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1. Introduction

For a reasonably complete discussion of the history of constructing closed ideals in L(Lp),

see the introduction in [JPS]. Here, we just remark that in 1981, Bourgain, Rosenthal,

and the second author [BRS] constructed ℵ1 mutually non-isomorphic complemented

subspaces of Lp :=Lp(0, 1) for 1<p 6=2<∞, thereby producing (as noted in [P]) ℵ1 dif-

ferent closed ideals in L(Lp). (It is of course well known that the compact operators are

the only closed ideal in L(L2).) At that time it was open whether, absent the continuum

hypothesis, L(Lp) contains a continuum of closed ideals. Recently, Schlumprecht and

Zsák [SZ] built a continuum of closed ideals in Lp :=Lp(0, 1).

The main contribution of this paper is Theorem 4.1, in which we prove that L(Lp),

1<p 6=2<∞, has exactly 22
ℵ0

different closed ideals.

Recall the notions of small and large closed ideal in L(X). An ideal is called small

if it is contained in the ideal of strictly singular operators. Otherwise it is called large.

The ideals built in [SZ] are all small, while the ones coming from infinite-dimensional

complemented subspaces are clearly large. Our basic construction is designed to pro-

duce large ideals. Note that there are at most a continuum of mutually non-isomorphic

complemented subspaces of Lp (as the density character of L(Lp) and of the set of pro-

jections on Lp is the continuum). So necessarily we produce different kinds of ideals.

Unfortunately, we do not produce any new complemented subspaces of Lp.

The new large ideals in L(Lp) that we construct are “smallish” in the sense that,

even though there are idempotents in the ideals whose ranges are isomorphic to `2 (see

Remark 4.2), no operator in any of the ideals is an isomorphism on a copy of `p. The

Kadec–Pe lczyński dichotomy principle [KP] implies that every complemented subspace
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of Lp that is not isomorphic to a Hilbert space contains a complemented subspace that

is isomorphic to `p. Consequently, the range of any infinite-rank idempotent in any of

the ideals that we construct in Theorem 4.1 (and, as we said, there are infinite-rank

idempotents in the ideals) must be isomorphic to `2.

To put these new “smallish” large ideals into perspective within the Banach algebra

L(Lp), notice that it follows from the Kadec–Pe lczyński dichotomy principle [KP] that

there are exactly two different minimal large closed ideals in L(Lp) when 2<p<∞, and

thus also for 1<p<2 (because an operator T in L(Lp) is strictly singular if and only if

T ∗ is strictly singular on Lq, 1/p+1/q=1, by Weis’ theorem [W]). The first of these is

Γ`p(Lp), the ideal of operators that factor through `p. This ideal is closed because an

operator T :X!Lp, 2<p<∞, factors through `p if and only if Ip,2T is compact, where

Ip,2 is the formal identity mapping from Lp into L2; see [J]. One can prove using the

Kadec–Pe lczyński dichotomy principle [KP] that Ip,2S is compact whenever S is a strictly

singular operator on Lp, so the alternate characterization of Γ`p(Lp) for 2<p<∞ also

yields that Γ`p(Lp) contains all strictly singular operators on Lp, 2<p<∞, and thus also

for 1<p<2 by [W].

The second minimal large closed ideal in L(Lp) is the closure �Γ2(Lp) of the ideal

Γ2(Lp) of operators on Lp that factor through a Hilbert space. Here the closure is needed;

in fact, it is not hard to see that there are compact operators on Lp that do not factor

through a Hilbert space.

We recall in passing that, as was noted in [JPS], the situation in L(L1) is nicer:

Γ`1(L1) is the unique minimal closed large ideal in L(L1) and it contains all the strictly

singular operators on L1.

In Remark 4.3 we prove that the new large ideals we construct in L(Lp) do not con-

tain the strictly singular operators on Lp, and hence neither does �Γ2(Lp). All previously

known large ideals in L(Lp) other than �Γ2(Lp) do contain the strictly singular operators,

and this is the first proof that �Γ2(Lp) does not. A byproduct of Remark 4.3, stated as

Remark 4.4, is that L(Lp) contains exactly 22
ℵ0

small closed ideals.

Our construction and proof of Theorem 4.1 consist of two steps. In §2 we state

and prove the technical Proposition 2.1. This easily yields Corollary 2.3, which gives a

general criterion for a space with an unconditional basis to contain 22
ℵ0

different closed

ideals. The criterion is in term of the existence of a special operator on the space.

In §3 we show that, for 1<q<2, the space Lq contains a complemented subspace

(this is Rosenthal’s Xq space, which has an unconditional basis) that admits an operator

satisfying the criterion of Proposition 2.1. The construction here borrows a lot from a

previous similar construction from [JS]. Duality and complementation then imply the

main result.
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2. The main proposition

There is a continuum of infinite subsets of the natural numbers N, each two of which have

only finite intersection. Denote some fixed such continuum by C. For a finite-dimensional

normed space E, we denote by d(E) the Banach–Mazur distance (isomorphism constant)

of E to a Euclidean space. Also, recall that, for an operator T :X!Y between two

normed spaces, γ2(T ) denotes its factorization constant through a Hilbert space:

γ2(T ) = inf{‖A‖ ‖B‖ :T =AB,A:H!Y,B:X!H,H a Hilbert space}.

If T is of rank k, then γ2(T )6k1/2‖T‖ because every k-dimensional normed space is

k1/2-isomorphic to `k2 [T-J, Theorem 15.5]. Note that d(E) is just γ2(IE), where IE is

the identity operator on E.

Proposition 2.1. Let X be a Banach space with a 1-unconditional basis {ei}, let

Y be a Banach space, and let T :X!Y be an operator of norm at most 1 satisfying the

following conditions:

(a) For some η>0 and for every M , there is a finite-dimensional subspace E of X

such that d(E)>M and ‖Tx‖>η‖x‖ for all x∈E.

(b) For some constant Γ and every m, there is an n such that every m-dimensional

subspace E of [ei]i>n satisfies γ2(T |E)6Γ.

Then, there exist natural numbers 1=p1<q1<p2<q2<... such that, denoting

Gk := [ei]
qk
i=pk

for each k, defining, for each α∈C, the operator Pα:X![Gk]k∈α to be the the natural

basis projection, and setting Tα :=TPα, the following statement holds: If α1, ..., αs∈C
(possibly with repetitions) and α∈C\{α1, ..., αs} then, for all A1, ..., As∈L(Y ) and all

B1, ..., Bs∈L(X), ∥∥∥∥Tα− s∑
i=1

AiTαi
Bi

∥∥∥∥> η

2
. (2.1)

Proof. Note first that we can strengthen condition (a) to include also that, given any

n, one can chose the subspace E to also satisfy that it is contained in [ei]i>n. Now choose

inductively 1=p1<q1<p2<q2 ... so that, for each k, Gk=[ei]
qk
i=pk

contains a subspace Ek

with ‖Tx‖>η‖x‖ for all x∈Ek and

d(Ek)> qk−1

(as we will see, it is enough that d(Ek)/q
1/2
k−1!∞) and, if E is a subspace of Hk=

[Gl]
∞
l=pk+1

with dimE6qk, then

γ2(T |E)<Γ.
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Let now Pα:X![Gk]k∈α be the natural basis projection and set Tα :=TPα.

Suppose that α1, ..., αs∈C (possibly with repetitions) and α∈C\{α1, ..., αs}. Assume to

the contrary that there are A1, ..., As∈L(Y ) and B1, ..., Bs∈L(X) such that∥∥∥∥Tα− s∑
i=1

AiTαi
Bi

∥∥∥∥< η

2
. (2.2)

There are infinitely many k∈α\
⋃s
i=1 αi. For each such k, let Rk be the basis projection

onto [Gl]l<k and Qk the basis projection onto [Gl]l>k. Now, for any i=1, ..., s, we have

Tαi
Gk=0 since k /∈αi, and dim(RkBiEk)6qk−1 and dim(BiEk)6qk, so we get that, for

each i,

γ2(AiTαiBi|Ek
)6 γ2(AiTαiRkBi|Ek

)+γ2(AiTαiQkBi|Ek
)

6 q
1/2
k−1‖Ai‖ ‖Bi‖+Γ‖Ai‖ ‖Bi‖.

Consequently,

γ2

( s∑
i=1

AiTαiBi|Ek

)
6
(

s
max
i=1
‖Ai‖ ‖Bi‖

)
s(q

1/2
k−1+Γ). (2.3)

On the other hand, since ‖x‖>‖Tαx‖>η‖x‖ for all x∈Ek, (2.2) implies that

(
1+

η

2

)
‖x‖>

∥∥∥∥ s∑
i=1

AiTαi
Bix

∥∥∥∥> η‖x‖
2

for all x∈Ek. Since d(Ek)>qk−1, we deduce that

γ2

( s∑
i=1

AiTαi
Bi|Ek

)
>

η

2+η
qk−1.

For k large enough, this contradicts (2.3).

Remark 2.2. Observe that the only condition on Tα that was used to get the in-

equality (2.1) is that ‖x‖>‖Tαx‖>η‖x‖ for all x in Ek with k∈α. Consequently, the

proof of Corollary 2.3 below shows that any operator S in L(X) for which there is η>0

such that ‖Sx‖>η‖x‖ for all x in Ek with k∈α cannot be in the closed ideal generated

by {Tβ :β∈C with β 6=α}. In fact, from the proof of Proposition 2.1, only the inequality

‖Sx‖>η‖x‖ for all x in Hk with k∈α and where Hk is isomorphic to Ek with isomor-

phism constant independent of k is sufficient to conclude that S is not in the closed ideal

generated by {Tβ :β∈C, with β 6=α}. This observation will be used in Remark 4.3 at the

end of this paper.
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Corollary 2.3. Let X be a Banach space with a 1-unconditional basis {ei}i and

assume there is an operator T :X!X of norm at most 1 satisfying (a) and (b) of

Proposition 2.1. Then, L(X) has exactly 22
ℵ0

different closed ideals.

Proof. For any non-empty proper subset A of C, let IA be the ideal generated by

{Tα}α∈A; i.e., all operators of the form
∑s
i=1AiTαi

Bi with s∈N, Ai, Bi∈L(X), αi∈A,

i=1, ..., s. To avoid cumbersome notation, interpret A⊂C to mean that A is a non-empty

proper subset of C.
Since we allow repetition of the Tαi

, it is easy to see that this really defines a (non-

closed) ideal. Let B be a subset of C different from A and assume, without loss of

generality, that B6⊂A. Let α∈B\A. Then, by Proposition 2.1, Tα /∈�IA. Consequently,

{�IA}A⊂C are all different.

Since the density character of L(X), for any separable X, is at most the continuum,

it is easy to see that, for any separable space X, L(X) has at most 22
ℵ0

different closed

ideals.

Remarks 2.4. (1) One can strengthen the conclusion of the corollary by getting an

antichain of 22
ℵ0

closed ideals in L(X); i.e., such a collection no two of whose members

are included one in the other. For that one just uses a collection of 22
ℵ0

subsets of C no

two of which are included one in the other.

(2) Similarly, one gets a collection of 2ℵ0 different closed ideals in L(X) that form a

chain (by taking a chain of subsets of C of that cardinality). It is also easy to show by a

density argument that, for any separable X, this is the maximal cardinality of any chain

of closed ideals in L(X).

(3) If Y is a Banach space that contains a complemented subspace X with the

properties of Corollary 2.3, then clearly L(Y ) also has 22
ℵ0

different closed ideals (actually

an antichain). The same is true also for any space isomorphic to such a Y .

(4) The simplest examples of spaces X that satisfy the hypotheses of Corollary 2.3

and thus L(X) has 22
ℵ0

different closed ideals are
(∑

i `
ni
ri

)
2

for ri"2 and ni satisfying

n
1/ri−1/2
i !∞. It is not hard to show that the identity operator on such a space satisfies

(a) and (b) of Proposition 2.1. Consequently, by (3), L
((∑

i `ri
)
2

)
for ri"2 also has 22

ℵ0

different closed ideals. Interesting, but less natural, examples of separable spaces X with

L(X) having 22
ℵ0

different closed ideals were known before (see [M]). Unfortunately,(∑
i `
ni
ri

)
2

for ri"2 and n
1/ri−1/2
i !∞ does not embed isomorphically as a complemented

subspace into any Lp, p<∞, so this example is not good for our purposes. Actually, at

least for some sequences {(ri, ni)}i with the above properties,
(∑

i `
ni
ri

)
2

does not even

embed isomorphically into any Lp space, p<∞. That this is true, for example, if each

(r, n)∈{(ri, ni)} repeats n times follows from [KS, Corollary 3.4].
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In the next section, we show how to get complemented subspaces of the reflexive Lp

spaces that satisfy the hypotheses of Corollary 2.3.

3. The operator T

In this section we prove that, for each 1<q<2, there is a complemented subspace of Lq

isomorphic to a space X with a 1-unconditional basis on which there is an operator of

norm at most 1 with properties (a) and (b) of Proposition 2.1.

Recall that, for a sequence u={uj}∞j=1 of positive real numbers and for p>2, the

Banach space Xp,u is the sequence space with norm

‖{aj}∞j=1‖= max

{( ∞∑
j=1

|aj |p
)1/p

,

( ∞∑
j=1

|ajuj |2
)1/2}

. (3.1)

Rosenthal [R] proved that Xp,u is isomorphic to a complemented subspace of Lp with

the isomorphism constant and the complementation constant depending only on p. If u

is such that, for all ε>0, ∑
uj<ε

u
2p/(p−2)
j =∞,

then one gets a space isomorphically different from `p, `2 and `p⊕`2. However, for

different u satisfying the condition above, the different Xp,u spaces are mutually isomor-

phic. We denote by Xp any of these spaces. Later, we shall need more properties of the

spaces Xp,u, and of particular embeddings of them into Lp, but for now we only need the

representation (3.1), and we think of Xp,u as a subspace of `p⊕∞`2.

Let {ej}∞j=1 be the unit vector basis of `p, and let {fj}∞j=1 be the unit vector basis

of `2. Let v={vj}∞j=1 and w={wj}∞j=1 be two positive real sequences such that δj=

wj/vj!0 as j!∞ and max∞j=1 δj61. Set

gvj = ej+vjfj ∈ `p⊕∞`2 and gwj = ej+wjfj ∈ `p⊕∞`2.

Then, {gvj }∞j=1 is the unit vector basis of Xp,v and {gwj }∞j=1 is the unit vector basis of

Xp,w. Define also

∆:Xp,w −!Xp,v

by

∆gwj = δjg
v
j .

Note that ∆ is the restriction to Xp,w of K∈L(`p⊕∞`2) defined by

K(ej) = δjej and K(fj) = fj .
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Consequently, ‖∆‖6‖K‖=1.

The following proposition follows immediately from the easily verified fact that

‖K|[ej ]∞j=m
‖!0 as m!∞.

Proposition 3.1. Given n, there exists an m such that, if E is an n-dimensional

subspace of [ej ]
∞
j=m⊕[fj ]

∞
j=1⊂`p⊕∞`2, then γ2(K|E)62. In particular, if E is an n-

dimensional subspace of [gwj ]∞j=m⊂Xp,w, then γ2(∆|E)62.

Next, we define weights {vj}j and {wj}j , with some additional properties. For that,

we use different representations of the spaces Xp,u. It was proved in [R] that, if {Xj}∞j=1 is

a sequence of symmetric, each 3-valued, independent random variables all Lp-normalized,

2<p<∞, then {Xj}∞j=1 is equivalent, in Lp, to {guj }∞j=1, the unit vector basis of Xp,u,

where uj=‖Xj‖2. Defining Yj=Xj/‖Xj‖q, for q=p/(p−1), {Yj}∞j=1 is equivalent, in Lq,

to the basis {huj }∞j=1 of Xq,u :=X∗p,u, that is dual to the unit vector basis of Xp,u.

Let us say already at this early stage that, for some appropriate weights {vj}j
and {wj}j , the operator T we are after will be of the form ∆∗ followed by a norm-1

isomorphism from Xq,w to Xq,v.

Recall that P :Lp![Xj ]
∞
j=1 defined by

Pf =

∞∑
j=1

(∫ 1

0

fYj

)
Xj

defines a bounded projection onto [Xj ]
∞
j=1 (and P ∗ a bounded projection from Lq onto

[Yj ]
∞
j=1). The norms of the equivalences above and of the projections depend on p, but

not on the particular weights u.

We now recall a construction from [JS, §4]. It was shown there that, given 1<q<2,

any sequence {δi}∞i=1 that decreases to zero, any sequence {ri}∞i=1 such that q<ri"2 fast

enough and in particular satisfying δ
q(2−ri)/(2−q)
i > 1

2 , i=1, 2, ... , and for any sequence

εi#0, we can find two sequences {Yi}i and {Zi}i of symmetric, independent, 3-valued

random variables, all normalized in Lq, with the following additional properties:

• Put vj=1/‖Yj‖2 and wj=1/‖Zj‖2. Then, there are disjoint finite subsets σi,

i=1, 2, ... , of the integers such that wj=δivj for j∈σi.
• There are independent random variables {
Yi}i ri-stable normalized in Lq, {	Zi}i

ri-stable with 1>‖	Zi‖q> 3
4 for each i, and there are coefficients {aj}j such that

∥∥∥∥
Yi−∑
j∈σi

ajYj

∥∥∥∥
q

<εi and

∥∥∥∥	Zi−∑
j∈σi

δiajZj

∥∥∥∥
q

<εi. (3.2)
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We may of course repeat each of the triplets (ri, δi, εi) as many (finitely many)

times as we wish. Thus we conclude that, given any sequence {δi}∞i=1 decreasing to zero,

any sequence {ri}∞i=1 such that q<ri"2 and satisfying δ
q(2−ri)/(2−q)
i > 1

2 , i=1, 2, ... , any

sequence of integers ni, and any sequence εi#0, we can find two sequences {Yi}i and

{Zi}i of symmetric, independent, 3-valued random variables, all normalized in Lq, with

the following additional properties:

• Put vj=1/‖Yj‖2 and wj=1/‖Zj‖2. Then there are disjoint finite subsets σi,l,

i=1, 2, ... and l=1, ... ni, of the integers such that wj=δivj for j∈σi,l.
• There exist independent random variables {
Yi,l}i,l ri-stable normalized in Lq,

{	Zi,l}i,l ri-stable with 1>‖	Zi,l‖q> 3
4 for each i and l, and there exist coefficients {aj}j

such that ∥∥∥∥
Yi,l−∑
j∈σi,l

ajYj

∥∥∥∥
q

<εi and

∥∥∥∥	Zi,l−∑
j∈σi,l

δiajZj

∥∥∥∥
q

<εi. (3.3)

Choosing the εi small enough, we may assume that
{∑

j∈σi,l
ajYj

}ni

l=1
is, in Lq,

2-equivalent to the unit vector basis of `ni
ri , and similarly

{∑
j∈σi,l

δiajZj
}ni

l=1
is, in Lq,

2-equivalent to the unit vector basis of `ni
ri . Denoting by R the map that sends Yj to

δiZj for j∈σi,l, we get that this map satisfies that, for all i, there is a space Ei that is

2-isomorphic to `ni
ri such that ‖Rx‖> 1

4‖x‖ for all x∈Ei. Choosing the ni large enough,

we may also assume that, for all k,

n
1/ri−1/2
i !∞ as i!∞.

Since n
1/ri−1/2
i is the distance of `ni

ri to a Hilbert space, we get that d(Ei)!∞.

We are now ready to state and prove the main proposition of this section.

Proposition 3.2. With the choice of v={vj}j and w={wj}j above, set X=Xq,v,

let ∆∗:Xq,v!Xq,w be the adjoint of ∆ defined at the beginning of this section, and let

S be a norm-1 isomorphism from Xq,w onto Xq,v. Put T=S∆∗. Then, X and T satisfy

the assumptions of Proposition 2.1.

Proof. Since T=ARB for isomorphisms A and B, the discussion above provides a

proof of property (a). Property (b) follows by duality from Proposition 3.1. Indeed, fix

m and n and let E be an m-dimensional subspace of [hvi ]i>n. We have that ∆∗(E) is a

subspace of [hwi ]i>n, so there is a k-dimensional subspace F of [gwi ]i>n that 2-norms E.

Here, k=k(m) depends only on m (and we used the 1-unconditionality of the bases). By

Proposition 3.1, for some n depending only on k and thus only on m, γ2(∆|F )62. From

this it is easy to get that γ2(∆∗|E)64. Consequently, this holds also for T=S∆∗.
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4. The main result and additional comments

Theorem 4.1. For every 1<p 6=2<∞ the number of different closed ideals in L(Xp)

and in L(Lp) is exactly 22
ℵ0

. Moreover, each of these spaces contains an antichain of

closed ideals of cardinality 22
ℵ0

and a chain of cardinality 2ℵ0 .

Proof. For Xq, 1<q<2, the theorem follows from Proposition 3.2 and Corollary 2.3.

For Xp, 2<p<∞, it follows by simple duality. Since for 1<p 6=2<∞ the space Xp is

isomorphic to a complemented subspace of Lp, it follows also for Lp.

The statements about chains and antichains are a consequence of the remarks at the

end of §2.

Remark 4.2. As is stated in the introduction, the new ideals in L(Lp) and L(Xp),

1<p 6=2<∞, constructed in Theorem 4.1 are all large, and in fact contain projections

whose ranges are isomorphic to `2.

Proof. First, we observe that it is enough to show that, for each α∈C, the operator

Tα on X (recall that X is isomorphic to Xq, where 1<q<2), isomorphically preserves

a copy of `2. Here, T is the operator produced in Proposition 3.2, and Tα is defined

in the statement of Proposition 2.1. Indeed, since any subspace of Lq, 1<q<2, that is

isomorphic to `2 contains a further infinite-dimensional subspace that is complemented

in Lq (this fact was probably first observed by Pe lczyński; see [JS, p. 1106] for a proof),

this will show that the identity on `2 factors through Tα, and hence there is a projection

in the ideal generated by Tα whose range is isomorphic to `2. This will give Remark 4.2

for L(Xp) when 1<p<2, and the case of L(Xp) for 2<p<∞ follows by duality. The

statement for L(Lp), 1<p 6=2<∞, is then immediate.

To show that Tα isomorphically preserves a copy of `2, note that the space Xq,v we

built contains a modular space [LT, Definition 4.d.1] `{ri} with ri"2 on which Tα is an

isomorphism and thus (by passing to a subsequence of the sequence ri that tends quickly

to 2), also contains an isomorph of `2 on which Tα is an isomorphism.

Remark 4.3. The large ideals in L(Lq) and L(Xq) constructed in Theorem 4.1 do

not contain the ideal of strictly singular operators.

Sketch of proof. By [W] and how we constructed the ideals in L(Lq) from the ideals

in L(Xq), it is enough to consider the ideals constructed in L(Xq) for 1<q<2. Let T be

the operator and X be the space isomorphic to Xq that are defined in Proposition 3.2 and

which satisfy the assumptions of Proposition 2.1. Let {Tα :α∈C} be the corresponding

operators on X given by Proposition 3.2. As in the proof of Corollary 2.3, for A a

(always non-empty, proper) subset of C, let IA be the ideal in L(X) generated by A.
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Given A⊂C, take any α∈C that is not in A. We know that Tα is not in IA, but we

want a strictly singular operator that is not in IA and Tα is not strictly singular. Let

Y :=
(∑∞

k=1Gk
)
q
, where the Gk are the block subspaces of X defined in the proof of

Proposition 2.1. The Gk are contractively complemented in X, and X is isomorphic to a

complemented subspace of Lq, hence Y is isomorphic to a complemented subspace of `q

(and thus to `q by Pe lczyński’s well-known theorem, but we do not need this), which in

turn is isomorphic to a complemented subspace of X. Define U :Y!X by making U the

identity on each Gk and extending by linearity and continuity. This is ok because Lq has

type q and (Gk)k is a monotonely unconditional Schauder decomposition for a subspace

of X, hence the decomposition (Gk) has an upper q-estimate (even with constant 1). Let

Ek be the subspace of Gk defined in the proof of Proposition 2.1. The operator TαU is

strictly singular and ‖TαUx‖>η‖x‖ for all x in Ek with k in α. Since Y is isomorphic

to a complemented subspace of X, we also get a strictly singular operator S:X!X and

subspaces Hk of Y , with Hk isomorphic to Ek (with isomorphism constant independent

of k), such that ‖Sx‖>η‖x‖ for all x∈Hk, with k∈α. By Remark 2.2, this is enough to

yield that S is not in the closed ideal in L(X) generated by {Tβ :β∈C with β 6=α}.

Remark 4.4. L(Lq) and L(Xq), 1<q 6=2<∞, both contain exactly 22
ℵ0

closed small

ideals.

Sketch of proof. Again, it is enough to deal with the case of L(Xq) with 1<q<2.

Let X and T be as in Remark 4.3. For A⊂C, let JA be the ideal in L(X) generated by

{TαUP :α∈A}, where P is any fixed projection from X onto a subspace isomorphic to Y

(we identify Y with that subspace). All 
JA are small ideals, and clearly JA is contained

in the ideal IA generated by {Tα :α∈A}. But in Remark 4.3 we saw that TαUP is not

contained in ĪA when α/∈A, so 
JA 6= 
JB when A 6=B.

Added in proof

The two authors and Chris Phillips observed recently that, for any Banach space X, two

different closed ideals in L(X) are also not isomorphic as Banach algebras; i.e., are not

homomorphic by an homomorphism that is continuous in both directions. It follows that

there are 22
ℵ0

closed ideals in L(Lp(0, 1)), 1<p 6=2<∞, that are mutually non-isomorphic

as Banach algebras.
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