oph(b:σ)

and Oph(bnt :σ) are readily bounded by h−O(1), the claim (22.14) follows in this case.

It remains to consider the case that hλσ∈U . If σ is tempered, then we may verify—

using arguments similar to those leading to (22.16)—that

χσ(f) =Hσ(Oph(a)2)+O(h),

and similarly for χσ(f1). If σ is non-tempered, then, as before, Oph(b−bnt :σ) has trace

norm O(h∞). In either case, we may conclude as in the proof of Theorem 22.2.
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23. Preliminaries on representations of p-adic groups

In this section, we recall how tempered representations of a p-adic reductive group fit

into families indexed by quotients of certain tori, and explain the relationship of this

picture to the Bernstein center.

The considerations of this section apply to any reductive group H over a non-

archimedean local field F of characteristic zero; the group G plays no role.

23.1. Standard parabolic and Levi subgroups

We fix a minimal parabolic subgroup P0 of H and Levi subgroup M0<P0. A standard

parabolic subgroup is one that contains P0. A standard Levi subgroup M is one that

contains M0 and arises a Levi component of a standard parabolic P=MN ; thus P=MP0.

Each parabolic or Levi subgroup is conjugate to a standard one, so there is little loss of

generality in restricting to the latter.

For each standard Levi subgroup M , we have an induction functor iGM=IndGP from

smooth representations of M to smooth representations of G, normalized to take unitary

representations to unitary representations; here and henceforth “unitary” and “unitariz-

able” are used interchangeably.

What matters most for our purposes is the set of irreducible subquotients of iGMτ .

This set is independent of the H -conjugacy class of (M, τ), and makes sense for any Levi

subgroup M , not necessarily standard. If moreover τ is unitary, then so is iGMτ , hence

subquotients of iGMτ are the same as submodules.

23.2. Good compact open subgroups

Let J be a compact open subgroup of H. Recall that J admits an Iwahori factorization

with respect to a parabolic subgroup P if there is a Levi decomposition P=MN , with

associated opposite parabolic subgroup P−=MN−, so that

J = JN−JMJN

with

JN− := J∩N−, JM := J∩M and JN := J∩N.

We may and shall fix a maximal compact subgroup K of G for which KP0=H (see, e.g.,

[HR, Corollary 9.12]).
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Let us call a compact open subgroup J of H good (relative to the choice of K and

P0) if

(i) J is a normal subgroup of K, and

(ii) J admits an Iwahori factorization with respect to each standard parabolic sub-

group.

Lemma 23.1. For suitable choice of K as above, there are good compact open sub-

groups (Jn)n>0 of H that form a neighborhood basis of the identity.

Proof. We apply [MP, Proposition 4.2], with x a special vertex.

23.3. Invariant vectors and induction

The following result is standard.

Lemma 23.2. Let J be a good compact open subgroup of H, let P=MN be a par-

abolic subgroup of H, and τ a supercuspidal representation of M . The following are

equivalent :

(a) τ admits a non-zero JM -fixed vector ;

(b1) some subquotient of iHP τ admits a non-zero J-fixed vector ;

(b2) iHP τ admits a non-zero J-fixed vector ;

(c) every subquotient of iHP τ admits a non-zero J-fixed vector.

Proof. The dimension of the space of J -fixed vectors may be expressed as the trace

of an averaging operator, and so may be computed in terms of a composition series.

Conditions (b1) and (b2) are thus equivalent; henceforth we refer to them together

as (b). Obviously (c) implies (b1).

We now show that (a) and (b) are equivalent. We may assume that P and M are

standard. The J -fixed vectors in iHMτ are described by pairs (x, v), where x∈P \H/J
and v∈τ satisfy

δ
1/2
P τ(g)v= v for all g ∈P∩xJx−1, (23.1)

where as usual τ acts via the projection P // // M . Since H=PK, we may assume that

x∈K; then xJx−1=J , so (23.1) just says that v is fixed by the projection to M of

P∩J=JMJN , i.e., by JM . Thus (a) and (b) are equivalent.

It remains to see that (a) implies (c). Suppose thus that τJM 6=0. Let π be any sub-

quotient of iHP τ . In fact, we may assume that π is a submodule, by a standard argument:

there exists a parabolic Q=NU such that the Jacquet module πU is supercuspidal, up to

twist; by the computations of Bernstein and Zelevinsky [BZ, §2.13] there is an element of

g carrying (M, τ) to a constituent of (N, πU ). We may therefore suppose that N=M and
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that πU contains a conjugate wτ of τ by the normalizer of M ; thus π �
�
// iGMU (wτ). Since

w has a representative belonging to K, it is equivalent whether wτ or τ has a JM -fixed

vector.

By Frobenius reciprocity, the inclusion π!iGP τ gives rise to a non-zero map πN!τ .

Since τ is irreducible, this map is surjective. Taking JM -invariants gives a surjective

map (πN )JM!τJM . But a basic theorem [Cas2, Theorem 3.3.3] asserts that the map

πJ!(πN )JM is surjective. Thus, our assumption τJM 6=0 implies πJ 6=0, as required.

23.4. Classifications

23.4.1. Terminology

Let π be an irreducible representation of H. Recall that π is tempered if it is unitary and

its matrix coefficients lie in L2+ε modulo the center. Recall that π is square-integrable if

its central character is unitary and its matrix-coefficients are square-integrable modulo

the center; in particular, π is unitary and tempered. Recall that π is supercuspidal if its

matrix coefficients are compactly-supported modulo the center; then π is unitary if and

only if its central character is unitary, in which case it is square-integrable. In particular,

any supercuspidal representation has an unramified twist which is unitary.

23.4.2. Bernstein–Zelevinsky; infinitesimal characters

By the results in [BZ, §2], we have the following.

Lemma 23.3. For each irreducible representation π of H there is a unique H -

conjugacy class [(M, τ)] of pairs (M, τ), where M is a Levi subgroup and σ is a super-

cuspidal representation of M , such that π is a subquotient of iGMτ .

The infinitesimal character of an irreducible representation π of H is the class

λπ := [(M, τ)]

arising in the lemma. By an infinitesimal character for H we will mean any such class

[(M, τ)].

23.4.3. Langlands, from square-integrable to tempered

By [Wld, Proposition III.4.1]. we have the following result.
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Lemma 23.4. For each tempered irreducible representation π of H there is a unique

H -conjugacy class [(M,σ)] of pairs (M,σ), where M is a Levi subgroup and σ is a square-

integrable representation of M , such that π is a subquotient (equivalently, submodule)

of iGMσ.

23.5. Bernstein components

In this and the following subsections we recall some facts from [Ber] (cf. [BDK, §2] for a

summary).

For a Levi subgroup M of H, let XM denote the group of unramified characters

of M , i.e., homomorphisms χ:M!C× that are trivial on the subgroup M0 on which

all algebraic characters have valuation zero. The group XM is a complex torus, i.e.,

isomorphic to (C×)r, while the subgroup X0
M of unitary characters identifies with the

compact subtorus (C(1))r.

For each supercuspidal representation τ of M , the set

Θ = {[(M, τ⊗χ)] :χ∈XM}

is a Bernstein component, or simply a component for short, of the set of infinitesimal

characters. Each component may be identified with the quotient of XM by a finite group

(see for instance the discussion in [Hai, §3.3.1]).

23.6. Bernstein center

Varying (M, τ), the set of infinitesimal characters identifies with a disjoint union of finite

quotients of complex tori, giving it the structure of a complex algebraic variety, typically

with infinitely many components. The Bernstein center is the algebra Z(H) of regular

functions on the variety of infinitesimal characters for H; it is the direct product over

the set of components Θ of the algebra of regular functions on Θ, and we have

spectrum of Z(H) =
⊔

Θ,

the union taken over all Bernstein components. By [Ber] (cf. [BDK, §2.2]), we have the

following result.

Lemma 23.5. There is a natural action of Z(H) on the category of representa-

tions of H: for each z∈Z(H) and each representation π of H, there is an associated

H -equivariant endomorphism z:π!π, such that for each H -equivariant morphism of

representations j:π!π′, we have z�j=j�z. If π is irreducible, then z:π!π is scalar

multiplication by z(λπ).
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To apply this in practice, we let H denote the Hecke algebra of locally constant

compactly-supported measures on H, under convolution, regarded as a representation of

H under the action defined by left translation. For a vector v in a representation π of H,

the action map H!π given by f 7!f ∗v is then H -equivariant, so, for each z∈Z(H), we

have (z ·f)∗v=z ·(f ∗v). Let J be a compact open subgroup of H that fixes v, and take

f : =eJ , the corresponding averaging operator. Then, z ·v=hz∗v, where hz :=z ·eJ is a

central element of the bi-J -invariant subalgebra HJ⊆H. In particular, if π is irreducible,

then hz acts on πJ by the scalar z(λπ).

23.7. Components arising from Langlands classification of the tempered dual

23.7.1. By §23.4.3, there is a natural map

l: Ĥtemp−!
{

[(M, τ)] :
τ is a square-integrable representation

of the Levi subgroup M of H

}
(23.2)

assigning to σ the H -conjugacy class [(M, τ)] of pairs as indicated for which σ �
�
// iHMτ.

As in §23.5, we may fix M and vary τ in a family of unramified unitary twists

{τ⊗χ}χ∈X0
M

to write the right-hand side of (23.2) as a disjoint union of subsets D
parameterized by the compact tori X0

M and identified with quotients X0
M/Γ for some

finite subgroups Γ of X0
MoN(M)/M . To differentiate from the Bernstein components

(§23.5), we refer to these subsets D as l-components; we are unaware of any standard

terminology. We rewrite (23.2) as

l: Ĥtemp−!
⊔
D.

23.7.2. We note in passing, for the sake of orientation, that, by generic irreducibility

[Cas2, Theorem 6.6.1], each l-component D contains a non-empty Zariski open subset U

such that the map l−1(U)!U is injective.

23.7.3. If l(σ)=[(M, τ)], then the infinitesimal character λσ is the image of λτ in

the space of infinitesimal characters for H under the evident map from infinitesimal

characters for M .

In particular,

l(σ1) = l(σ2) =⇒ λσ1
=λσ2

.

For each l-component D there is thus a (unique) Bernstein component Θ for which σ 7!λσ
descends to a map

D−!Θ.
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This map is continuous; indeed, as noted in §23.5, both spaces are locally (for the analytic

topology) identified with character tori for Levi subgroups, and locally the map is given

by a homomorphism of these character tori arising from an inclusion of Levi subgroups.

Two distinct l-components D1 and D2 may map to the same Bernstein component Θ,

and their images may overlap. For instance, there do exist (for general H) non-isomorphic

square-integrable representations of H having the same infinitesimal character.

23.8. Finiteness

The Bernstein components or l-components form countable sets. More precisely, it follows

from §23.3 that for any good compact open subgroup J of H, a representation σ of H

with l(σ)=[(M, τ)] has a non-zero J -fixed vector if and only if the representation τ of the

Levi M , taking M standard without loss of generality, has a non-zero JM -fixed vector.

By [BDK, §2.3] and the Plancherel formula (or see [Wld, Theorem VIII.1.2]), only finitely

many Bernstein components or l-components contain some [(M, τ)] with this property.

24. The case of auxiliary p-adic places

We consider now the non-archimedean case of the setup of §20, thus (G,H) is a GGP pair

over a non-archimedean local field F of characteristic zero, and π is a smooth tempered

irreducible unitary representation of G. We introduce the abbreviation

Ω := Ĥπ
temp

for the π -distinguished tempered dual of H. The notation and terminology of §23 will

be employed freely.

24.1. The structure of Ω

Recall from §23.7 the map l: Ĥtemp!
⊔
D arising from the Langlands classification.

Lemma 24.1. (Strong multiplicity 1) The induced map

l: Ω−!
⊔
D

is injective.

Proof. Indeed, strong multiplicity 1 [MW], [BP1] implies that each L-packet of tem-

pered representations of H contains at most one π -distinguished element. Since each

fiber of l is contained in a single L-packet, the conclusion follows.
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We note that the results in [MW] and [BP1] are formulated as conditional on certain

expected properties of L-packets for classical groups. It is not straightforward for us

to extract these properties from the literature, so we observe also that the required

conclusion—multiplicity 1 for the full induction of a square-integrable representation—

can be verified directly (see [BP2, §14.2 and §14.3]).

For t=[(M, τ)]∈l(Ω), write σt :=l−1(t)∈Ω. Then, iHMτ decomposes as a finite direct

sum of tempered irreducible representations σ ofH; one of these summands is the given π -

distinguished representation σt, while strong multiplicity one implies that the remaining

summands are not π -distinguished. It follows that for any v1, v2∈π,

Hσt(v1⊗v̄2) =
∑

u∈B(iHMτ)

∫
h∈H
〈hv1, v2〉〈u, hu〉. (24.1)

Here the sum over u is really a finite sum, since v1 and v2 are smooth (under H). The

right-hand side of (24.1) is manifestly continuous as t varies within a given l-component

D, and so defines a continuously-varying family of Hermitian forms on π⊗π̄.

Lemma 24.2. The image of Ω under l is a union of l-components.

Proof. We need only verify that l(Ω) is both closed and open: it is closed, by the

upper semicontinuity of multiplicity [FLO, Lemma D.1], and open, by the continuity of

t 7!Hσt noted above.

Thus l identifies Ω with a disjoint union of (typically infinitely many) finite quo-

tients of compact tori, hence equips Ω with a natural topology with respect to which

the Hermitian forms Hσ vary continuously. We may also speak of the space Cc(Ω) of

compactly-supported continuous functions. We henceforth refer to Ω and l(Ω) inter-

changeably.

It seems conceivable to us that the topology just defined on Ω coincides with the

topology induced by the Fell topology, but we have not verified this. In any event, the

more explicit topology just defined is the relevant one for our purposes.

The map

Ω−!
⊔

Θ = spectrum of the Bernstein center (24.2)

is continuous, for the topology just defined on Ω. This continuity follows from the fact

the map from l-components to Bernstein components, discussed in §23.7.3, is continuous.

24.2. Main results

Let J be a good (see §23.2) compact open subgroup of H. We denote by ĤJ , ĤJ
temp and

ΩJ the spaces corresponding to representations of H having a non-zero J -fixed vector.
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The space ΩJ is a finite union of l-components, and as J traverses a neighborhood basis

of the identity, we have

Ω =
⋃
J

ΩJ and Cc(Ω) =
⋃
J

C(ΩJ).

The following notion is motivated by our global applications, and related to the class

of functions that appear in Sauvageot’s “principe de densité” [Sau].(7) We henceforth

adopt the convention that k(σ):=0 for k∈Cc(Ω) and σ∈Ĥ\Ω.

Definition 24.3. We say that an l-component D of Ω is allowable if there is a good

compact open subgroup J as above, with D⊆ΩJ such that every non-negative

k∈C(D)⊆Cc(Ω)

may be approximated in the following senses:

(i) For each ε>0 there are positive-definite T, T+∈πJ⊗πJ , with tr(T+)6ε, such

that, for each σ∈Ĥ,

|k(σ)−Hσ(T )|6Hσ(T+) (24.3)

(We emphasize that, per the general conventions of Part IV, all tensors considered here

such as T and T+ are smooth.)

(ii) For each ε>0 there are φ, φ+∈HJ , with φ+ positive definite and φ+(1)6ε, so

that, for each σ∈Ĥ,

|k(σ)−tr(σ(φ))|6 tr(σ(φ+)). (24.4)

We say that a function k: Ω!C is allowable if its support lies in a finite union of

allowable l-components.

Remark 24.4. Allowability (applied with ε=1, say) implies that there is a positive-

definite T+∈πJ⊗πJ such that

|k(σ)|6Hσ(T+) (24.5)

for all σ∈Ĥ. Similarly there is a positive-definite element φ+ of the bi-J -invariant Hecke

algebra HJ∼=C∞c (J \H/J) such that

|k(σ)|6 tr(σ(φ+)) (24.6)

for all σ∈Ĥ. The upper bounds (24.5) and (24.6) will be useful in applications involving

products of several groups such as G.

(7) There were some points in the original paper [Sau] that we do not understand: specifically the

usage of Lemma 2.1 on p. 181. Lemma 2.1 assumes that the algebra in question separates points. This
is related to the distinction between l-components and Bernstein components.
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Also note that the left-hand side of either (24.3) or (24.4) vanishes identically unless

σ belongs to ĤJ , whose Plancherel measure is finite. By the Plancherel formula (cf. §18,

§A.3), it follows that, for T and φ as in the conclusion, we have

tr(T )+oε!0(1) =

∫
Ĥtemp

k=φ(1)+oε!0(1). (24.7)

24.3. Cuspidal type components are allowable

There is a a class of Bernstein components which are particularly straightforward to

analyze.

We say that an l-component is of cuspidal type if the inducing data is not merely

discrete series, but supercuspidal. For example, the l-component of unramified principal

series is of cuspidal type.

Theorem 24.5. Any l-component of cuspidal type is allowable.

It seems reasonable to expect that all l-components are allowable.

24.4. Outline of the proof

In this subsection, we give an overview of the argument. Details of the steps are given

in the following subsections. The subtlety is in controlling the contribution of the non-

tempered spectrum, which meets the tempered spectrum in different ways (for example,

the complementary series can approach both the Steinberg representation and a tempered

principal series).

In the argument that follows, integrals and volumes are always computed with re-

spect to Plancherel measure.

We must verify conditions (i) and (ii) of Definition 24.3. We first prove (i) and then

deduce (ii).

For the proof of (i), it suffices to obtain the required approximation (24.3) for each

continuous function

k:D−! [0, 1],

where D is an l-component of cuspidal type. Recall that we extend k by zero to Ĥ.

Step 1. Let Θ denote the union of Bernstein components with J -fixed vectors, where

J is chosen small enough so that D maps into Θ. The complex variety Θ has a natural

real form (see §24.5.2 for details); we write R[Θ] for the set of regular functions on that
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real form, and regard it as a subring of the Bernstein center (§23.6). Given z∈R[Θ] and

T =
∑
i

ui⊗v̄i ∈πJ⊗�πJ ,

we set

zTz :=
∑
i

zui⊗�zvi ∈πJ⊗�πJ .

Then, for each σ∈Ĥ, we have z(λσ)∈R (§23.6) and

Hσ(zTz) = z(λσ)2Hσ(T ). (24.8)

In particular, Hσ(zTz)=0 unless λσ∈Θ.

Step 2. There are finitely many π -distinguished l-components besides D that map

into Θ; let D′ be their union. Since the l-component D is of cuspidal type, we have that

D−!Θ is injective and its image is disjoint from the image of D′. (24.9)

Step 3. We may find a positive-definite T0 such that Hσ(T0)>1 for σ∈D∪D′ (see

Lemma 24.6).

Step 4. Fix ε<1.

Then, by an application of Stone–Weierstrass and the assumed disjointness (see

§24.5.3 for details), we may find z0∈R[Θ] which approximates
√
k(σ)/Hσ(T0) on D and

approximates zero on D′:

|k(σ)−z0(λσ)2Hσ(T0)|<ε, σ ∈D∪D′. (24.10)

Set T :=z0T0z0. Then, (24.8) and (24.10) imply that

|k(σ)−Hσ(T )|<ε, σ ∈ ĤJ
temp, (24.11)

since the left-hand side vanishes for σ∈ĤJ
temp\(D∪D′). Using our assumptions on k

and ε, we get ∫
D′
|Hσ(T )|� ε and sup

D
|Hσ(T )|� 1. (24.12)

Here we adopt the convention that implied constants may depend upon (D, J, k) (hence

possibly upon (D′,Θ, T0)), but must be independent of ε. We also have abused notation

and written integrals over D and D′, where the domain of the integral is, more precisely,

l−1D and l−1D′.
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Step 5. Now take T+=zTz+εT0, where z∈R[Θ] has the following properties, again

achieved by Stone-Weierstrass:

• z(λσ)>1 for each non-tempered σ∈Ĥ;

• z(λσ)∈[−2, 2] for each σ∈Ĥ;

• z(λσ) is small on average over σ∈D: the integral of z(λσ)2, taken with respect to

Plancherel measure, is bounded by ε.

See §24.5.3 for the construction. Note that the first and third requirements “pull in

opposite directions” because the intersection

infinitesimal characters of non-tempered representations∩λ(D) (24.13)

need not be empty; we can nevertheless simultaneously satisfy them because the measure

of the set (24.13) is zero. Note also that we are again using our assumption that D is

of cuspidal type—the same intersection, but with D replaced by D′, does not necessarily

have measure zero. For example, if G=PGL2(F ) and D is the l-component of cuspidal

type consisting of the unitary principal series representations, then the other l-component

in D′ is the singleton consisting of the Steinberg representation, whose infinitesimal

character is a limit of infinitesimal characters of complementary series representations.

We claim now that

|k(σ)−Hσ(T )|6Hσ(T+) for all σ ∈ Ĥ (24.14)

and

tr(T+)� ε. (24.15)

Assuming the claim, we may replace ε by a smaller constant as needed to obtain the

desired pair (T, T+). We verify (24.14) separately in the following cases:

• for σ∈D∪D′, we have |k(σ)−Hσ(T )|<εHσ(T0)6Hσ(T+);

• for σ∈Ĥtemp but σ /∈D∪D′, both sides are zero;

• for non-tempered σ, we have Hσ(T )>0, z(λσ)>1 and k(σ)=0, and hence

|k(σ)−Hσ(T )|=Hσ(T )6Hσ(zTz)6Hσ(T+).

We verify (24.15) using that

tr(T+) = εtr(T0)+

∫
σ

z(λσ)2Hσ(T ),

and the following estimates, deduced using (24.12) and the construction of z:∫
σ∈D

z(λσ)2Hσ(T )6
(

max
σ∈D
Hσ(T )

)∫
σ∈D

z(λσ)2� ε
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and ∫
σ∈D′

z(λσ)2Hσ(T )� ε.

Step 6. We now prove (ii). One could argue in parallel with the prior argument;

however, for (ii), one encounters issues of reducibility that do not occur in (i)—in the

context of (i) such issues are effectively eliminated by strong multiplicity 1. We have

therefore found it more convenient, although perhaps slightly unnatural, to deduce (ii)

from (i).

Given k, take T∈πJ⊗�πJ as in (i). Define the bi-J -invariant function φ:H!C by

φ0(h):=tr(π(h)T ). Write eJ∈HJ for the normalized characteristic function of J . The

dimension of σJ is uniformly bounded for σ∈Ĥ; let M be an upper bound for this

dimension.

In a formal sense, we have Hσ(T )=tr(σ(φ0)) (see §18). The basic idea of the argu-

ment is to use this formal identity to construct functions from the T and T+ previously

constructed. This is not entirely straightforward, because φ0 is not compactly supported.

However, at least if σ is tempered, the integral defining the operator σ(φ0) con-

verges (see §A.5), and defines a non-negative operator because T>0. (To verify the

non-negativity, it suffices to treat the case when T is of rank 1, and then it comes from

the positivity of the matrix coefficient integral, see [SVe]).

Take

φ1 = (bi-J -invariant) truncation of φ0+small multiple of eJ ,

with a large enough truncation; by truncating symmetrically, we arrange that

φ1(x−1) =φ1(x)

for all x∈H. Using the absolute convergence of the matrix coefficient integral defining

Hσ, we obtain the following:

• |tr(σ(φ1))−Hσ(T )|6ε for all σ∈ĤJ
temp;

• σ(φ1) is positive definite for each such σ;

• σ(φ1) is zero if σ does not have a J -fixed vector, i.e., λσ /∈Θ.

For σ∈ĤJ
temp, we have

|tr(σ(φ1))−k(σ)|6 |tr(σ(φ1))−Hσ(T )|+|Hσ(T )−k(σ)|6 2ε, (24.16)

using (24.11) at the second step.

We now construct a function φ3 which controls φ1 on the non-tempered set, in a

sense to be made precise. Fix ε′>0, and choose z as in Step 5, but now with∫
σ∈D

z(λσ)2<ε′.
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Put φ3=ε−1(z ·φ1)∗(z ·φ1)∨, where as usual f∨(g)=f(g−1). Then, φ3 is positive definite

and symmetric.

We claim that, for any non-tempered σ∈Ĥ,

|tr(σ(φ1))|6 tr(σ(φ3))+Mε. (24.17)

Indeed, choose an orthonormal basis for σJ consisting of eigenvectors for σ(φ1). The

basis has cardinality at most M . Since z ·φ1 acts self-adjointly on σJ , its action coincides

with that of (z ·φ1)∨. Thus, if v belongs to the chosen basis and has eigenvalue c under

σ(φ1), then σ(φ3)v=c′v, where c′ :=z(λσ)2ε−1|c|2>ε−1|c|2. Thus c′>|c| whenever |c|>ε.
We obtain (24.17) by summing over v, considering separately the cases |c|>ε and |c|6ε.

Moreover,

φ3(1) =

∫
σ∈ĤJtemp

ε−1z(λσ)2tr(σ(φ1∗φ1)). (24.18)

We bound the integrand on the right-hand side as follows:

• Suppose that σ∈Ω∩l−1(D), i.e., σ has l-parameter in D and is distinguished. The

trace of σ(φ1∗φ1) is bounded by M‖φ1‖2L1 . The contribution of such σ to the integral

above is therefore

� ε′

ε
M‖φ1‖2L1 .

• If σ is not as just described, then k(σ)=0, so (24.16) implies that tr(σ(φ1))62ε.

But positivity of σ(φ1) implies that tr(σ(φ1∗φ1))6tr(σ(φ1))2. The integrand on the

right-hand side of (24.18) is thus bounded by 16ε.

Taken together, we get

φ3(1)� ε′

ε
M‖φ1‖2L1 +ε. (24.19)

Now, φ1 depends on ε. However, choosing first ε and then reducing ε′ as appropri-

ate, equations (24.17) and (24.19) show that (φ1, φ3+2MεeJ) give the desired pair of

functions (up to a final rescaling of ε).

24.5. Proofs for steps 3, 4 and 5

24.5.1. Uniform distinction

Lemma 24.6. Let J be a good compact open subgroup of H. There is a positive-

definite (smooth) tensor T∈πJ⊗�πJ such that Hσ(T )>1 for all σ∈ΩJ .

Proof. Each σ∈ΩJ is π -distinguished and contains non-zero J -invariant vectors,

so we may find x∈πJ with Hσ(x⊗x̄)>2. By continuity—using the formula (24.1) for

Hσ in terms of matrix coefficients—we then have Hσ′(x⊗x̄)>1 for all σ′∈ΩJ in some
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neighborhood of σ. Thus, by the compactness of ΩJ , we may find a finite collection of

vectors x1, ..., xn∈πJ and corresponding finite-rank tensor

T =
∑
j

xj⊗x̄j

such that Hσ(T0)>1 for all σ∈D.

24.5.2. The real form of a Bernstein component

Let Θ be any Bernstein component. We denote by Θunit the image in Θ of Ĥ, i.e., the set

of infinitesimal characters in Θ arising from some unitary representation. Since unitary

representations are isomorphic to their conjugate-dual, Θunit is pointwise fixed by the

anti-holomorphic involution

Θ3 [(M, τ)] 7−! [(M, τ+)],

where as usual τ+ denotes conjugate dual. That involution defines a real form of Θ whose

real points contain Θunit. We henceforth abuse notation slightly by writing R[Θ] for the

set of regular functions on that real form, with real coefficients; any such function is

real-valued on Θunit.

We write Θ0⊆Θunit for the subset consisting of [(M, τ)], with τ unitary (i.e., τ∼=τ+)

and set Θnt :=Θunit−Θ0. The set Θ0 is in general a finite quotient of a compact torus;

we equip it with the push-forward of an arbitrary Haar measure on the latter.

Example 24.7. Suppose G=PGL2(F ) and that Θ=X/W is the principal series com-

ponent as considered above, so that we may identify X∼=C× by sending χ to its value α

on a uniformizer and Θ with the quotient of C× by the equivalence relation ∼ defined by

the inversion map α 7!α−1. We then have the following identifications (here q denotes

the cardinality of the residue field of F ):

• {real points of Θ}∼=C(1)∪R×/∼;

• Θunit∼=C(1)∪[q−1/2, q1/2]/∼;

• Θ0∼=C(1)/∼;

• Θnt∼=(q−1/2, 1)∪(1, q1/2)/∼.

We may identify C[Θ] with the ring of Laurent polynomials in α that are invariant

under α 7!α−1, and R[Θ] with the subring consisting of those having real coefficients.

Lemma 24.8. Then, the closure Θnt of Θnt intersects Θ0 in a set of measure zero.

Proof. Let t=[(M, τ)]∈Θunit. Then, there is a unitary representation σ∈Ĥ with

infinitesimal character λσ=t. Since σ is isomorphic to its own conjugate dual σ+, we
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have λσ=λσ+ , so that τ+∼=wτ for some w∈N(M)/M . If w is trivial, then τ has unitary

central character; thus σ is tempered and thus t∈Θ0.

It follows that each t∈Θnt∩Θ0 is contained in the set

{[(M, τ)]∈Θ0 :wτ ∼= τ}

for some 1 6=w∈N(M)/M . Each of these sets has measure zero.

24.5.3. Applications of Stone–Weierstrass

Lemma 24.9. Let D, D′ and Θ be as in §24.4. For any k∈Cc(D) and ε>0 there is

a regular function f∈R[Θ] such that

• |k−f |<ε on D;

• |f |<ε on D′.

Proof. This follows from a variant of Stone–Weierstrass. We spell out some details.

Since D is compact, infinitesimal character induces a homeomorphism between it

and its image λ(D) in Θ. Therefore, the continuous function k is pulled back from a

continuous function (also denoted k) on λ(D).

Moreover, λ(D) is disjoint from λ(D′) by assumption, and each of these sets is closed.

By Tietze’s extension theorem, we may find a continuous function on Θ which induces k

on λ(D), and is zero on λ(D′). The union of these sets is contained in a compact subset

of the real points of Θ, and then we apply Stone-Weierstrass as usual.

Lemma 24.10. For each ε>0 there is a regular function f∈R[Θ] with the following

properties:

• f is valued in [−2, 2] on Θunit;

• f>1 on Θnt;

•
∫

Θ0 f
26ε.

For instance, in the above PGL2(F ) example, the conclusion of the lemma holds

with

f : =
α−n+α−n+2+...+αn

n

for n∈Z>1 taken large enough in terms of ε. Note also that, in the third part, we take

the measure on Θ0 to be that induced from Haar measure, but that implies a similar

statement for Plancherel measure, which is a continuous multiple of the Haar measure

(see, e.g., [Wld]).
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Proof. Write Θunit for the closure of Θunit. Then, Θunit is compact. By Stone–

Weierstrass, R[Θ] is dense in the space of continuous real-valued functions φ on Θunit.

Choose ε1>0 sufficiently small in terms of ε. It then suffices to find such a φ for which

• |φ|62−ε1 on Θunit,

• φ>(1+ε1) on Θnt, and

•
∫

Θ0 φ
26ε1,

because then we may find f∈R[Θ] with ‖f−φ‖6ε1 on Θunit, and this satisfies the re-

quired conditions.

The existence of φ follows from Urysohn’s lemma, using Lemma 24.8.

Part V. Application to the averaged Gan–Gross–Prasad period

We aim now to formulate and prove our main result (Theorem 31.11, stated at the very

end).

25. Setting

25.1. Basic setup

Let F be a number field; denote by ZF its ring of integers (we are using the letter O for

a coadjoint orbit) and by A its adele ring.

Let (G,H) be a GGP pair over F , in the sense of §13. We denote by p a typical

place of F (possibly archimedean!) and by Fp the corresponding completion. When p

is non-archimedean, we denote by Zp⊆Fp the ring of integers. We set Gp :=G(Fp) and

Hp :=H(Fp).

We fix a finite set R of places of F which is sufficiently large in the following senses:

• R contains every archimedean place.

• The groups G and H admit smooth models over ZF [1/R], which we continue to

denote by G and H. This implies that for each p /∈R, the subgroups

Kp := G(Zp)6Gp and Jp := H(Zp)6Hp.

are hyperspecial maximal compact subgroups.

• The inclusion H �
�
// G extends to a closed immersion of the smooth models over

ZF [1/R], so that Kp contains Jp.

• Set

GR :=
∏
p∈R

Gp, K :=
∏
p/∈R

Kp, HR :=
∏
p∈R

Hp and J :=
∏
p/∈R

Jp.

Then, G(F )·GR ·K=G(A), and similarly for H in place of G.
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25.2. Measures

We equip the quotients G]:=G(F )\G(A) and [H]:=H(F )\H(A) with Tamagawa mea-

sures and denote by τ(G) and τ(H) their volumes.

We fix a factorization of the associated measures on G(A)=
∏′

Gp and H(A)=
∏′

Hp

in such a way that K and J have volume 1. We always equip products, such as GR and

HR, with the product of the Haar measures on the corresponding components Gp and Hp.

25.3. Automorphic forms

For the rest of this paper, the letters Π and Σ denote irreducible square-integrable auto-

morphic representations Π⊆L2([G]) and Σ⊆L2(H) that are unramified outside R, i.e.,

that admit vectors invariant by K and J , respectively. More precisely, we write Π and Σ

for the subspaces spanned by the smooth factorizable vectors in the corresponding Hilbert

space representations, so that we may identify

Π∼=
⊗
p

Πp and Σ∼=
⊗
p

Σp,

where Πp and Σp are smooth irreducible unitarizable representations of Gp and Hp.

For p /∈R, the spaces Π
Kp
p and Σ

Jp
p are 1-dimensional, so the fixed subspaces ΠK and

ΣJ define irreducible representations of GR and HR, respectively. We may identify these

fixed subspaces with the products of local components at R:

ΠK ∼= ΠR :=
⊗
p∈R

Πp and ΣJ ∼= ΣR :=
⊗
p∈R

Σp.

We fix unitary structures on ΠR and ΣR such that the above identifications are isometric.

Here, and later, when we (e.g.) sum over Σ, we always have in mind that we sum

over a set of representatives of Σ as above, whose Hilbert space direct sum is L2([H]).

(The choice of representatives is ambiguous only in the event of global multiplicity larger

than 1.)

25.4. Branching coefficients

Assume that (ΠR,ΣR) is distinguished in that the space of HR-invariant linear forms on

ΠR⊗Σ∨R is non-zero. That space is then 1-dimensional. The space I consisting of all

HR -invariant Hermitian forms on

ΠR⊗Π∨R⊗Σ∨R⊗ΣR−!C
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is likewise 1-dimensional. We may define P∈I by the formula

P(v1⊗v2⊗u1⊗u2) :=

(∫
[H]

v1ū1

)(∫
[H]

v̄2u2

)
. (25.1)

If ΠR and ΣR are tempered, then we may define H∈I by

H(v1⊗v2⊗u1⊗u2) :=

∫
h∈HR

〈hv1, v2〉〈u1, hu2〉, (25.2)

using the temperedness assumption to justify convergence (cf. §18).

If H is non-zero—as is expected (cf. §20)—then it spans the 1-dimensional space I,

so we may define a branching coefficient L(Π,Σ)∈R>0 by requiring that

P =L(Π,Σ)·H on ΠR⊗Π∨R⊗Σ∨R⊗ΣR. (25.3)

We have suppressed from our notation the dependence of L(Π,Σ) upon the fixed set R

of places at which everything is assuming unramified.

25.5. The conjectures of Ichino–Ikeda and N. Harris

See [II] and [HarN].

Conjecture 25.1. If (ΠR,ΣR) is distinguished and ΠR and ΣR are tempered, then

H, as defined in §25.4, is non-zero, so L(Π,Σ) is defined; it is given by

L(Π,Σ) = 2−β
L(R)

(
1
2 ,−,Π×Σ∨

)
L(R)(1,Ad,Π×Σ∨)

∆
(R)
G , (25.4)

where 2β is the order of the component group of the Arthur parameter for Π�Σ and

∆
(R)
G is, as in the introduction, the partial L-factor of the L-function whose local factor

at almost every prime p equals
pdim(G)

#G(Fp)
.

Remark 25.2. We expect (but have not attempted to verify rigorously) that

2β = τ(G)τ(H)

holds generically, that is to say, for “typical” Π and Σ. Let us explain where this comes

from.

The left-hand side is, by definition, the number of components of the centralizer (in

G∨×H∨) of the Arthur parameter for Π�Σ. Now, for “typical” Π and Σ, one expects
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that the image of its Arthur parameter meets G∨×H∨ in a Zariski dense set. Then, the

centralizer in question is simply the set of Galois-invariants in the center Z(G∨×H∨).

The cardinality of the latter is directly related to Tamagawa numbers: a result of Kottwitz

[Kot, equation (5.1.1)], building on work of Sansuc, shows that

τ(G)τ(H) =
#Z(G∨×H∨)Gal

h
,

where h is the order of the Tate–Shafarevich group for Z(G∨×H∨). In the cases at hand,

Z(G∨) and Z(H∨) are either {±1} or the torus Gm, and in the latter case the Galois

action is through a quadratic character; in all cases, h=1.

25.6. Some unconventional notation

25.6.1. We fix once and for all an archimedean place q of F . This place plays a

privileged role in both our results and their proofs, so we introduce the otherwise uncon-

ventional notation

G : =Gq,

G′ : =
∏

p∈R\{q}

Gp,

Γ : = G(ZF [1/R]) = G(F )∩K �
�
// G×G′,

[G] : = Γ\(G×G′),

so that [G]∼=[G]/K. We analogously define H, H ′, ΓH and

[H] := ΓH \(H×H ′)∼= [H]/J.

By our choice of factorization of Haar measures, the quotients [G] and [H] have volumes

τ(G) and τ(H).

25.6.2. We denote, as in §2.1, by g and h the Lie algebras of G and H, respectively, and

by g∧∼=ig∗ and h∧∼=ih∗ their the Pontryagin duals. We have normalized Haar measures

both on H and H ′, giving rise to Plancherel measures on the unitary duals of both. The

Haar measure on H normalizes Haar measures on h and h∧, hence a normalized affine

measure on the GIT quotient [h∧] (see §9 and §17.2).
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25.6.3. Recall that for any Π and Σ, we may isometrically identify and embed

ΠR
∼= ΠK �

�
// L2([G]) and ΣR∼= ΣJ �

�
// L2([H]).

We may then unitarily factor

ΠR =π⊗π′ and ΣR =σ⊗σ′,

where

π∼= Πq, σ= Σq, π′∼=
∏

p∈R\{q}

Πp and σ′∼=
∏

p∈R\{q}

Σp

are smooth irreducible unitary representations of G, H, G′ and H ′, respectively.

25.7. Assumptions

For the remainder of the paper, we fix an individual Π as above. We now impose several

assumptions concerning G, H, R, q and Π:

(1) The representations π of G and π′ of G′ are tempered.

(2) G and H are anisotropic and non-trivial. This has the following consequences:

• [G], [G], [H] and [H] are compact;

• the pair (G,H) is isomorphic either to

– (Un+1,Un) with n>1, or to

– (SOn+1,SOn) with n>2,

and not to (GLn+1,GLn). In particular,

τ(G) = τ(H) = 2

(see, e.g., [We] and [On]).

(3) Gp is compact for every archimedean place p 6=q.

(4) G is quasi-split at q, so that G is quasi-split, and the representation π is generic,

and hence satisfies the equivalent conditions of Lemma 11.6. (The assumption concerning

π holds if, for instance, it belongs to the principal series.) In particular, the limit orbit

O of π is a non-empty union of open G-orbits on the regular subset Nreg of the nilcone

in g∧:

∅ 6=O⊆Nreg.

Example 25.3. Take F=Q(α), α2=5. Let n∈Z>4. Take for G the special orthogonal

group of the F -quadratic form

x2
1+...+x2

m+(1−α)(x2
m+1+...+x2

n),
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where n=2m or 2m+1.

Similarly, let H be the special orthogonal group of the quadratic form

x2
1+...+x2

m+(1−α)(x2
m+1+...+x2

n−1),

embedded in G as usual. Let q be the archimedean place of F sending α to
√

5=2.23 ...,

and q′ the other archimedean place. Then, G∼=SO(m,m) or SO(m,m+1) is split, while

Gq′
∼=SO(n) is compact; similarly, H∼=SO(m,m−1) or SO(m,m) and Hq′

∼=SO(n−1).

Remark 25.4. Assumption (1), or some strong bound in that direction, is required by

the formulation of the Ichino–Ikeda and N. Harris conjectures; we also exploit it through

our use of the Kirillov formula. Assumption (2) is essential for the measure classification

step. Assumption (3) is primarily for convenience. Assumption (4) ensures that regular

nilpotent elements exist, or equivalently, that the limit coadjoint orbits considered here

be non-empty (cf. §11.4.2).

26. Construction of limit states

26.1. Setting

Recall that we have defined the quotient

[G] = Γ\(G×G′),

where

• G is a reductive group over an archimedean local field,

• G′ is an S -arithmetic group, and

• Γ is a cocompact lattice in G×G′.
The groups G and G′ arose from “half” of a GGP pair, but the properties just

enunciated are what matter here. We denote by µ[G] the Haar measure that we have

normalized on [G]. From an automorphic representation Π of G, we obtained a unitary

G×G′ subrepresentation

π⊗π′ �
�
// L2([G]).

We will assume starting in §26.4 that π varies with an infinitesimal parameter h!0 and

admits a regular limit coadjoint orbit (cf. §11.4)

(O, ω) = lim
h!0

(hOπ, ωhOπ ).

In applications, O will be a subset of Nreg, but this feature plays no role in §26.
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26.2. Overview

The main aim of this section is to construct, after passing to a subsequence of {h}, a

natural G-equivariant assignment

O−! {probability measures on [G]} (26.1)

which captures the average limiting behavior of the L2-masses |v|2 dµ[G] of vectors v∈π
microlocalized at a point ξ∈O. The construction shares many common features with

standard constructions in the pseudodifferential calculus (referred to variously as the

quantum limits, semiclassical limits, microlocal defect measures, etc.).

This construction will be achieved in the following three stages.

(1) From operators to functions. Recall, from §3, the space Ψ−∞ :=Ψ−∞(π) of

“smoothing operators” on π; it contains π⊗π̄ as the subspace of finite-rank operators.

Recall also, from §12.1, the space

T1 := T1(π) = {“smoothly trace class” operators on π}.

The first stage, achieved in §26.3, is to construct a G-equivariant positivity-preserving

map

T1−!C∞([G]),

T 7−! [T ],

such that the trace of T is the integral of [T ]. (The map will depend upon the choice of

a fixed “family of vectors” in the auxiliary representation π′.)

(2) From symbols to functions. The second stage, achieved in §26.4, is to compose

the map T 7![T ] with the operator calculus

Oph :Sm :=Sm(g∧)−!Ψm := Ψm(π),

specialized here to the Schwartz space S−∞=S(g∧). This gives a family of maps

S(g∧)−!C∞([G]),

depending upon h. We will show that the leading order asymptotics of this family of

maps are described, after passing to a subsequence, by a limit map

[ · ] :S(g∧)−!C∞([G]),
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with several natural properties.

Informally (cf. §1.7), fix a small non-empty open set E⊆O, and suppose that a|O
defines a smooth approximation to the normalized characteristic function vol(E, dω)−11E

of E. Then, [a] roughly describes the limiting average of |v|2, taken over all vectors v∈π
microlocalized in E.

(3) From points to measures. The third stage, achieved in §26.5, is to describe

the map [ · ] in terms of measures. The description may be understood as an effective

implementation of measure disintegration. It will allow us to analyze our limit states

using measure-theoretic techniques, notably Ratner’s theorem.

26.3. Stage 1: from operators to functions

We fix a (smooth, finite-rank) non-zero element T ′∈π′⊗π′ with the following properties:

• T ′ is positive definite;

• unless explicitly stated otherwise, tr(T ′)=1.

Equivalently, T ′ is a finite sum

T ′=
∑
i

ciui⊗ūi, (26.2)

where ui∈π′ are smooth unit vectors and ci are non-negative reals summing to 1. The

normalization tr(T ′)=1 serves to simplify notation; in practice, we may reduce to the

case in which it is satisfied by multiplying T ′ by a suitable positive scalar.

For each T∈π⊗π̄, we obtain an element T⊗T ′∈L2([G]×[G]). We denote by

[T⊗T ′]∈L1([G])

its diagonal restriction. Since the interesting variation will happen in the T variable, we

will often drop the T ′ from the notation by abbreviating

[T ] := [T⊗T ′]∈L1([G]).

Example 26.1. Suppose that T=v1⊗v̄2 and T ′=w1⊗	w2, with vi∈π and wi∈π′, so

that ui :=vi⊗wi defines an element of π⊗π′ �
�
// L2([G]). Then,

(T⊗T ′)(x, y) =u1(x)u2(y),

while

[T ](x) =u1(x)u2(x).
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Lemma 26.2. Fix T ′ as above. Abbreviate “continuous, uniformly in π” to “contin-

uous”.

(i) ‖[T ]‖L1([G])6‖T‖1, where ‖ · ‖1 denotes the trace norm.

(ii) The map T 7!T⊗T ′ extends uniquely to a continuous G×G-equivariant map

Ψ−∞−!C∞([G]×[G]).

(iii) The map T 7![T ] extends uniquely to a continuous G-equivariant map

T1−!C∞([G]).

(iv) For T∈T1, we have ∫
[G]

[T ] = tr(T ).

(v) If T is a non-negative self-adjoint operator, then [T ] is a non-negative function:

T > 0 =⇒ [T ]> 0.

(vi) [T ] is invariant by the action of the center of G(A) on [G].

Proof. For (i), let B(π) be an orthonormal basis for π consisting of eigenvectors v for

the non-negative self-adjoint finite-rank operator
√
T ∗ T , with eigenvalues cv>0. Writing

T ′ as in (26.2), we then have

[T ] =
∑

v∈B(π)

∑
i

ci(Tv⊗ui)·v⊗ui, (26.3)

where each sum is really a finite sum. By the Cauchy–Schwarz inequality,∫
[G]

|(Tv⊗ui)·v⊗ui|6
(∫

[G]

|Tv⊗ui|2
)1/2

= 〈Tv⊗ui, T v⊗ui〉1/2

= 〈T ∗Tv⊗ui, v⊗ui〉1/2 = cv.

Thus by the triangle inequality,

‖[T ]‖L1([G])6

( ∑
v∈B(π)

cv

)(∑
i

ci

)
=
∑

v∈B(π)

cv = ‖T‖1.

For (ii), we note that the map in question is isometric up to a constant factor (given

by the Hilbert–Schmidt norm of T ′); the conclusion follows from the Sobolev lemma,

applied on the homogeneous space [G]×[G]. We analogously deduce (iii) from (i) and

the Sobolev lemma on [G].
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For (iv) and (v), the proof reduces by continuity to the finite-rank case, and then

by linearity to the rank-1 case as in the above example. In that case,∫
[G]

[T ] = 〈u1, u2〉= 〈v1, v2〉〈w1, w2〉= tr(T )tr(T ′) = tr(T ).

If T>0, then we may assume moreover that v1=v2 and w1=w2, hence that u1=u2=:u,

and so

[T ](x) = |u(x)|2> 0.

For (vi), let ω denote the central character of Π. Then, the function T⊗T ′ on

[G]×[G] has central character (ω, ω−1), and so its restriction [T ] to [G] has trivial central

character.

26.4. Stage 2: from symbols to functions

We now allow π to vary with a positive parameter h!0 in such a way that we obtain

a regular limit coadjoint orbit (O, π). We assume that h traverses some sequence {h}
having zero as its unique accumulation point.

For k∈Z>1 and (a1, ..., ak)∈S(g∧)k, the operator Oph(a1) ...Oph(ak) belongs to T1,

and thus yields a smooth function

[a1, ..., ak]h : [G]−!C

[a1, ..., ak]h := hd[Oph(a1) ...Oph(ak)],
(26.4)

where the exponent d in the normalizing factor hd denotes half the real dimension of O,

as usual.

Lemma 26.3. The linear map

[ · ]h:S(g∧)k −!C∞([G])

defined by (26.4) is h-uniformly continuous. That is to say, for each continuous semi-

norm ν on C∞([G]) and each k>1, there is a continuous seminorm µ on S(g∧) so that

for all h∈(0, 1] and all a1, ..., ak∈S(g∧), we have

ν([a1, ..., ak]h)6µ(a1) ... µ(ak).

Proof. Indeed, by (12.7) and Lemma 26.2 (iii), [ · ]h is a composition

[ · ]h:S(g∧)k
hd Op⊗kh−−−−−−! T1

[ · ]−−−!C∞([G])

of h-uniformly continuous maps.
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We aim now to show that this family of maps has a limit satisfying several natural

properties.

Theorem 26.4. Let notation be as in §26.1 and (26.4). After passing to a subse-

quence of {h}, there exist continuous maps (depending upon π and the choice of subse-

quence)

[ · ]:S(g∧)k −!C∞([G]),

(a1, ..., ak) 7−! [a1, ..., ak],

indexed by k∈Z>1 with the following properties:

(i) for fixed k∈Z>1, the function [a1, ..., ak]h converges to [a1, ..., ak] in the C∞-

topology, with continuous dependence upon (a1, ..., ak);

(ii) [a1, ..., ak]=[a1 ... ak]; in particular,

[a1 ... ak] = lim
h!0

hd[Oph(a1) ...Oph(ak)] in C∞([G]); (26.5)

(iii) [a, ā]>0;

(iv) if a>0, then [a]>0;

(v) [ · ] is G-equivariant (for any k);

(vi) ∫
[G]

[a] =

∫
O
a dω. (26.6)

Proof. (i) The existence and first property of [ · ] follows by an Arzela–Ascoli-type

argument together with the noted uniform continuity of the maps [ · ]h. We record the

details for convenience.

We observe first that, for any (a1, ..., ak)∈S(g∧)k, the subset

{[a1, ..., ak]h : h∈ (0, 1]}

of C∞([G]) is bounded, i.e., each seminorm has bounded image. This feature is a conse-

quence of the h-uniform continuity of [ · ]h noted in the above lemma.

We observe next that each bounded subset of C∞([G]) is precompact. Indeed,

boundedness forces equicontinuity of the subset, and therefore the existence of a sub-

sequence that converges in the space C([G]) of continuous functions equipped with the

supremum norm. One similarly extracts a further subsequence that converges along

with its first derivatives in C([G]), and—proceeding in this way and using a diagonal

argument—a subsequence that converges in C∞([G]).
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We observe finally that S(g∧)k is a separable topological vector space. A countable

dense subset may be given, for instance, by finite rational linear combinations of Hermite

functions.

We now choose a countable dense Q-subspace S0 of S([g])k. By the second obser-

vation above, we may find a subsequence of {h} along which [a1, ..., ak]h converges in

C∞([G]) for each (a1, ..., ak) in S0. Call this limit L(a1, ..., ak). The noted h-uniform

continuity of the maps [ · ]h then implies that the map L:S0!C
∞([G]) is continuous,

hence extends uniquely to the desired continuous map S([g])k!C∞([G]). We verify

readily that this extension is R-linear.

(ii) We apply [ · ]: T1!C
∞([G]) to (12.8).

(iii) For every h, the operator

Oph(a)Oph(ā) = Oph(a)Oph(a)∗

is non-negative-definite, and so [a, ā]h>0 by the assumed properties of T 7![T ]. We

conclude by taking limits.

(iv) By continuity, it suffices to show that [a]>0 for every a of the form a=bb̄, which

is the content of the previous assertion.

(v) We may assume k=1. We then apply [ · ]: T1!C
∞([G]) to (12.9).

(vi) We have∫
[G]

[a] = lim
h!0

∫
[G]

[a]h and

∫
[G]

[a]h = tr(hd Oph(a))

and (by (12.3))

lim
h!0

tr(hd Oph(a)) =

∫
O
a dω.

26.5. Stage 3: from points to measures

Theorem 26.5. Let notation and assumptions be as in Theorem 26.4; assume also

that we have passed to a subsequence of {h} for which that the conclusions of that theorem

hold. There is then a G-equivariant linear map

O−! {probability measures on [G]},

ξ 7−! [δξ],
(26.7)

so that, for all a∈C∞c (g∧) and Ψ∈Cc([G]),∫
[G]

[a]Ψ =

∫
ξ∈O

a(ξ)([δξ]Ψ) dω(ξ). (26.8)
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An importance consequence of this theorem is that

[δξ] is invariant by the G-centralizer of ξ. (26.9)

The measures [δξ] and the invariance property (26.9) generalize the “microlocal lift” of

semiclassical analysis and its invariance under geodesic flow. Informally speaking, [δξ]

describes the average behavior of the measures |v|2µ[G], where v∈π⊂L2([G]) is localized

near ξ.

Proof of Theorem 26.5. Consider the distribution η on g∧×[G] given for a∈C∞c (g∧)

and Ψ∈C∞([G]) by

η(a⊗Ψ) :=

∫
[G]

[a]·Ψ. (26.10)

(The Schwartz kernel theorem provides the unique extension of this definition from

the algebraic tensor product C∞c (g∧)⊗C∞([G]) of test function spaces to the space

C∞c (g∧×[G]) of test functions on the product space.) Part (iv) of Theorem 26.4 im-

plies that η is positive on positive functions. Those results and the Riesz representation

theorem then imply that η defines a G-invariant positive measure on g∧×[G], pushing

forward in the first coordinate to the measure ω on O.

Since η is positive, we have for a∈Cc(g∧) and Ψ∈Cc([G]) that

|η(a⊗Ψ)|6 η(|a|⊗|Ψ|)6 ‖Ψ‖∞
∫
O
|a| dω. (26.11)

Suppose, for a moment, that Ψ>0. The rule a 7!η(a⊗Ψ) defines then a positive

functional on Cc(g
∧), thus a measure. This measure is absolutely continuous with respect

to ω, and thus (by Radon–Nikodym) may be written as fΨω for some measurable non-

negative function fΨ on g∧. The bound (26.11) shows that in fact fΨ6‖Ψ‖∞ almost

everywhere with respect to dω. The rule Ψ 7!fΨ defines then a function

Cc([G])>0−!L∞(O)

and this extends to a bounded linear map on all of Cc([G]) by splitting into positive and

negative parts.

The image of the map Ψ 7!fΨ in fact lies inside the space C(O) of continuous func-

tions, since there is a dense subspace of the source (all convolutions with elements in

Cc(G)) for which this is true. This uses the following consequence of the regularity of

the limit multiorbit O:

every G-orbit in O is open in O. (26.12)

Finally, the composition

Cc([G])
Ψ7!fΨ−−−−!C(O)

eval. at ξ−−−−−−!R

gives the desired measure δξ.
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27. Equidistribution of limit states

27.1. Overview and statement of result

We aim now to apply Ratner’s classification of invariant measures on a homogeneous

space to obtain strong control over the limit states constructed in the prior section.

Recall, thus, that we are considering a real reductive group G, an S -arithmetic group

G′, a cocompact lattice Γ<G×G′, the corresponding compact quotient

[G] := Γ\(G×G′),

and a unitary (G×G′)-subrepresentation π⊗π′ of L2([G]); this data arose from the au-

tomorphic representation Π of the reductive group G over the number field F .

We have constructed, in the prior section, some G-equivariant “limit state” assign-

ments

[ · ]:S(g∧)−!C∞([G])

and

O ξ 7![δξ]−−−−! {measures on [G]},

capturing the limiting behavior of the functions on [G] obtained from high-frequency

vectors in π. Due to the disintegration (26.8), which we abbreviate here to

[a] dµ[G] =

∫
ξ∈O

a(ξ)[δξ] dω(ξ),

the assignments [ · ] are determined completely by the probability measures [δξ] on [G].

Each measure [δξ] is invariant by the centralizer Gξ6G of ξ.

We employ now crucially our assumption that π⊗π′ is fixed, independent of the

scaling parameter h!0. The limit coadjoint orbit O for π is then contained in the regular

nilpotent set Nreg⊆g∧, so the centralizers Gξ contain unipotent elements. We might thus

hope to apply Ratner’s theorem to deduce that [δξ] is simply the Haar probability measure

on [G], and hence for any symbol a∈S(g∧) that the limit state [a]: [G]!C is simply the

constant function satisfying the normalization condition
∫

[G]
[a]=

∫
O a dω. Unwinding the

definition of the limit states, this may be understood informally as a form of quantum

unique ergodicity for high-frequency vectors in the fixed representation π.

The actual picture is mildly more complicated due to “multiple component” issues

arising from the presence of the auxiliary group G′; the G-action on [G]/J , for the

compact open J<G′ under which our measures have known invariance, is not in general

transitive, and so we cannot hope to control the behavior of limit states across all of [G].

However, it turns out that the control obtained is enough to understand integrals of limit

states over [H], in the following sense sufficient for our purposes.
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Theorem 27.1. For any a∈S(g∧),

1

τ(H)

∫
[H]

[a] =
1

τ(G)

∫
[G]

[a]. (27.1)

The proof occupies the remainder of this section.

Remark 27.2. The proof makes use of our assumption (§25.7) that G is quasi-split.

On the other hand, without this assumption, we have O=∅ by §11.4.2, and hence [a]=0

by Theorem 26.5, so the conclusion (27.1) is uninteresting.

27.2. Reduction to G+

∞-invariance

Set F∞ :=F⊗R, and let G+

∞ denote the (topological) connected component of the group

G(F∞) of archimedean points of G. Recall that we have extended the rule a 7![a] from

S(g∧) to measures on O in §26.5. We have the following reduction.

Lemma 27.3. Assume that, for each ξ∈Oreg, the measure [δξ] is G+

∞-invariant.

Then, the conclusion of Theorem 27.1 holds.

Before we give the proof, we give some algebraic preliminaries. Let G̃ denote the

simply connected covering group of the derived group [G,G]⊂G. Because G(Fq) is

quasi-split, each F -simple factor of G̃ has non-compact Fq-points. By strong approxi-

mation [PR, Theorem 7.12], it follows that the group G̃(F∞) has dense image in [G̃].

The image G(A)+ of G̃(A)!G(A) is readily seen to contain the commutator subgroup

of G(A), and thereby G(A)+ is a normal subgroup with abelian quotient.

Let U be an open compact subgroup of G(A) under which [a] is invariant. By the

noted density of G̃(F∞) in [G̃], we see that

G(F )G+

∞U ⊇G(A)+. (27.2)

Lemma 27.4. Each G+

∞-orbit on [G]/U has the same measure.

Proof. Each such orbit is of the form G(F )\G(F )G+

∞gU , for some g∈G(A). We

claim that the various open sets G(F )G+

∞gU are thus right translates of one another, and

their quotients by G(F ) have the same measure. To see this, we note that G(F )G+

∞gU

is the right translate by g of G(F )G+

∞(gUg−1). This latter set contains G(A)+, and we

deduce that

G(F )G+

∞(gUg−1) = G(F )G(A)+G+

∞(gUg−1)

which is independent of g because the quotient G(A)/G(A)+ is abelian.

We may now give the postponed proof of Lemma 27.3.
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Proof. The results in §26.5 imply that, if a∈S(g∧), then [a] is G+

∞-invariant.

The quotient [G]/U is a finite union of G+

∞-orbits, so it is enough to verify (27.1)

when the smooth function [a] is replaced by the characteristic function of one of these

G+

∞ orbits. To that end, it suffices to check that the intersection of [H] with each one

of these G+

∞ orbits has equal measure; once that is shown, both sides of the equality are

equal to 1/N , with N the number of G+

∞-orbits.

The quotient G(A)/G(A)+ is an abelian group. Thus, the further quotient

ε := G(F )G+

∞U \G(A),

which indexes the G+

∞-orbits on [G]/U , has the structure of finite abelian group. The

induced map H(A)!ε is a group homomorphism. The subset of [H] meeting a specified

component of [G]/U corresponds to a fiber of the map H(F )\H(A)!ε. To see that

each such fiber has the same measure, it is enough to show that this map H(A)!ε is

surjective.

This surjectivity follows if we can verify the surjectivity of

G(F )H(A) // // G(A)/G(A)+.

Now, defining G(Fv)
+ analogously to its adelic counterpart, split into cases as follows:

• G=SOn: in this case, the spinor norm injects G(Fv)/G(Fv)
+ into F×v modulo

squares, and our assertion follows from the surjectivity of the spinor norm on SOn−1 (for

n−1>2).

• G=Un: in this case the determinant injects G(Fv)/G(Fv)
+ into the norm-1 ele-

ments of (E⊗Fv)×, where E is the quadratic extension defining the unitary group. Again

this determinant is surjective on Un−1, whence the conclusion.

27.3. Application of Ratner’s theorem

We now invoke the full force of our assumptions (see §25.7). Recall, thus, that

(i) G is a reductive group over a number field F with adele ring A,

(ii) G is anisotropic, so that the quotient [G]:=G(F )\G(A) is compact, and

(iii) q is an archimedean place for which the local component Gq :=G×F Fq is a

quasi-split reductive group over the archimedean local field Fq. We write

G := G(Fq) = Gq(Fq),

as usual.
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To simplify terminology in what follows, we regard G as a real reductive group; thus,

if Fq is complex rather than real, we regard G as the real points of the real algebraic

group ResFq/R(G×QR).

Let ξ∈O⊆Nreg⊆g∧. As noted above, our goal reduces to showing (for each such ξ)

that the measure [δξ] on [G] is G+

∞-invariant. The element ξ is regular nilpotent : its

G-orbit is an open subset of the nilcone. Such elements may be characterized (with

respect to any G-equivariant isomorphism g∼=g∧) by the following result of Kostant

[Kos1, Theorem 5.3].

Lemma 27.5. Let x∈g be nilpotent. Let b=t⊕n be a Borel subalgebra whose unipo-

tent radical n contains x. Then x is regular nilpotent if and only if its component with

respect to each simple root is non-zero.

For instance, if G is a general linear group, then the regular nilpotent elements are

the conjugates of the nilpotent Jordan blocks.

Set

(iv) u:= centralizer in g:=Lie(G) of the regular nilpotent element ξ,

(v) U6G the connected Lie subgroup generated by exp(u), and

(vi) Z:= center of G.

Example 27.6. Suppose G=GL3(R). Then, we may take ξ to correspond under the

trace pairing to an upper-triangular Jordan block, in which case

U =


 a b c

a b

a

 : (a, b, c)∈R×+×R×R

 . (27.3)

Under the bijection [G]∼=[G]/K following from strong approximation and our as-

sumptions on the set of places R, we may identify [δξ] with µ, where

(vii) µ is a (Z(A)·U)-invariant probability measure on [G].

In what follows, we write G+ and G+

∞ for the topologically connected components

of G and G∞. Our task reduces to establishing the following.

Theorem 27.7. Let notation and assumptions be as in (i)–(vii). Then µ is G+

∞-

invariant.

The proof occupies the remainder of this section.

Using the map [G]/Z(A)![G/Z], we may replace G by G/Z to reduce to the case

that G is semisimple.

It suffices to establish the G+

∞-invariance of µ after push-forward to the quotient

of [G] by an open compact subgroup of G(Af ). Any such quotient is a finite union of
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spaces of the form Γ\G∞, where

• G∞ is the Lie group given by

G∞ :=
∏
p|∞

Gp =G×GT , (27.4)

where p runs over the archimedean places of F and T denotes the set of archimedean

places other than q. In other words, G∞=G′(R)=G(F∞), with G′ :=ResF/Q G. Note

that we may regard U as a subgroup of G∞.

• Γ6G∞ is an arithmetic lattice. (The notation Γ has been used differently in other

sections, but this notational overload should introduce no confusion.)

It will thus suffice to show that any U -invariant probability measure ν on Γ\G∞ is

in fact G+

∞-invariant. In verifying this, we may apply ergodic decomposition (see [EW,

§8.7]) to reduce to the case that ν is ergodic. Ratner has proven [Rat] that any ergodic

U -invariant ν is the S -invariant measure on a closed S -orbit xS, for a closed connected

subgroup S6G∞, with S⊇U . We will show eventually that S=G+

∞.

The basic idea of the proof is as follows: the compactness assumption on [G] will

be seen to imply that S contains no non-trivial normal unipotent subgroups, but any

connected subgroup S with this property that contains U must also contain G+. It may

be instructive to consider the example (27.3).

Translating ν by x−1, and replacing U by xUx−1, we may suppose that x=e. Then,

ΓS :=S∩Γ is a lattice inside S. Define the Q-algebraic group

S := Zariski-closure of ΓS inside G′.

Recall our convention (§1.14) that “reductive” is short for “connected reductive alge-

braic”.

Lemma 27.8. S is reductive, and S(R)>U .

Proof. We show first that S(R) contains S. To see this, recall that the ergodicity

of the U -action on ΓS\S, with respect to ν, implies that almost every orbit is equidis-

tributed, and in particular dense. We may thus find s∈S such that ΓSsU is dense in S.

Then,

ΓS(sUs−1) is dense in S. (27.5)

On the other hand, Borel’s density theorem [Mo, Proposition 4.7.1] implies that S(R)

contains all unipotent elements of S; in particular, S(R)⊇sUs−1. By (27.5), we deduce

that S(R) contains a dense set of elements of S and hence S itself, as required.

Since S contains the topologically connected set S as a Zariski-dense subset, it follows

in particular that S is connected.
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The unipotent radical of S is trivial. Otherwise S(Q) would contain non-trivial

unipotent elements, as would G′(Q)=G(F ), contradicting the standard compactness

criterion for the compact quotient [G].

Lemma 27.9. S(R)>G.

Proof. The splitting (27.4) comes from a splitting of real algebraic groups

G′×QR= G′q×G′T , (27.6)

where G′q=ResFq/R(Gq); in particular, G′q is quasi-split. Let Sq denote the kernel of

S!G′T ; it defines a reductive subgroup of G′q. It will suffice to verify that Sq=G′q. We

prove this below, in Lemma 27.12, in its natural generality.

Lemma 27.10. S>G+.

Proof. Let s6Lie(G∞) denote the Lie algebra of the Lie group S6G∞. We may

regard g as a subalgebra of Lie(G∞). We must show that s contains g.

Observe first that s is invariant under the adjoint action of S, hence that of ΓS . Since

S is the Zariski closure of ΓS , it follows that s is invariant under S(R). By Lemma 27.9,

we deduce that s is invariant by G′q(R)=G.

Since s is G-invariant and contains u, we deduce that h:=s∩g is a normal Lie subal-

gebra of of g, containing u. Splitting the semisimple real Lie algebra g as a sum
⊕

i∈I gi

of quasi-split simple real Lie algebras gi, we must have by normality h=
⊕

j∈J⊂I gj ; but

the projection of u to each factor gi is non-trivial, so in order that h contains u, we must

have J=I, i.e., h=g. This implies s6g as desired.

Lemma 27.11. Any orbit of G+ on any connected component of Γ\G∞ is dense.

Proof. We apply strong approximation. Recall that we have reduced to the case

that G is semisimple. Since G+ is normal in G∞, we reduce further to verifying that the

G+ orbit of the identity coset in Γ\G∞ is dense in its connected component.

Let Gsc be the simply connected covering group of G. By definition, Gsc is an

F -algebraic group. Every F -simple factor of Gsc must have non-compact Fq-points,

because G(Fq) is quasi-split. By strong approximation [PR, Theorem 7.12], the orbits

of Gsc(Fq) on [Gsc] are dense; in particular, the closure of each Gsc(Fq)-orbit is actually

stable under Gsc(F∞). By a theorem of Cartan, the groups Gsc(Fq) and Gsc(F∞) are

topologically connected. Their images in G(A) are thus the connected components G+

and G+

∞, and the desired conclusion readily follows.

By Lemmas 27.10 and 27.11, we see that the closed orbit ΓS\S coincides with a

component of Γ\G∞, and hence that S=G+

∞. This completes the proof of Theorem 27.7
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modulo the following lemma, postponed above, which we have found convenient to for-

mulate using notation independent from that in the rest of this section.

Lemma 27.12. Let G be a quasi-split real reductive group, and let S⊂G be a real

reductive algebraic subgroup. (By our usual conventions, G and S are connected.) Let

g=Lie(G(F )) and s:=Lie(S(F )) denote the corresponding Lie algebras. Let ξ be a regular

nilpotent element of g∗, with centralizer gξ6g. Suppose that s>gξ. Then S=G.

Proof. We may without loss replace G, S, g and s by their complexifications. Since

S is connected, it is enough to show that s=g.

We may identify the coadjoint action on g∗ with the adjoint action on g, via the

trace pairing with respect to a faithful linear representation. Thus ξ∈g. Our hypothesis

implies also that ξ∈s, so it makes sense to speak of the regularity of ξ both with respect

to S and G.

The regularity of ξ is equivalent (by Springer, Kurtzke, see [Kur]) to its Lie algebra

centralizer being abelian. Since ξ is regular for G, it follows that it is likewise regular

for S. Thus,

rank(S) = dim(gξ) = rank(G),

that is to say, S is an equal-rank subgroup of G.

Since ξ∈s is nilpotent, we may find

• a maximal torus T6S, with Lie algebra t⊆s, and

• a Borel subalgebra t⊕n of s

such that ξ∈n. Since S and G have equal rank, T is likewise a maximal torus for G.

Let Φ denote the set of roots for T acting on g, so that

g= t⊕
⊕
α∈Φ

gα,

with each gα 1-dimensional. Since s is a t-stable subspace of g that contains t, we have

s= t⊕
⊕
α∈Φ′

gα

for some Φ′⊆Φ. We must show that Φ′=Φ.

We may find a positive system Φ+⊆Φ for which n⊆
∑
α∈Φ+ gα (e.g., by considering

a generic 1-parameter subgroup of T having positive eigenvalues on n).

In particular, ξ=
∑
α∈Φ+ ξα, with ξα∈gα. Let ∆⊆Φ+ denote the corresponding

simple system. Since ξ is regular nilpotent for g, we have by Lemma 27.5 that ξα 6=0 for

all α∈∆. Since ξ∈s, we deduce that Φ′ contains ∆. Since S is reductive, we conclude

that Φ′=Φ.
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28. Recap and overview of the proof

We pause to recall (from §25) some aspects of the basic setup, as well as what we have

shown thus far. We will then discuss how the remainder of the proof proceeds from this

point.

28.1. Recap

We are considering an inclusion of compact quotients

[H] = ΓH \(H×H ′) �
�
// [G] = Γ\(G×G′)

arising from a Gross–Prasad pair; H<G and H ′<G′ are inclusions of real reductive and

S -arithmetic groups, respectively. From the fixed automorphic representation Π of G

we obtained a G×G′-subrepresentation π⊗π′ �
�
// L2([G]). From a fixed positive-definite

tensor T ′∈π′⊗
π′ of trace 1, we constructed in §26 an assignment from Schwartz functions

a∈S(g∧) to “limit states” [a]∈C∞([G]), describing the limiting behavior of L2-masses of

certain families of vectors in π⊗π′.
Each limit state [a], for (say) real-valued a, is (informally) a limiting weighted aver-

age of L2-masses of vectors v⊗v′∈π⊗π′ for which v is microlocalized within the support

of a|O. Thus,
∫

[H]
[a] is an average of integrals

∫
[H]
|v⊗v′|2, each of which may be decom-

posed spectrally as a sum of contributions PΣ(v⊗v′) from automorphic representations

Σ as above; more generally and precisely, we denote by

PΣ: Ψ−∞−!C (28.1)

the (uniformly in Σ) continuous maps obtained by the following composition:

Ψ−∞
T 7!T⊗T ′−−−−−−!C∞([G]2)

restrict−−−−−!C∞([H]2)
project−−−−−! (ΣR⊗̂Σ∨R)∞

∫
[H]−−−−!C. (28.2)

We retain the convention from §26.3 of dropping T ′ from the notation; when we wish

to indicate it explicitly, we write PΣ(T⊗T ′). For example, if T=v⊗v̄ and T ′=w⊗	w, so

that u:=v⊗w∈π⊗π′ �
�
// C∞([G]), then

PΣ(T ) = ‖projection to Σ of the restriction u|[H]‖2.

We will verify below that, for any T∈Ψ−∞,∫
[H]

[T ] =
∑
Σ

PΣ(T ), (28.3)
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where we sum over Σ as in §25.3. In particular, exchanging the limit [a]=limh!0[a]h

taken in C∞([G]) with integration over the compact set [H] gives∫
[H]

[a] = lim
h!0

hd
∑
Σ

PΣ(Oph(a)). (28.4)

The period formula (28.5) says that, under assumptions on Π and Σ to be recalled below,

PΣ(T ) =L(Π,Σ)Hσ(T )Hσ′(T ′), (28.5)

where the maps Hσ: Ψ−∞!C and Hσ′ :π′⊗
π′!C are as in §18. To summarize, then

lim
h!0

hd
∑

Σ : (28.5) holds

L(Π,Σ)Hσ(Oph(a))Hσ′(T ′)+
∑

remaining Σ

=

∫
[H]

[a]. (28.6)

Moreover, we showed already in §27—using Ratner’s theorem—that the limit state

construction a 7![a] is essentially trivial in the examples of interest: modulo “connected-

ness issues”, it produces constant functions on [G], and the integral
∫

[H]
a is proportional

to the trace of T⊗T ′. Because of this, (28.6) gives an asymptotic of the desired nature,

but it still requires some cleanup.

28.2. Cleanup

We now outline what is required to massage (28.6) into the required shape (cf. §1.6,

§1.10). The most important issue is, of course, to choose T and T ′ so that σ 7!Hσ(T )

and T ′ 7!Hσ′(T ′) approximate desired test functions on the unitary duals of H and H ′.

This problem has already been solved, at least enough for our purposes, in Part IV of this

paper addressing inverse branching. We focus on the other issues that arise (although

we will recall a part of this analysis below):

The second summand of (28.6) arises from situations where L(Π,Σ) is undefined, in

particular:

(i) either σ or σ′ is non-tempered;

(ii) Hσ=0 (even though (π, σ) is distinguished).

The first of these represents an actual possibility that does occur in practice (e.g.,

when Σ is the trivial representation!); the second is not expected to occur, but has not

yet been ruled out in the literature. Since we aim in this paper to prove an unconditional

theorem, we must show that these bad cases yield negligible contributions to (28.4).

The machinery to handle (i) was already set up in the course of our analysis of

inverse branching. Informally speaking, we may construct T̃ and T̃ ′ with the property
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that PΣ(T̃⊗T̃ ′) majorizes PΣ(T⊗T ′) on the non-tempered spectrum, but such that

the trace of T̃⊗T̃ ′ is small. In the archimedean case, for example, this was proved in

Theorem 22.2 by cutting off the symbol a to a small neighborhood of the locus of irregular

infinitesimal characters. In any case, once T̃ and T̃ ′ have been constructed, we just apply

(28.4) to control the total contribution of the non-tempered spectrum.

Part (ii) is dealt with by means of symbol calculus: such (π, σ) cannot be orbit-

distinguished (in the sense of §22.2). Now orbit-distinction is the semiclassical analogue

of distinction, and if (π, σ) fails to be orbit-distinguished, then microlocal analysis shows

that any H -invariant functional on π must at least be negligibly small (in a suitable

sense). To formalize this intuition with symbol calculus, we construct a suitable symbol

on h∧ with the property that it misses entirely the orbit for σ, but on the other hand is

identically 1 on the support of a (or rather its projection under g∧!h∧); see Theorem 29.1

for further details.

There remain other contributions to clean up, e.g., from when

(iii) hλσ is very large, or

(iv) the pair (λπ, λσ) is not H-stable (cf. §14), in which case the asymptotic formulas

in §19 for Hσ do not apply.

We do not discuss these in detail here, but just observe that much of the difficulty

of (iv) is avoided by fiat: we consider only those test functions on the unitary dual of H

which are supported above the stable locus.

As should be clear from this outline, all of this analysis makes heavy use of the

microlocal calculus from Parts I and II.

29. Spectral expansion and truncation of the H -period

29.1. Spectral decomposition

Here we verify the Parseval-type identity (28.3). More generally, let f be a smooth

function on [H]×[H]. Then,

f =
∑

Σ1,Σ2

fΣ1⊗Σ∨2
,

where fΣ1⊗Σ∨2
belongs to the (J×J)-fixed subspace of the smooth completion of Σ1⊗Σ∨2 ,

and the sum converges in the C∞([H]×[H])-topology, hence commutes with integration

over the diagonal copy of [H] inside [H]×[H]:∫
[H]

f =
∑
Σ

∫
[H]

fΣ1⊗Σ∨2
. (29.1)
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Taking for f the restriction of T⊗T ′ to [H]×[H], one obtains f |[H]=[T ]|[H] and∫
[H]

fΣ⊗Σ∨ =PΣ(T ),

so (29.1) specializes to (28.3).

29.2. Weyl law upper bound

The map PΣ is identically zero unless σ′ is T ′-distinguished in the sense that there is a

non-zero equivariant map π⊗
π′!σ⊗
σ′ and it does not vanish on T ′. By our assumption

that Gp is compact for all archimedean p 6=q, the latter condition forces σ′ to belong to

some compact subset of the unitary dual of H ′ depending only upon T ′. A weak form

of the Weyl law then reads: for x>1,

#{Σ :PΣ 6= 0 and |λσ|6x}�xO(1). (29.2)

This follows from the usual Weyl law on [H], using §9.8.

29.3. Truncated spectral decomposition

The main result of this section is the following. As explained above, it allows us to

discard all terms in the spectral expansion (28.4) with large eigenvalue, and also those

microlocally separated from the symbol a.

Let U be an open subset of [h∧] and W⊆h∧ be an open subset of the preimage of U .

We say that σ is bad (relative to the scaling parameter h and the choice of U and W ) if

either

• hλσ /∈U , or

• σ is tempered and hOσ∩W=∅.

We say otherwise that σ is good.

Theorem 29.1. Let a∈C∞c (g∧) be supported in the preimage of W . Then,∫
[H]

[a] = lim
h!0

hd
∑

Σ :σ is good

PΣ(Oph(a)). (29.3)

More generally, for a1, ..., ak satisfying the same assumptions as a,∫
[H]

[a1 ... ak] = lim
h!0

hd
∑

Σ :σ is good

PΣ(Oph(a1) ...Oph(ak)). (29.4)
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Proof. Note that PΣ factors as an (H×H)-equivariant composition of h-uniformly

continuous maps

Ψ−∞= Ψ−∞(π)−!Ψ−∞(σ)
trσ−−!C. (29.5)

We may choose ε>0, depending only upon the support of a, such that

ξ ∈ supp(a) and hλσ /∈U =⇒ dist([ξ|h],hλσ)> ε.

By (10.9), it follows that, for each fixed N∈Z>0,

hλσ /∈U =⇒ PΣ(Oph(a))�hN 〈hλσ〉−N . (29.6)

From this and (29.2), we see that the contribution to (28.4) from those Σ with hλσ /∈U
is negligible.

It remains to estimate the contribution from when σ is tempered and hλσ∈U but

hOσ∩W=∅. By (29.2), the number of such Σ is h−O(1), so it will suffice to show for

each such Σ that PΣ(Oph(a))=O(h∞).

The image in h∧ of the support of a is a compact subset of W . By the smooth

version of Urysohn’s lemma, we may thus choose a real-valued b∈C∞c (W ) such that b≡1

on the image of the support of a. By the composition formula (8.36), we then have

Oph(a)≡Oph(b :π)Oph(a) mod h∞Ψ−∞.

By the continuity of (29.5), it follows that

PΣ(Oph(a)) =PΣ(Oph(b :π)Oph(a))+O(h∞).

By the equivariance of (29.5), we have

PΣ(Oph(b :π)Oph(a)) = tr(T1T2),

where T1 :=Oph(b:σ) and T2∈Ψ−∞(σ) denotes the image of Oph(a). By Cauchy–Schwarz

for the Hilbert–Schmidt inner product, we have

|tr(T1T2)|26 tr(T ∗1 T2)tr(T ∗2 T2).

Using the composition formula, the Kirillov formula for σ and the assumption on the

support of b, we see that tr(T ∗1 T1)�h∞. On the other hand, we obtain using Theorem 5.8

and (12.6) and the continuity of (29.5) that tr(T ∗2 T2)�h−O(1).

This completes the proof of (29.3).
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For (29.4), note first by (26.5) and (28.4) that∫
[H]

[a1 ... ak] = lim
h!0

hd
∑
Σ

PΣ(Oph(a1) ...Oph(ak)).

We fix N>0 large enough and apply the composition formula (5.5) to write

Oph(a1) ...Oph(ak)≡
∑

06j<J

hj Oph(bj) mod hN Ψ−N ,

where J is large but fixed and the bj satisfy the same assumptions as the ai. We ap-

ply (10.9) as before to the contribution from the Oph(bj). We clean up the remainder

contribution using (10.7).

30. The smoothly weighted asymptotic formula

30.1. Overview

We retain the notation and setup of §25. This section contains the main automorphic

result in this paper: an asymptotic formula for the averaged GGP branching coefficient

L(Π,Σ), with the automorphic representation Π of G fixed and the automorphic repre-

sentation Σ of H traversing a smoothly-weighted family. (We will refine this in minor

ways in §31, by extending to unweighted families and then dividing through by their

cardinalities.) The proof involves three main inputs developed hitherto:

• The “inverse branching” results of Part IV (especially §22.3 and §24.2), which

allow us to pick off any reasonable family of representations Σ, say defined by weights

w(Σ), using a suitable family of vectors v∈Π:∫
[H]

|v|2≈
∑
Σ

L(Π,Σ)w(Σ) on average over v. (30.1)

• The “truncated spectral formula” in §29, which allows us to discard some of the

contributions of undesirable automorphic forms Σ implicit in (30.1).

• The “equidistribution” result, proved in §27 using Ratner’s theorem, by which we

deduce that (on average)

1

vol([H])

∫
[H]

|v|2≈ 1

vol([G])

∫
[G]

|v|2,

leading to the required asymptotic formula for∑
Σ

L(Π,Σ)w(Σ).



the orbit method and analysis of automorphic forms 193

30.2. Function spaces

We now define the precise sets of weights w(Σ) to be summed against.

30.2.1. Spaces of representations of H

We may apply the notation of §20 to each place p of F , thus the sets

Ĥp⊇ (Ĥp)temp⊇ (Ĥp)
πp

temp

are respectively the unitary dual of Ĥp, the tempered dual and its πp-distinguished subset.

We omit the index when p=q, and use a superscripted prime to denote a product over

all p∈R\{q}.

30.2.2. The distinguished archimedean place

Recall (§9.2) that the geometric quotient [h∧] of h∧=ih∗ is isomorphic to an affine space.

We denote as in §22 by Ostab⊆O⊆g∧ the subset of H-stable elements of the limit coad-

joint orbit O of π, and set

K :=C∞c ([h∧]∩image(Ostab)).

In view of the stability characterization given in §14.2, an element of K is just a smooth

compactly-supported function k on the space

{µ∈ [h∧] : no eigenvalue of µ equals zero}.

(We used the fact that O is contained in the nilcone.)

As in §22.3, we assign to each fixed k∈K and all sufficiently small h>0 a function

kh: Ĥ −!C,

as follows:

• if σ is tempered and Oπ,σ 6=∅ (i.e., σ is “orbit-distinguished” by π; see §22.2),

then we evaluate on the rescaled infinitesimal character:

kh(σ) := k(hλσ);

• otherwise, we set kh(σ):=0.
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30.2.3. The auxiliary archimedean places

Let p be an archimedean place other than q. Since the groups (Gp, Hp) are assumed

compact, the set (Ĥp)
πp

temp is finite. We denote by Kp the set of complex-valued functions

kp: (Ĥp)
πp

temp!C. (Compare with §21.)

30.2.4. The auxiliary p-adic places

We now let p be a finite place in R. We denote by Kp the space of allowable functions

kp: (Ĥp)
πp

temp!C (see §24.2 for the definition of “allowable”, and recall that Theorem 24.5,

stated in §24.3, provides a large supply of allowable functions).

30.2.5. The auxiliary places, grouped together

We denote by K′ the space of functions

k′: (Ĥ ′)π
′

temp−!C

spanned by the pure tensors

k′(x) :=
∏

p∈R\{q}

kp(xp)

for kp∈Kp. We extend each such k′ by zero to a function on the unitary dual Ĥ ′ of H ′.

30.3. Main result

We denote by d∈Z>0 half the real dimension of O, as usual (see §31.4 for numerics). We

fix k∈K, k′∈K′, and set

` := hd
∑

σ and σ′ tempered

Oπ,σ 6=∅

L(Π,Σ)kh(σ)k′(σ′).

Here and henceforth we sum over automorphic representation Σ of H, as in §25, whose

components σ and σ′ satisfy the displayed conditions, so that L(Π,Σ) is defined.

We write
∫
k and

∫
k′ for integrals taken with respect to the normalized affine

measure on [h∧] and the Plancherel measure on Ĥ ′temp, respectively. We write A'B for

A=B+oh!0(1).

Theorem 30.1.

`' τ(H)

τ(G)

∫
k

∫
k′.
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The proof occupies the remainder of this section. We may and shall assume that k

and k′ are non-negative.

It will be convenient to introduce the following otherwise unusual notation.

Definition 30.2. Let p:X!Y be a continuous map between topological spaces. Let

U⊆X and V ⊆Y be subsets. We write U≺V if p(U)⊆V 0, and similarly V ≺U if 
V ⊆
p(U)0. (Here 
V and V 0 denote closure and interior.)

The precise choice of p (typically a “projection”) to which one should apply this

notation should be clear by context in what follows. We caution that ≺ is not in any

sense “transitive”.

Lemma 30.3. There are precompact open subsets U⊂[h∧], W⊆h∧ and V ⊂g∧ such

that, for small enough h>0,

(i) 
V consists of H-stable elements,

(ii) supp(k)≺V ≺W≺U≺Ostab, and

(iii) if σ∈Ĥtemp satisfies Oπ,σ=∅, then hOσ∩W=∅.

Informally, this says that

• V is large enough to support symbols a suitable for approximating k via

k(µ)≈
∫
O(µ)

a,

but not much larger;

• W is large enough to majorize the image of the support of any such symbol a, but

small enough to avoid any multiorbit Oσ for which Oπ,σ=∅;

• U is large enough to majorize all of the above, but not too large.

Proof. We start by choosing U as indicated with supp(k)≺U≺Ostab. We then find

a compact subset K of Ostab so that supp(k)⊆image(K)⊂U . Fix ξ∈K. We may find

ξh∈hOπ tending to ξ. Since ξ is H-stable, its h-stabilizer is trivial. It follows readily

that the map G!G·ξ!h∧ has surjective differential g!Tξ(G·ξ)!h∧. The same holds

true for all ξ′ in a small neighborhood of ξ; in particular, for h small enough, it holds

for ξh. We may thus find a small precompact open neighborhood W̃ξ⊆g∧ of ξ whose

image Wξ⊆h∧ satisfies Wξ≺hOπ for all small h. In particular, Wξ∩hOσ=∅ whenever

Oπ,σ=∅. We may assume, moreover, having chosen W̃ξ small enough, that Wξ≺U .

Choose a small precompact open neighborhood Vξ of ξ, with 
Vξ consisting of H-

stable elements, such that Vξ≺Wξ. Since K is compact, we may find ξ1, ..., ξn∈K such

that K⊆V :=Vξ1∪...∪Vξn . We then take W :=Wξ1∪...∪Wξn .

We henceforth fix such U , W and V . We note that U and V satisfy the conditions

enunciated in §22.3.
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Lemma 30.4. Let a1, ..., ak∈C∞c (g∧). Let T ′∈π′⊗π′ be positive definite, but not

necessarily of trace 1. Then,

hd
∑
Σ

PΣ(Oph(a1) ...Oph(ak)⊗T ′)' τ(H)

τ(G)
·
(∫
O
a1 ... ak dω

)
·tr(T ′). (30.2)

If the ai are supported in the preimage of W , then the same holds after restricting to Σ

for which σ is good in the sense of §29.3.

Proof. We may normalize T ′ to have trace 1. We then construct “limit states”

[a1 ... ak] as in §26. (This involves passing to subsequences of {h}, which we may do after

having assumed for the sake of contradiction that the estimate fails for some infinite

sequence of h tending to zero.) The left-hand side tends to
∫

[H]
[a1 ... ak], by (26.5) and

(28.3). We then use the equidistribution statement (27.1), together with (26.6), to get

to the right-hand side.

For the last statement we use Theorem 29.1.

Lemma 30.5. For each ε>0 and N∈Z>0 there exist non-negative

a, a1, a2, ant ∈C∞c (V )

and (smooth, finite-rank) positive-definite tensors T ′, T ′1, T
′
2∈π′⊗π′ such that∣∣∣∣∫ k

∫
k′−

(∫
O
a2 dω

)
tr(T ′)

∣∣∣∣6 ε, (30.3)

2∑
j=1

(∫
O
a2
j dω

)
tr(T ′j)6 ε, (30.4)(∫

O
a2

nt dω

)
tr(T ′)6 ε, (30.5)

and, for σ tempered with hλσ∈U ,

|kh(σ)k′(σ′)−Hσ(Oph(a)2)Hσ′(T ′)|6
2∑
j=1

|Hσ(Oph(aj)
2)|Hσ′(T ′j) (30.6)

and, for σ non-tempered with hλσ∈U ,

PΣ(Oph(a)2⊗T ′) =PΣ(Oph(ant)
2⊗T ′)+O(hN ). (30.7)

Proof. We combine together the analogous approximation results obtained in §21,

§22.3 and §24.2. We record details below.
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In what follows, we write (e.g.) C(x, y, z) for some constant >1 depending only

upon the quantities x, y and z. We allow the precise definitions of such constants to vary

from one invocation to the next. For instance, we have∫
k6C(k),

∫
k′6C(k′) and

∫
kp6C(kp).

We fix η∈(0, 1); at the end of the proof, η will be chosen small enough in terms of ε and

the intervening constants.

We may assume that k′ is a pure tensor∏
p6=q

kp,

with each factor kp non-negative; here and henceforth p is restricted to the set R of

relevant places. By §21 and §24.2 (see (24.3) and (24.5)), we may find for each auxiliary

place p∈R\{q} some positive-definite tensors T ′p, T
(1)
p and T

(2)
p , with

tr(T
(1)
p )6C(kp), |kp(Σp)|6HΣp

(T
(1)
p )

and

tr(T
(2)
p )6 η, |kp(Σp)−HΣp

(T ′p)|6HΣp
(T

(2)
p ).

By (24.7), we may assume also that∣∣∣∣∫ kp−tr(T ′p)

∣∣∣∣6 η,
and hence, in particular, that tr(T ′p)6C(kp). We set

T ′ :=
⊗
p6=q

T ′p.

By Theorem 22.2, we may find a, a1, a2 and ant of the required form for which

•
∫
O a

2
16C(k, V ),

•
∫
O a

2
2,
∫
O a

2
nt and

∣∣∫ k−∫O a2
∣∣ are bounded by η (thus

∫
O a

26C(k)),

• if σ is tempered and Oπ,σ is non-empty, then

|kh(σ)|6 |Hσ(Oph(a1)2)|,

|kh(σ)−Hσ(Oph(a)2)|6 |Hσ(Oph(a2)2)|,

• if σ is non-tempered, then (30.7) holds (note that the Hermitian form PΣ(−⊗T ′)
satisfies the hypotheses indicated around (22.8)).
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For tempered σ with hλσ∈U , the left-hand side of (30.6) is bounded by

]∑
j=( jp)p∈R

Hσ(Oph(ajq)2)
∏
p6=q

HΣp
(T

( jp)
p ), (30.8)

where the sum is taken over all tuples j as indicated, for which

• jp∈{1, 2} for all p∈R, and

• jp=2 for at least one p∈R.

For r=1, 2, define

T ′r :=

]∑
j=( jp)p∈R:jq=r

⊗
p6=q

T
( jp)
p .

Then, (30.8) equals the right-hand side of (30.6), so that (30.6) holds.

It remains to verify the estimates (30.3)–(30.5). Combining together the estimates

noted above, we obtain the inequalities

∣∣∣∣∫ k

∫
k′−

(∫
O
a2 dω

)
tr(T ′)

∣∣∣∣6 η2#RC(k)
∏
p6=q

C(kp),

(∫
O
a2

1 dω

)
tr(T ′1)6 η2#R−1C(k, V )

∏
p 6=q

C(kp),

(∫
O
a2

2 dω

)
tr(T ′2)6 η2#R−1

∏
p6=q

C(kp),

(∫
O
a2

nt dω

)
tr(T ′)6 η

∏
p6=q

C(kp).

(30.9)

We conclude by choosing η small enough that the right-hand side of each of the above

inequalities is bounded by ε.

We turn now to the proof of the theorem. We retain the definition of “good” (relative

to h, U and W ) from §29.3; recall that this excises all σ for which hλσ /∈U , as well as

those which are not orbit-distinguished. Note also that every σ in the support of kh is

good. Let ε>0 be small; we eventually let it tend to zero sufficiently slowly with respect

to h.

Lemma 30.6. We have

|`−(M−Mnt)|6 E , (30.10)
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where ` is as defined in §30.3 and

M : = hd
∑

Σ :σ is good

PΣ(Oph(a)2⊗T ′),

Mnt : = hd
∑

Σ :σ is good

and non-tempered

PΣ(Oph(a)2⊗T ′),

E : = hd
∑

Σ :σ is good

2∑
j=1

PΣ(Oph(aj)
2⊗T ′j).

Proof. By the definitions and the period formula (28.5), we have

`−(M−Mnt) = hd
∑

Σ :σ is good

and tempered

L(Π,Σ)(kh(σ)k′(σ′)−Hσ(Oph(a)2)Hσ′(T ′)).

By (30.6), the above is bounded in magnitude by

2∑
j=1

hd
∑

Σ :σ is good

and tempered

L(Π,Σ)|Hσ(Oph(aj)
2)|Hσ′(T ′j)︸ ︷︷ ︸

=PΣ(Oph(aj)
2⊗T ′j)

6 E .

Note that the absolute values surrounding Hσ on the right-hand side of (30.6), which are

expected to be extraneous (see the remark following Theorem 22.2), have disappeared,

due to the manifest positivity of PΣ.

By Lemma 30.4 and (30.3), we have (with ' as defined in §30.3)

M' τ(H)

τ(G)

(∫
O
a2 dω

)
tr(T ′) =

τ(H)

τ(G)

∫
k

∫
k′+oε!0(1). (30.11)

The estimate

Mnt = oε!0(1). (30.12)

follows from Lemma 30.4, using the weak Weyl law (29.2) to discard error terms:

Mnt
(a)
= hd

∑
Σ :σ is good

and non-tempered

(PΣ(Oph(ant)
2⊗T ′)+O(hN ))

(b)

6 hd
∑
Σ

PΣ(Oph(ant)
2⊗T ′)+O(hN−O(1))

(c)
=
τ(H)

τ(G)

(∫
O
a2

nt dω

)
tr(T ′)︸ ︷︷ ︸

6ε, by (30.5)

+oh!0(1)+O(hN−O(1))

= oε!0(1),
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where (a) is due to (30.7), (b) to (29.2) and (c) to Lemma 30.4. We note that in the

second step, we used the positivity of PΣ to drop the condition “σ non-tempered”, and

that in the final step, the implied constant O(1) in the exponent is independent of N ,

and so by taking N large enough we may arrange that the difference N−O(1) is positive.

The estimate

E = oε!0(1) (30.13)

follows similarly from Lemma 30.4 and (30.4):

E =
τ(H)

τ(G)

2∑
j=1

(∫
O
a2
j dω

)
tr(T ′j)︸ ︷︷ ︸

6ε

+oh!0(1) = oε!0(1).

By combining these last estimates (30.11)–(30.13) with (30.10), we conclude the

proof of Theorem 30.1.

31. The normalized asymptotic formula

The hard work having been completed, we explain here how Theorem 30.1 may be

applied to sharply-truncated sums over families. By dividing out the cardinalities of

those families, we then obtain the normalized asymptotic formulas promised in §1.

31.1. Approximating nice sets by continuous functions

Let (X,µ) be a normal topological space equipped with a Borel measure.

Definition 31.1. We say that a subset U⊆X is nice if it is open, precompact, and

has measure-zero boundary.

Definition 31.2. Given a class C of integrable functions on X, we say that an inte-

grable function w on X is approximable by C if

(i) there exists k0∈C such that |w|6k0, and

(ii) for each ε>0, there exist k, k+∈C such that

|w−k|6 k+ and

∫
k+6 ε.

By an exercise in applying Urysohn’s lemma, we have the following result.

Lemma 31.3. The characteristic function of any nice subset U⊆X is approximable

by the class Cc(X) of continuous compactly-supported functions.
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The notion of approximability is well behaved with respect to products. Indeed,

suppose given spaces X1, ..., Xn as above, each equipped with a Borel measure. For

j=1, ..., n, let wj be an integrable function on Xj that is approximable by some class

Cj of integrable functions. Assume also that k1+k2∈Cj , whenever k1, k2∈Cj . Then, the

function X1×...×Xn3x 7!w1(x1) ... wn(xn) is approximable by the class C consisting of

all sums of functions of the form x 7!k1(x1) ... kn(xn), with kj∈Cj .

31.2. Summing against approximable weights

The spaces [h∧]∩image(Ostab) and (Ĥ ′)π
′

temp come with natural topologies, given in the

former case by identifying [h∧] with an affine space, in the latter by the discussion in §21

and §24.1. They also come with natural measures: normalized affine measure and the

restriction of Plancherel measure, respectively. The terminology of §31.1 thus applies,

and we readily derive from Theorem 30.1 the following.

Corollary 31.4. Let k: [h∧]!C and k′: (Ĥ ′)π
′

temp!C be any functions approx-

imable by the function spaces K and K′ defined in §30.2. Then, with notation as in

§30.3,

hd
∑

σ and σ′ tempered

Oπ,σ 6=∅

L(Π,Σ)kh(σ)k′(σ′)' τ(H)

τ(G)

∫
k

∫
k′.

31.3. Summing over unweighted families

Definition 31.5. We say that a subset U⊂[h∧]∩image(Ostab) is admissible if it is nice

(cf. §31.1), and that a subset U ′⊂(Ĥ ′)π
′

temp is admissible if is nice and if its projection onto

(Ĥp)
πp

temp, for a finite place p∈R, is contained in the union of the allowable components

(see §24).

(The smooth version of) Lemma 31.3 implies the following result.

Lemma 31.6. If U (resp. U ′) as above is admissible, then its characteristic function

is approximable by K (resp. K′).

We henceforth fix some non-empty admissible sets U and U ′ above, and define the

family Fh as follows.

Definition 31.7. We let Fh be the set of Σ such that

• σ and σ′ are tempered,

• σ is orbit-distinguished, i.e. Oπ,σ 6=∅,

• hλσ∈U and σ′∈U ′.
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Corollary 31.4 specializes as follows.

Corollary 31.8. We have

hd
∑

Σ∈Fh

L(Π,Σ)' τ(H)

τ(G)
vol(U)vol(U ′). (31.1)

31.4. Family size

To interpret the left-hand side of (31.1) as a normalized average of L(Π,Σ), we need to

know the approximate cardinality of the family Fh.

Lemma 31.9. One has

hd |Fh|= τ(H)vol(U)vol(U ′)+oh!0(1), (31.2)

Proof. This can be deduced from the methods of Duistermaat, Kolk, Varadarajan

[DKV] and Sauvageot [Sau], but it is simpler for us to give a more direct argument.

We apply the trace formula for the compact quotient [H] in a standard way, using the

approximation arguments given by

• Lemma 22.4, and

• Theorem 24.5, via the consequences (24.4) and (24.6).

For small h, the support condition 1+oh!0(1) on the test function at q implies that

the only non-zero contribution on the geometric side comes from the identity element.

We readily obtain the smoothly-weighted variant of (31.2) from which (31.2) itself then

follows as in the proof of (31.1).

31.5. Analytic conductors

Let Σ∈Fh. We denote by C(Π,Σ) the analytic conductor of L(s,−,Π×Σ∨) at s= 1
2 .

Lemma 31.10. C(Π,Σ)�|Fh|4.

Proof. Our assumptions imply that the contribution to the analytic conductor from

places other than q is bounded.

By the discussion in §15 (especially (15.3)), we have

C(Π,Σ)� h−εmHmG ,

with notation as in Table 1. On the other hand, we have seen that |Fh|�h− dimBH . By

inspection, 4 dim(BH)=εnGnH in all cases. The required estimate follows.
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label G H dim(BH) mG mH ε

(i) GLn+1 GLn
n(n+1)

2
n+1 n 2

(ii) Un+1 Un
n(n+1)

2
n+1 n 2

(iii) SO2n+2 SO2n+1 n(n+1) 2n+2 2n 1

(iv) SO2n+1 SO2n n2 2n 2n 1

Table 1. Numerology: mG is the dimension of the standard representation of Ĝ, similarly for H.

31.6. Main result

Dividing (31.1) by (31.2), we conclude the following.

Theorem 31.11. Let notation and assumptions be as above. In particular, we as-

sume the following :

• (G,H) is a GGP pair over a number field F . We have fixed a large enough finite

set of places R.

• We have fixed an automorphic representation Π on G, unramified outside of R,

and satisfying the conditions enunciated in §25.7.

• We have fixed an archimedean place q∈R, and set

H = H(Fq) and H ′=
∏

p∈R\{q}

H(Fp).

For an automorphic representation Σ on H, unramified outside of R, we have denoted

by σ and σ′ the associated representations of H and H ′.

Let U and U ′ be admissible subsets of the tempered distinguished spectra of H and

H ′, as above, and let Fh denote the family of representations on H associated with these

subsets, as in Definition 31.7.

Let L(Π,Σ) denote the branching coefficient as defined in §25.4. Then

1

|Fh|
∑

Σ∈Fh

L(Π,Σ) =
1

τ(G)
+oh!0(1). (31.3)

If we assume the conjectures of Ichino–Ikeda and N. Harris (§25.5), or restrict to cases
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in which those conjectures are known (e.g., [Z1]), then

1

|Fh|
∑

Σ∈Fh

τ(G)τ(H)

2β
∆

(R)
G

L(R)
(

1
2 ,−,Π×Σ∨

)
L(R)(1,Ad,Π×Σ∨)

= τ(H)+oh!0(1). (31.4)

We may “simplify” the final formulas by recalling (§25.7) that τ(G)=τ(H)=2.

References

[AV] Adams, J. & Vogan, D. A., Jr., Contragredient representations and characterizing
the local Langlands correspondence. Amer. J. Math., 138 (2016), 657–682.

[ALTV] Adams, J. D., van Leeuwen, M. A. A., Trapa, P. E. & Vogan, D. A. J, Unitary
representations of real reductive groups. Astérisque, 417 (2020), 188 pp.
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