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1. Introduction

1.1. Biperfect bases and MV polytopes

Let G denote a simple simply-connected complex algebraic group. Going back to the

work of Gel′fand–Zelevinsky [GZ], there has been great interest in finding special bases

for irreducible representations L(λ) of G. Good bases restrict to bases of weight spaces

and induce bases of tensor product multiplicity spaces.

Rather than work with individual representations, it is convenient to pass to the

coordinate ring C[N ] (whereN⊂B⊂G is the unipotent radical of a Borel), which contains

all the irreducible representations. Berenstein–Kazhdan [BeK] introduced the notion of

perfect bases for L(λ) and C[N ]; in this paper, we slightly modify their definition and

work with biperfect bases for C[N ]. Biperfect bases have good behaviour with respect to

the left and right actions of the Chevalley generators {ei}⊂n on C[N ] (see §2.3).

For G=SL2,SL3,SL4, biperfect bases exist, are unique, and are given by explicit

formulas. However, for general G, uniqueness does not hold, nor are explicit formulas

available. Some constructions of biperfect bases are known in general. The first general

construction was Lusztig’s dual canonical basis [Lu2], aka Kashiwara’s upper global basis

[Kas1]. In this paper, we will focus on the Mirković–Vilonen basis, which is constructed

for any G using the geometric Satake correspondence, and Lusztig’s dual semicanonical

basis, which is constructed for simply-laced G using preprojective algebra modules.

Though uniqueness does not hold in general, a beautiful result of Berenstein–Kazhdan

[BeK] shows that every biperfect basis has the same underlying combinatorics. More pre-

cisely, any biperfect basis B comes with maps ẽi, ẽ
∗
i :B!B∪{0} (for each i∈I) which

approximate the left and right actions of ei on B. These maps ẽi and ẽ∗i endow B with

a bicrystal structure. If B and B′ are two biperfect bases, then there is a unique iso-

morphism of bicrystals B!B′ (Theorem 2.4). We write B(∞) for the abstract bicrystal

common to all biperfect bases.

1.2. Bases and their polytopes

Let G∨ be the Langlands dual group and let Gr=G∨((t))/G∨[[t]] denote the affine Grass-

mannian of this group. Mirković–Vilonen [MV] defined a family of cycles in Gr which,

under the geometric Satake correspondence, give bases for irreducible representations of

G. We will give a slight modification of their construction in order to get a basis for

C[N ]. Let Sµ± :=N∨± ((t))Lµ denote semi-infinite orbits in Gr (where Lµ∈Gr is the point

defined by the G∨-coweight µ). We will be concerned with the intersection of opposite

semi-infinite orbits. For any ν∈Q+, the positive root cone, the irreducible components
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of S0
+∩S−ν− are called stable MV cycles. These cycles index the MV basis {bZ} for C[N ].

In addition to the MV basis, in this paper, we also study the dual semicanonical basis

for C[N ], which was introduced by Lusztig [Lu5] and further studied by Geiss–Leclerc–

Schröer [GLS]. This basis {cY } is indexed by irreducible components Y of Lusztig’s

nilpotent varieties, which parameterize representations of the preprojective algebra Λ.

With each Λ-module M , we can associate a vector ξM∈C[N ] and we define cY :=ξM for

a general point M∈Y .

As the MV basis and dual semicanonical basis are both biperfect bases (Theorems 6.2

and 11.2), we get canonical bijections

{bZ}−!B(∞) −{cY }.

Suppose that bZ and cY correspond under these bijections. Outside of small rank,

this does not imply that bZ=cY as elements of C[N ], just that they represent the same

element of the crystal. However, this combinatorial relationship is very appealing, as can

be seen by the following result which combines the work of the second author [Kam2]

and the first and second authors (together with Tingley) [BKT].

Theorem 1.1. Let Z and Y be as above and let M be a general point of Y . Then,

we have an equality of polytopes:

Conv({µ :Lµ ∈Z}) =−Conv({dim−−→N :N ⊆M is a Λ-submodule})

MV polytopes were first defined by Anderson [A] as the left-hand side of the above

equality. However, in retrospect, it is more natural to view them as purely combinatorial

objects: they can either be defined using a condition on their 2-faces (as in [Kam2]) or

from the crystal B(∞) using Saito reflections (as in §3.3).

The above equality of polytopes motivates the following question.

Question 1.2. Let Z and Y be as above. Is there a relationship between the equi-

variant invariants of Z and the structure of a general point of Y ? How is this connected

to the relationship between the basis vectors bZ and cY ?

1.3. The MV basis

The first part of the paper is devoted to understanding the MV basis. We prove the

following results in Theorems 6.2, 5.4 and 7.11.

Theorem 1.3. (i) The MV basis {bZ} is a biperfect basis for C[N ].

(ii) For each i, the action of ei on bZ is given by the intersection multiplicities

appearing in the intersection of Z with a hyperplane section.
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Figure 1. The SL3 examples of Di for i=(1, 2, 1) and (2, 1, 1), vertices labeled by their

positions, with the shading to suggest the (piecewise-linear function times Lebesgue) measure.

(iii) Given two MV cycles Z1 and Z2, the product bZ1bZ2 in C[N ] is given by the

intersection multiplicities appearing in the intersection of the Beilinson–Drinfeld degen-

eration of Z1×Z2 with the central fibre.

In particular, the structure constants for the action of ei and for the multiplication

are non-negative integers.

Part (i) of this theorem is a 2-sided extension to C[N ] of a like result from Braverman

and Gaitsgory [BrG, Proposition 4.1]. Part (iii) was conjectured by Anderson in [A]. We

prove (i) and (ii) using a result of Ginzburg [Gi] and Vasserot [V] concerning the action

of the principal nilpotent under the geometric Satake correspondence. We prove (iii) by

carefully considering the fusion product in the Satake category, as defined by Mirković–

Vilonen [MV].

Part (iii) of this theorem is closely related to an old result of Feigin–Finkelberg–

Kuznetzov–Mirković [FFKM] and a more recent result of Finkelberg–Krylov–Mirković

[FKM] describing the algebra U(n) using Zastava spaces.

1.4. Equivariant invariants of MV cycles

In order to further our understanding of the Mirković–Vilonen basis, we relate the basis

vector bZ∈C[N ] to equivariant invariants of the MV cycle Z. We begin by introducing

a remarkable map from C[N ] to the space PP of piecewise polynomial measures on t∗R.

Given any sequence i=(i1, ..., ip)∈Ip of simple roots, we define a measure Di on t∗R as

follows. First, we consider a linear map πi:Rp+1
!t∗R taking the standard basis vectors

to the negative partial sums αi1 +...+αik . Then, we define Di to be the push-forward of

Lesbesgue measure on the p-simplex under πi (see Figure 1).

These measures Di satisfy the shuffle relations under convolution (Lemma 8.5) and

so we obtain an algebra morphism D:C[N ]!PP by

D(f) =
∑
i

〈ei, f〉Di,
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where ei=ei1 ... eip∈U(n) and where 〈· , ·〉:U(n)⊗C[N ]!C is the usual pairing.

Let 
D:C[N ]!C[treg] be the map that sends a function f∈C[N ]−ν , to the coefficient

of e−ν in the Fourier transform of D(f). Then, 
D is an algebra morphism, which can be

described using the universal centralizer of the Lie algebra g. Namely, consider the map

treg
!N that associates with x∈treg the unique nx∈N such that Adnx(x+e)=x, where

e is a principal nilpotent. We prove that the map 
D:C[N ]!C[treg] is the algebra map

dual to x 7!nx (Proposition 8.4).

On the other hand, associated with Z, we have the Duistermaat–Heckman measure

DH(Z), a measure (defined by Brion–Procesi [BP], following ideas from symplectic ge-

ometry) on tR which captures the asymptotics of sections of equivariant line bundles on Z

(see §9). This measure lives on the MV polytope of Z and its Fourier transform encodes

the class of Z in the equivariant homology HT∨

�
(Gr) (see Theorem 9.6). We also have

the equivariant multiplicity εL0
(Z) of Z; this is a rational function which represents the

equivariant homology class of Z in a neighbourhood of L0.

Our second main result (Theorem 10.2) relates the equivariant invariants of MV

cycles to the above morphisms.

Theorem 1.4. Let Z be an MV cycle. After identifying t and t∗, we have

DH(Z) =D(bZ) and εL−ν (Z) = 
D(bZ)

We give two proofs of this theorem. Our first proof uses Theorem 1.3 (ii) and a

general result of the third author [KnA2] for computing Duistermaat–Heckman measures

using hyperplane sections. Our second proof uses the work of Yun–Zhu [YZ], which relates

the equivariant homology of the affine Grassmannian to the universal centralizer.

As an application of this theorem, we prove a conjecture of Muthiah [Mu]. Let λ be

a dominant weight and identify the zero-weight space L(λ)0 with H2ρ∨(λ)(Grλ∩S0
−) by

the geometric Satake correspondence. Given an irreducible component Z⊂Grλ∩S0
−, we

can consider its equivariant multiplicity εL0
(Z)∈C(t∗) at the point L0∈Gr.

Muthiah [Mu] conjectured the following result and proved it when G=SLn and

λ6nω1. We prove it for all G and λ (Theorem 10.7).

Theorem 1.5. The linear map L(λ)0!C(t∗) defined by [Z] 7!εL0
(Z) is equivariant

with respect to the actions of the Weyl group on both sides.

1.5. Comparison of bases

As we have ring homomorphisms D:C[N ]!PP and 
D:C[N ]!C[treg], we immediately

see the following result.
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Corollary 1.6. Suppose that bZ=cY . Then, DH(Z)=D(cY ) and εL0
(Z)=
D(cY ).

This result is useful, since DH(Z) and εL0
(Z) can be computed using the methods of

computational commutative algebra. On the other hand, D(cY ) and 
D(cY ) are relatively

easy to compute using the following formula from Geiss–Leclerc–Schröer [GLS]:

〈ei, ξM 〉=χ(Fi(M)),

where χ(Fi(M)) denotes the Euler characteristic of the variety of composition series of

M of type i:

Fi(M) = {0⊂M1⊂ ...⊂Mm =M :Mk/Mk−1∼=Sik}

In the appendix (written with Anne Dranowski and Calder Morton-Ferguson) we

prove the following result (Theorem A.13).

Theorem 1.7. Let G=SL6 and let ν=2α1+4α2+4α3+4α4+2α5. There exists a

specific MV cycle Z of weight ν with corresponding component Y of Λ(ν), such that

D(cY )=
D(bZ)+2
D(b), where b is a vector which lies in both the MV and dual semi-

canonical bases. In particular, we have bZ 6=cY .

This theorem suggests that we have cY =bZ+2b in C[N ]. Remarkably, Geiss–

Leclerc–Schröer found the disagreement of the dual canonical and dual semicanonical

bases at the same location. Let v be the dual canonical basis element which corresponds

to both bZ and cY under the crystal isomorphisms. Then, from [GLS, p. 196], we have

cY =v+b. Turning these equations around, we thus expect that

cY = bZ+2b and v= bZ+b.

In §2.7, we explain that similar equations indeed hold in a D4 example.

In rank 2 cluster algebras, we have a similar trichotomy of bases (see for example

[La, Theorem 2.2]). In this trichotomy, the MV basis seems to match Lee–Li–Zelevinsky’s

[LLZ] greedy basis, which in turn coincides with Gross–Hacking–Keel–Kontsevich’s theta

basis [GHKK], by the work of Cheung–Gross–Muller–Musiker–Rupel–Stella–Williams

[CGM+]. The theta basis exists for any cluster algebra, in particular for C[N ]. Thus,

the above calculation suggests that the MV basis for C[N ] coincides with the theta basis

for this cluster algebra.

1.6. Extra-compatibility

In the Brion–Procesi definition that we use, the Duistermaat–Heckman measure is an

n!∞ limit of sums of point measures. Thus it is natural to look for this extra structure,

i.e. a finitely supported measure for each n, on the Λ-module side as well.
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For any preprojective algebra module M and n∈N, we consider the space of (possibly

degenerate) flags of submodules

Fn,µ(M) :=

{
0⊆N1⊆ ...⊆Nn⊆M :

∑
k

dim−−→Nk =µ

}
.

We prove the following result (Theorem 11.4) by a direct calculation; it is an analogue

of Theorem 1.4, but more elementary.

Theorem 1.8. For any Λ-module M , D(ξM ) describes the asymptotics (as n!∞)

of the function µ 7!χ(Fn,µ(M)).

Suppose that we have an MV cycle Z and a component Y of Lusztig’s nilpotent

variety, such that bZ=cY . This implies that D(bZ)=D(cY ), which, by Theorems 1.4

and 1.8, means that

lim
n!∞

(τn)∗[Γ(Z,L ⊗n)] = lim
n!∞

(τn)∗[H
�(Fn(M))],

where M is a general point of Y . Here, [ · ] denotes a class in the representation ring of T ,

regarded as a linear combination of point masses. The map τn represents scaling by 1/n

and the limits are taken in the space of distributions on t∗R. Thus, it is reasonable to

expect equality before taking the limits. We say that Z and Y are extra-compatible if,

for all n∈N and all weights µ, we have

dim Γ(Z,L ⊗n)µ =χ(Fn,−µ(M)).

For example, taking n=1 gives

dim Γ(Z,L )µ =χ({N ⊆M : dim−−→N =−µ}),

which can be viewed as an upgrade of the equality of polytopes from Theorem 1.1.

We prove the following result (Theorem 12.11) establishing extra-compatibility in a

simple class of examples.

Theorem 1.9. If Z is a Schubert variety in a cominuscule flag variety and M is

the corresponding Λ-module, then Z and M are extra-compatible.

In the appendix, we give also some examples for G=SL5,SL6 of modules which

satisfy the extra-compatibility condition for n=1, 2.
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1.7. A general conjecture

Most Λ-modules M are not extra-compatibly paired with any MV cycle; for example, if

G=SL3 and M is the sum of the two simple Λ-modules, then the rhombus Pol(M) is the

union of two MV polytopes, each a triangle. However, for any Λ-module M , we expect

that there will be a corresponding coherent sheaf on the affine Grassmannian, supported

on a union of MV cycles. To state our precise expectation, we introduce the following

space whose Euler characteristic coincides with Fn,µ(M).

Gµ(M [t]/tn) := {N ⊆M⊗C[t]/tn :N is a Λ⊗C[t]-submodule, with dim−−→N =µ}.

We conjecture the following result (see §12.2 for more precise motivation).

Conjecture 1.10. For any preprojective algebra module M of dimension vector ν,

there exists a coherent sheaf FM supported on S0
+∩S−ν− such that

Γ(Gr,FM⊗O(n))∼=H�(G(M [t]/tn))

as T∨-representations.

For example, if Z and M are extra-compatible, then we can take FM=OZ .

This conjecture has two important relations with recent developments. First, an

earlier version of this conjecture motivated a number of recent works by Mirković and

his coauthors [M], [MYZ] on the subject of local spaces.

Second, quiver varieties and affine Grassmannian slices are related using the theory

of symplectic duality as introduced by Braden–Licata–Proudfoot–Webster [BLPW]. Re-

cently, Braverman–Finkelberg–Nakajima [BFN] proved that affine Grassmannian slices

are Coulomb branches associated with quiver gauge theories. Using this result, in a forth-

coming paper, Hilburn, Weekes and the second author [HKW] will prove Conjecture 1.10

for those M which come from a quiver path algebra.

More generally, the relationship between MV cycles and preprojective algebra mod-

ules studied in this paper admits a generalization to arbitrary symplectic dual pairs. It

would be very interesting to understand how the results presented here generalize to that

setting.
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Part I. Biperfect bases

2. General background

2.1. Notation

Let G be a simple simply-connected complex algebraic group. Let B be a Borel subgroup

with unipotent radical N and let T be a maximal torus of B. Let g, b, n and t denote

their Lie algebras.

Let P denote the character lattice of T , let P+ denote the set of dominant weights,

and let Q⊂P denote the root lattice. Let Q+⊂Q denote the N-span of the positive roots.

We define the dominance order on P by declaring that λ>µ if λ−µ∈Q+.

Let {αi}i∈I denote the set of simple roots and let {α∨i }i∈I denote the set of simple

coroots. The Cartan matrix of G is A=(ai,j)i,j∈I , where ai,j=〈α∨i , αj〉. We define ρ∈P
to be the half-sum of the positive roots, and we define ρ∨∈HomZ(P, 1

2Z) to be the half-

sum of the positive coroots.

Let W=NG(T )/T be the Weyl group, generated by the simple reflections si for i∈I.

For i∈I, we set hi=α
∨
i and we choose root vectors ei and fi in g of weights αi and −αi,

respectively, normalized so that [ei, fi]=hi. Then, the element

s̄i = exp(−ei) exp(fi) exp(−ei)

is a lift of si in NG(T ). These elements s̄i satisfy the braid relations [Ti, Proposition 3],

which allows us to lift any w∈W to an element 	w∈NG(T ).

The enveloping algebra U(n) of n is generated by the elements ei; it is graded by Q+,

with deg ei=αi. As is customary, for any natural number n, we denote the nth divided

power of ei by e
(n)
i .
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G a simple simply-connected complex algebraic group §2.1

N,B, T,W usual data associated with G §2.1

ei∈n Chevalley generators §2.1

{αi}, {α∨i }, I the simple roots and coroots, with common index set I §2.1

P⊃P+ the weight lattice and dominant weights of G §2.1

Q⊃Q+ the root lattice and N-span of the positive roots §2.1

wt, εi, ẽi, φi, f̃i crystal data §2.3

B(∞) the bicrystal of C[N ] §2.4

L(λ) the irreducible G-representation of highest weight λ∈P+ §2.5

vλ, v
∗
λ a h.w. vector and a linear form on L(λ) s.t. v∗λ(vλ)=1 §2.5

Ψλ an embedding L(λ)!C[N ] taking v 7!v∗λ(?v) §2.5

G∨,Gr the Langlands dual group and its affine Grassmannian Gr §4.1

tµ, Lµ the points in G∨(K), Gr defined by the G∨-coweight µ∈P §4.1

Grλ, Sµ± the spherical and semi-infinite orbits in Gr §4.1

F=⊕µFµ the fiber functor H�(Gr, ?) and the weight functors §4.1

Υ the embedding Gr
� � //P(V (Λ0)) §4.3

i(Z,X ·V ) the multiplicity of Z in the intersection X ·V §5.1

Z a typical MV cycle §5.2

Iλ the intersection cohomology sheaf of Grλ §5.2

Z(λ) the set of MV cycles of type λ §5.2

Z(∞) the set of stable MV cycles §6.1

{bZ} the MV basis of C[N ], indexed by stable MV cycles §6.2

nx for x∈treg, the element of N such that Adnx(x)=e+x §8.1

D the corresponding algebra morphism C[N ]!C[treg] §8.1

Seq(ν) the set of sequences of simple roots with sum ν §8.2

Di a rational function associated with a sequence i §8.2

PP an algebra of distributions on t∗R §8.3

πi:Rp+1
!treg a linear map defined using the partial sums of a sequence i §8.3

Di a measure associated with a sequence i §8.3

D an algebra map C[N ]!PP §8.3

C the universal centralizer space {(b, x):Adb(ė+x)=ė+x} §8.5

ψ :C!N a morphism given by (tn, x) 7!n §8.5

τn scaling of t∗R by 1/n §9.1

S⊂C[t] the multiplicative set generated by µ∈P \{0} §9.2

Λ the preprojective algebra §11.1

dim−−→ the dimension vector of a Λ-module §11.1

Λ(ν) Lusztig’s nilpotent variety §11.1

Fi(M) the variety of composition series of type i §11.2

ξM an element of C[N ]− dim−−→M associated with a Λ-module M §11.2

Y a typical component of Λ(ν) §11.2

cY dual semicanonical basis element associated with Y §11.2

Fn,µ(M) the space of length n+1 flags in M of total dimension µ §11.3

Gµ(M [t]/tn) the space of dimension µ submodules in M⊗C[t]/tn §12.2

Table 1. Dramatis personæ.
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The torus T acts by conjugation on N , which endows the algebra C[N ] of regular

functions on N with a weight grading

C[N ] =
⊕
ν∈Q+

C[N ]−ν .

The group N and its Lie algebra n act on both sides of C[N ]; our convention is that

f ·n=f(n?) and n·f=f(?n) for each (n, f)∈N×C[N ]. Denoting by 1N the unit element

in N , we have

(a·f)(1N ) = (f ·a)(1N )

for each (a, f)∈U(n)×C[N ], and the map 〈a, f〉:=(a·f)(1N ) defines a perfect pairing

U(n)×C[N ]!C. In particular the vector space C[N ]−ν is linearly isomorphic to the

dual of U(n)ν for each ν∈Q+.

2.2. Crystals

Following for instance [KSa, §3], we recall that a G-crystal is a set B 630 endowed with

maps

wt:B−!P, εi:B−!Z∪{−∞}, ẽi:B−!B∪{0},

ϕi:B−!Z∪{−∞}, f̃i:B−!B∪{0}

for i∈I, satisfying the following axioms:

• For each b∈B and i∈I, ϕi(b)=〈hi,wt(b)〉+εi(b).
• For each b, b′∈B and i∈I, we have

b= ẽib
′ ⇐⇒ f̃ib= b′.

• For each b∈B and i∈I such that ẽib 6=0, we have

wt(ẽib) = wt(b)+αi, εi(ẽib) = εi(b)−1 and ϕi(ẽib) =ϕi(b)+1.

• For each b∈B and i∈I, if ϕi(b)=εi(b)=−∞, then ẽib=f̃ib=0.

A crystal B is said to be upper semi-normal if, for each b∈B and i∈I, there exists

n∈N such that ẽni b=0 and

εi(b) = max{n∈N : ẽni b 6= 0}.

A crystal B is said to be semi-normal if additionally, for each b∈B and each i∈I, there

exists n∈N such that f̃ni b=0 and

ϕi(b) = max{n∈N : f̃ni b 6= 0}.

All the crystals that we consider in this paper are upper semi-normal. The maps εi

and ϕi are then determined by the rest of the structure.
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2.3. Perfect bases

We look for bases of C[N ] that enjoy a form of compatibility with the left and right

actions of {ei}⊂n. The following definition matches Berenstein and Kazhdan’s one ([BeK,

Definition 5.30]), with the addition of a specific normalization.

Definition 2.1. A linear basis B of C[N ] is perfect if it is endowed with an upper

semi-normal crystal structure such that:

• The constant function equal to 1 belongs to B.

• Each b in B is homogeneous of degree wt(b) with respect to the weight grading

C[N ] =
⊕
ν∈Q+

C[N ]−ν .

• For each i∈I and b∈B, the expansion of ei ·b in the basis B has the form

ei ·b= εi(b)ẽib+
∑
b′∈B

εi(b′)<εi(b)−1

ab′b
′

with ab′∈C.

It follows from the definition that if a linear basis B of C[N ] is perfect, then, for

each i∈I and each b∈B, we have

n= εi(b) =⇒ e
(n)
i ·b= ẽni b and en+1

i ·b= 0.

For i∈I and n∈N, let us define

Ki,n := {f ∈C[N ] : en+1
i ·f = 0}.

Using the fact just above, we easily check that, for any perfect basis B of C[N ], we have

B∩Ki,n = {b∈B : εi(b)6n},

and moreover this set is a basis of Ki,n.

To take into account the right action of n on C[N ], we now introduce biperfect bases.

Definition 2.2. A linear basis B of C[N ] is biperfect(1) if it is perfect and if it is

endowed with a second upper semi-normal crystal structure (wt, ε∗i , ϕ
∗
i , ẽ
∗
i , f̃
∗
i ) which

shares the same weight map as the first crystal structure, and such that, for each i∈I
and b∈B,

b·ei = ε∗i (b)ẽ
∗
i b+

∑
b′∈B

ε∗i (b′)<ε∗i (b)−1

a∗b′b
′,

with ab′∈C.

(1) This is the same as the notion of “basis of dual canonical type” from [McN], except that we

have specialized q=1, and we do not require that B be invariant under the involution ∗ discussed in
Remark 6.7.
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We will refer to the data consisting of these two crystal structures on B as the

bicrystal structure of B. If B is a biperfect basis of C[N ], then for each i∈I and each

n∈N, the set {b∈B :ε∗i (b)6n} is a basis of

K∗i,n = {f ∈C[N ] : f ·en+1
i = 0}.

The algebra C[N ] does have biperfect bases, but the explicit constructions of such

bases rely on geometric constructions or on categorification methods. The first example

of a biperfect basis is Lusztig’s canonical basis, after specialization at q=1 and then

dualization; in other words, Kashiwara’s upper global basis, specialized at q=1 (see

for instance [Lu3, Theorems 1.6 and 7.5], and [Kas2, §5.3]). Another example, in the

simply-laced case, is the dual of Lusztig’s semicanonical basis (the compatibility of the

dual semicanonical basis with the subspaces Ki,n and K∗i,n is established in [Lu5, §3]).

The basis arising using the categorification by representations of KLR algebras is also

biperfect; this fact is transparent from Khovanov and Lauda’s first paper [KL] and is

given a detailed proof in [McN]. Lastly, the geometric Satake correspondence also gives

rise to a biperfect basis of C[N ], as we shall see in §5.

In types A1, A2 and A3, we not only have existence, but also uniqueness and explicit

formulas.

Example 2.3. Suppose G=SL3(C), with the standard choice for B, T and N . Then,

C[N ]=C[x, y, z], where x, y and z are the three matrix entries of an upper unitriangular

matrix  1 x z

0 1 y

0 0 1

∈N.
The unique biperfect basis of C[N ] is

B= {xazb(xy−z)c : (a, b, c)∈N3}∪{yazb(xy−z)c : (a, b, c)∈N3}.

The action from the left of the Chevalley generators is given by

e1 =
∂

∂x
and e2 =

∂

∂y
+x

∂

∂z
.

One can check that in B, the operators e1 and e2 act with coefficients in N and that the

structure constants of the multiplication belong to N.

For the explicit formulas in type A3, we refer to the paper [BZ2] by Berenstein and

Zelevinsky, which was the starting point of the theory of cluster algebras.
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2.4. Uniqueness of crystal

Berenstein and Kazhdan proved that, up to isomorphism, the crystal of a perfect basis

of C[N ] is independent of the choice of the basis ([BeK], Theorem 5.37). The same is

true for biperfect bases.

Theorem 2.4. Let B and C be two biperfect bases of C[N ]. Then, there is a unique

bijection B∼=C that respects the bicrystal structure.

Proof. We study the properties of the transition matrix M=(mb,c) between the two

bases, defined by the equation

c=
∑
b∈B

mb,cb (∗)

for each c∈C.

Fix i∈I, take c∈C, and set

n= max{εi(b) : b∈B such that mb,c 6= 0}.

Then, each b occurring in the right-hand side of (∗) belongs to Ki,n, and therefore c∈Ki,n,

that is, εi(c)6n. Applying e
(n)
i to (∗), we get

e
(n)
i ·c=

∑
b∈B

mb,c 6=0

εi(b)=n

mb,ce
(n)
i ·b.

The terms e
(n)
i ·b=ẽni b that survive in the right-hand side belong to B, hence are linearly

independent, which implies that the left-hand side is not zero, and therefore that εi(c)=n.

Let us define

Bi,n = {b∈B : εi(b) =n} and Ci,n = {c∈C : εi(c) =n}.

The above analysis shows that the matrix M is block upper triangular with respect to

the decompositions

B=Bi,0∪Bi,1∪Bi,2∪... and C =Ci,0∪Ci,1∪Ci,2∪...

of the rows and the columns, and that the diagonal blocks of M are equal under the

bijections

ẽni :Bi,n−!Bi,0 and ẽni :Ci,n−!Ci,0.

We now replace the index i∈I by a sequence i=(i1, i2, i3, ... ), in which each ele-

ment of I appears infinitely many times. With an element b∈B, we associate its string

parameters in direction i, namely the sequence ni(b)=(n1, n2, n3, ... ), where

n1 = εi1(b), n2 = εi2(ẽn1
i1
b), n3 = εi3(ẽn2

i2
ẽn1
i1
b), ... .
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The weights of the sequence of elements

b, ẽn1
i1
b, ẽn2

i2
ẽn1
i1
b, ẽn3

i3
ẽn2
i2
ẽn1
i1
b, ...

increase in (−Q+) with respect to the dominance order, so this sequence becomes even-

tually constant, and its final value is in

⋂
i∈I

Bi,0 =B∩
(⋂
i∈I

Ki,0

)
= {1}.

It follows that the map b 7!ni(b) is injective, and we can therefore transfer the lexico-

graphic order on string parameters to a total order on B. Similarly, we define the string

parameters in direction i of an element of C, and totally order C accordingly.

Iterating our first argument, we see that the matrix M is now upper triangular,

with all diagonal elements equal—and in fact equal to 1 because of the normalization

condition that 1 belongs to both B and C. In particular, we obtain a bijection between

B and C that preserves string parameters in direction i. This certainly means that this

bijection preserves the weight map and the crystal operations εi1 , ẽi1 and f̃i1 .

Now we can change i, and thus replace i1 by any element of I. The bijection does

not change, because given two sets B and C and a matrix whose elements are indexed by

B×C, there is at most one bijection B∼=C such that there exists a total order on B (and

hence C) making M upper unitriangular. In other words, if M is an upper unitriangular

matrix, and P and Q are permutation matrices, and PMQ−1 is upper triangular, then

P=Q. (For this last assertion, it is necessary to assume that the matrices have finitely

many rows and columns. This condition does not hold in our situation, but we can reduce

to it by restricting to weight subspaces.)

We now have proved the existence of a bijection B∼=C that respects the crystal

structure (wt, εi, ϕi, ẽi, f̃i). But we can similarly construct a bijection B∼=C that re-

spects the starred crystal structure (wt, ε∗i , ϕ
∗
i , ẽ
∗
i , f̃
∗
i ), and the argument in the previous

paragraph shows that the two bijections necessarily coincide.

The abstract bicrystal structure shared by all biperfect bases of C[N ] is denoted by

B(∞).

2.5. Bases in representations

Given a dominant weight λ, we denote the simple G-module of highest weight λ by L(λ).

We fix a preferred choice of a highest weight vector vλ in L(λ).
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Definition 2.5. A linear basis Bλ of L(λ) is perfect if it is endowed with an upper

semi-normal crystal structure such that the following conditions hold:

• the highest weight vector vλ belongs to Bλ;

• each b in Bλ is homogeneous of degree wt(b) with respect to the weight grading

of L(λ);

• for each i∈I and b∈Bλ, the expansion of ei ·b in the basis Bλ has the form

ei ·b= εi(b)ẽib+
∑
b′∈Bλ

εi(b′)<εi(b)−1

ab′b
′,

with ab′∈C.

Remark 2.6. (i) Any perfect basis is a good basis in the sense of Berenstein and

Zelevinsky [BZ1]. It follows that any perfect basis Bλ of L(λ) restricts to bases for

tensor product multiplicity spaces. Specifically, given dominant weights µ and ν, the set

{b∈Bλ : wt(b) = ν−µ and εi(b)6 〈hi, µ〉 for all i∈ I}

forms a basis for Hom(L(ν), L(λ)⊗L(µ)), where we use the inclusion

Hom(L(ν), L(λ)⊗L(µ))
� � // L(λ),

φ 7−! (1⊗v∗µ)(φ(vν))

(see below for the definition of v∗µ).

(ii) Let Bλ be a perfect basis of L(λ) and let B?λ be its dual basis with respect to a

contravariant form on L(λ). Then, for any Demazure module W⊂L(λ), the set B?λ∩W
is a basis of W . In fact, Kashiwara’s proof of the same result for the global crystal basis

([Kas3, §3.2]) only uses the axioms of a perfect basis (up to duality). In the case of the

semicanonical basis, this property was observed by Savage ([Sav, Theorem 7.1]).

Let v∗λ:L(λ)!C be the linear form such that v∗λ(vλ)=1 and v∗λ(v)=0 for any weight

vector v∈L(λ) of weight other than λ. We define an N -equivariant map

Ψλ:L(λ)−!C[N ]

by Ψλ(v)=v∗λ(?v). As a matter of fact, Ψλ is injective and that its image is

im Ψλ =
⋂
i∈I

K∗i,〈hi,λ〉

(one can deduce this from [Hu1, Theorem 21.4] with the help of a contravariant form on

L(λ); see also [BZ3, Proposition 5.1]). It follows that if B is a biperfect basis of C[N ],

then

B∩(im Ψλ) = {b∈B : ε∗i (b)6 〈hi, λ〉 for all i∈ I}

is a basis of im Ψλ.
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Proposition 2.7. Let B be a biperfect basis of C[N ], λ∈P+, and Bλ=Ψ−1
λ (B).

Then, Bλ inherits from B the structure of an upper semi-normal crystal, the weight map

being shifted by λ, and Bλ is a perfect basis of L(λ).

Proof. For each b∈Bλ, we set

wt(b) = wt(Ψλ(b))+λ, εi(b) = εi(Ψλ(b)) and ϕi(b) = 〈hi,wt(b)〉+εi(b).

If εi(b)=0, then we set ẽib=0. Otherwise, ẽi(Ψλ(b)) appears with a non-zero coefficient

in the expansion of ei ·Ψλ(b) in the basis B. Now, ei ·Ψλ(b) belongs to (im Ψλ), and this

subspace is spanned by the elements of B that it contains. We conclude that ẽi(Ψλ(b))∈
B∩(im Ψλ), and therefore we can define ẽib∈Bλ by

Ψλ(ẽib) = ẽi(Ψλ(b)).

The fact that B is upper semi-normal then implies that Bλ is upper semi-normal. Lastly,

we define f̃ib∈Bλ∪{0} so that

Ψλ(f̃ib) =

{
f̃iΨλ(b), if f̃i(Ψλ(b))∈ (im Ψλ),

0, otherwise.

From Remark 2.6 (i), we immediately deduce the following corollary, which can be

regarded as a generalization (from the canonical basis to arbitrary biperfect bases) of

[BZ4, Corollary 3.4].

Corollary 2.8. Let B be a biperfect basis of C[N ]. For any λ, µ, ν∈P+, the set

{b∈B(∞) : wt(b) = ν−µ−λ and εi(b)6 〈hi, µ〉 and ε∗i (b)6 〈hi, λ〉 for all i∈ I}

restricts (under Ψλ and the inclusion from Remark 2.6 (i)) to a basis for

Hom(L(ν), L(λ)⊗L(µ)).

The proof of the following lemma relies on elementary sl2-theory and is left to the

reader.

Lemma 2.9. Let Bλ be a perfect basis of L(λ). Then, the crystal Bλ is semi-normal,

and for each i∈I and b∈Bλ, the expansion of fi ·b in the basis Bλ has the form

fi ·b=ϕi(b)f̃ib+
∑
b′∈Bλ

ϕi(b′)<ϕi(b)−1

ab′b
′,

with ab′∈C.
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Remark 2.10. Let λ∈P+. For each w∈W , the weight space L(λ)wλ is 1-dimensional.

We choose a basis vector for this weight space by defining vwλ=wvλ. These elements

can also be defined by induction on the length of w: if siw>w, then

vsiwλ = f
(n)
i ·vwλ

where n=〈hi, wλ〉. Using Lemma 2.9, we see that these elements vwλ belong to each

perfect basis of L(λ). Abusing slightly the standard terminology, we will call flag minors

the functions Ψλ(vwλ); they belong to each biperfect basis of C[N ]. (When λ is minuscule,

they are the restrictions to N of the flag minors from [BFZ], [BZ3].)

We observe that, for any dominant weights λ and µ, we have im Ψλ⊂im Ψλ+µ. This

motivates the following definition.

Definition 2.11. A coherent family of bases is the datum of a basis Bλ of L(λ) for

each dominant weight λ∈P+ such that

Ψλ(Bλ)⊂Ψλ+µ(Bλ+µ)

for all λ, µ∈P+.

A biperfect basis B gives rise to a coherent family of perfect bases, namely the datum

of all the bases Ψ−1
λ (B). Conversely, given a coherent family of perfect bases (Bλ), the

union ⋃
λ∈P+

Ψλ(Bλ)

is a perfect basis of C[N ]. We note that the crystal structures automatically match, in

the sense of Proposition 2.7.

2.6. Multiplication

We can easily describe multiplication in C[N ] using the maps Ψλ. First, recall that there

is a unique G-equivariant map mλµ:L(λ)⊗L(µ)!L(λ+µ) which takes vλ⊗vµ to vλ+µ.

The following result follows immediately from the definition of Ψλ.

Proposition 2.12. We have the commutativity m�(Ψλ⊗Ψµ)=Ψλ+µ�mλµ, where

m:C[N ]⊗C[N ]!C[N ] is the multiplication map.

Thus, if we have a coherent family of bases (Bλ)λ∈P+
and the matrix of the maps

mλµ in these bases, then we will have a basis for C[N ] and the structure constants for

multiplication in this basis.
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b ~ε (b)

b1 = f̃2134221342b0 (0, 1, 0, 0)

b2 = f̃1342221342b0 (1, 0, 1, 1)

b3 = f̃3422113422b0 (0, 0, 1, 1)

b4 = f̃1422133422b0 (1, 0, 0, 1)

b5 = f̃1322134422b0 (1, 0, 1, 0)

b6 = f̃4221133422b0 (0, 1, 0, 1)

b ~ε (b)

b7 = f̃3221134422b0 (0, 1, 1, 0)

b8 = f̃1221334422b0 (1, 1, 0, 0)

b9 = f̃4422113322b0 (0, 0, 0, 2)

b10 = f̃3322114422b0 (0, 0, 2, 0)

b11 = f̃1122334422b0 (2, 0, 0, 0)

b12 = f̃2211334422b0 (0, 2, 0, 0)

Table 2. The twelve elements in S.

2.7. Non-uniqueness

In [GLS], Geiss, Leclerc and Schröer present examples where the canonical and the

semicanonical bases are different. Thus, biperfect bases are not unique in general. Let

us have a closer look at the simplest example (see [GLS, §19.1]). Here G is of type D4.

We enumerate the vertices in the Dynkin diagram as customary (the trivalent vertex has

label 2), and we set λ=α1+2α2+α3+α4, the highest root.

We consider two biperfect bases C and C ′ of C[N ]. Abusing the notation, for each

b∈B(∞), we denote by C(b) and C ′(b) the elements of C and C ′ indexed by b. We focus

on the subspace C[N ]−2λ∩(im Ψ2λ). It is compatible with both C and C ′; specifically,

both {C(b):b∈S} and {C ′(b):b∈S} are bases of this subspace, where

S = {b∈B(∞) : wt(b) =−2λ, ε∗1(b) = ε∗3(b) = ε∗4(b) = 0 and ε∗2(b)6 2}.

Table 2 presents the twelve elements in S. Here, b0 is the element of B(∞) of weight zero,

and given a word abc ... in the alphabet {1, 2, 3, 4}, the notation f̃abc...b0 is a shorthand

for the element f̃af̃bf̃c ... b0 in B(∞). Lastly, ~ε (b) is the tuple

(ε1(b), ε2(b), ε3(b), ε4(b)).

The proof of Theorem 2.4 shows that in the expansion

C ′(b′) =
∑

b∈B(∞)

mb,b′C(b)

of an element of C ′ in the basis C, the coordinate mb,b′ necessarily vanishes except when

εi(b)6εi(b′) for each i. We then deduce from the table above that C(b)=C ′(b) for all

b∈{b1, b3, b4, b5, b9, b10, b11}, that C(b2)−C ′(b2) is a linear combination of C(b3), C(b4)
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and C(b5), and that, for b∈{b6, b7, b8, b12}, the difference C(b)−C ′(b) is a scalar multiple

of C(b1). In fact, C(b)=C ′(b) also holds for b∈{b2, b6, b7, b8}; to prove this for b=b8 for

instance, one can note that

ε2(b1) = ε2(b8), ε4(ẽ2b1) = ε4(ẽ2b8),

ε3(ẽ4ẽ2b1) = ε3(ẽ4ẽ2b8), ε2(ẽ3ẽ4ẽ2b1)>ε2(ẽ3ẽ4ẽ2b8),

and refine the previous argument (see [Ba2], §2.5). To sum up, C and C ′ only differ at

the element indexed by b12, and C(b12)−C ′(b12) is a scalar multiple of C(b1).

Let us set η=e2(e1e3e4)e
(2)
2 (e1e3e4)e2, an element in U(n). Then, 〈η, C(b1)〉=1 (see

[Ba2, Theorem 5.2, case III]; note that the elements b1 and b12 are denoted by b0,1 and

b2,0 in that paper), so

C(b12)−C ′(b12) = 〈η, C(b12)−C ′(b12)〉C(b1).

If C is the dual semicanonical basis, then 〈η, C(b12)〉=2. If C ′ is the dual canonical

basis/upper global basis (specialized at q=1), then, 〈η, C ′(b12)〉=1. And if C ′′ is the MV

basis of C[N ] (see §6 below for the definition of this basis), then 〈η, C ′′(b12)〉=0. We

thus see that these three bases are pairwise different. Specifically, we have the relations

advertised in §1.5:

C(b12) =C ′′(b12)+2C(b1) and C ′(b12) =C ′′(b12)+C(b1). (1)

We will not develop enough material in the present paper to be able to provide a

complete justification of the equation 〈η, C ′′(b12)〉=0, but we can nonetheless sketch the

proof. Let b13=f̃1342b0 and b14=f̃221342b0; then C ′′(b13) and C ′′(b14) are two elements

in (im Ψλ), that is, two matrix coefficients of the adjoint representation L(λ). A rather

straightforward calculation then gives 〈η, C ′′(b13)C ′′(b14)〉=2. On the other hand, using

Theorem 7.11, one can expand the product

C ′′(b13)C ′′(b14) = 2C ′′(b1)+

8∑
i=2

C ′′(bi)+C ′′(b12).

(The forthcoming paper [BGL] will explain how to calculate the required intersection

multiplicities. The actual computations are rather tedious—for the coefficient 2 one

must deal with a variety of codimension 10 defined by 18 equations—and are carried

out with the help of the computer algebra system Singular [DGPS].) Since the matrix

coefficients of the action of the Chevalley generators in the MV basis of a representation

are non-negative (a consequence of Theorem 5.4 below), we have 〈η, C ′′(b)〉>0 for any

b∈S. This is enough to ensure that 〈η, C ′′(b12)〉=0.

In the appendix (Theorem A.13), we prove the analog of the first equation in (1),

but only after applying the non-injective map 
D (see §1.4). There we also use computer

algebra systems along with techniques specific to type A.
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Figure 2. Local structure of B(∞).

3. More on biperfect bases

3.1. Crystal reflections

A result of Kashiwara and Saito ([KSa, Proposition 3.2.3]), extended by Tingley and

Webster ([TW, Proposition 1.4]) says that the bicrystal B(∞) is characterized by the

following conditions:

(i) Both crystals (B(∞),wt, εi, ϕi, ẽi, f̃i) and (B(∞),wt, ε∗i , ϕ
∗
i , ẽ
∗
i , f̃
∗
i ) are upper

semi-normal.

(ii) wt(b)∈−Q+ for each element b∈B(∞).

(iii) There is a unique element b0∈B(∞) such that wt(b0)=0.

(iv) For each i∈I and b∈B, we have f̃ib 6=0 and f̃∗i b 6=0.

(v) For each i 6=j and each b∈B(∞), we have εj(f̃
∗
i b)=εj(b), ε

∗
j (f̃ib)=ε∗j (b) and

f̃if̃
∗
j b=f̃

∗
j f̃ib.

(vi) If i∈I and b1∈B(∞) satisfy εi(b1)=ε∗i (b1)=0, then 〈hi,wt(b1)〉>0.

(vii) Let i∈I and b∈B. The subset of B(∞) generated by b under the action of the

operators ẽi, f̃i, ẽ
∗
i , f̃

∗
i contains a unique element b1 such that εi(b1)=ε∗i (b1)=0 and has

the form drawn in Figure 2, where the action of f̃i is indicated by the plain arrows, the

action of f̃∗i is indicated by the dotted arrows, and 〈hi,wt(b1)〉 is the width of the shape.

(The picture is drawn for 〈hi,wt(b1)〉=4.)

Note that (iv) is implied by (vii), and therefore not really needed.

Remark 3.1. These conditions imply that, for any b 6=b0, there exists i∈I such that

εi(b)>0. To show this, suppose that there exists an element b 6=b0 such that εi(b)=0 for
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all i∈I. We may assume that, among all possible elements, b has been chosen to be of

maximal weight with respect to the dominance order. Since b 6=b0, the weight wt(b) is not

dominant, and (vi) implies the existence of i∈I such that ε∗i (b)>0. So b is on the upper

right edge of the shape drawn in Figure 2, but is not the top vertex. Let b1=(ẽ∗i )
ε∗i (b)b

be the top vertex of the shape. Certainly, 〈hi,wt(b1)〉6=0, for the shape has a positive

width, and therefore b1 6=b0. By our maximality condition, b1 cannot satisfy the property

imposed on b, so there exists j∈I such that εj(b1)>0. Necessarily j 6=i, and (v) implies

that εj(b)=εj(b1)>0, a contradiction. (This argument comes from [KSa, p. 16].)

Using this, one easily recovers the following result due to Saito ([Sai, Corollary 3.4.8]).

Theorem 3.2. Let i∈I. The map

σi: {b∈B(∞) | ε∗i (b) = 0}−! {b∈B(∞) | εi(b) = 0}

given by σi(b)=(f̃∗i )ϕi(b)(ẽi)
εi(b)(b) is bijective and σ−1

i (b)=(f̃i)
ϕ∗i (b)(ẽ∗i )

ε∗i (b)(b).

Specifically, σi maps the upper-left edge of the shape in Figure 2 to the upper-right

edge, so that wt(σi(b))=si wt(b). Note that σi(b)=(ẽi)
εi(b)(f̃∗i )ϕi(b)(b).

3.2. Biperfect bases and Weyl group action

The automorphism Ads̄i of the Lie algebra g extends to an automorphism Ti of the

enveloping algebra U(g). We set U+=U(n), a subalgebra of U(g). Certainly Ti restricts

to a linear isomorphism

U+∩T−1
i (U+)

'−−!Ti(U
+)∩U+.

The following theorem generalizes to any biperfect basis a property known for the

dual canonical and the dual semicanonical bases (see [Lu4, Theorem 1.2] and [Ba1, §1.2]).

Theorem 3.3. Let B be a biperfect basis of C[N ], let i∈I and b∈B be such that

ε∗i (b)=0, and let u∈U+∩T−1
i (U+). Then,

〈σi(b), u〉= 〈b, Ti(u)〉.

The equation εi(σi(b))=0 implies that σi(b) annihilates U+ei. Taking into account

the decomposition U+=(U+∩T−1
i (U+))⊕U+ei, we see that the theorem provides a com-

pletely algebraic characterization of σi(b) (previously defined only combinatorially).
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Proof. Let i∈I and b∈B as in the statement. Set b′=σi(b), n=εi(b) and p=ϕi(b).

Then, p=ε∗i (b
′)=ε∗i ((f̃i)

n(b′)), which implies

b= (ẽ∗i )
p(f̃i)

n(b′) = ((f̃i)
n(b′))·e(p)

i .

We choose a dominant weight λ∈P+ such that 〈hi, λ〉=p and 〈hj , λ〉>ε∗j (b′) for any

j 6=i. We adopt the notation of §2.5; in particular, the simple g-module L(λ) comes with

the n-equivariant embedding Ψλ:L(λ)!C[N ]. Then, b′∈im Ψλ, the set Bλ=Ψ−1
λ (B) is

a perfect basis of L(λ), and we can write b′=Ψλ(b′) for a certain element b′∈Bλ.

Now εi(b′)=εi(b
′)=0, so ei ·b′=0 in the module L(λ). Further,

〈hi,wt(b′)〉= 〈hi, λ+si(wt(b))〉= p−〈hi,wt(b)〉= p−(p−n) =n,

so s̄i ·b′=f (n)
i ·b′. From Lemma 2.9, it follows that s̄i ·b′=(f̃i)

n(b′), and therefore

(f̃i)
n(b′) = Ψλ((f̃i)

n(b′)) = Ψλ(s̄i ·b′).

Let ω be the involutive antiautomorphism of g such that ω(ei)=fi and ω(hi)=hi for

each i∈I. With respect to ω, there is a unique contravariant form ( · , ·) on L(λ) such that

(vλ, vλ)=1 (see for instance [J, §1.6]). The embedding Ψλ is given by Ψλ(v)=(vλ, ?v);

in particular, (f̃i)
n(b′)=(vλ, ?s̄i ·b′). Then,

b= (vλ, e
(p)
i ?s̄i ·b′) = (f

(p)
i ·vλ, ?s̄i ·b′) = (s̄i ·vλ, ?s̄i ·b′) = (vλ, s̄

−1
i ?s̄i ·b′).

Evaluating this equation on Ti(u), where u∈U+∩T−1
i (U+), we get 〈b, Ti(u)〉=〈b′, u〉, as

desired.

3.3. MV polytopes

Recall that B(∞) denotes the abstract bicrystal common to all biperfect bases. The

theory of MV polytopes provides a convenient combinatorial model for B(∞). These

polytopes will also serve as the support for the measures to be introduced later in Part III.

It is simplest to introduce MV polytopes using the crystal reflections σi. Specifically,

we extend the definition of the crystal reflections to all of B(∞) by defining

σ̂i(b) =σi((ẽ
∗
i )

maxb),

where as usual ẽmax
i b means ẽ

εi(b)
i b. These operators satisfy the braid relations

σ̂iσ̂j σ̂i ...︸ ︷︷ ︸
mi,j factors

= σ̂j σ̂iσ̂j ...︸ ︷︷ ︸
mi,j factors

,
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where mi,j is 2, 3, 4, 6 depending on aijaji being 0, 1, 2, 3, respectively. To any w∈W
one can then attach an operator σ̂w on B(∞) so that σ̂w=σ̂i1 ... σ̂i` for any reduced word

w=si1 ... si` . Further, one can show that the map σ̂w0
takes every b∈B(∞) to the unique

element b0 of weight zero.

(These facts follow from the work of Saito [Sai]. Loosely speaking, σ̂i rotates Lusztig

data, dropping the first coordinate and inserting a zero at the last position. We refer to

[BaK, p. 184] for a complete description.)

We define the MV polytope Pol(b) of an element b∈B(∞) as the convex hull of the

weights

µw(b) :=wwt(σ̂w−1(b))

for w∈W ; this polytope lies in P⊗ZR. The vertices of Pol(b) are the points µw(b). The

edges of Pol(b) are of the form (µw(b), µwsi(b)) and point in root directions; indeed, if

wsi>w, then

µwsi−µw = εi(σ̂w−1(b))wαi.

Remark 3.4. In [Kam1], the second author gave an explicit combinatorial definition

of MV polytopes, defined a bicrystal structure on this set of polytopes, and proved that

this bicrystal is isomorphic to B(∞). Examining the definition of this crystal structure

and its relationship with Lusztig data, it follows that we defined here the same set of

polytopes with the same bijection with B(∞).

Part II. Mirković–Vilonen cycles

4. Background on the geometric Satake equivalence

4.1. The geometric Satake equivalence

Let G∨ denote the Langlands dual group of G. This reductive group scheme comes with

a maximal torus T∨ whose cocharacter lattice is P . Our choice of positive and negative

roots provide a pair of opposite Borel subgroups B∨+ and B∨− in G∨; we denote their

unipotent radicals by N∨+ and N∨− .

Let O=C[[t]] be the ring of formal series and let K=C((t)) be its fraction field of

Laurent series. As a set, the affine Grassmannian Gr of G∨ is the homogeneous space

G∨(K)/G∨(O). It is the set of C-points of a reduced projective ind-scheme over C;

see [Ku, §§13.2.12–19] and [Z] for a thorough introduction to this object.

A weight µ∈P is a cocharacter of T∨; therefore it gives a homomorphism of groups

K×!T∨(K). We denote by tµ∈T∨(K)⊂G∨(K) the image of t∈K× under this homo-

morphism, and by Lµ the image of tµ in Gr. These points Lµ are the fixed points for the

action of T∨(C) on Gr.
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Given λ∈P+, we denote by Grλ the G∨(O)-orbit of Lλ in Gr. This is a smooth

variety of dimension 2ρ∨(λ). The Cartan decomposition in G∨(K) implies that

Gr =
⊔
λ∈P+

Grλ.

Each Grλ can be viewed as a (parabolic) Schubert cell; its closure is obtained by adding

the orbits Grµ with µ∈P+ such that µ6λ.

Lusztig observed in [Lu1] that a great deal of information about the representation

L(λ) of G is encoded in the geometry of Grλ; for instance, the dimension of L(λ) is equal

to the dimension of the intersection homology of Grλ.

Lusztig’s insight can be regarded as a categorification of the classical Satake isomor-

phism, where G∨(O)-biinvariant compactly supported functions on G∨(K) are replaced

by G∨(O)-equivariant perverse sheaves on Gr with coefficients in C. Specifically, consider

the category PG∨(O)(Gr) of such sheaves with finite-dimensional support. It is possible to

endow PG∨(O)(Gr) with a convolution product along with suitable associativity and com-

mutativity constraints. The total cohomology provides a fiber functor F from PG∨(O)(Gr)

to the category VectC of finite-dimensional C-vector spaces. By Tannakian reconstruc-

tion, F induces an equivalence of categories from PG∨(O)(Gr) to the category Rep(
G) of

finite-dimensional representations of a group scheme 
G over C such that the diagram

PG∨(O)(Gr)
' //

F ##

Rep(
G)

}}

VectC

commutes, where the right downward arrow is the forgetful functor. The group scheme

G is algebraic, connected, reductive, and its root datum is inverse to the root datum

of G∨; in other words 
G is isomorphic to G.

This program was carried out by Ginzburg [Gi], Beilinson–Drinfeld [BD], and finally

Mirković–Vilonen [MV]. We refer the reader to the latter paper for the proof.

4.2. Weight functors

As a subgroup of G∨(K), the torus T∨(C) acts on Gr. The regular dominant weight ρ

defines a homomorphism C×!T∨(C), so provides a C×-action on Gr. In their proof,

Mirković and Vilonen define weight functors using the hyperbolic localization functors

defined by this action [Bra]. We recall part of their construction.

Given µ∈P , we denote by Sµ the N∨+ (K)-orbit through Lµ and by Sµ− the N∨− (K)-

orbit through the same point. Then, for each L in Sµ+, resp. Sµ−, we have

lim
a!0

ρ(a)·L=Lµ, resp. lim
a!∞

ρ(a)·L=Lµ.
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The Iwasawa decomposition in G∨(K) implies that

Gr =
⊔
µ∈P

Sµ =
⊔
µ∈P

Sµ−.

It follows that the points Lµ are the fixed points for our C×-action and that Sµ and Sµ−

are the attractive and repulsive varieties around Lµ.

Given µ∈P , we define subsets Sµ and Sµ− by

Sµ =
⊔
ν6µ

Sν and Sµ−=
⊔
ν>µ

Sν−.

These are closed subsets ([MV, Proposition 3.1]). Therefore, we can factorize the in-

clusion map sµ:Sµ−
� � //Gr as the composition of an open immersion s̊µ and a closed

immersion s̄µ as follows

Sµ−
s̊µ

//

sµ

77Sµ−
s̄µ

// Gr.

For any weight µ∈P and any sheaf A∈PG∨(O)(Gr), the cohomology H�(Sµ−, s
!
µA) is

concentrated in degree k=2ρ∨(µ) and we have a diagram

Hk(Sµ−, s̄
!
µA)

(s̄µ)!
//

(̊sµ)∗ '
��

Hk(Gr,A)

Hk(Sµ−, s
!
µA)

where the vertical arrow is an isomorphism. Further, for each k∈Z, the maps (s̄µ)!

provide a decomposition

Hk(Gr,A) =
⊕
µ∈P

2ρ∨(µ)=k

Hk(Sµ−, s̄
!
µA)

by [MV, Theorem 3.6]. As a consequence, the fiber functor F=H�(Gr, ?) from §4.1

decomposes as a direct sum of weight functors

F =
⊕
µ∈P

Fµ

defined by

Fµ =H2ρ∨(µ)(Sµ−, s̄
!
µ?) =H�(Sµ−, s

!
µ?).

Since this decomposition is compatible with the convolution product, it defines a

homomorphism T!
G that identifies T with a maximal torus of 
G ([MV, p. 122]).
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4.3. Action of the principal nilpotent

To understand how G acts on the spaces F (A), we need to fix the isomorphism 
G∼=G.

For this, we use an idea of Ginzburg [Gi].

Let g∨ be the Lie algebra of G∨ and let q:P!Q be the W -invariant quadratic form

such that q(α)=1, if α is a short root of G. Let B:P×P!Q be the polar form of q and

let ι:P!t be the map µ 7!B(µ, ?). The invariance of q under the Weyl group implies

that ι(αi)=q(αi)α
∨
i for each i∈I.

From this data, we can construct an affine Kac–Moody Lie algebra ĝ∨, as explained

in [Kac, Chapter 6]. With the standard notation setup in this reference, the dual of the

Cartan subalgebra of ĝ∨ can be written as

t⊕Cδ∨⊕CΛ0.

For µ∈P , we set π(µ)=Λ0−ι(µ)−q(µ)δ∨, an element in t̃.

Let V denote the integrable representation of ĝ∨ of highest weight Λ0. This rep-

resentation determines a homomorphism G∨(K)!PGL(V ) ([Ku, Proposition 13.2.4]).

This can be lifted to a representation of a central extension E(G∨(K)) of G∨(K) by C×

([Ku, Proposition 13.2.8]). Moreover, the cocycle that defines this extension involves the

tame symbol ([Ga, Theorem 12.24]); this cocycle is trivial on O, so this extension splits

over G∨(O), giving a diagram

G∨(O)

s

}}

� _

��

1 // C× i // E(G∨(K))
p
// G∨(K) // 1.

Let v denote the highest weight vector of V . It is invariant under the group

s(G∨(O)), so the map g 7!gv defines an embedding Υ:Gr �
�
//P(V ) . This embedding

is a morphism of ind-varieties ([Sl, §2]). We thereby obtain a (very ample) G∨(K)-

equivariant line bundle L =Υ∗O(1), which incidentally is known to generate the Picard

group of the identity component of Gr.

Formula (6.5.4) in [Kac] implies the following statement (compare with [MV, (3.2)]).

Proposition 4.1. For each µ∈P , the line Υ(Lµ) is contained in the π(µ) weight

space of V .

The cohomology algebra H�(Gr,C) acts by the cup-product on F (A)=H�(Gr,A) for

any object A∈PG∨(O)(Gr), and the action is natural in A. In particular, the cup-product

with the first Chern class c1(L ) is an endomorphism ē of the functor F . By Lemma 5.1
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in [YZ], this element c1(L ) is primitive in H�(Gr,C), which implies that for any sheaves

A and B in PG∨(O)(Gr) we have

ēA∗B = ēA⊗idF (B)+idF (A)⊗ēB

under the isomorphism

F (A∗B)∼=F (A)⊗F (B).

It follows that ē belongs to the Lie algebra ḡ of 
G.

Now, let h̄∈ḡ be the element that acts as the multiplication by the cohomological

degree on each vector space F (A). Clearly, we have [h̄, ē]=2ē. For any A∈PG∨(O)(Gr),

the hard Lefschetz theorem guarantees the existence of an endomorphism f̄A of the vector

space F (A) such that (ēA, h̄A, f̄A) is a sl2 triple. Certainly f̄A is unique, hence natural

in A, and we conclude that there is a unique element f̄∈ḡ such that (ē, h̄, f̄) is an sl2

triple (see [Z, Theorem 5.3.23]).

By the end of §4.2, T is a maximal torus of the group 
G, so we may decompose ḡ into

root subspaces with respect to the adjoint action of T . The root system is then the root

system of G. Further, h̄ identifies with the element 2ρ∨∈t, so 〈h̄, αi〉=2 for each simple

root αi of G. By [Bo, Chapitre 8, §11, Proposition 8], we can then write ē=
∑
i∈I ēi,

where each ēi is a non-zero root vector of weight αi.

With all these ingredients in hand, we can fix the isomorphism 
G∼=G by identifying

each simple root vector ēi∈ḡ with its counterpart q(αi)ei∈g.

5. The Mirković–Vilonen basis in representations

5.1. Some more notation

In this section we recall standard facts and notation about sheaves and cycles. Through-

out this paper, we will consider sheaves of C-vector spaces. Similarly, singular cohomol-

ogy, homology, and K-theory will always be considered with C-coefficients.

Suppose that X is a complex irreducible algebraic variety of dimension d. We denote

the constant sheaf on X with stalk C by CX . The Verdier dual of CX is the dualizing

sheaf DX on X; it can be defined as either f !Cpt, where f :X!{pt} is the constant

map, or as the sheafification of the complex of presheaves U 7!C−�(X,X\U) of relative

singular chains. The singular cohomology of X is identified with H�(X,CX); the Borel–

Moore homology of X (constructed from possibly infinite singular chains with locally

finite support) is identified with H�(X):=H−�(X,DX).

Let Dc(X) denote the bounded derived category of constructible sheaves of C-vector

spaces on X. We have the (contravariant) Verdier duality functor D:Dc(X)!Dc(X)

defined by RHom(−,DX).
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5.1.1. Intersection cohomology sheaf

The open subset of regular points Xreg is a real connected oriented manifold of dimension

2d, so H2d(X
reg) is a 1-dimensional vector space spanned by the fundamental class of

Xreg. Since X\Xreg is a pseudomanifold of dimension 62d−2, the restriction map

H2d(X)!H2d(X
reg) is an isomorphism; we denote by [X] the class in H2d(X) that

restricts to the fundamental class of Xreg and refer to [X] as the fundamental class of X.

The same notation [X] will also be used to denote the image (proper push-forward) in

H2d(Y ) of this class under a closed immersion X!Y .

As a topological pseudomanifold, X admits a filtration with even real-dimensional

strata, which allows to define unambiguously the sheaf of intersection chains IC(X) with

respect to the middle perversity; it restricts to the shifted local system CS [d] on the

open stratum S. Local sections of IC(X) are (possibly infinite) singular chains that

satisfy specific conditions relative to how they meet the lower-dimensional strata of X;

forgetting these conditions gives a map

IC(X)−!DX [−d] (2)

which restricts on S to the isomorphism

IC(X)|S ≡CS [d]
'−−!DS [−d]≡DX [−d]|S

given by the orientation (see [GM, §5.1]).

5.1.2. Cup and cap products

Let Z be a locally closed subset of X and let i:Z!X denote the inclusion. For any

object A∈Dc(X) on X, we write H�

Z(X,A):=H�(Z, i!A). In particular, when A=CX ,

then we write H�

Z(X):=H�(Z, i!CX). This is isomorphic to the singular cohomology

H�(X,X\Z).

Now, let u∈Hp
Z(X). So u:CZ!i!CX [p] and by adjunction, we can regard u as a

map

u: i!CZ −!CX [p].

For any A∈Dc(X), we define its cup product with u to be the resulting map i!i
∗A!

A[p] given by applying
L
⊗A to the map u. Taking compactly supported global sections

gives us

u∪:Hk
c (Z, i∗A)−!Hk+p

c (X,A).
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Similarly for any A∈Dc(X), we define its cap product with u to be the resulting map

A!i∗i!A[p] (given by applying RHom(−,A)[p] to the map u). Taking global sections

gives us

u∩:H−k(X,A)−!H−k+p
Z (X,A).

If we take A=DX , we obtain the usual cap product map in Borel–Moore homology,

u∩:Hk(X)−!Hk−p(Z).

For any A∈Dc(X), if we take the cup product map

i!i
∗A u∪−−−!A[p]

and apply Verdier duality, we obtain a map

D(A)[−p] D(u∪)−−−−! i∗i
!D(A),

which coincides with the map u∩ shifted by −p, by [KSc, (2.6.7)].

These cup and cap product maps are compatible with pull-back. Let us explain

this compatibility in the case of cap product. Let f :Y!X be a morphism and let

W=f−1(Z). Then, we can form f∗u∈Hp
W (Y ) and given any A∈Dc(Y ), we have the

following commutative diagram

H−k(Y,A)
(f∗u)∩

//

∼=
��

H−k+p
W (Y,A)

∼=
��

H−k(X, f∗A)
u∩ // H−k+p

Z (X, f∗A),

(3)

where the vertical isomorphisms come from the composition of push-forwards (and base

change for the right-hand vertical arrow).

5.1.3. Cap products and cycles

An effective way to compute cap products with Chern classes is to reduce to calculations

of intersection multiplicities. We quickly recall the definitions and the basic results from

Fulton’s book [F] in the very specific setup that we will need. We consider a fibre square

of C-schemes

W //

��

V

��

D
i
// Y
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with i the inclusion of an effective Cartier divisor and V an irreducible variety of dimen-

sion k. We assume that V is not contained in the support of D. Let Z be an irreducible

component of W ; it is a subvariety of V of codimension 1. The multiplicity of Z in the

product D·V is defined to be the length of the module OW,V /(f) over the local ring

OW,V of V along W , where f is a local equation of D|V on an affine open subset of V

which meets Z. Following [F, Chapter 7], this multiplicity is denoted by i(Z,D·V ).

The inclusion i is a regular embedding of codimension 1, hence has an orientation

class u∈H2(Y, Y \D). Concretely (see [F, §19.2]), D is the zero-locus of the canonical

section s:Y!OY (D) and u is the pull-back by s of the Thom class of the line bundle

OY (D). Now, consider a fibre square

X ′ //

��

Y ′

g

��

D
i
// Y.

Following the above discussion we have the cap product

Hk(Y ′)
(g∗u)∩−−−−−!Hk−2(X ′).

The following result follows from [F, Theorem 19.2].

Proposition 5.1. Retain the above notation and assume that V is an irreducible

subvariety of Y ′ of dimension k, not contained in g−1(D). Then,

(g∗u)∩[V ] =
∑
Z

i(Z,D·V )[Z]

the sum being taken over all irreducible components of V ∩g−1(D).

5.2. Mirković–Vilonen cycles

Let λ∈P+, fixed for the whole section. As shown by Mirković and Vilonen ([MV, The-

orem 3.2]), given µ∈P , the intersection Grλ∩Sµ−, when non-empty, has pure dimension

ρ∨(λ−µ). We define an MV cycle Z of type λ and weight µ to be an irreducible com-

ponent of Grλ∩Sµ−. Equivalently, an MV cycle of type λ and weight µ is an irreducible

component of Grλ∩Sµ− of dimension ρ∨(λ−µ). We denote the set of these cycles by

Z(λ)µ, and define

Z(λ) :=
⊔
µ∈P
Z(λ)µ,

the set of all MV cycles of type λ.
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Braverman and Gaitsgory endow Z(λ) with the structure of an upper semi-normalG-

crystal [BrG]. Their definition involves a geometric construction, but one can provide the

following purely combinatorial short characterization ([BaG, proof of Proposition 4.3]):

• Let µ∈P and Z∈Z(λ)µ. We set wt(Z)=µ. The closed subset Z is C×-invariant

with respect to the action defined in §4.2 and meets the repulsive cell Sµ−, so Lµ∈Z. For

each i∈I, we can then define

εi(Z) = max{n∈N :Lµ+nαi ∈Z} and ϕi(Z) = εi(Z)+〈α∨i , µ〉.

• Let µ∈P , i∈I and (Z,Z ′)∈Z(λ)2. Then,

Z ′= ẽiZ ⇐⇒ (Z ′⊆Z, wt(Z ′) = wt(Z)+αi and εi(Z
′) = εi(Z)−1).

We denote the intersection cohomology sheaf of the Schubert variety Grλ by Iλ. The

geometric Satake equivalence maps this perverse sheaf to the simple G-module L(λ).

In other words, under the identification 
G∼=G specified at the end of §4, there is an

isomorphism F (Iλ)∼=L(λ), unique up to a scalar. For each µ∈P , the subspace of L(λ)

of weight µ identifies with

Fµ(Iλ) =Hk(Sµ−, s̄
!
µIλ) =Hk

Sµ−
(Gr, Iλ),

where k=2ρ∨(µ).

By (2), we have a map of sheaves Iλ!DGrλ
[−d], where d=dimGrλ=2ρ∨(λ). De-

noting the inclusion of the open stratum by j:Grλ!Grλ, we then get a commutative

diagram

Iλ //

��

D
Grλ

[−d]

��

j∗j
∗Iλ

' // j∗j
∗D
Grλ

[−d]

where the vertical arrows are adjunction maps. The bottom arrow is an isomorphism

because both Iλ[−d] and D
Grλ

[−2d] restrict to the trivial local system over Grλ.

Base change in the Cartesian square

Grλ∩Sµ−
j′
//

s̄′µ
��

Grλ∩Sµ− //

��

Sµ−

s̄µ

��

Grλ
j

// Grλ // Gr
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gives the isomorphism s̄!
µj∗j

∗D
Grλ
∼=j′∗DGrλ∩Sµ−

. Applying the functor Hk(Sµ−, s̄
!
µ?) to the

commutative diagram above then yields

Fµ(Iλ) =Hk(Sµ−, s̄
!
µIλ) //

'
��

Hk−d(Sµ−, s̄
!
µDGrλ

)

��

Hd−k(Grλ∩Sµ−,C)

'
��

Hk(Sµ−, s̄
!
µj∗j

∗Iλ)
' // Hk−d(Sµ−, j

′
∗DGrλ∩Sµ−

) Hd−k(Grλ∩Sµ−,C).

Here, the left vertical arrow is an isomorphism, as shown by Mirković and Vilonen ([MV,

proof of Proposition 3.10]). The right vertical arrow is also an isomorphism, because

each irreducible component of Grλ∩Sµ− of dimension 1
2 (d−k)=ρ∨(λ−µ) meets the open

stratum Grλ. In fact, these irreducible components are precisely the MV cycles of type λ

and of weight µ.

We denote by [Z]∈Hd−k(Grλ∩Sµ−,C) the fundamental class of such an MV cycle Z.

The set {[Z]:Z∈Z(λ)µ} is then a basis of the weight space Fµ(Iλ). Gathering these

bases for all possible weights, we obtain a basis of F (Iλ) indexed by Z(λ), which we can

transport to L(λ) by normalizing the isomorphism F (Iλ)∼=L(λ) in such a way that the

highest weight vectors [{Lλ}] and vλ match.

The basis of L(λ) obtained in this manner is called the MV basis. (By analogy with

the case of the global basis and following Kashiwara’s terminology, we should more accu-

rately call it the upper MV basis.) The following result is (up to duality) Proposition 4.1

in [BrG].

Theorem 5.2. The MV basis is perfect.

We will give our own proof of this result, which provides some more refined infor-

mation needed in the sequel. The first step in the proof is carried out in §5.3, where

we establish a formula that expresses in geometrical terms the action of a Chevalley

generator ei on a basis element [Z]. This formula has the form

ei ·[Z] =
∑

Z′∈Z(λ)

aZ′ [Z
′],

where the coefficient aZ′ is non-zero only if

wt(Z ′) = wt(Z)+αi and Z ′⊆Z.

Thus, for [Z ′] to actually appear in ei ·[Z], it is necessary that Lwt(Z′)+εi(Z′)αi∈Z, which

in turn implies that εi(Z)>εi(Z ′)+1. If moreover the latter relation is an equality, then

necessarily Z ′=ẽiZ, by the characterization of the crystal structure on Z(λ) given above.

At this point, it remains to show that if ẽiZ 6=0, then the coefficient aẽiZ is equal to εi(Z).

We perform this computation in §5.4.
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Remark 5.3. As shown by Berenstein and Kazhdan [BeK], the crystal of a perfect

basis of the highest weight module L(λ) is independent of the choice of the basis. There-

fore, the crystals of the MV basis and of the upper global basis of L(λ) (specialized at

q=1) are isomorphic. This observation provides another proof of Braverman and Gaits-

gory’s theorem [BrG] that states that the crystals Z(λ) are isomorphic to Kashiwara’s

normal crystals B(λ).

5.3. Action of ei on an MV cycle

Recall the notation setup in §4.3 and the statement of Proposition 4.1.

Fix µ∈P and pick a linear form f on V which is non-zero on the line Υ(Lµ) and

which vanishes on all weight subspaces of V of weight other than π(µ). Let D⊆Gr be

the Cartier divisor defined as the intersection of Gr with the hyperplane in P(V ) defined

by f . Proposition 3.1 in [MV] tells us that

D∩Sµ−=
⋃
i∈I

Sµ+αi
− .

Theorem 5.4. Let λ∈P+, let i∈I, and let Z∈Z(λ)µ. Let

ei ·[Z] =
∑

Z′∈Z(λ)

aZ′ [Z
′]

be the expansion of the left-hand side in the MV basis of L(λ). Then,

q(αi)aZ′ =

{
i(Z ′, D·Z), if wt(Z ′) = wt(Z)+αi and Z ′⊆Z,

0, otherwise.

Proof. Regarding Gr as the zero section of the total space L of the line bundle

L =Υ∗O(1), we can consider the Thom class τ∈H2
Gr(L). Regarding f as a continuous

map from Gr to L such that f(Gr\D)⊆L\Gr, we can form f∗τ∈H2
D(Gr). With these

notations, each perverse sheaf A∈PG∨(O)(Gr) gives rise to a diagram

H�

Sµ−
(Gr,A) //

∪f∗τ

��

H�(Gr,A)

∪f∗τ

��

∪c1(L )

%%

H�

D∩Sµ−
(Gr,A) // H�

D(Gr,A) // H�(Gr,A),

which commutes following [I, II.10.2 and II.10.4].
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Now let λ∈P+ and set A=Iλ, k=2ρ∨(µ), and d=2ρ∨(λ). Similarly to the isomor-

phism

Hk

Sµ−
(Gr, Iλ)

'−−!Hk−d
Sµ−

(Gr,D
Grλ

) =Hd−k(Grλ∩Sµ−,C)

obtained in §5.2, we have an isomorphism

Hk+2

D∩Sµ−
(Gr, Iλ)

'−−!Hk+2−d
D∩Sµ−

(Gr,D
Grλ

) =Hd−k−2(D∩Grλ∩Sµ−,C).

We then get a commutative diagram

Hk

Sµ−
(Gr, Iλ)

∪f∗τ

��

' // Hk−d
Sµ−

(Gr,D
Grλ

)

∪f∗τ

��

Hd−k(Grλ∩Sµ−,C)

∩f∗τ

��

Hk+2

D∩Sµ−
(Gr, Iλ)

' // Hk+2−d
D∩Sµ−

(Gr,D
Grλ

) Hd−k−2(D∩Grλ∩Sµ−,C).

Let Z∈Z(λ)µ and let [Z] be its fundamental class in Hd−k(Grλ∩Sµ−,C). The two

commutative diagrams above and the explanations in §4.3 show that [Z]∩f∗τ is the

result of the action on [Z] of the principal nilpotent ẽ. On the other hand, f∗τ is the

orientation class u of the regular embedding D!Gr, so [Z]∩f∗τ is the homology class

of the cycle D ·Z, by Proposition 5.1 applied to the fibre square

D∩Grλ∩Sµ−

��

// Grλ∩Sµ−

��

D // Gr.

Now, any irreducible component of D∩Z must be contained in Grλ∩Sµ+αi
− for some

i∈I; being of dimension

dimZ−1 = ρ∨(λ−µ−αi),

it is then of the form Z ′ with Z ′∈Z(λ)µ+αi . We eventually obtain

ē·[Z] =
∑
i∈I

∑
Z′∈Z(λ)µ+αi

aZ′ [Z
′],

where

aZ′ =

{
i(Z ′, D·Z), if Z ′⊆Z,

0, otherwise.

The claimed formula follows by isolating the contributions of the different summands in

ē=
∑
i∈I

q(αi)ei.
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5.4. Computation of the leading coefficient

Proposition 5.5. Adopt the notation of Theorem 5.4 and assume that ẽiZ 6=0.

Then,

i(ẽiZ,D·Z) = q(αi)εi(Z).

Proof. Let s∨i be a lift in G∨ of the simple reflection si. The weight siρ:C×!T∨(C)

defines an action of C× on Gr. With respect to this action, the repulsive cell around the

fixed point Lν is the subset s∨i (Ssiν− ).

Let x∨i be the additive 1-parameter subgroup corresponding to the simple root α∨i
of (G∨, T∨); it defines a homomorphism K!G∨(K). Let N∨−,i be the unipotent radical

of the parabolic subgroup of G∨ generated by N∨− and by the image of x∨i . The sub-

group generated by N∨−,i and the image of x∨i is then the maximal unipotent subgroup

s∨i N
∨
− (K)(s∨i )−1 of G∨(K). We can lift it to the central extension E(G∨(K)) so as to

make it act on V , and the embedding Υ:Gr!P(V ) is equivariant for this action.

After these preliminaries, let us genuinely start the proof. Let

m= εi(Z), ν=µ+mαi, r= 〈α∨i , ν〉, Z ′= ẽmi Z,

Ż =Z∩Grλ∩s∨i (Ssiν− ), Ż ′=Z ′∩Grλ∩s∨i (Ssiν− ),

C[t−1]+m = {a−mt−m+a1−mt
1−m+...+a−1t

−1 : (a−m, a1−m, ..., a−1)∈Cm}.

From [BaG, Proposition 4.5 (ii)], we see that the assignment (p, y) 7!x∨i (ptr)y defines a

homeomorphism F :C[t−1]+m×Ż ′!Ż; it is even an isomorphism of algebraic varieties.

The cycle ẽiZ is a divisor in Z; its local equation in the open subset Ż is a−m=0.

Our goal now is to evaluate the ‘equation’ f �Υ of the divisor D at a point F (p, y).

(We put quotation marks around the word ‘equation’ because f �Υ is a section of L , not

a function.)

We write y∈Ż ′ in the form y=gLν with g∈N∨−,i(K). We write Υ(Lν)=Cv0 with

v0∈V of weight π(ν) and we decompose v=gv0 as a sum of weight vectors v=v0+...+vN ,

with vj of weight π(ν)−βj−cjδ∨, where β0=c0=0 and βj /∈Zα∨i for j 6=0. We put

p= a−mt
−m+a1−mt

1−m+...+a−1t
−1,

and we expand the product

x∨i (ptr)v=

m∏
`=1

( ∑
n`>0

an`−`
n`!

Xn`
α∨i +(r−`)δ∨

)
v,
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where Xα∨i +qδ∨∈ĝ∨ is the derivative at zero of the additive subgroup a 7!x∨i (atq) of

G∨(K). The linear form f vanishes on

( m∏
`=1

Xn`
α∨i +(r−`)δ∨

)
vj ,

except if
m∑
`=1

n`(α
∨
i +(r−`)δ∨)+π(ν)−βj−cjδ∨=π(µ),

which can be rewritten as a system of two equations

( m∑
`=1

n`

)
α∨i −mq(αi)α∨i −βj = 0 and

m∑
`=1

(r−`)n`−cj =m(r−m)q(αi).

The first one requires that βj∈Zα∨i , and hence that j=0; the condition then becomes

m∑
`=1

n` =mq(αi) and

m∑
`=1

`n` =m2q(αi),

which, in turn, is equivalent to n1=...=nm−1=0 and nm=mq(αi). To sum up, we have

f(x∨i (ptr)v) =
an−m
n!

f(Xn
α∨i +(r−m)δ∨v0),

with n=mq(αi).

Now, let g be another linear form on V , which is non-zero on the line Υ(Lν) and

which vanishes on all weight subspaces of V of weight other than π(ν). Then, g�Υ does

not identically vanish on Ż, because

g(x∨i (ptr)v) = g(v0) 6= 0.

Therefore, the rational function (f/g)�Υ has no poles on Ż, and has value

an−m
f(Xn

α∨i +(r−m)δ∨v0)

n!g(v0)

at the point F (p, y). The second factor does not depend on (p, y), and hence is a non-zero

constant. We thus see that the local equation (f/g)�Υ of the divisor D vanishes along

ẽiZ with multiplicity n=q(αi)εi(Z), as asserted.
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6. The Mirković–Vilonen basis of C[N ]

6.1. Stabilization

Let ν∈Q+. Then, the subset S0
+∩S−ν− of Gr is non-empty and has pure dimension ρ∨(ν).

We define a stable MV cycle of weight −ν to be an irreducible component of S0
+∩S−ν− ,

and we denote the set of these cycles by Z(∞)−ν . We further define the set of all stable

MV cycles

Z(∞) =
⊔

ν∈Q+

Z(∞)−ν .

Let λ∈P+. By [A, Proposition 3], for any weight µ∈P , the irreducible components

of Grλ∩Sµ− are the irreducible components of Sλ+∩Sµ− that are contained in Grλ. Addi-

tionally, the action of tλ on Gr induces an isomorphism S0
+∩S−ν−

'−!Sλ+∩Sλ−ν− . It follows

that the assignment Z 7!tλZ provides a bijection

{Z ∈Z(∞) : tλZ ⊆Grλ} '−−!Z(λ).

Recall that, for each λ∈P+, we defined in §5.2 the MV basis {[Z]:Z∈Z(λ)} of the

representation L(λ).

Proposition 6.1. The MV bases of the simple representations L(λ) form a coherent

family of perfect bases in the sense of Definition 2.11. More precisely, for each Z∈Z(∞),

there exists a unique element bZ∈C[N ] such that, for any λ∈P+, we have

tλZ ⊆Grλ =⇒ bZ = Ψλ([tλZ]).

Proof. For each Z∈Z(∞), there exists λ∈P+ such that tλZ⊆Grλ ([A, Propositions 4

and 7]). The crux of the proof is to show that Ψλ([tλZ]) does not depend on the choice

of λ.

Let λ, µ∈P+. The orbit N∨+ (O)·Lλ is dense in Grλ ([MV, proof of Theorem 3.2]), so

tµ ·Grλ = tµN∨+ (O)·Lλ⊆N∨+ (O)tµ ·Lλ =N∨+ (O)·Lλ+µ =Grλ+µ.

As a consequence,

{Z ∈Z(∞) : tλZ ⊆Grλ}⊆{Z ∈Z(∞) : tλ+µZ ⊆Grλ+µ},

which shows that the assignment Z 7!tµZ defines an injection Z(λ) �
�
//Z(λ+µ) .

Let ψ:L(λ)!L(λ+µ) be the linear extension of this injection; in other words, ψ is

the linear map that sends an element [Z] of the MV basis of L(λ) to the element [tµZ]

of the MV basis of L(λ+µ). By construction, ψ raises the weight by µ and maps vλ

to vλ+µ. We claim that it intertwines the actions of N on L(λ) and L(λ+µ).
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To see this, let ν∈P , let f be a linear form on V which is non-zero on the line Υ(Lν)

and which vanishes on all weight subspaces of V of weight other than π(ν), and let D⊆Gr

be the Cartier divisor defined as the intersection of Gr with the hyperplane in P(V ) of

equation f . Then, the linear form g on V defined by g(v)=f(t−µv) is non-zero on the

line Υ(Lν+µ) and vanishes on all weight subspaces of V of weight other than π(ν+µ),

and tµD is the Cartier divisor of equation g. Thus, for any Z∈Z(λ)ν and Z ′∈Z(λ)ν+αi ,

we have

i(tµZ ′, (tµD)·(tµZ)) = i(Z ′, D·Z),

which implies (Theorem 5.4) that ψ intertwines the actions of each ei.

Thus, the map

(Ψλ−Ψλ+µ�ψ):L(λ)−!C[N ]

is an homomorphism of N -modules, which lowers the weight by λ and annihilates vλ. Its

image is therefore an N -invariant subspace of the augmentation ideal⊕
ν∈Q+\{0}

C[N ]−ν = {f ∈C[N ] : f(1N ) = 0}

of C[N ]. Consequently, this image is zero, and therefore Ψλ=Ψλ+µ�ψ. We conclude that

for any Z∈Z(∞) satisfying tλZ⊆Grλ, we have

Ψλ([tλZ]) = Ψλ+µ([tλ+µZ]).

Thus, the elements bZ constructed in Proposition 6.1 form a perfect basis of C[N ],

which we call the MV basis of C[N ], for it is obtained by gluing the MV bases of the

representations L(λ). By Proposition 2.7, the crystal structure on the indexing set Z(∞)

can be characterized by its restrictions to the sets Z(λ), where it must coincide (up

to a shift in the weight map) with the structure that we used in §5. Comparing the

constructions in [BrG] and [BFG], we see that this crystal structure is the one defined in

this latter reference.

6.2. Biperfectness

Our aim in this section is to prove the following result.

Theorem 6.2. The MV basis of C[N ] is biperfect.

As a first step in the proof, we need to endow Z(∞) with operators (ε∗i , ϕ
∗
i , ẽ
∗
i , f̃
∗
i )

that provide the structure of a bicrystal. We do this with the help of a weight-preserving

involution, which we construct as follows.
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We choose an involutive antiautomorphism g 7!gτ of G∨ that fixes pointwise the

torus T∨ and exchanges any root subgroup with its opposite root subgroup. The au-

tomorphism g 7!(gτ )−1 of the group G∨(K) leaves G∨(O) stable, hence induces an au-

tomorphism of Gr which we denote by x 7!x†. It is easy to see that L†µ=L−µ and that

(Sµ)†=S−µ− for each weight µ∈P . Given ν∈Q+ and Z∈Z(∞)−ν , we set Z∗=(tνZ)†,

another element in Z(∞)−ν . The map Z 7!Z∗ is involutive. We can now set

ε∗i (Z) = εi(Z
∗), ϕ∗i (Z) =ϕi(Z

∗), ẽ∗iZ = (ẽi(Z
∗))∗ and f̃∗i Z = (f̃i(Z

∗))∗

for each i∈I and Z∈Z(∞).

Remark 6.3. The involution Z 7!Z∗ on the set Z(∞) was first considered by Braver-

man, Finkelberg and Gaitsgory [BFG], who show that Z(∞)∼=B(∞) as bicrystals. The-

orem 6.2 provides an independent proof of the existence of such an isomorphism.

We extend the assignment bZ 7!bZ∗ to a linear bijection of the vector space C[N ],

which we denote by f 7!f∗.

Lemma 6.4. Let i∈I and let u be the endomorphism of the vector space C[N ] such

that u(f)=(ei ·(f∗))∗ for each f∈C[N ]. Then, u commutes with the left action of n on

C[N ].

Proof. We recall the formula that gives the left action of the Chevalley generators ej

on the basis elements of C[N ]. Fix ν∈Q+, pick a linear form f on the vector space V which

is non-zero on the line Υ(L−ν) and which vanishes on all weight subspaces of V of weight

other than π(−ν), and define D to be the Cartier divisor defined as the intersection of Gr

with the hyperplane in P(V ) of equation f . Then, for each j∈I and each Z∈Z(∞)−ν ,

we have

q(αj)ej ·bZ =
∑

Z′∈Z(∞)−ν+αj

i(Z ′, D·Z)bZ′ . (4)

The definition of the involution ∗ leads to a similar formula for the endomorphism u.

As a matter of fact, for each Z∈Z(∞)−ν and Z ′∈Z(∞)−ν+αi , we have

i((Z ′)∗, D·Z∗) = i((tν−αiZ ′)†, D·(tνZ)†;Gr) = i((t−αiZ ′)†, (tνD)·Z†;Gr).

Defining a Cartier divisor D′ on Gr by the formula D′=(tνD)†, we then get

q(αi)u(bZ) =
∑

Z′∈Z(∞)−ν+αi

i(t−αiZ ′, D′ ·Z)bZ′ .

Using [F, Corollary 2.4.2], we obtain

ej ·u(bZ) =
1

q(αi)q(αj)

∑
Z′∈Z(∞)−ν+αi+αj

i(t−αiZ ′, D·D′ ·Z)bZ′ =u(ej ·bZ)

for each j∈I and each Z∈Z(∞)−ν .
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Remark 6.5. The left action of the Chevalley generator ej on a basis element bZ is

obtained by intersecting Z with the divisor D so as to jettison the “bottom” part of Z.

Similarly, the action of u on bZ amounts to intersecting Z with the divisor D′ so as to

jettison the “top” part of Z. Thus, the lemma merely reformulates in a representation

theoretic language the general fact that D·(D′ ·Z)=D′ ·(D·Z).

Proposition 6.6. The involution f 7!f∗ of C[N ] exchanges the left and the right

actions of the Chevalley generators ei.

Proof. Let i∈I and let u be the endomorphism of C[N ] defined in Lemma 6.4. By

construction, u(C[N ]−ν)⊆C[N ]−ν+αi for each ν∈Q+. Therefore, the dual of u can be

restricted to an endomorphism v of the graded dual of C[N ], namely U(n), and v is of

degree αi. Lemma 6.4 implies that v commutes with the right action of n on U(n), so v

is the left multiplication by an element of U(n). For degree reasons, this element is of

the form λei with λ∈C. Thus, u is the right action of λei on C[N ].

The set Z(∞)−αi contains just one element—indeed S0
+∩S−αi− is a Riemann sphere,

and hence is irreducible. Denote this element by Zi; it is fixed by the involution ∗.
Then, the basis element bZi spans the weight subspace C[N ]−αi , and by construction of

the pairing between U(n) and C[N ], we have ei ·bZi=bZi ·ei (see §2.1; in fact, this is the

constant function on N equal to 1). Now, on the one hand we have u(bZi)=bZi ·(λei),
and on the other hand, since bZi=(bZi)

∗, we have

u(bZi) = (ei ·bZi)∗= ei ·bZi .

Therefore, λ=1, and we conclude that u is the right action of ei on C[N ].

Thus, the involution f 7!f∗ exchanges the left and the right actions of each Chevalley

generator ei.

Proof of Theorem 6.2. Note that our constructions ensure that the involution f 7!f∗

exchanges the crystal structures (wt, εi, ϕi, ẽi, f̃i) and (wt, ε∗i , ϕ
∗
i , ẽ
∗
i , f̃
∗
i ), as well as the

left and right actions of the Chevalley generators. Since the MV basis of C[N ] is perfect,

it is biperfect.

Remark 6.7. The involution f 7!f∗ of C[N ] is dual to the involutive algebra anti-

automorphism of U(n) that fixes the Chevalley generators ei. One can also easily show

that f 7!f∗ is the automorphism of the algebra C[N ] induced by the automorphism

n 7!(−1)ρ
∨
n−1(−1)−ρ

∨
of the variety N , where (−1)ρ

∨
is the evaluation at −1 of the

cocharacter ρ∨ of T .
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6.3. MV polytopes from MV cycles

For each T -invariant closed subvariety Z⊂Gr (for example an MV cycle or stable MV

cycle), we define

Pol(Z) := Conv{µ :Lµ ∈Z}.

For any such Z and any γ∈P , note that Pol(tγZ)=γ+Pol(Z).

The MV basis is biperfect (Theorem 6.2) and is indexed by the set Z(∞) of stable

MV cycles, so by §2.4 we get a canonical bijection Z(∞)∼=B(∞). The construction in

§3.3 allows us to represent elements in B(∞) by MV polytopes. Therefore, we get a

resulting bijection from Z(∞) onto the set of MV polytopes. By Remark 3.4 and [Kam1,

Theorem 4.7], this bijection is given by Z 7!Pol(Z).

7. Multiplication

7.1. Generalities on cosheaves

In this section, we will work with cosheaves, which we define as Verdier duals of sheaves.(2)

Let X be an irreducible complex algebraic variety of dimension d.

Definition 7.1. • A (constructible) cosheaf on X is an object A of Dc(X) which is

isomorphic to D(F) for some sheaf F .

• The costalk of a cosheaf A at a point x is the vector space i!xA.

• A cosheaf A is coconstant if it is isomorphic to the Verdier dual of a constant

sheaf. It is coconstant along V if i!V (A) is coconstant as a cosheaf on V . (Here V ⊂X is

a constructible subset and iV :V!X is the inclusion.)

The cosheaves on X form an abelian category CoShc(X) which is the heart of a

t-structure on Dc(X); this t-structure is obtained by applying Verdier duality to the

standard t-structure. We have cohomology functors �Hk:Dc(X)!CoShc(X) which are

defined by �Hk(A)=D(H−k(D(A))), where Hk denotes the usual cohomology functor.

For any morphism f :X!Y , f ! is exact with respect to this t-structure and thus f !

commutes with the cohomology functors �Hk. This also implies that, for any cosheaf A,

the costalk i!xA is just a vector space (rather than a complex).

Cosheaves are very useful when studying the homology of fibres of a morphism of

varieties.

(2) The reader may find this terminology a bit strange since this differs from the more common

use of “cosheaf”. We justify our use of this word in two ways. First, i!xA is often called “costalk” in

the literature. Second, our category of cosheaves is equivalent to the usual category of cosheaves by [C,
Proposition 7.13].
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Lemma 7.2. Let π:Y!X be a morphism. For any k∈Z, define a cosheaf G on X

by

G := �H−k(π∗DY ).

Then, for any x∈X, we have

i!xG ∼=Hk(π−1(x)).

Proof. We use base change and exactness of i!x (with respect to the cosheaf t-

structure) to see that

i!x(G) = �H−k(i!xπ∗DX) =H−k(π−1(x),Dπ−1(x)) =Hk(π−1(x)).

7.1.1. Cosheaves on the line

We will particularly be working with cosheaves on A=A1 which are coconstant along U=

A\{0}. Let i=i0: {0}!A and j:U!A be the inclusions of the origin and its complement.

We will also fix a point x∈U and write ix: {x}!A for the inclusion.

Let u∈H2
{0}(A) be the usual relative orientation class. As above, we will think of

u as a map i∗C{0}!CA[2]. For any vector space V , we have a constant sheaf VA with

stalks V , and the cup product gives an isomorphism

V =H0
c ({0}, V{0})

u∪−−−!H2
c (A, VA).

Proposition 7.3. Let F be a sheaf on A which is constant along U .

(i) We have isomorphisms

i∗xF ∼=F(U) and i∗0F ∼=F(A)

and hence we have a restriction map r: i∗0F!i∗xF .

(ii) There is an isomorphism i∗xF∼=H2
c (A,F) making the diagram

i∗0F
r //

∼=
��

i∗xF

∼=
��

H0
c ({0}, i∗0F)

u∪ // H2
c (A,F)

(5)

commute.

Proof. For the purposes of this proof, let V =i∗0F and W=i∗xF .

Part (i) is immediate; in fact, for any connected open set U⊂A, we have

F(U) =

{
V , if 0∈U ,

W , if 0 /∈U .
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In particular, F(A)=V and F(U)=W and so, by restriction, we have a linear map

r:V!W .

For part (ii), consider the standard short exact sequence of sheaves

0−! j!j
!F −!F −! i∗i

∗F −! 0,

which in our case becomes

0−! j!WU −!F −! i∗V{0}−! 0.

Since i is closed embedding, i∗=i! and so

Hk
c (A, i∗V{0}) =Hk

c ({0}, V{0}) = 0

for k>0. Thus, we get an isomorphism

W =W⊗H2
c (U) =H2

c (U,WU ) =H2
c (A, j!WU )∼=H2

c (A,F)

Now that we have an isomorphism i∗xF∼=H2
c (A,F), it remains to verify the commu-

tativity of the square (5). To that end, consider the map of sheaves VA!F , which is the

identity on connected open sets containing zero and the map r on connected open sets

not containing 0. By functoriality, we obtain a commutative diagram

j!VU = j!j
!VA //

r

��

VA

��

j!WU = j!j
!F // F .

Applying H2
c (A,−), we obtain the commutative square

V =H2
c (U, VU )

= //

r

��

V =H2
c (A, VA)

��

W =H2
c (U,WU )

∼= // H2
c (A,F).

(6)

Now, by the naturality of cup product, we get a commutative square

i∗i
∗VA

u∪ //

∼=
��

VA[2]

��

i∗i
∗F u∪ // F [2].

Applying H0
c (A,−), we obtain a factoring of u∪ as

V =H0
c ({0}, i∗0F)

∼=−−!H2
c (A, VA)−!H2

c (A,F).

Combined with the square (6), the result follows.
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Applying Verdier duality implies a similar result for cosheaves on A.

Proposition 7.4. Let G be a cosheaf on A which is coconstant along U .

(i) We have isomorphisms

i!xG ∼=H0
c (U, i!UG) and i!0G ∼=H0

c (A,G)

and a corestriction map r∨: i!xG!i!0G.

(ii) There is an isomorphism i!xG∼=H−2(A,G) making the diagram

i!xG
r∨ //

∼=
��

i!0G

∼=
��

H−2(A,G)
u∩ // H0

{0}(A,G)

commute.

Now, we will see how we can use these results to describe degeneration of cycles in

Borel–Moore homology.

Let f :Y!A be a morphism of varieties. Fix an integer n such that all fibres of f

have dimension 6n−1 (usually n=dimY , but not necessarily). We write Y0=f−1(0),

Yx=f−1(x) and YU=f−1(U). Assume also that we are given an isomorphism YU∼=Yx×U
compatible with the projection to U . Let G= �H−2n+2(f∗DY ).

Proposition 7.5. We have the following results concerning G.

(i) G is coconstant along U .

(ii) We have isomorphisms i!xG∼=H2n−2(Yx) and i!0G∼=H2n−2(Y0).

(iii) For p<−2n+2, we have �Hp(f∗DY )=0, and thus we have a morphism

G −! f∗DY [−2n+2].

This morphism induces an isomorphism

H−2(A,G)
∼=−−!H−2(A, f∗DY [−2n+2]) =H−2n(Y,DY ) =H2n(Y ).

(iv) With respect to the isomorphism H−2(A,G)∼=H2n(Y ) and the isomorphism

i!xG∼=H2n−2(Yx), the isomorphism i!xG∼=H−2(A,G) from Proposition 7.4 (ii) is given on

cycles as [Z] 7![Z×U ].

(v) The corestriction map is compatible with the cap product in homology as follows:

i!xG
r∨ //

∼=

{{

i!0G

∼=

��

H−2(A,G)
∼= // H2n(Y )

(f∗u)∩
// H2n−2(Y0).
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Proof. (i) Since j! is exact on the cosheaf t-structure, j!G= �H−2n+2(f∗DYU ) and

because YU∼=Yx×U , we see that j!G=DU⊗H2n−2(Yx) is coconstant.

(ii) These isomorphisms follow from Lemma 7.2.

(iii) For any p and any y∈A, we have

i!y �Hp(f∗DY ) =H−p(f
−1(y)).

Since the fibre dimension is n−1, we see that this homology vanishes if p<−2n+2

and thus �Hp(f∗DY )=0 for such p. Thus, we deduce the existence of a morphism

G!f∗DY [−2n+2]. We have a spectral sequence starting with Hq(A, �Hp(f∗DY )) and con-

verging to Hp+q(Y,DY ). Since Hq(A, �Hp(f∗DY )) vanishes for q<−2 and for p<−2n+2,

we see that the only contribution to H−2n(Y,DY ) can come from H−2(A,G), and thus

H−2(A,G)∼=H2n(Y ).

(iv) We begin by repeating part of the proof of Proposition 7.3 in the Verdier dual

setting. Consider the morphism G!j∗j∗G. As j∗=j!, we obtain the morphism

G −! j∗DU⊗H2n−2(Yx).

Applying H−2(A,−), we obtain the isomorphism

H−2(A,G)∼=H−2(A, j∗DU⊗H2n−2(Yx)) =H2(U)⊗H2n−2(Yx) =H2n−2(Yx) (7)

Now, we have the commutative square

G //

��

j∗j
∗G= j∗DU⊗H2n−2(Yx)

��

f∗DY [−2n+2] // j∗j
∗f∗DY [−2n+2] = j∗f∗DYU [−2n+2].

Applying H−2(A,−), we obtain the commutative rectangle of isomorphisms

H−2(A,G) //

��

H−2(A, j∗DU⊗H2n−2(Yx))
∼= // H2n−2(Yx)

��

H−2n(Y,DY ) =H2n(Y ) // H−2n(YU ,DYU ) =H2n(YU )
∼= // H2n(Yx×U).
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In this diagram, the bottom-left horizontal arrow is given by pull-back in Borel–Moore

homology, so on cycles it is given by [X] 7![X∩YU ]. The right vertical arrow is given on

cycles by [Z] 7![Z×U ]. Thus, if we trace from the top-right to the bottom-left (following

the inverses of the arrows along the bottom), we see the map [Z] 7![Z×U ].

(v) We apply the projection formula (3) to the sheaf DY . We obtain the commuta-

tive square.

H2n(Y ) =H−2n(Y,DY )
(f∗u)∩

//

∼=
��

H−2n+2
Y0

(Y,DY ) =H2n−2(Y0)

∼=
��

H−2(A,G)∼=H−2n(A, f∗DY )
u∩ // H−2n+2

{0} (A, f∗DY )∼=H0
{0}(A,G).

The result now follows from part (ii) of Proposition 7.4.

7.2. The Beilinson–Drinfeld Grassmannian

We will need to recall the definition and properties of the Beilinson–Drinfeld Grassman-

nian. All the definitions and results here are taken from [MV]. The original definitions

are due to Beilinson–Drinfeld [BD].

For any x∈C, let Ox=C[[t−x]] denote the completion of the local ring of A=A1 at

x and Kx=C((t−x)) its fraction field. By the Beauville–Laszlo theorem, the C-points

of the affine Grassmannian Grx :=G(Kx)/G(Ox) can be identified with the set of pairs

(P, σ), where P is a principal G-bundle on A1 and σ is a trivialization of P over A\{x}.
Since we have chosen the local coordinate t−x, we get an isomorphism Ox!O, and

thus Grx!Gr.

Now, we consider a 2-point version of the Beilinson–Drinfeld Grassmannian. For

simplicity, we will fix one point to be zero and allow the other point to vary. The set of

C-points of GrA is given by

GrA = {(P, σ, x) : P is a principal G bundle on A, x∈A

and σ is a trivialization of P over A\{0, x}}.

(See [MV, (5.1)] for a precise description of the R-points of GrA for each C-algebra R.)

We have an obvious map π:GrA!A. Let U=A1\{0}. The following is diagram (5.9)

in [MV].

Lemma 7.6. There are isomorphisms

π−1(U) =GrU ∼=Gr×Gr×U and π−1(0)∼=Gr.
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The action of T by left multiplication on Gr extends to an action on GrA preserving

all fibres. From the fibre perspective, this is simply the diagonal action on Gr×Gr.

Following [MV], we introduce a global version of the semi-infinite cells. For µ∈P ,

define Sµ−,A to be the subvariety of GrA with fibres Sµ− over zero and fibres

⋃
µ1+µ2=µ

Sµ1
− ×Sµ2

−

over x∈U .

We write sµ for the inclusion of Sµ−,A into GrA.

We will also need the global version of the G∨(O) orbits. From [Z], for any pair

λ1, λ2∈P+, there exists a variety Grλ1,λ2

A ⊂GrA, whose fibres are Grλ1×Grλ2 away from

zero and Grλ1+λ2 over zero.

7.3. The fusion product of perverse sheaves

We will now define the fusion tensor product on PG∨(O)(Gr) following [MV].

Consider the diagram

Gr
i //

��

GrA

π

��

GrU ∼=Gr×Gr×U
j

oo

��

{0} // A U.oo

Definition 7.7. Let A1,A2∈PG∨(O)(Gr). The fusion product (see [MV, (5.8)]) is

defined by

A1∗A2 := i!(j!∗(p
!
12(A1�A2)[−1]))[1],

where p12:Gr×Gr×U!Gr×Gr is the projection onto the first two factors.

Following [MV] and [BR, §8.3], we will explain the compatibility of the fusion product

with the weight functors.

Fix A1,A2∈PG∨(O)(Gr) and let

B := j!∗(p
!
12(A1�A2)[−1]),

and, for each µ∈P , let

Fµ := �H2ρ∨(µ)+1π∗s
!
µB

be a cosheaf on A. The following result follows by direct computation.
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Proposition 7.8. (i) The cosheaf Fµ is coconstant along U with costalk at x∈U
given by

i!xFµ =
⊕

µ1+µ2=µ

Fµ1
(A1)⊗Fµ2

(A2).

(ii) The costalk at zero is given by

i!0Fµ =Fµ(A1∗A2).

(iii) The cosheaf Fµ is actually coconstant along all of A and so the corestriction

map r∨: i!xFµ!i!0Fµ provides an isomorphism⊕
µ1+µ2=µ

Fµ1
(A1)⊗Fµ2

(A2)−!Fµ(A1∗A2).

In fact, this cosheaf Fµ is L[2], where L is the local system L2ρ∨(µ)
µ (A1,A2) defined

in [MV, (6.22)], and pulled back to A⊂A2.

7.4. The multiplication map

Let λ1 and λ2 be two dominant weights, and let λ=λ1+λ2. We have a morphism

mλ1λ2
: Iλ1
∗Iλ2

−! Iλ

which becomes mλ1λ2
:L(λ1)⊗L(λ2)!L(λ) under the geometric Satake isomorphism.

Take (A1,A2)=(Iλ1
, Iλ2

) in the setup above. Note that

B := j!∗(p
!
12(Iλ1

�Iλ2
)[−1])

is actually the IC sheaf of Grλ1,λ2

A .

Let µ∈P . We will compare Fµ := �H2ρ∨(µ)+1π∗s
!
µB to the cosheaf

G := �H2ρ∨(µ)+1π∗s
!
µ

(
D
Gr
λ1,λ2
A

[−2ρ∨(λ)−1]
)

= �H−2ρ∨(λ−µ)π∗

(
D
Gr
λ1,λ2
A ∩Sµ−,A

)
.

We may apply Proposition 7.5 to the map

π:Grλ1,λ2

A ∩Sµ−,A−!A,

and thus to the sheaf G.

So, from Proposition 7.5 (i) and (ii), it follows that G is coconstant along U and its

costalks are as follows

i!0G ∼=H2ρ∨(λ−µ)(Grλ∩Sµ− )∼=Fµ(Iλ)
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and, for x∈U ,

i!xG=
⊕

µ1+µ2=µ

H2ρ∨(λ1−µ1)(Grλ1∩Sµ1
− )⊗H2ρ∨(λ2−µ2)(Grλ2∩Sµ2

− )

∼=
⊕

µ1+µ2=µ

Fµ1(Iλ1)⊗Fµ2(Iλ2).

Lemma 7.9. The following diagram commutes:⊕
µ1+µ2=µ

Fµ1
(Iλ1

)⊗Fµ2
(Iλ2

)

∼=

��

mλ1λ2 // Fµ(Iλ)

∼=

��

i!xG
r∨ // i!0G.

Proof. From (2), we have a map

B−!D
Gr
λ1,λ2
A

[−2ρ∨(λ)−1]. (8)

Let i:Gr!GrA denote the inclusion of the central fibre as before. Then,

i!B[1] = Iλ1 ∗Iλ2

by definition. On the other hand, Iλ1
∗Iλ2

∼=Iλ⊕A, where A is supported on smaller

orbits. Thus, we have a projection Iλ1
∗Iλ2

!Iλ. If we apply i![1] to the map (8), we

obtain Iλ1
∗Iλ2

!D
Grλ

[−2ρ∨(λ)], which we can factor as

Iλ1
∗Iλ2

−! Iλ−!DGrλ
[−2ρ∨(λ)], (9)

because

Hom
(
A,D

Grλ
[−2ρ∨(λ)]

)
= Hom

(
C
Grλ

[2ρ∨(λ)],D(A)
)

=H−2ρ∨(λ)(Grλ,D(A)) = 0.

For the last equality, note that D(A) is a direct sum of perverse sheaves, each supported

on some Grµ Grλ, and dimGrµ<2ρ∨(λ).

On the other hand, if we apply �H2ρ∨(µ)+1π∗�s
!
µ to (8), we obtain a map of cosheaves

Fµ!G, whence a commutative diagram

i!xFµ
r∨ //

��

i!0Fµ

��

i!xG
r∨ // i!0G.

(10)
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The factoring (9) means that the map i!0Fµ!i!0G factors as

H
2ρ∨(µ)

Sµ−
(Gr, Iλ1 ∗Iλ2)−!H

2ρ∨(µ)

Sµ−
(Gr, Iλ)−!H

2ρ∨(µ)

Sµ−

(
Gr,D

Grλ
[−2ρ∨(λ)]

)
.

Thus, (10) can be rewritten as

⊕
µ1+µ2=µ

Fµ1
(Iλ1

)⊗Fµ2
(Iλ2

) //

∼=

��

mλ1λ2
''

Fµ(Iλ1
∗Iλ2

)

��

Fµ(Iλ)

∼=

��

i!xG
r∨ // i!0G,

and the result follows.

7.5. Multiplication on the level of cycles

Now, we will translate Lemma 7.9 to the cycle level. As before, let λ1, λ2∈P+, let

λ:=λ1+λ2, let µ1, µ2∈P , and let µ:=µ1+µ2.

Lemma 7.10. Let Z1∈Z(λ1)µ1 and Z2∈Z(λ2)µ2 . Consider

Z1×Z2×U ⊂Grλ1,λ2

A ∩Sµ−,A

Then, in Fµ(Iλ)=H2ρ∨(λ−µ)(Grλ∩Sµ− ), we have an equality

mλ1,λ2([Z1]⊗[Z2]) =
∑
Z

i(Z, π−1(0)·Z1×Z2×U)[Z],

where the sum ranges over Z∈Z(λ)µ.

Proof. By Proposition 7.5 (v) and Lemma 7.9, we obtain the commutative diagram

⊕
µ1+µ2=µ

Fµ1
(Iλ1

)⊗Fµ2
(Iλ2

)

∼=

��

mλ1λ2 // Fµ(Iλ)

∼=

��

H2ρ∨(λ−µ)+2

(
Grλ1,λ2

A ∩Sµ−,A
) π∗(u)∩

// H2ρ∨(λ−µ)(Grλ1+λ2∩Sµ− ),
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where, as before, u∈H2
{0}(A) denotes the usual orientation class. Now, by Proposi-

tion 7.5 (iv), the element [Z1]⊗[Z2] in the top-left is sent to [Z1×Z2×U ] in the bottom-

left.

Now, we apply the setup from Proposition 5.1 to Y =A1, D={0}, X ′=Grλ∩Sµ− and

Y ′=Grλ1,λ2

A ∩Sµ−,A. This gives the desired result.

By Proposition 2.12, this immediately implies the following result concerning stable

MV cycles.

Theorem 7.11. Let Z1∈Z(∞)−ν1 and Z2∈Z(∞)−ν2 . In the algebra C[N ], we have

bZ1bZ2 =
∑
Z

i(Z, π−1(0)·Z1×Z2×U )bZ ,

where the sum ranges over Z∈Z(∞)−ν1−ν2 .

Part III. Measures

8. Measures

All the objects defined in this section depend on the choice of a principal nilpotent

element ė∈n and we write ė=
∑
i ėi, where each ėi is a non-zero root vector of weight αi.

These ėi are a priori unrelated to the choice of simple root vectors ei made in §2.1.

8.1. The elements nx

We denote the set of regular elements in t by treg.

For each x∈treg, the subset x+n of g is a single orbit under the adjoint action of

the group N , by [Bo, chap. 8, §11, no. 1, lemme 2]. Further, the centralizer of x in G,

namely T , meets N trivially, so the action of N on x+n is simply transitive. Therefore,

there is a unique element nx∈N such that Adnx(x)=x+ė. Examining the proof in [Bo],

one further notes that x 7!nx is a regular map treg
!N .

We thus get an algebra map 
D:C[N ]!C[treg] defined by 
D(f)(x)=f(nx), where

f∈C[N ] and x∈treg.

A major goal of this section is to understand the map 
D and to put it in a wider

setting. We first study how nx varies when the Weyl group acts on x. We denote by N−

the unipotent radical of the Borel subgroup opposite to B with respect to T . Recall that

	w denotes a lift to the normalizer NG(T ) of an element w in the Weyl group.

Proposition 8.1. Let x∈treg and w∈W . Then, there exists (y, t)∈N−×T such

that

nwx = ynx	w
−1t.
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Proof. By induction on the length of w, we can reduce to the case where w is a

simple reflection si. Choose ḟi such that (ėi, hi, ḟi) is an sl2 triple. Let xi and yi be

the additive 1-parameter subgroups of G given by xi(b)=exp(bėi) and yi(b)=exp(bḟi) for

b∈C. Set a=〈αi, x〉; there exists an element t∈T such that

xi

(
1

a

)
yi(−a)xi

(
1

a

)
= s̄it.

Direct calculations give

Adyi(a)(x) = exp(a adḟi)(x) =x+a[ḟi, x] =x+a2ḟi,

Adyi(a)(ė) = exp(a adḟi)(ė) = ė+a[ḟi, ėi]+
1
2a

2[ḟi, [ḟi, ėi]] = ė−ahi−a2ḟi.

Noting that six=x−〈αi, x〉hi, we then get

Adyi(a)(x+ė) = six+ė.

Since t acts trivially on t and s̄i acts by the simple reflection si, we deduce that

Ad(yi(a)nxs̄it)(six) = Ad(yi(a)nx)(x) = Adyi(a)(x+ė) = six+ė. (11)

On the other hand, let P ′ be the (minimal parabolic) subgroup of G generated by

the Borel B and the image of the 1-parameter subgroup yi. We denote the unipotent

radical of P ′ by N ′ and the Lie algebra of N ′ by n′. Noting that [x+ėi, n
′]=n′ and

that ė−ėi∈n′, we can apply Bourbaki’s lemme 2 quoted above and find n′∈N ′ such that

Adn′(x+ėi)=x+ė. Since

Adxi(−1/a)(x) =x+ėi,

we see that the adjoint action of n′xi(−1/a) brings x to x+ė, and thus nx=n′xi(−1/a).

Since yi(−a)xi(1/a) belongs to P ′ and hence normalizes N ′, we can find n′′∈N ′

such that

yi(a)nxs̄it= yi(a)n′yi(−a)xi

(
1

a

)
= yi(a)yi(−a)xi

(
1

a

)
n′′=xi

(
1

a

)
n′′.

Thus, the product yi(a)nxs̄it belongs to N , and by (11) it acts on six in the same way

as nsix. We conclude that nsix=yi(a)nxs̄it, which is of the desired form.

8.2. Sequences and shuffles

Our next task is to find an expansion of nx and n−1
x as an infinite linear combination of

Chevalley monomials.

We need some notation concerning finite sequences i=(i1, ..., ip) drawn from the

set I.
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Definition 8.2. (i) We denote by Seq the set of all such sequences i, and for ν∈Q+,

we put

Seq(ν) := {i = (i1, ..., ip) :αi1 +...+αip = ν}.

(ii) A shuffle of two sequences j and k is a sequence i produced by shuffling together

the sequences j and k, maintaining the same relative order among the elements of j and k.

We write j k to denote this set of shuffles. Thus, if j has length p and k has length q,

then j k has
(
p+q
p

)
elements.

(iii) With a sequence i=(i1, ..., ip) in Seq, we associate the weights

βi
0 = 0, βi

1 =αi1 , βi
2 =αi1 +αi2 , ..., βi

p =αi1 +...+αip .

Consider the free Lie algebra f on the set {êi :i∈I} and its universal enveloping

algebra U(f) (identified with the free associative algebra on this set). This algebra U(f)

is graded by Q+. For each ν∈Q+, we have a basis {êi :=êi1 ... êip}i∈Seq(ν) for U(f)ν .

The algebra U(f) is in fact a graded Hopf algebra with finite-dimensional compo-

nents, so its graded dual (U(f))∗ is also a Hopf algebra. For each ν∈Q+, we consider the

basis {ê∗i }i∈Seq(ν) for (U(f))∗−ν dual to the above basis {êi}i∈Seq(ν) for U(f)ν . From the

definition of the coproduct on U(f), we get the following shuffle identity in (U(f))∗:

ê∗j ê
∗
k =

∑
i∈j k

ê∗i (12)

There is a unique Hopf algebra map U(f)!U(n) that sends êi to ėi for each i∈I.

The dual map is an inclusion of algebras C[N ] �
�
// (U(f))∗ . (This inclusion was previously

studied by various authors, including in [GLS, §8].) Each sequence i=(i1, ..., ip) defines

a monomial ėi=ėi1 ... ėip in U(n).

The following well-known functional identity seems to be related to cat chasing and

moulds [MO] and to an identity of Littlewood [KnD, Lemma p. 149].

Lemma 8.3. Given p complex numbers a1, ..., ap, define

fp(a1, ..., ap) =
1

a1(a1+a2) ... (a1+a2+...+ap)

whenever it makes sense. Let p and q be positive integers and let Sh(p, q) denote the set

of all permutations σ∈Sp+q such that

σ(1)<σ(2)< ...<σ(p) and σ(p+1)<σ(p+2)< ...<σ(p+q).

Then, for any complex numbers a1, ..., ap+q, we have

fp(a1, ..., ap)fq(ap+1, ..., ap+q) =
∑

σ∈Sh(p,q)

fp+q(aσ−1(1), ..., aσ−1(p+q)),

whenever both members make sense.
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Proof. By analytic continuation, we can deduce the general result from the case

where all ai have positive real part. In this particular case,

fp(a1, ..., ap) =

∫
Cp

e−(a1x1+...+apxp) dx1 ... dxp,

where Cp={(x1, ..., xp)∈Rp :x1>...>xp>0}. The proposition follows by writing Cp×Cq
as the disjoint union of cones

σ−1 ·Cp+q = {(xσ(1), ..., xσ(p+q)) :x1> ...>xp+q > 0}

for σ∈Sh(p, q), up to a nullset.

For a sequence i=(i1, ..., ip), we define


Di =

p−1∏
k=0

1

βi
k−βi

p

.

These rational functions 
Di can be evaluated on any x∈treg that satisfies 〈β, x〉6=0

for all β∈Q+\{0}.

Proposition 8.4. Let x∈treg such that 〈β, x〉6=0 for all β∈Q+\{0}. Then,

f(nx) =
∑
i∈Seq

〈ėi, f〉
Di(x)

for all f∈C[N ].

These linear combinations appearing in this statement are infinite only in appear-

ance, for U(n) acts locally nilpotently on C[N ]. The proposition says that the morphism

D can be expanded as C(t)-linear combinations of Chevalley monomials:


D=
∑
i∈Seq


Diėi.

Proof. To prove this formula, we need to show that as linear forms on C[N ]

nx =
∑
i∈Seq


Di(x)ėi. (13)

We first note that Lemma 8.3 implies that


Dj(x)
Dk(x) =
∑
i∈j k


Di(x)
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for all sequences j and k. Comparing with (12), it follows that∑
i∈Seq


Di(x)ėi

is an algebra map (U(f))∗!C. Thus, the right-hand side of (13) is an algebra map

C[N ]!C, so is the evaluation at an element n∈N .

Let us compute how this n acts on x in the adjoint representation of N on g. Since

D(k)(x)=−1/αk(x), we have

∑
k∈I


D(k)(x) adėk(x) =
∑
k∈I

(
−[ėk, x]

αk(x)

)
= ė.

Each sequence of length greater than 2 can be written as a concatenation (i, j, k) with

i∈Seq (possibly empty) and (j, k)∈I2. Denoting by p the length of i, we compute


D(i,j,k)(x) ad ė(i,j,k)(x) =

( p∏
`=0

1

βi
`−(βi

p+αj+αk)
×−1

αk

)
(x) adėi([ėj , [ėk, x]])

=

( p∏
`=0

1

(βi
`−βi

p)−(αj+αk)

)
(x) adėi([ėj , ėk]).

Summing these elements with (j, k) running over I2 gives zero, since terms pairwise

cancel by antisymmetry of the Lie bracket [ėj , ėk]. Taking the sum over i then yields the

equality ∑
i6=∅


Di(x) adėi(x) = ė

and we conclude that Adn(x)=x+ė. (Note that the above sum makes sense since it is

in fact finite.) As this is the definition of nx, this completes the proof of (13).

8.3. Measures from simplices

In the rest of §8, we explain that 
D is the shadow of a measure-valued morphism that

carries more information. We start with its construction.

Consider the vector space of C-valued compactly supported distributions on t∗R. It

forms an algebra under convolution, the push-forward along the addition map

t∗R×t∗R
+−−! t∗R.

Define PP to be the subspace spanned by those distributions equal to linear combi-

nations of piecewise-polynomial functions times Lebesgue measures on (not necessarily
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full-dimensional) polytopes whose vertices lie in the weight lattice P ; it is a subalgebra.

All the distributions we will consider live in PP.

Let

∆p := {(c0, ..., cp)∈Rp+1 : each ci> 0 and c0+...+cp = 1}

be the standard p-simplex. For i∈Seq of length p, we define the linear map πi:Rp+1
!t∗R

by

πi(c0, ..., cp) =−
p∑
k=0

ckβ
i
k

We define the measure Di on t∗R by Di :=(πi)∗(δ∆p), the push-forward of Lebesgue

measure on the p-simplex. Note that the total mass of Di is 1/p!.

Lemma 8.5. The measures Di satisfy the shuffle identity

Dj∗Dk =
∑
i∈j k

Di.

Proof. Let p and q be the lengths of j and k, respectively, and consider the composite

map

πj+πk:Rp+1×Rq+1 πj×πk−−−−! t∗R⊕t∗R
+−−! t∗R.

Then, the left side of the desired equality is exactly (πj+πk)∗(δ∆p×∆q ). To get the

right side, we triangulate the product ∆p×∆q in one of the standard ways (see e.g. [Ha,

pp. 277–278]) with one simplex for each shuffle.

Comparing Lemma 8.5 with (12), we deduce that there is an algebra morphism

(U(f))∗!PP taking ê∗i to Di. Composing with the inclusion of algebras C[N ]
� � // (U(f))∗

from §8.2, we get an algebra map D:C[N ]!PP. Unpacking the above definitions, we

see that, for any f∈C[N ],

D(f) =
∑
i∈Seq

〈ėi, f〉Di. (14)

8.4. The Fourier Transform

For each weight β∈P , we define eβ to be the function x 7!e〈β,x〉 on tC. Let PP ′ be the

space of meromorphic functions on tC spanned by these exponentials over the field C(t)

of rational functions. The Fourier Transform is defined to be the map

FT:PP −!PP ′,

µ 7−!
(
x 7!

∫
β∈t∗R

e〈β,x〉 dµ

)
.
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Lemma 8.6. The Fourier transform is one-to-one and satisfies

(i) FT(a∗b)=FT(a) FT(b) for all a, b∈PP.

(ii) Let β∈P . Denoting by δβ the point measure at β, we have FT(δβ)=eβ.

Lemma 8.7. For a sequence i=(i1, ..., ip), the Fourier transform FT(Di) is given by

FT(Di) =

p∑
j=0

e−β
i
j∏

k 6=j
(βi
k−βi

j)
.

Proof. The Fourier Transform for the Lesbesgue measure on a polytope is well known

(see for example [Bri2, Proposition 5.3]). The current result then follows from the com-

patibility between pull-back of functions and push-forward of measures.

The exponentials e−β
i
k can be regarded as regular functions on the torus T . On the

other hand, the denominators
∏
k 6=j(β

i
k−βi

j) belong to the multiplicative subset S⊂C[t]

generated by the set Q\{0}. From the lemmas, we immediately obtain the following.

Corollary 8.8. The composition FT �D defines an algebra morphism

C[N ]−!S−1C[t]⊗C[T ]

Thus, the map FT �D can geometrically be viewed as a rational map t×T!N .

(Note here that S can be replaced by a finitely generated semigroup, because C[N ] is

finitely generated.)

Remark 8.9. No open subset of t×T maps dominantly to N if dimN>dim(t×T ),

so FT �D cannot be injective if the number of positive roots exceeds twice the rank of G.

Since FT is one-to-one, this means that D is not injective in general.

Remark 8.10. For any f∈C[N ], we can write

FT �D(f) =
∑
i∈Seq

〈ėi, f〉FT(Di).

If f∈C[N ]−ν , then the sum can be restricted to sequences in Seq(ν), and we see from

Lemma 8.7 that the exponentials e−β that appear in FT �D(f) satisfy 06β6ν.

Further, comparing with Proposition 8.4, we see that 
D(f) is the coefficient of e−ν .

On the other hand, it is not difficult to show (using Remark 6.7) that the map x 7!n−1
x ,

corresponds to the coefficient of e0 in FT �D(f).

Theorem 8.11. Let x∈treg, let t∈T , and let f∈C[N ]. Then FT �D(f), viewed as

a rational function on t×T , can be evaluated at (x, t), and we have

FT �D(f)(x, t) = f(t−1nxtn
−1
x ).
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Proof. We first consider the particular case where 〈β, x〉6=0 for all β∈Q\{0}. Given

i∈Seq of length p and `∈{0, ..., p}, we set

Ai
`(x, t) =

t−β
i
`

p∏
m=0
m 6=`

(βi
m−βi

`)(x)

,

where t−β
i
` means the evaluation at t−1 of the weight βi

`. In view of Lemma 8.7, we want

to prove that the linear form

∑
i∈Seq

( p∑
`=0

Ai
`(x, t)

)
ėi (15)

on C[N ] is the evaluation at the point t−1nxtn
−1
x .

We first note that the linear form (15) is an algebra map C[N ]!C, because it is the

composition of the algebra map FT �D with the evaluation at (x, t). Therefore, it is the

evaluation at a point n∈N .

By construction, the element t−1nxtn
−1
x is the unique element of N that brings x+ė

to Adt−1(x+ė)=x+Adt−1(ė). Let us show that n fulfills this task.

Since A
(k)
0 (x, t)+A

(k)
1 (x, t)=(1−t−αk)/αk(x), we have∑

k∈I

(A
(k)
0 (x, t)+A

(k)
1 (x, t)) adėk(x) =

∑
k∈I

(t−αk−1)ėk = Adt−1(ė)−ė.

Moreover, for each sequence i (possibly empty) of length p and each pair (j, k) of elements

from I, we have

A
(i,j)
p+1(x, t)−A(i,j,k)

p+1 (x, t)×αk(x) = 0,

and therefore( p+1∑
`=0

A
(i,j)
` (x, t)

)
adė(i,j)(ėk)+

( p+2∑
`=0

A
(i,j,k)
` (x, t)

)
adė(i,j,k)(x)

=

( p∑
`=0

(A
(i,j)
` (x, t)−A(i,j,k)

` (x, t)×αk(x))−A(i,j,k)
p+2 (x, t)×αk(x)

)
adėi([ėj , ėk]).

Summing these elements with (j, k) running over I2 therefore gives zero since terms

pairwise cancel; indeed

A
(i,j)
` (x, t)−A(i,j,k)

` (x, t)×αk(x) =
t−β

i
`(

p∏
m=0
m 6=`

(βi
m−βi

`)×(βi
p−βi

`+αj+αk)

)
(x)
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and

−A(i,j,k)
p+2 (x, t)×αk(x) =

t−β
i
`−αj−αk(

p∏
m=0

(βi
m−βi

p−αj−αk)

)
(x)

are symmetric in (j, k), while the Lie bracket [ėj , ėk] is antisymmetric. Taking the sum

over all i∈Seq then yields the equality

Adn(x+ė) =x+Adt−1(ė),

which completes the proof of the equality n=t−1nxtn
−1
x .

The theorem is thus established when 〈β, x〉6=0 for all β∈Q\{0}. The general case

then follows from the regularity of the map (x, t) 7!f(t−1nxtn
−1
x ) on treg×T .

8.5. Universal centralizer interpretation

We now give a reinterpretation of Theorem 8.11 using a version of the universal central-

izer.

For any y∈g, we write CG(y)={g∈G: Adg(y)=y} for its centralizer in G. This is an

algebraic group of dimension at least r, the rank of G. An element y is said to be regular

if dimCG(y)=r. It is well known that regular elements form a non-empty open subset

of g in the Zariski topology.

We will need a lemma. For k>1, denote by C k the kth term in the lower central

series of the nilpotent Lie algebra n; hence, C 1=n and C k=0 for k large enough. For

x∈t, denote by nx={f∈n:[x, f ]=0} the set of elements in n that centralize x.

Lemma 8.12. Let k>1 be an integer and let (x, a, b)∈t×nx×C k. Then, there is

(m, a′)∈N×nx such that Adm(x+a+b)∈x+a′+C k+1.

Proof. The linear map adx: g!g is semisimple and leaves the subspace C k stable.

We can thus decompose into direct sums

g= im adx⊕ ker adx and C k = adx(C k)⊕(C k∩ker adx).

Let us write b=[x, u]+b′, with u and b′ in C k and [x, b′]=0. Then, m=expu satisfies

Adm(x+a+b)∈x+a+b+[u, x]+C k+1,

and one can simply take a′=a+b′.

Proposition 8.13. For any x∈t, the element x+ė is regular and CG(x+ė)⊂B.
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Proof. First, we prove that x+ė is regular. Consider the action of G×C× on g,

where G acts by the adjoint action and C× acts by scaling. Define C×!G×C× by

s 7!(s−ρ
∨
, s). Then, s·(x+ė)=sx+ė. So lims!0 s·(x+ė)=ė. The set of regular elements

is open in g and is invariant under the action of G×C×. Since the limit point ė is regular,

we conclude that x+ė is regular.

Now, we prove that CG(x+ė)⊂B. Starting with a=0 and b=ė, we apply Lemma 8.12

several times, taking successively k=1, 2, ... . Composing all the maps Adm obtained in

the process, we eventually find elements m∈N and f∈nx such that Adm(x+ė)=x+f .

Note that x and f are the components of the Jordan–Chevalley decomposition of x+f .

On the other hand, Theorem 2.2 in [Hu2] states that the centralizer L of x is a

reductive group with maximal torus T and root system

ΦL = {α root of G : 〈α, x〉= 0}.

(As a matter of fact, the statement in [Hu2] deals with the centralizer of a semisimple

element in G and not of an element x∈g, but the proof can be adapted to our situation.)

Further L is connected [Hu2, Theorem 2.11]. The intersection BL :=B∩L is a Borel

subgroup of L. We also note that f belongs to the centralizer of x in g, that is, the Lie

algebra of L.

By the uniqueness of the Jordan–Chevalley decomposition, the centralizer CG(x+f)

is the joint centralizer of x and f in G, so is the centralizer CL(f). From the fact that

x+f is regular in the Lie algebra g, we then deduce that f is a regular nilpotent element

in the Lie algebra of L. We write g=b	wb′ in the Bruhat decomposition of L, where

b and b′ are in BL and w is in the Weyl group of L. Both Adb′(f) and Adb−1(f) are

regular nilpotent elements in the Lie algebra of BL, so are linear combinations of positive

roots vectors, each simple root in ΦL occurring with a non-zero coefficient ([Bo, chap. 8,

§11, no. 4, proposition 10]). Since Ad	w maps Adb′(f) to Adb−1(f), this implies that w

maps each simple root in ΦL to a positive root, and it follows that w=1 and g∈BL. We

conclude that CL(f)⊂BL. Thus,

CG(x+ė) = Adm−1(CG(x+f)) = Adm−1(CL(f))⊂Adm−1(BL)⊂B.

We define the universal centralizer space to be

C := {(x, b)∈ t×B : b∈CG(x+ė)}

Remark 8.14. Our space C is the base change over t!t/W of the usual universal

centralizer, as defined for example in [BFM, §2.2].
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From the definition, we have maps C!t, C!T and C!N , that send a pair (x, tn)∈
C to x, t and n, respectively (where x∈t, t∈T and n∈N). We will be particularly

interested in the map ψ:C!N .

Proposition 8.15. (i) The above maps C!t and C!T restrict to an isomorphism

treg×tC=treg×T .

(ii) With respect to the isomorphism in (i), the map ψ restricts to

ψreg: treg×T −!N,

(x, t) 7−! t−1nxtn
−1
x .

(iii) The resulting algebra morphism ψ∗reg:C[N ]!C[treg×T ] agrees with FT �D.

Proof. (i) Since Ad(nx)(x)=x+ė, we have CG(x+ė)=nxCG(x)n−1
x . Since x∈treg,

we have CG(x)=T , and so CG(x+ė)={nxtn−1
x :t∈T}. The map (x, t) 7!(x, nxtn

−1
x ) from

treg×T to C is the converse of the desired isomorphism.

(ii) Since nxtn
−1
x =tt−1nxtn

−1
x and t−1nxtn

−1
x ∈N , the result follows.

(iii) Given the previous result, this is just a restatement of Theorem 8.11.

9. Generalities on Duistermaat–Heckman measures

9.1. Duistermaat–Heckman measures

We will now define Duistermaat–Heckman measures algebraically, following the work of

Brion–Procesi [BP]. In this section, we work in a general context of a projective variety

with the action of a torus. Later, we will apply these ideas to the case of an MV cycle

with the action of T∨.

Let V be a (possibly infinite-dimensional) vector space with a linear action of a

torus T . Let P be the weight lattice of T and let P∨ be its coweight lattice. Let X⊂PV
be a finite-dimensional T -invariant closed subscheme of the projectivization of V . Let

O(n) denote the usual line bundle on P(V ). Since T acts linearly on V , O(n) carries a

natural T -equivariant structure.

We do not assume that the torus T acts effectively on X (or even on V ). We write

T ′ for the quotient of T acting effectively on X.

On the other hand, we do assume that XT is finite. For each p∈XT , let ΦT (p) be

the weight of the action of T on the fibre of O(1) at the point p. Equivalently, p=[v] for

some weight vector v∈V , and ΦT (p) is negative the weight of v.

Define the moment polytope Pol(X) to be

Pol(X) := Conv(ΦT (p) : p∈XT ).
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If X is connected (e.g. irreducible), then Pol(X) is contained in a translate of (t′)∗R⊂t∗R.

In fact, it is easy to see that Pol(X) is the convex hull of all negatives of weights of

the smallest linear subspace of V containing X.

The torus T acts on the space of sections Γ(X,O(n)). We consider [Γ(X,O(n))], the

class of Γ(X,O(n)) in R(T ), the complexified representation ring of T . We can embed

R(T ) into the space of distributions on t∗R by setting

[U ] 7−!
∑
µ∈P

dimUµδµ

Let τn: t∗R!t∗R be the automorphism given by scaling by 1/n.

Definition 9.1. The Duistermaat–Heckman measure of the triple (X,T, V ) is defined

to be the weak limit

DH(X) = lim
n!∞

1

ndimX
(τn)∗[Γ(X,O(n))]

within the space of distributions on t∗R.

Note that each (τn)∗[Γ(X,O(n))] is supported on Pol(X), and hence so is DH(X).

In fact, we have the following result of Brion–Procesi [BP].

Proposition 9.2. The measure DH(X) is well-defined, has support Pol(X), and is

piecewise polynomial of degree dimX−dimT ′.

9.2. Fourier transform of DH measures and equivariant multiplicities

For this section, assume that each fixed point p∈XT is non-degenerate and attracting.

This means that, for each p, there exists γ∈P∨ such that if µ is a weight of T acting

on TpX, then 〈γ, µ〉>0. We write σ0
p for the set of such γ (this is the intersection of P∨

with an open cone in t∗R and thus is Zariski dense in t∗).

We can compute the Fourier transform (as defined in §8.4) of DH measures with the

help of localization in equivariant K-theory and equivariant homology. Let Ŝ be the mul-

tiplicative set in R(T ) generated by 1−δµ for µ∈P \{0}, and let S be the multiplicative

set in H�

T =Sym t∗=C[t] generated by µ∈P \{0}.
Let KT (X) denote the Grothendieck group of T -equivariant coherent sheaves on X.

This is a module over R(T ). The following result is due to Thomason [Th, Théorème 2.1],

for K-theory, and many authors independently (such as Brion [Bri3, Lemma 1] or Evens

and Mirković [EM, Theorem B.2]), for homology.

Theorem 9.3. The inclusion XT
!X induces isomorphisms

Ŝ−1KT (XT )
∼−−! Ŝ−1KT (X) and S−1HT

�
(XT )

∼−−!S−1HT
�

(X).
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Because of this theorem, we can write

[OX ] =
∑
p∈XT

ε̂Tp (X)[Op] and [X] =
∑
p∈XT

εTp (X)[{p}]

for unique ε̂Tp (X)∈Ŝ−1R(T ) and εTp (X)∈S−1C[t]. Following Brion [Bri1], we call εTp (X)

the equivariant multiplicity of X at p.

One advantage of these equivariant multiplicities is that they can be computed

locally. Let X�

p denote an affine open T -invariant neighbourhood of p in X. (In [Bri1,

Proposition 4.4], Brion observes that the only such X�

p is the attracting set of p.)

We will need the following preliminary definition. Let A=
⊕∞

m=0Am be an N-graded

finitely-generated commutative algebra of Krull dimension d. Then, the multiplicity of

A is defined to be

(d−1)! lim
m!∞

dimAm
md−1

(this limit exists and is always non-zero).

Proposition 9.4. (i) [C[X�

p]] is a well-defined element of Ŝ−1R(T ), and we have

ε̂Tp (X)=[C[X�

p]] in Ŝ−1R(T ).

(ii) We have εTp (X)[{p}]=[X�

p] in S−1HT
�

(X�

p).

(iii) For any γ∈σ0
p, the rational function εTp (X) is well defined at γ, and εTp (X)(γ)

is the multiplicity of the algebra C[X�

p] graded with respect to −γ.

Proof. [C[X�

p]] is well defined because of the assumption of attractiveness (see [CG,

Proposition 6.6.6]). The rest of part (i) and (ii) then follow immediately from pull-back

to the open set X�

p.

Part (iii) is due to Brion [Bri1, Proposition 4.4].

To facilitate further computation of εTp (X), suppose that we have a representation

W of T , all of whose weights are non-zero, and assume we are given a T -equivariant

closed embedding X�

p!W . The multidegree mdeg[W ](X�

p)∈H�

T is defined by the equa-

tion mdeg[W ](X�

p)[W ]=[X�

p] in HT
�

(W ). This notion of multidegree is useful, since it can

be computed using the methods of commutative algebra (see for example [KZJ, §1.5]).

On the other hand, the multidegree of X�

p determines the equivariant multiplicity of X

at p as follows.

Proposition 9.5. With the above setup, we have

εTp (X) =
mdeg[W ](X�

p)∏
µ wt of W µ

Proof. We know that [X�

p]=ε
T
p (X)[{p}] in HT

�
(W ). As mdeg[W ](X�

p)[W ]=[X�

p] and

(
∏
µ wt of W µ)[W ]=[{p}] in HT

�
(W ), the result follows.
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We are ready to relate the Duistermaat–Heckman measure to equivariant multiplic-

ity.

Theorem 9.6. We have

FT(DH(X)) =
∑
p∈XT

εTp (X)eΦ(p)

Proof. For sufficiently large n, we have Hi(X,O(n))=0 for i>0. Thus, for suffi-

ciently large n, [Γ(X,O(n))] equals the integral of [OX⊗O(n)] in equivariant K-theory.

Hence, from

[OX ] =
∑
p∈XT

ε̂Tp (X)[Op],

we deduce that, for sufficiently large n, we have

[Γ(X,O(n))] =
∑
p∈XT

ε̂Tp (X)δnΦ(p).

Let d=dimX. We see that

FT(DH(X)) = FT

(
lim
n!∞

1

nd
(τn)∗

(∑
p

ε̂Tp (X)δnΦ(p)

))
=
∑
p

lim
n!∞

1

nd
FT((τn)∗(ε̂

T
p (X)))eΦ(p).

So it suffices to show that, for each p, we have

lim
n!∞

1

nd
FT((τn)∗(ε̂

T
p (X))) = εTp (X)

Now, pick γ∈σ0
p and let c be the multiplicity of the algebra C[X�

p] graded with respect

to −γ. By Proposition 9.4 (iii), it suffices to show that

lim
n!∞

1

nd
FT((τn)∗(ε̂

T
p (X)))(γ) = c.

Using Proposition 9.4 (i), we see that

lim
n!∞

1

ndimX
FT((τn)∗(ε̂

T
p (X)))(γ) = lim

n!∞

1

nd

∞∑
m=0

ame
−m/n,

where

am =
∑

〈µ,−γ〉=m

dimC[X�

p]µ.

Using the fact that

am =
c

(d−1)!
md−1+...,

by elementary calculus, we compute that this limit equals c, as desired.
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Remark 9.7. The above theorem holds without the assumption that the fixed points

are attractive (though this assumption suffices for our purposes). In fact, the only place

that attractiveness assumption is used in this section is in Proposition 9.4 (i). We can

avoid using attractiveness by using degeneration to normal cones of the fixed points

(thereby making them attractive with respect to the attendant new circle action).

9.3. An extension to coherent sheaves

We continue in the above setup, but we consider a T -equivariant coherent sheaf F on X.

Following [CG, Definition 5.9.4], we define the support cycle of F as

[suppF ] :=
∑
S

multS(F)[S]∈H�(X)

where the sum ranges over all maximal dimensional irreducible components of the support

of F . These components are necessarily T -invariant.

We define the Duistermaat–Heckman measure of F by

DH(F) := lim
n!∞

1

ndim suppF (τn)∗[Γ(X,F⊗O(n))]

The main result of this section is that DH(F) only depends on the support cycle.

Theorem 9.8. We have the following expansion:

DH(F) =
∑
S

multS(F) DH(S),

where the sum ranges over all maximal-dimensional irreducible components of the support

of F .

Proof. As in the previous section, we can consider the expansion of [F ]∈Ŝ−1KT (X)

in terms of the fixed points, and we define ε̂Tp (F) by

[F ] =
∑
p

ε̂Tp (F)[Op].

Then, proceeding as in the proof of Theorem 9.6, we obtain that

FT(DH(F)) =
∑
p

lim
n!∞

1

nd
FT((τn)∗(ε̂

T
p (F)))eΦ(p),

where d=dim suppF .

Now, as above ε̂Tp (F)=[Γ(X�

p,F)] in Ŝ−1R(T ). Thus, we are reduced to a local

computation on each open set X�

p. The desired equation then follows from a result in

Chriss–Ginzburg [CG, Theorem 6.6.12].
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9.4. A formula using BB strata

The third author has given a formula in [KnA2] for computing this DH measure using

components of Bia lynicki–Birula strata. We now recall this formula, and for simplicity

assume X is irreducible.

Choose a coweight ν of T and thus an embedding C× �
�
//T . Assume that XC×=XT

and moreover that the composite map XC× ΦT−−!P ν−−!Z is injective. (If ΦT is injective,

then it is easy to construct such ν, and otherwise it is of course impossible.) By this

assumption, XC× acquires the structure of a totally-ordered set (very much depending

on the choice of ν). We write ptop and pbot for the maximal and minimal points in this

set, respectively.

Definition 9.9. For each p∈XC× , let Xp denote the Bia lynicki–Birula stratum of p,

defined by

Xp :=
{
x∈X : lim

s!0
sx= p

}
An irreducible component Y of �Xp will be a called a BB cycle in X based at p.

Note that the only BB cycle of weight Φ(ptop) is X and the only BB cycle of weight

Φ(pbot) is {pbot}.
For each p∈XC× , fix fp∈V ∗ such that fp is a T -weight vector and fp(p) 6=0. Note

that this implies that fp vanishes at every other fixed point (since they live in different

weight spaces in P(V )). The section fp defines a T -invariant Cartier divisor Dp⊂X.

For any two BB cycles Y1 and Y2 based at p1<p2, we define

c(Y1, Y2) := i(Y1, Dp2 ·Y2).

Definition 9.10. A chain of BB cycles is a sequence Y�=(Y0, Y1, ..., Ym) such that

Y0={pbot}, Ym=X, and c(Yk−1, Yk) 6=0 for all k. A weight chain is a sequence

µ� = (µ0, ..., µm)

such that there exists a chain of BB cycles Y� such that the weight of Yk is µk for all k.

Note that, if Y is a BB cycle based at p, then dimDp∩Y =dimY −1, so the length

of any chain is the dimension of X.

For any weight chain µ�, define

c(µ�) =
∑
Y
�

c(Y0, Y1) ... c(Ym−1, Ym),

where the sum is over all chains of BB cycles Y� of weight µ�.
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As before, let ∆m be the standard m-simplex.

For any weight chain µ�, define πµ
�

:Rm+1
!t∗R by

πµ
�

(a0, ..., am) =

m∑
k=0

akµk.

The following result (due to the third author [KnA2]) explains how these weight chains

can be used to compute the DH measure.

Theorem 9.11.

DH(X) =
∑
µ
�

c(µ�)(πµ
�

)∗(δ∆m),

where the sum is over all weight chains.

10. Measures from MV cycles

Recall that at the beginning of §8, we fixed a choice of regular nilpotent, ė. From this

point on, we specialize ė= ē, where ē is the principal nilpotent coming from the geometric

Satake correspondence §4.3. In particular, we have ėi=q(αi)ei.

10.1. DH measures of MV cycles

Let ν∈Q+ and let Z be a stable MV cycle of weight −ν. Note that Z is a T∨-invariant

subvariety of the affine Grassmannian and we have a projective embedding Υ:Gr!P(V ),

from §4.3.

We will apply the constructions of the last two sections to the triple (Z, T∨, V ). In

particular, in §9.1 we defined a polytope Pol(Z); note that this polytope lives in tR=(t∨R)∗.

On the other hand, in §6.3 we defined the MV polytope (also denoted Pol(Z)) which lives

in t∗R.

Recall that we have the map ι:P!tR which we can extend to a linear bijection

ι: t∗R!tR.

Lemma 10.1. For any stable MV cycle Z, we have an equality ι(Pol(Z))=Pol(Z).

Proof. The action of T∨ on Gr has fixed points {Lµ :µ∈P}. Moreover, the weight of

T∨ acting on the fibre of O(1) at the point Lµ is ι(µ), by Proposition 4.1.

Similarly, by definition, DH(Z) is a distribution on tR=(t∨R)∗ and we also have the

distribution D(bZ) on t∗R.

Theorem 10.2. For any stable MV cycle Z, we have an equality ι∗(D(bZ))=DH(Z).
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Proof. We choose a generic antidominant embedding C× �
�
//T∨ . Then, the BB

cycles inside Z are simply the stable MV cycles contained in Z. Moreover, for each

weight chain µ�, there exists a unique i∈Seq(ν) such that µk=αi1 +...+αik for all k.

Thus, by Theorem 9.11, we conclude that upon identifying tR with t∗R using ι, we

have

DH(Z) =
∑

i∈Seq(ν)

c(i)Di, c(i) =
∑
Y
�

c(Y0, Y1) ... c(Ym−1, Ym), (16)

where the second sum ranges over the set of sequences Y�, where Yk is a stable MV cycle

of weight −(αi1 +...+αik) and where

c(Yk, Yk+1) = i(Yk, Dµk+1
·Yk+1).

Here Dµk+1
is the divisor in Gr coming from a vector f∈V ∗ such that f(Lµk+1

) 6=0 and

f vanishes on all other weight spaces.

On the other hand, we begin with (14)

D(bZ) =
∑

i∈Seq(ν)

〈ėi1 ... ėim , bZ〉Di =
∑

i∈Seq(ν)

(ėi1 ... ėimbZ)(1N )Di.

Then, we expand out the right-hand side using (4) from the proof of Lemma 6.4, and we

reach exactly the same formula (16).

10.2. Reformulation and alternate proof of Theorem 10.2

We apply the Fourier Transform and then (ι−1)∗ to the equality in Theorem 10.2 and

we obtain

FT(D(bZ)) = (ι−1)∗ FT(DH(Z)).

This is an equality of analytic functions on tC; more precisely, by the analysis in §8.4,

this is an equality in the space S−1C[t]⊗C[T ].

Now, by Proposition 8.15 (iii), we have that FT(D(bZ))=ψ∗reg(bZ).

On the other hand, by Theorem 9.6, we know that FT(DH(Z)) is closely related to

the expansion of the homology class [Z] in the fixed point basis under the isomorphism

ι(S)−1HT∨

�
(Gr)∼= ι(S)−1HT∨

�
(GrT

∨
).

In order to avoid confusion, in this section we will write [Z]T∨ for the image of [Z] in

ι(S)−1HT∨

�
(GrT

∨
).

The fixed point set GrT
∨

is in correspondence with the weight lattice P , and thus has

a group structure. Hence, HT∨

�
(GrT

∨
) is an algebra, and we have an obvious isomorphism

ι(S)−1C[t∗]⊗C[T ]∼=HT∨

�
(GrT

∨
).
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From these observations (and the injectivity of the Fourier Transform), we see that

Theorem 10.2 is equivalent to the following statement.

Theorem 10.3. Let Z be a stable MV cycle. In the algebra S−1C[t]⊗C[T ], we have

an equality

ψ∗reg(bZ) = (ι−1)∗([Z]T∨).

We will now give an alternate proof of Theorem 10.3 using results of Yun–Zhu [YZ].

These authors define a commutative convolution algebra structure on HT∨

�
(Gr), and

describe this algebra using the geometric Satake correspondence.

To formulate their result, recall the universal centralizer space C and its morphisms

C!t×T and ψ:C!N from §8.5. The following theorem follows from combining Propo-

sitions 3.3, 5.7 and Remark 3.4 from [YZ].

Theorem 10.4. There is an isomorphism θ:C[C]!HT∨

�
(Gr) making the following

diagram commute:

C[t]⊗C[T ]
ι⊗1
//

��

C[t∗]⊗C[T ] // HT∨

�
(GrT

∨
)

��

C[C]
θ // HT∨

�
(Gr).

In order to apply this result, we will need to setup a bit more notation.

For any λ∈P+, we have a map

τλ:H�

T∨(Gr, Iλ)−!HT∨

d−�(Grλ)−!HT∨

d−�(Gr) (17)

where the first arrow comes from (2) (with d=ρ∨(λ)). We will also make use of the

inclusion

H�(Gr, Iλ)
� � // H�

T∨(Gr, Iλ)

coming from the isomorphism

H�

T∨(Gr, Iλ)∼=H�(Gr, Iλ)⊗C[t∗]

given in [YZ, Lemma 2.2].

Also, recall the map

Ψλ:H�(Gr, Iλ) =L(λ) �
�
// C[N ]

from §2.5.

In this section, we will also need to consider the automorphism t−λ of Gr, and we

write t−λ∗ :HT∨

�
(Gr)!HT∨

�
(Gr) for the resulting map on equivariant homology.
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Lemma 10.5. For any v∈H�(Gr, Iλ), we have

θ(ψ∗(Ψλ(v))) = (t−λ)∗τλ(v).

Proof. To begin, fix the isomorphism of varieties T×N∼=B given by (t, n) 7!tn.

Thus, we get an isomorphism on coordinate rings C[B]∼=C[T ]⊗C[N ].

Recall the linear map v∗λ:L(λ)!C defined in §2.5. We extend v∗λ to a C[t∗]-linear

map v∗λ:H�

T∨(Gr, Iλ)!C[t∗] using the isomorphism

H�

T∨(Gr, Iλ)∼=H�(Gr, Iλ)⊗C[t∗].

Note that v∗λ=p∗�τλ, where τλ is defined in (17) and where p∗:H
T∨

�
(Gr)!HT∨

�
(pt) is

the proper push-forward in Borel–Moore homology.

Given v∈L(λ), we define fv∈C[B] by fv(b)=v∗λ(bv). Under the isomorphism

C[B]∼=C[T ]⊗C[N ],

we find that fv=λ⊗Ψλ(v).

We can factor ψ:C!N into C!B!N , which gives rise to a factorization of ψ∗ as

C[N ]
� � // C[B]

ψ∗B−−!C[C].

Following [YZ, §3], we will now describe θ�ψ∗B .

Let {hi} and {hi} be dual bases of the free C[t∗] modules H�

T∨(Gr) and HT∨

�
(Gr).

By the definition of σcan from [YZ, §3], for any v∈L(λ)=H�(Gr, Iλ), we have

θ(ψ∗B(fv)) =
∑
i

v∗λ(hiv)hi ∈HT∨

�
(Gr),

where we use the action of H�

T∨(Gr) on H�

T∨(Gr, Iλ).

Thus,

θ(ψ∗B(fv)) =
∑
i

p∗(τλ(hiv))hi =
∑
i

p∗(h
iτλ(v))hi,

since τλ is a H�

T∨(Gr)-module morphism.

Now, since the pairing between H�

T∨(Gr) and HT∨

�
(Gr) is given by a⊗h 7!p∗(ah), we

conclude that

θ(ψ∗B(fv)) = τλ(v). (18)

The commutative diagram in Theorem 10.4 implies that the isomorphism

θ:C[C]−!HT∨

�
(Gr)

is a C[T ]-module isomorphism, where C[T ] acts on C[C] using C!T and acts on HT∨

�
(Gr)

using the maps (tµ)∗. Thus, we see that (18) along with fv=λ⊗Ψλ(v) implies the desired

result.
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Finally, here is our promised alternate proof.

Alternate proof of Theorem 10.3. Let Z be a stable MV cycle. Choose λ∈P+ such

that tλZ⊂Grλ. Then, tλZ is an MV cycle of type λ. We consider its class

[tλZ]IH ∈Hk(Gr, Iλ).

By the definition of τλ, we have that τλ([tλZ]IH)=[tλZ] in HT∨

d−k(Gr) where d=2ρ∨(λ).

Thus, by Lemma 10.5, we have θ(ψ∗(bZ))=[Z] in HT∨

d−k(Gr).

By Theorem 10.4, the map HT∨

�
(GrT

∨
)!HT∨

�
(Gr) is dual to C!t∗×T . Thus pass-

ing to treg and inverting this map, we obtain the desired equality.

10.3. Proof of Muthiah’s conjecture

Let Z be a stable MV cycle. As a corollary of Theorem 10.3, it is easy to see that 
D(bZ)

is given by equivariant multiplicities at the bottom of Z.

More precisely, applying Remark 8.10 and Theorem 9.6, we immediately deduce the

following.

Corollary 10.6. Let Z be a stable MV cycle of weight −ν. We have the following

equality in C[treg]:


D(bZ) = (ι−1)∗εT
∨

L−ν (Z).

Now, we are in a position to prove Mutiah’s conjecture (Theorem 1.5). We begin by

recalling the setup. Let λ∈P+∩Q, and let Z be an MV cycle of type λ and weight zero,

so t−λZ is a stable MV cycle of weight −λ.

Note that we have an equality

εT
∨

L−λ
(t−λZ) = εT

∨

L0
(Z).

Thus, in light of Corollary 10.6, in order to establish Theorem 1.5 we are left to prove

the following result.

Theorem 10.7. The map

L(λ)0−!C[treg],

v 7−! 
D(Ψλ(v)),

is W -equivariant.
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Proof. Let w∈W and x∈treg. Then, by Proposition 8.1, there exist (y, t)∈N−×T
such that

nw−1x = ynx	wt.

Hence, we have


D(Ψλ(v))(w−1x) = v∗λ(nw−1xv) = v∗λ(ynx	wtv) = v∗λ(nx	wv) = 
D(Ψλ(	wv))(x),

where we used that tv=v, as v is of weight zero, and that v∗λ(yu)=v∗λ(u), as y∈N−.

Since this holds for all w∈W and x∈treg, we conclude that

v 7−! 
D(Ψλ(v))

is W -equivariant.

11. Preprojective algebra modules

From this point on, we assume that G is simply-laced. In particular, this means that

q(αi)=1 for all i, and thus ι(αi)=α∨i , so ι corresponds to the usual identification of

the root and coroot lattices. Thus, we can (and will) drop ι from our notation without

possibility of confusion.

11.1. Preprojective algebras and their modules

Let H denote the set of oriented edges of the Dynkin diagram (so (i, j), (j, i)∈H whenever

i and j are connected in I). If h=(i, j), write h̄=(j, i). Fix a map τ :H!{1,−1} such

that for each h, τ(h)+τ(h̄)=0 (such a τ corresponds to an orientation of each edge of

the Dynkin diagram).

Define the preprojective algebra Λ to be the quotient of the path algebra of (I,H)

by the relation ∑
h∈H

τ(h)hh̄= 0.

So a Λ-module M consists of vector spaces Mi for i∈I and linear maps Mh:Mi!Mj

for each h=(i, j)∈H, such that ∑
h∈H

τ(h)MhMh̄ = 0. (19)

Given a Λ-module M , we define its dimension vector by

dim−−→M =
∑
i∈I

(dimMi)αi.
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We write Si for the simple module at vertex i, i.e. the module with dim−−→Si=αi. The

map M 7!dim−−→M gives rise to an isomorphism K(Λ-mod)∼=Q.

For each ν=
∑
i∈I νiαi∈Q+, we consider the affine variety of Λ-module structures

on
⊕

i∈I Cνi . More precisely, we define

Λ(ν)⊂
⊕

(i,j)∈H

Hom(Cνi ,Cνj )

to be the subvariety defined by the equation (19).

11.2. The dual semicanonical basis

Let M be a Λ-module with dimension vector ν. Following Lusztig [Lu5] and Geiss–

Leclerc–Schröer [GLS, §5], we define an element ξM∈C[N ]−ν as follows.

First, for each i∈Seq(ν), we define the projective variety of composition series of

type i,

Fi(M) = {0 =M0⊆M1⊆ ...⊆Mm =M :Mk/Mk−1∼=Sik for all k},

and then we define ξM∈C[N ]−ν by requiring that

〈ei1 ... eim , ξM 〉=χ(Fi(M))

for any i∈Seq(ν), where χ denotes topological Euler characteristic. (Note: Lusztig and

Geiss–Leclerc–Schröer consider decreasing composition series, whereas we chose to use

increasing ones. Our choice accounts for the use of the dual setup and ensures that the

crystal structure on the dual semicanonical basis coincides with the crystal structure

defined in [KSa, §5].)

With this definition, the following result is immediate (see [GLS, Lemma 7.3]).

Lemma 11.1. For any Λ-modules M and N , we have ξM⊕N=ξMξN .

This map M 7!ξM is constructible and so for any component Y ⊂Λ(ν), we can define

cY ∈C[N ]−ν by setting cY =ξM , for Ma general point in Y .

The following result is due to Lusztig [Lu5].

Theorem 11.2. (i) For each ν∈Q+, {cY :Y ∈Irr Λ(ν)} is a basis for C[N ]−ν .

(ii) The union of these bases forms a biperfect basis of C[N ].

Proof. Statement (i) is a direct consequence of [Lu5, Theorem 2.7]. From [Lu5,

§2.9] and the definition of the bicrystal structure on the set of irreducible components

of the nilpotent varieties (see [KSa, §5]), we deduce that for any irreducible component
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Y ⊂Λ(ν) and any i∈I, if we set p=ε∗i (Y ) and Y ′=(ẽ∗i )
pY , then cY ·e(p)

i =cY ′ . With these

notation, write

cY ·ei =
∑
Y ′′

αY ′′cY ′′ .

Routine arguments show then that

αY ′′ =

{
p, if Y ′′= ẽ∗i Y ,

0, if ε∗i (Y
′′)> p−1 and Y ′′ 6= ẽ∗i Y ,

which proves the half of the statement (ii) related to the right action of N on C[N ]. The

other half can be proved analogously or deduced from [Lu5, Theorem 3.8].

This basis for C[N ] is called the dual semicanonical basis. By §2.4, it carries a

bicrystal structure isomorphic to B(∞). Thus, a MV polytope is uniquely associated

with each element in the dual semicanonical basis.

On the other hand, if M is a Λ-module, then we define its Harder–Narasimhan

polytope to be

Pol(M) := Conv{− dim−−→N :N ⊆M is a submodule}.

This map M 7!Pol(M) is constructible and so for any component Y ⊂Λ(ν), we can define

Pol(Y ):=Pol(M) for Ma general point in Y . (We added the minus sign into the definition

since ξM has weight −dim−−→M .)

The following result was obtained by the first two authors with Tingley (see [BKT,

§1.3]).

Theorem 11.3. Let Y be a component of Λ(ν). Then, Pol(Y ) is the MV polytope

of the basis vector cY .

11.3. Measures from Λ-modules

Let M be a Λ-module of dimension vector ν. By the definition of ξM and the map

D:C[N ]!PP, we have that

D(ξM ) =
∑

i∈Seq(ν)

χ(Fi(M))Di.

Note that the measure D(ξM ) is supported on the polytope Pol(M).

In the previous section (Theorem 10.2), we showed that the measure D(bZ) of an

MV basis vector equals the push-forward of the Duistermaat–Heckman measure DH(Z)

of the corresponding MV cycle. The Duistermaat–Heckman measure is defined as the
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asymptotics of sections of line bundles on Z. In a similar fashion, we will now explain

that D(ξM ) can also be regarded as an asympototic.

We define Fn(M) to be the space of (n+1)-step chains of submodules of M , so

Fn(M) = {0 =M0⊆M1⊆ ...⊆Mn+1 =M},

and let Fn,µ(M) denote the locus in Fn(M) where dim−−→M1+...+dim−−→Mn=µ.

We will record the information of the Euler characteristics of Fn,µ(M) as an element

of R(T ) by

[H�(Fn(M))] =
∑
µ∈Q+

χ(Fn,µ(M))δ−µ.

Note that [H�(Fn(M))] is supported on the polytope nPol(M).

Theorem 11.4. For any Λ-module M , with ν=dim−−→M , we have

D(ξM ) = lim
n!∞

1

nρ∨(ν)
(τn)∗[H

�(Fn(M))].

Proof. Let m=dimM=ρ∨(ν).

The proof is largely parallel to that of [KnA1, §3]. We begin by defining the locally

constant function

µ�:Fn(M)−!Q n
+ ,

M � 7−! (dim−−→(Mk/Mk−1))k=1,...,n.

For any M �∈Fn(M), the number of non-zero terms in µ�(M
�) is at most m. Given a

sequence γ∈Q n
+ , let γ 6=0 be the sequence with its zeros removed. Thus, we can decompose

[H�(Fn(M))] =

m∑
`=0

∑
θ∈(Q+\{0})`

∑
γ∈Qn+
γ 6=0=θ

χ({M � ∈Fn(M) :µ�(M
�) = γ})δ−∑n

k=1(n+1−k)γk .

Now observe that, if θ=γ 6=0, we have an obvious isomorphism

{M � ∈Fn(M) :µ�(M
�) = γ}∼= {M � ∈F`(M) :µ�(M

�) = θ}.

We let χθ denote the Euler characteristic of this space. Thus,

[H�(Fn(M))] =

m∑
`=0

∑
θ∈(Q+\{0})`

χθ
∑
γ∈Qn+
γ 6=0=θ

δ−
∑n
k=1(n+1−k)γk .
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The number of γ with γ 6=0=θ is plainly
(
n
`

)
=O(n`). We now rescale

[H�(Fn(M))]

nρ∨(ν)
=

m∑
`=0

∑
θ∈(Q+\{0})`

χθ
1

nm

∑
γ∈Qn+
γ 6=0=θ

δ−
∑n
k=1(n+1−k)γk , using ρ∨(ν) =m,

and let

Dθ,n :=
1

nm

∑
γ:γ 6=0=θ

δ−
∑n
k=1(n+1−k)γk .

This term has total mass O(n`−m). In the limit n!∞, we can therefore neglect all `<m,

and independently we apply (τn)∗:

lim
n!∞

(τn)∗
[H�(Fn(M))]

nρ∨(ν)
=

∑
θ∈(Q+\{0})m

χθ lim
n!∞

(τn)∗Dθ,n.

Since θ∈(Q+\{0})m (i.e. θ has the same length as dimM), for the locus

{M � ∈F`(M) :µ�(M
�) = θ}

to be non-empty, we need each θk to be a simple root and that
∑
k θk=ν. Such a θ

uniquely determines (and is determined by) a sequence i∈Seq(ν) with θk=αik for all k.

Moreover, we have χθ=χ(Fi(M)).

Now that `=m, the term Dθ,n has mass 1/m! as n!∞, the volume of the m-simplex.

We proceed to determine how that mass is distributed.

To index the
(
n
m

)
terms in the Dθ,n sum, we count how long the individual strings

of zeros are between the m non-zero terms in γ: there are 1+m strings of zeros, of total

length n−m. Thus, the set of all γ such that γ 6=0=θ are naturally in bijection with

lattice points in the dilated simplex (n−m)∆m. (We will soon apply (τn)∗, resulting in

the nearly-standard simplex (1−m/n)∆m.) The jth vertex of this simplex corresponds

to the case that γ has j non-zero terms up front, its n−m zeros all in the middle, and

m−j non-zero terms at the end (its non-zero terms θ determined by γ).

Recall the linear map πi:Rm+1
!t∗R which takes the (k+1)-st standard basis vector

to the negative partial sum −βi
k=−(θ1+...+θk). The map πi intertwines the above

bijection with the map

γ 7−!−
n∑
k=1

(n+1−k)γk+ζ,

where ζ :=
∑m
k=1(m+1−k)θk is a shift which is independent of n. Thus, we obtain that

Dθ,n =
∑

x∈(n−m)∆m∩Zm+1

δπi(x)−ζ ,

and thus

lim
n!∞

(τn)∗
1

nm
Dθ,n =Di,

as desired.
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12. Comparing measures from MV cycles and from Λ-modules

12.1. From measures to sections

Let Z be a stable MV cycle of weight ν. Let Y be an irreducible component of Λ(ν).

We say that Y and Z correspond if Pol(Y )=Pol(Z); in other words, if the corresponding

basis elements cY and bZ give the same element in the bicrystal B(∞).

For the remainder of this section, fix a pair (Y,Z) which correspond. Recall that

the measures D(cY ) and D(bZ) are both supported on Pol(Y )=Pol(Z). Thus, an en-

hancement of the equality of polytopes would be the equality of measures. Note that the

equality of basis vectors cY =bZ would imply the equality of measures D(cY )=D(bZ),

but not vice versa (because of Remark 8.9).

By Theorems 10.2 and 11.4, we see that each of the measures D(cY ) and D(bZ) are

the limits of (scalings of) measures [H�(Fn(M))] (where M is a general point of Y ) and

[Γ(Z,L ⊗n)]. This motivates the following definition.

Definition 12.1. We say that Y and Z are extra-compatible if, for all n∈N and

µ∈Q+, we have

dim Γ(Z,L ⊗n)−µ =χ(Fn,µ(M)),

where M is a general point of Y .

The following is clear from the above results.

Proposition 12.2. Consider the following four statements:

(i) Y and Z are extra-compatible.

(ii) cY =bZ .

(iii) D(cY )=D(bZ).

(iv) 
D(cY )=
D(bZ).

We have the implications

(i) =⇒ (iii) and (ii) =⇒ (iii) =⇒ (iv).

12.2. General conjecture

We can translate the Euler characteristic of Fn,µ(M) into the Euler characteristic of

another variety. Consider the algebra Λ[t]:=Λ⊗CC[t]. We define

Gµ(M [t]/tn) = {N ⊂M⊗C[t]/tn :N is a Λ[t]-submodule, with dim−−→N =µ},

Lemma 12.3. For any M , n and µ, we have χ(Gµ(M [t]/tn))=χ(Fn,µ(M)).
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Proof. First, define an inclusion Fn,µ(M)!Gµ(M [t]/tn) by

(M1, ...,Mn) 7−!M1⊗Ct0⊕M2⊗Ct1⊕...⊕Mn⊗Ctn−1⊂M⊗C[t]/tn.

It is easy to see that the right-hand side really is a Λ[t]-submodule.

On the other hand, we can define an action of C× on Grn,µ(M) using the action

of C× on C[t]/tn given by s·p(t)=p(st). It is easy to see that the above map gives an

isomorphism

Fn,µ(M)−!Gµ(M [t]/tn)C
×
,

and so the result follows.

Thus, we deduce that Y and Z are extra-compatible if, for all n∈N, µ∈Q+ we have

dim Γ(Z,L⊗n)−µ =χ(Gµ(M [t]/tn)),

where M is a general point of Y .

If we assume that the odd cohomology of Gµ(M [t]/tn) vanishes, this implies that

there is an equality of T∨-representations,

Γ(Z,L ⊗n) =H�(G(M [t]/tn)) for all n∈N, (20)

where T∨ acts on the right-hand side through the decomposition

G(M [t]/tn) =
⊔
µ

Gµ(M [t]/tn).

Remark 12.4. The right-hand side of (20) carries a cohomological grading. We

expect that (up to appropriate shift) this matches the Z-grading on the left-hand side

which comes from the loop rotation C× action on Z.

The left-hand sides of (20) form the components of a graded algebra, so it is natural

to search for a similar structure on the right-hand side. After studying this question for

some time, we are pessimistic about finding this algebra structure. On the other hand,⊕
n Γ(Z,L ⊗n) is also a graded module over the ring⊕

n

Γ
(
S0

+∩S−ν− ,L ⊗n
)
.

We believe that such a module structure naturally exists for the direct sums of the right-

hand side of (20). In fact, we believe that this structure is present for any module M ,

not just general modules corresponding to extra-compatible components.
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Conjecture 12.5. For any preprojective algebra module M of dimension vector ν,

the N×P -graded vector space ⊕
n∈N

H�(G(M [t]/tn))

carries the structure of a T∨-equivariant graded
⊕

n Γ
(
S0

+∩S−ν− ,L⊗n
)
-module.

If we assume this conjecture, then we get a coherent sheaf FM on S0
+∩S−ν− such

that, for large enough n,

Γ
(
S0

+∩S−ν− ,FM⊗L ⊗n
)∼=H�(G(M [t]/tn)),

as T∨-representations. Assuming the vanishing of odd cohomology, Theorem 11.4 implies

that DH(FM )=D(ξM ).

On the other hand, we have the support cycle [suppFM ]=
∑
ak[Zk], where Zk ranges

over the stable MV cycles of weight −ν. By Theorem 9.8, we know that

DH(FM ) =
∑

ak DH(Zk).

Thus, by Theorem 10.2, we reach
∑
k akD(bZk)=D(ξM ).

This suggests that ξM=
∑
k akbZk in C[N ]. In conclusion, the expansion of ξM in

the MV basis should be given by the support cycle of FM .

The conjecture extends to direct sums M=
⊕d

k=1Mk of Λ-modules. Such an M

carries a (C×)d-action with

G(M [t]/tn)(C×)d ∼=
d∏
k=1

G(Mk[t]/tn).

We will explain a conjectural relation between the sheaf FM and the sheaves FMk
. For

this we will use the Beilinson–Drinfeld Grassmannian. In §7.2, we recalled the definition

of GrA, a family over A. In a similar fashion, there is the BD Grassmannian GrAd defined

by G-bundles trivialized away from a collection of d points. (There is a small difference:

in §7.2, we fixed one of the points to be zero; here we let all the points vary.) As in §7.2,

the fibre of GrAd!Ad over a point (x1, ..., xd) is isomorphic to a product of copies of Gr,

indexed by the set {x1, ..., xd}.

Conjecture 12.6. For any tuple (Mk)dk=1 of Λ-modules, there is a T∨-equivariant

sheaf F(Mk) on GrAd , flat over Ad, that

(i) has global sections Γ(GrA,F(Mk)⊗L ⊗n)∼=H�

(C×)d(G(⊕kMk[t]/tn)) as represen-

tations of T∨ and as modules over C[Ad]=H�

(C×)d(pt);
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(ii) over points on the diagonal, restricts to the sheaf F⊕
kMk

from Conjecture 12.5

associated with
⊕

kMk;

(iii) over general points of Ad, restricts to the � product �kFMk
of the sheaves

from Conjecture 12.5 associated with the individual Mk.

The simplest case is that each Mk is 1-dimensional, and so there exists i∈Seq(ν)

such that Mk=Sik . In this case, we expect that FMk
=O

S0
+∩S

−αik
−

for each k and that

F(Mk)=O
Zν

, the structure sheaf of the compatified Zastava space. In fact, we will explain

in [HKW], that in this case, the conjecture follows from Remark 3.7 in Braverman–

Finkelberg–Nakajima [BFN].

12.3. Shifting MV cycles

In order to compute the sections of line bundles over stable MV cycles, it will sometimes

be useful to shift them, since they often appear more naturally as MV cycles in some

Grλ. So, the following result will be helpful for us.

Proposition 12.7. Let Z be any MV cycle. Let ν∈P and n∈N. We have an

isomorphism of T∨-representations

Γ(Z,L ⊗n) = Γ(tνZ,L ⊗n)⊗Cnι(ν).

Proof. We can lift tν to an element of E(G∨(K)). Using this lift, we extend the

obvious isomorphism Z!tµZ to an isomorphism of line bundles, and thus to an isomor-

phism of sections. However, this isomorphism is not T∨-equivariant, because T∨ and tν

do not commute inside E(G∨(K)).

Let µ∈P and let a∈C×. In E(G∨(K)), the commutator tνaµt−νa−µ lies in the

central C× and equals ι(ν)(µ). Since this central C× acts by weight n on L ⊗n, the

result follows.

12.4. Spherical Schubert varieties

Let λ∈P+ and consider the spherical Schubert variety Grλ. We shift it to form the stable

MV cycle t−λGrλ, a component of S0
+∩S−λ+w0λ

− . The MV polytope of t−λGrλ is the

shifted Weyl polytope

Conv(wλ :w∈W )−λ.

The corresponding Λ-module is injective. More precisely, for each i∈I, let I(ωi) be

the injective hull of the simple module Si. Let

I(λ) =
⊕
i

I(ωi)
⊕〈α∨i ,λ〉.
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This is a rigid module, and so the closure of the corresponding locus (consisting of those

module structures isomorphic to M) in Λ(λ−w0λ) is an irreducible component Y (λ).

We have equalities of basis vectors

b
t−λGrλ

= Ψλ(vw0λ) = cY (λ),

as both are flag minors (see Remark 2.10).

We conjecture that t−λGrλ and Y (λ) are extra-compatible in the above sense, in

other words, for all n∈N and µ∈Q+, we have

dim Γ(t−λGrλ,L ⊗n)−µ =χ(Fn,µ(I(λ))).

We will now prove a stronger version of this statement when n=1.

Consider the Nakajima quiver variety M(w), defined using the framing vector w,

with wi=〈α∨i , λ〉. This quiver variety has a “core” L(w), and there is a homotopy retrac-

tion of M(w) onto L(w). We have the following result of Shipman [Sh, Corollary 3.2].

Theorem 12.8. There is an isomorphism L(w)∼=F1(I(λ)).

Thus, we get a chain of isomorphisms

H�(M(w))∼=H�(L(w))∼=H�(F1(I(λ)).

By work of Varagnolo, there is an action of g∨[[t]] on H�(M(w)). Since Grλ is

an orbit of G∨(O), we also have a g∨[[t]] action on Γ(Grλ,L ). The following result is

essentially due to Kodera–Naoi [KN] and Fourier–Littelmann [FL] (see [KTW+, Theo-

rem 8.5]).

Theorem 12.9. Γ(Grλ,L )∼=H�(F1(I(λ)) as representations of g∨[[t]].

Unpacking the weight spaces on both sides (and using the odd cohomology vanishing

established by Nakajima [N, Proposition 7.3.4]), the above theorem implies the n=1

condition appearing in the definition of extra-compatibility. (Note that on both sides the

weight spaces get shifted by λ. On the left-hand side, this is because of Proposition 12.7

and, on the right-hand side, this is because of the definition of the action of the Cartan

in the Varagnolo action.)

Corollary 12.10. We have

dim Γ(t−λGrλ,L )−µ =χ(F1,µ(I(λ))).
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More generally, it seems reasonable that H�(Fn(I(λ))) should carry an action of

g∨[[t]], extending the torus action which comes from the decomposition

Fn(I(λ)) =
⊔
µ

Fn,µ(I(λ)).

More generally, we expect that the extra compatibility extends to those MV cycles,

and the quiver variety components which represent the flag minors from Remark 2.10.

12.5. Schubert varieties inside cominuscule Grassmannians

We now examine a class of MV cycles which we can prove are extra-compatible: Schubert

varieties inside cominuscule Grassmannians. These represent flag minors from minuscule

representations.

Let ωi∈P+ be cominuscule, meaning that ωi is a minimal element of P+\{0} with

respect to the dominance order. In this case, it is easy to see that Grωi is closed and

that the action of G∨ on Grωi gives rise to an isomorphism G∨/Pi∼=Grωi , where Pi is a

maximal parabolic subgroup of G∨.

Moreover, the MV cycles of type ωi are the Schubert varieties in G∨/Pi. For each

γ∈Wωi, we have a Schubert variety Grωi∩Sγ−. We can then translate to obtain a stable

MV cycle Z(γ):=t−ωi(Grωi∩Sγ− ) of weight γ−ωi.
We introduce a partial order (the Bruhat order) on Wωi by τ6γ if τ−γ∈Q+ (cau-

tion: this is opposite to our convention for dominance order). This partial order cor-

responds to the order on MV cycles of type ωi by containment. The minimal element

of this partial order is ωi and the maximal element is w0ωi. We will be particularly

interested in intervals in this poset of the form

[ωi, γ] = {τ ∈Wωi :ωi6 τ 6 γ}.

The MV polytope P (γ) of Z(γ) is easily described using this order (see for instance

[KNS, Proposition 2.5.1]) as

P (γ) = Conv{−ωi+τ : τ ∈ [ωi, γ]}.

On the other hand, for each γ∈Wωi, there is a unique (up to isomorphism) Λ-

module N(γ) with dimension-vector ωi−γ and socle Si (except if γ=ωi, in which case

N(γ)=0). We have a corresponding component Y (γ) of Λ(ωi−γ). Note that Y (γ) and

Z(γ) correspond, because they both represent the unique elements of B(∞) of weight

γ−ωi which lies in the image of Ψωi .
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As a special case, we have N(w0ωi)=I(ωi), the injective hull of Si. In fact, for each

γ∈Wωi, N(γ) occurs once as a submodule of I(ωi), and these are all the submodules

of I(ωi). The map γ 7!N(γ) is an isomorphism of posets between Wωi and the poset of

submodules of I(ωi) (under inclusion).

This implies that Pol(N(γ))=P (γ).

Theorem 12.11. Let γ∈Wωi. The pair (Z(γ), Y (γ)) is extra-compatible.

Proof. For each n∈N, let

Fn(γ) := {(τ1, ..., τn) :ωi6 τ16 ...6 τn6 γ}

be the set of chains in the poset [ωi, γ].

From the above discussion, we see that τ 7!N(τ) gives a bijection Fn(γ)=Fn(N(γ)).

On the other hand, Seshadri [Se] has given a bijection between Fn(γ) and the stan-

dard monomial basis for Γ(Z(γ),L ⊗n) (see also [LR, Theorem 8.1.0.2]).

Remark 12.12. More generally, we can consider a pair τ, γ∈Wωi such that τ6γ.

Then, we can consider the translated Richardson variety

Z(τ, γ) := t−τ (Grωi∩Sτ∩Sγ−))

This will also be an MV cycle. (In the case of type A, these MV cycles were studied by

Anderson–Kogan [AK, §2.6].)

The corresponding Λ-module is N(γ)/N(τ) which underlies a component Y (τ, γ) of

Λ(τ−γ). The above analysis carries over to this case by considering chains in the interval

[τ, γ]. Thus we see that the pair (Z(τ, γ), Y (τ, γ)) is also extra-compatible.

Appendix A. Extra-compatibility of MV cycles and preprojective

algebra modules and non-equality of bases

by Anne Dranowski, Joel Kamnitzer and Calder Morton-Ferguson

A.1. Tableaux, MV cycles, and preprojective algebra modules

In this appendix, we will work with G=SLm and G∨=PGLm (and in fact with m=5, 6).

Our goal is to compare the MV and dual semicanonical basis elements bZ and cY , where

Z and Y correspond in the sense of §12.1. In order to construct compatible pairs (Z, Y ),

we will work with the combinatorics of semistandard Young tableaux.
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A.1.1. Tableaux and Lusztig data

We identify P=Zm/Z(1, ..., 1) and P+={λ=(λ1, ..., λm)∈Zm :λ1>...>λm=0}, and we

identify P+ with the set of Young diagrams having at most m−1 rows. We also identify

Q={(ν1, ..., νm)∈Zm :ν1+...+νm=0}, and we have the simple roots αi=εi−εi+1.

We will write the positive roots for SLm as ∆+={εi−εj :16i<j6m}. For any choice

of convex order for ∆+, there is a bijection ψ:B(∞)!N∆+ constructed by Lusztig (see

[Lu2, §2]). In this appendix, we will work with one choice of convex order

ε1−ε26 ...6 ε1−εm6 ε2−ε36 ...6 ε2−εm6 ...6 εm−1−εm (21)

(this convex order corresponds to the reduced word s1 ... sm−1 ... s1s2s1 for w0). A Lusztig

datum is an element n�∈N∆+ . The weight of n� is defined to be
∑
β∈∆+

nββ.

Fix λ∈P+ and let N=
∑
i λi. Let YT(λ) be the set of semi-standard Young tableaux

of shape λ. We say that a tableau τ∈YT(λ) has weight µ∈Zm if τ has µi boxes num-

bered i for 16i6m. Let YT(λ)µ⊂YT(λ) denote the tableaux having weight µ. For

16i6m, let τ (i) denote the restricted tableau obtained from τ by deleting all boxes

numbered j, for j>i. Let sh(τ (i))∈Nm denote the shape of τ (i).

Given a tableau τ∈YT(λ)µ, we define its Lusztig datum n(τ)� by setting

n(τ)εi−εj := sh(τ (j))i−sh(τ (j−1))i = number of boxes on the i-row filled with j.

Note that n(τ)� has weight λ−µ.

A.1.2. Generalized orbital varieties

We will study MV cycles by identifying open affine subsets of them with generalized

orbital varieties. This identification comes from the Mirković–Vybornov isomorphism,

which we now recall. Fix λ∈P+ and let N=
∑
i λi. Fix µ∈P+ such that λ−µ∈Q+ (in

particular, N=
∑
i µi). We will work inside the space of N×N matrices, and we consider

such matrices in block form, where we have m×m blocks, with the (i, j) block of size

µi×µj .
We will need the following spaces of matrices:

n= upper triangular matrices,

Oλ = matrices of Jordan type λ,

Tµ = {Jµ+x : all entries of x are zero, except the first min(µi, µj)

columns of the last row of each (i, j) block},

where Jµ is the Jordan form matrix of type µ.
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Example A.1. If µ=(3, 2) then an element of Tµ takes the form
1

1

∗ ∗ ∗ ∗ ∗
1

∗ ∗ ∗ ∗

 ,

where all blank entries are zero.

We will study 
Oλ∩Tµ and 
Oλ∩Tµ∩n. The irreducible components of this latter

variety are called generalized orbital varieties. Note that, if µ=(1, ..., 1), then Tµ is the

space of all matrices, and so we recover the usual orbital varieties.

Given τ∈YT(λ)µ, define

˚̊
Zτ = {A∈
Oλ∩Tµ∩n :A|Cµ1+...+µi ∈Osh(τ(i)) for 16 i6m}. (22)

Here and elsewhere, Ck denotes the subspace of CN spanned by the first k standard basis

elements.

The following result is due to the first appendix author.

Theorem A.2. ([D]) (i) For each τ ,
˚̊
Zτ has a unique irreducible component of

dimension ρ∨(λ−µ), and all other components have smaller dimension.

(ii) Letting Z̊τ denote the closure of this component of maximal dimension, the

map τ 7!Z̊τ gives a bijection between YT(λ)µ and the set of irreducible components of

Oλ∩Tµ∩n.

The affine space Tµ (and the subvariety 
Oλ∩Tµ∩n) carries an action of the maxi-

mal torus T∨⊂PGLm, where [t1, ..., tm]∈T∨ acts by conjugating by the N×N diagonal

matrix whose entries t1, ..., t1, ..., tm, ..., tm are constant in each block.

In this appendix, we will work with polynomials in the weights of T∨. In particular,

we introduce the notation

p(µ) :=
∏

16i<j6m

(εi−εj)µj =
∏

16i<j6m

(αi+...+αj−1)µj

for the product of the weights of T∨ acting on the affine space Tµ∩n.

A.1.3. Generalized orbital varieties and MV cycles

We will now recall the Mirković–Vybornov isomorphism [MVy] in the form of [CK].
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Given a nilpotent N×N matrix A∈Tµ, we define

ϕ(A)∈G∨1 [t−1]tµ

(where G∨=PGLm and G∨1 [t−1] denotes the kernel of G∨[t−1]!G∨) by the formulas

ϕ(A) = tµIm+(aij(t)),

aij(t) =−
µi∑
k=1

Akijt
k−1,

Akij = kth entry on the last row of the (j, i) block of A.

The following result follows from [CK, Theorem 3.1] (except we have applied trans-

pose to the domain).

Theorem A.3. The map A 7![ϕ(A)] gives an isomorphism

ϕ:
Oλ∩Tµ−!Grλ∩G∨1 [t−1]Lµ.

Note that A 7![ϕ(A)] is T∨-equivariant with respect to the above defined action of

T∨ on Tµ and the usual T∨ action on Gr.

In [D], the first appendix author restricted this isomorphism to the generalized

orbital varieties and obtained the following result.

Theorem A.4. (i) ϕ restricts to an isomorphism

ϕ:
Oλ∩Tµ∩n−!Grλ∩Sµ−

(ii) For any tableau τ∈YT(λ)µ, the closure of the image of the generalized orbital

variety, Zτ :=ϕ(Z̊τ ), is the MV cycle whose Lusztig datum equals n(τ)�. In other words,

the following diagram commutes

YT(λ)µ //

��

Z(λ)µ

��

Z(∞)

��

N∆+ B(∞),oo

where the top horizontal arrow is τ 7!Zτ , the left vertical arrow is τ 7!n(τ)�, the right

vertical arrows are constructed in §6 and the bottom arrow is Lusztig’s bijection.
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We will use this theorem to compute the value of 
D on an MV basis vector, with

the aid of the following proposition.

Proposition A.5. We have


D(bt−λZτ ) = εLµ−λ(t−λZτ ) = εLµ(Zτ ) =
mdeg[n∩Tµ]Z̊τ

p(µ)
.

Proof. The first equality is Corollary 10.6 and the third one is a consequence of

Proposition 9.5.

A.1.4. A Plücker embedding

We will now explain how the knowledge of Z̊τ allows us to compute the sections of line

bundles over Zτ .

Recall that, in the lattice model for Gr, the orbit Grλ can be described as

Grλ = {L∈Gr :L⊂L0 =C[[t]]m and t|L0/L has Jordan type λ}.

Let p>λ1. Thus, L∈Grλ contains tpL0, and the quotient L/tpL0 has dimension mp−N .

Proposition A.6. The map

Grλ−!G
(
mp−N, L0

tpL0

)
,

L 7−! L

tpL0
,

is a closed embedding. Moreover, the standard determinant line bundle on

G
(
mp−N, L0

tpL0

)
restricts to the line bundle L on Grλ.

Now, assume that N=m, µ=(1, ..., 1) and p=2, so that mp−N=m. We consider

the Plücker embedding

G
(
m,

L0

t2L0

)
−!P

(∧m L0

t2L0

)
.

Our aim is to study the chain of maps connecting 
Oλ∩n with this projective space.

Let A∈
Oλ∩n. In this case, the Mirković–Vybornov isomorphism is simply given by

ϕ(A)=[tId−Atr] and the corresponding lattice is

LA = (tId−Atr)L0 = SpanC[[t]]{eit−Atrei : 16 i6m}.



the mirković–vilonen basis 89

Fix the basis

(v1, ..., vm, v1̄, ..., v
m)≡ ([e1t], ..., [emt], [−e1], ..., [−em]) for
L0

t2L0
.

We write S=(1, ...,m, 1̄, ...,
m) for the index set of this basis. We have a resulting basis

for
∧m

L0/t
2L0 indexed by subsets C⊂S of size m.

In this basis, LA/t
2L0 is the row space of the m×2m matrix Ã=[I A]β . For any

subset C⊂S of size m, we can consider the minor ∆C(Ã) of this matrix using the columns

C. Thus, we have established the following result.

Proposition A.7. Under the chain of maps


Oλ∩n−!Grλ∩S0
−−!G(m,L0/t

2L0)−!P
(∧m L0

t2L0

)
,

A is sent to [∆C(Ã)]C∈(Sm).

We also note that these maps are T∨-equivariant (in fact PGLm-equivariant), where

T∨ acts on P
(∧m

L0/t
2L0

)
using the natural GLm action on L0/t

2L0. In particular, the

basis vectors vi and vī both have weight εi.

From this proposition, it is immediate that 
Oλ∩n is mapped into the affine space

A(2m
m )−1⊂P

(m∧ L0

t2L0

)
,

defined by the condition that ∆1,...,m 6=0, and moreover that, for any τ , Z̊τ is the inter-

section of Zτ with this open affine space. Thus, we deduce the following corollary.

Corollary A.8. The ideal of Zτ⊂P
(∧m

L0/t
2L0

)
equals the homogenization of

the kernel of the map

C
[{

∆C :C ∈
(
S

m

)}]
−!C[Z̊τ ].

A.1.5. Preprojective algebra modules

Fix ν=Q+. We have a bijection Irr Λ(ν)!B(∞)−ν . We will now recall the composition⋃
ν

Irr Λ(ν)−!B(∞)−!N∆+ ,

which was studied in [BKT].

The convex order (21) on ∆+ determines a sequence of indecomposable bricks

(Bβ)β∈∆+ labelled by the positive roots. For this convex order,

Bεi−εj = i − i+1 − ... − j−1.
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Let M be a Λ-module. The Harder–Narasimhan filtration of M is the unique decreasing

filtration (Mβ)β∈∆+
such that Mβ/Mβ′

∼=B
⊕
n(M)β

β , where β<β′ is a consecutive pair

in the convex order on ∆+. We define the Lusztig datum n(M)� of M to be these

multiplicities.

We define n(Y )� for any component Y ⊂Λ(ν) by setting n(Y )� :=n(M)�, where M is

a general point of Y . The following result is contained in [BKT] (see Remark 5.25 (ii)).

Theorem A.9. The map
⋃
ν Irr Λ(ν)!N∆+ defined by Y 7!n(Y )� is a bijection.

Moreover, this bijection agrees with the composition
⋃
ν Irr Λ(ν)!B(∞)!N∆+ (where

the second map is Lusztig’s bijection).

From Theorems A.4 and A.9, we deduce the following.

Corollary A.10. Let τ∈YT(λ)µ be a Young tableau and let ν=λ−µ. Let Zτ be

the MV cycle constructed in §A.1.3. Let Yτ⊂Λ(ν) be component such that n(Y )�=n(τ)�.

Then, the stable MV cycle t−λZτ and the component Yτ correspond in the sense of

§12.1.

A.1.6. Evidence for extra-compatibility in an A4 example

We take m=N=5, λ=(2, 2, 1), µ=(1, 1, 1, 1, 1) and consider

τ =
1 2
3 4
5

.

Let Z=Zτ be the MV cycle defined from τ in §A.1.3. Let Y =Yτ⊂Λ(ν) and let M

be a general point of Yτ , i.e. a general module with n(M)=n(τ). This gives the simplest

indecomposable M not covered by the analysis in §12.5.

The pair (t−λZ, Y ) are compatible, by Corollary A.10. Moreover, bt−λZ=cY , as can

be seen by a variant of the analysis from §2.7. In fact, we expect that t−λZ and Y are

extra-compatible. We will now prove the following result which gives evidence in this

direction.

Theorem A.11. (i) For all n∈N, we have dim Γ(t−λZ,L ⊗n)=dimH�(Fn(M)).

(ii) For n=1, 2 and all µ, we have dim Γ(t−λZ,L ⊗n)µ=dimH�(Fn,µ(M)).

(iii) We have 
D(bt−λZ)=
D(ξM ).
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A.1.7. Generalized orbital variety and multidegree

Let A∈ ˚̊
Zτ and write

A=


0 a1 a2 a3 a4

0 0 a5 a6 a7

0 0 0 a8 a9

0 0 0 0 a10

0 0 0 0 0

 .

We apply (22) to find the following conditions along with the equations they impose

on the matrix entries of A: [
0 a1

0 0

]
∈O(2), a1 6= 0, 0 a1 a2

0 0 a5

0 0 0

∈O(2,1), a5 = 0,


0 a1 a2 a3

0 0 0 a6

0 0 0 a8

0 0 0 0

∈O(2,2),
a1a6+a2a8 = 0,

a8 6= 0,

A∈Oλ,

a10 = 0,

det

[
a6 a7

a8 a9

]
= 0,

a1a7+a2a9 = 0.

Altogether, we find that Z̊=Z̊τ is the vanishing locus of

I = (a5, a10, a1a6+a2a8, a7a8−a6a9, a1a7+a2a9),

and we verified using a computer that this ideal is prime.

Applying the algorithm from [KZJ, §1.5] (or by computer), we obtain the following:

mdeg[n]Z̊ = (α1α2+α2
2+α2α3)α2

4+(α1α
2
2+α3

2+α2α
2
3+2(α1α2+α2

2)α3)α4. (23)

A.1.8. The MV cycle and its sections

In this example, the description of the MV cycle Z from Corollary A.8 can be simplified,

since Z̊ is contained in the subspace defined by the vanishing of a5 and a10. By ignoring
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minors which are forced to be zero among the set of
(

10
5

)
total possibilities, we can exhibit

Z as a subvariety of P16 using the following set of minors:

u= ∆12345, b1 = ∆13451, b2 = ∆12451, b3 = ∆12351, b4 = ∆12341, b5 = ∆12352,

b6 = ∆12342, b7 = ∆12353, b8 = ∆12343, b9 = ∆12312, b10 = ∆12412, b11 = ∆12413,

b12 = ∆12512, b13 = ∆12513, b14 = ∆12313, b15 = ∆13413, b16 = ∆13513.

Let P=C[b1, ..., b16, u] and

J1 = (b9−b3b6+b4b5, b10−b2b6, b11−b2b8, b12−b2b5,

b13−b2b7, b14−b3b8+b4b7, b15−b1b8, b16−b1b7),

J2 = (b1b5+b2b7, b6b7−b5b8, b1b6+b2b8),

where J1 just comes from C[n] and J2 represents the additional relations coming from I.

Thus, Z=Proj(P/Jh) for J=J1+J2, where Jh is the homogenization of J with respect

to u. Using Macauley2, we obtain the following expression for the space of sections:

dim Γ(Z,O(n)) =
(n+1)2(n+2)2(n+3)(5n+12)

144
. (24)

A.1.9. The preprojective algebra module

A general module M with Lusztig data n(τ)=(1, 0, 0, 0, 1, 1, 0, 0, 1, 0) is

1 3

22 4

3,

with the maps chosen such that ker(M2!M3), im(M3!M2) and im(M1!M2) are all

distinct.

In fact, M has HN filtration with subquotients

1

2

3! 2

4! 3
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ν F1(M)ν dimH�(F1(M)ν) dimH�(Fn(M)ν)

(0, 0, 0, 0) point 1 1

(0, 1, 0, 0) point 1 n

(0, 0, 1, 0) point 1 n

(0, 0, 1, 1) point 1 1
2
n(n+1)

(0, 1, 1, 0) P1 2 1
2
n(3n+1)

(0, 1, 1, 1) P1 2 1
6
n(n+1)(5n+1)

(0, 2, 1, 0) point 1 1
2
n2(n+1)

(1, 1, 1, 0) point 1 1
6
n(n+1)(n+2)

(0, 1, 2, 1) point 1 1
12
n(n+1)2(n+2)

(0, 2, 1, 1) point 1 1
6
n2(n+1)(2n+1)

(1, 1, 1, 1) point 1 1
24
n(n+1)(n+2)(3n+1)

(1, 2, 1, 0) point 1 1
6
n2(n+1)(n+2)

(0, 2, 2, 1) point 1 1
12
n2(n+1)2(n+2)

(1, 2, 1, 1) point 1 1
24
n2(n+1)(n+2)(3n+1)

(1, 2, 2, 1) point 1 1
144

n2(n+1)2(n+2)(5n+7)

Table 2. Spaces of (chains of) submodules of M .

A.1.10. Flags of submodules

We will now outline a recursive method for computing dimH�(Fn(M)). Given a dimen-

sion vector ν∈Q+, let Fn(M)ν be the component of Fn(M) consisting of (n+1)-step flags

for which the nth submodule in the chain has dimension vector ν. Note that, for each ν,

all submodules of M of dimension ν are isomorphic (this is a special property of M).

This means that for any ν, there exists a submodule N such that

Fn(M)ν ∼=Fn−1(N)×F1,ν(M).

Using this recursive definition, we compute dimH�(Fn(M)ν) in Table 2.

Since Fn(M) is the disjoint union of each of these varieties, we have

dimH�(Fn(M)) =
∑
ν

dimH�(Fn(M)ν),

and so, summing the above polynomials, we get

dimH�(Fn(M)) =
(n+1)2(n+2)2(n+3)(5n+12)

144
. (25)
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Together with (24), this establishes Theorem A.11 (i).

When n=1, 2, we can take this computation further and prove Theorem A.11 (ii).

(When n=1, this can be easily seen by comparing the weights of the variables u, b1, ..., b16,

with the dimension vectors of submodules of M from Table 2, taking into account the

shifting of weights given by Proposition 12.7.)

A.1.11. Computation of the “flag function”

By Proposition 8.4 and the definition of ξM from §11.1, we have that


D(ξM ) =
∑

i∈Seq(ν)

χ(Fi(M))
Di.

We call 
D(ξM ) the flag function of M .

For i∈Seq(ν) among

(3, 4, 2, 3, 2, 1) (3, 2, 4, 3, 2, 1) (2, 3, 4, 2, 3, 1) (2, 3, 2, 1, 4, 3)

(2, 3, 2, 4, 3, 1) (2, 3, 4, 2, 1, 3) (2, 3, 2, 4, 1, 3) (3, 2, 1, 2, 4, 3)

(3, 4, 2, 1, 2, 3) (3, 2, 4, 1, 2, 3) (3, 2, 1, 4, 2, 3),

the variety Fi(M) is a point, so χ(Fi(M))=1. For i among

(3, 4, 2, 2, 3, 1) (3, 2, 4, 2, 3, 1) (3, 2, 2, 4, 3, 1) (3, 4, 2, 2, 1, 3)

(3, 2, 4, 2, 1, 3) (3, 2, 2, 4, 1, 3) (3, 2, 2, 1, 4, 3),

we see that Fi(M)∼=P1, so χ(Fi(M))=2. For all other values of i, we have Fi(M)=∅.

The flag function is a rational function, but we can use p(µ) to clear the denominator.

By direct computation, we obtain that the flag function of M is given by


D(ξM )p(µ) = (α1α2+α2
2+α2α3)α2

4+(α1α
2
2+α3

2+α2α
2
3+2(α1α2+α2

2)α3)α4.

To complete the proof of Theorem A.11 (iii), we compare with (23) and apply Propo-

sition A.5.

A.2. Weak evidence for extra-compatibility in an A5 example

Let λ=(2, 2, 1, 1), let µ=(1, 1, 1, 1, 1, 1) and consider

τ =

1 3
2 5
4
6

.
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As before, let Z=Zτ be the MV cycle defined from τ in §A.1.3. Let Y =Yτ⊂Λ(ν).

A general point of Y is of the form Ma, where a∈C is a parameter. This is the simplest

example of a component whose general point is not rigid.

The pair (t−λZ, Y ) are compatible and bZ=cY , as can be seen by a variant of the

analysis from §2.7. We have the following weak evidence for extra-compatibility and for

the equality of basis vectors.

Theorem A.12. (i) For all ν∈Q+, we have

dim Γ(t−λZ,L )−ν = dimH�(F1,ν(Ma)).

(ii) We have


D(bt−λZ) = 
D(ξMa
).

A.2.1. Generalized orbital variety and multidegree

We apply (22) with the aid of a computer to find that the generalized orbital variety Z̊τ

is cut out by the prime ideal

I = (a15, a10, a1, a3a6−a2a7, a2a12+a3a14, a6a12+a7a14, a2a11+a3a13,

a6a11+a7a13, a12a13−a11a14, a5a6a13−a2a9a13−a4a6a14+a2a8a14,

a5a7a13−a3a9a13−a4a7a14+a3a8a14, a5a7a11−a3a9a11−a4a7),

where a1, ..., a15 are the matrix entries of a 6×6 upper triangular matrix

A=



0 a1 a2 a3 a4 a5

0 0 a6 a7 a8 a9

0 0 0 a10 a11 a12

0 0 0 0 a13 a14

0 0 0 0 0 a15

0 0 0 0 0 0


in n.

From here, it is easy to compute mdeg[n]Z̊ using a computer.

As in the previous section, we can use the ideal of the orbital variety Z̊ to find the

homogeneous ideal of the MV cycle Z, and thus to determine Γ(Z,L ). We omit the

details.
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A.2.2. The preprojective algebra module and its flag function

In this example

n(τ) = (0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0).

The general module Ma∈Y is of the form

2 4

1 33 5.

2 4

1 (
1

0

) (
0

1

) 1

−a
(a 1) (1 1)

−1

It is easy to determine all submodules of Ma, and thus the space F1(Ma). Comparing

with the computation of Γ(Z,L ) yields the proof of Theorem A.12 (i). We omit the

details.

We can compute 
D(ξMa
) by enumerating composition series in the same manner as

in the A4 example; there are 148 sequences i with Fi(Ma)=P1 and 104 sequences i with

Fi(Ma)=pt. Computing in this way, we get that 
D(ξMa)p(µ) is equal to the multidegree

given in the previous section, yielding the proof of Theorem A.12 (ii).

A.3. Non-equality of basis vectors

Let λ=(4, 4, 2, 2), let µ=(2, 2, 2, 2, 2, 2) and consider

τ =

1 1 3 3
2 2 5 5
4 4
6 6

,

so that ν=2α1+4α2+4α3+4α4+2α5 and

n(τ) = (0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0).

As before, we let Z=Zτ and Y =Yτ , giving a corresponding pair (t−λZ, Y ). However,

we will now prove that bZ 6=cY . Using Proposition 12.2, it suffices to prove that


D(bZ) 6= 
D(cY ).

A general point of Y is Ma⊕Ma′ , with a 6=a′. Let I(ω2+ω4):=I(ω2)⊕I(ω4) be the

injective Λ module (using the notation of §12.4). We prove the following.
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Theorem A.13. We have


D(bZ) = 
D(ξMa⊕Ma′ )−2
D(ξI(ω2+ω4))

and, in particular,


D(bZ) 6= 
D(ξMa⊕Ma′ ),

and thus bZ 6=cY .

Proof. By Lemma 11.1, the computation of the right-hand side is reduced to the

previous section (and the easy computation of 
D(ξI(ωi))).

On the other hand, for the left-hand side, we use (22) to give a description of the

generalized orbital variety Z̊τ . Using the aid of a computer, we find that it is cut out by

a prime ideal I inside a polynomial ring with 24 generators.

From there, it is easy to compute the multidegree of Z̊τ , and thus 
D(bZ).

References

[A] Anderson, J. E., A polytope calculus for semisimple groups. Duke Math. J., 116
(2003), 567–588.

[AK] Anderson, J. E. & Kogan, M., The algebra of Mirković-Vilonen cycles in type A.
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Birkhäuser, Boston, MA, 1997.

[C] Curry, J. M., Dualities between cellular sheaves and cosheaves. J. Pure Appl. Alge-
bra, 222 (2018), 966–993.

[DGPS] Decker, W., Greuel, G.-M., Pfister, G. & Schönemann, H., Singular
4-1-0. A computer algebra system for polynomial computations, 2017. Available
at http://www.singular.uni-kl.de.

[D] Dranowski, A., Generalized orbital varieties as affinizations of MV cycles. To appear
in Transform. Groups.

http://www.singular.uni-kl.de
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[MV] Mirković, I. & Vilonen, K., Geometric Langlands duality and representations

of algebraic groups over commutative rings. Ann. of Math., 166 (2007), 95–143.
Correction in Ann. of Math, 188 (2018), 1017–1018.
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7 rue René Descartes
FR-67000 Strasbourg
France
p.baumann@unistra.fr

Joel Kamnitzer
Department of Mathematics
University of Toronto
40 St. George Street
Toronto, ON M5S 2E4
Canada
jkamnitz@math.utoronto.ca

Allen Knutson
Department of Mathematics
Cornell University
310 Malott Hall
Ithaca, NY 14853-4201
U.S.A.
allenk@math.cornell.edu

Received May 25, 2019

mailto:Pierre Baumann <p.baumann@unistra.fr>
mailto:Joel Kamnitzer <jkamnitz@math.utoronto.ca>
mailto:Allen Knutson <allenk@math.cornell.edu>

	1 Introduction
	Part I. Biperfect bases
	2 General background
	3 More on biperfect bases
	Part II. Mirkovic–Vilonen cycles
	4 Background on the geometric Satake equivalence
	5 The Mirkovic–Vilonen basis in representations
	6 The Mirkovic–Vilonen basis of C[N]
	7 Multiplication
	Part III. Measures
	8 Measures
	9 Generalities on Duistermaat–Heckman measures
	10 Measures from MV cycles
	11 Preprojective algebra modules
	12 Comparing measures from MV cycles and from \Lambda-modules
	Appendix A. Extra-compatibility of MV cycles and preprojective  algebra modules and non-equality of bases
	References

