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A SPECIAL CASE OF DIRICHLET'S PROBLEM FOR TWO DIMENSIONS 

:BY 

J. C. K L U Y V E R  
of LEYDEN. 

In a posthumous paper 1 of Riemann some indications are given 

about the construction of a real harmonic function W ill a plane with 
several circular holes, the function W taking assigned real values on 

each of the circular rims. Riemann's t reatment of the problem is based 
on the theory of conformal representation. The given area is to be 

represented conformally on part  of a Riemann surface, bounded by recti- 
linear rims, and then the desired function W can be readily found by 

means of an appropriate integral of the third kind. I n  1877 the con- 
formal representation of the plane with the holes was discussed anew by 
Schottky :, who arrived at a solution, depending on certain transcendental 

functions, not altered by the linear substitutions of a special discontinuous 
group, that  was afterwards called by Poincar6 3 the symmetrical  Kleinian 

group of the third family. In a second memoir  Schottky 4 returned to 
this class of Kleinian functions and gave a full and ample discussion of 

their properties. By their means it is possible to treat in a direct way, 

and without  having recourse to a previous mapping, the original Dirichlet 's 
problem for the perforated plane. 

1 Gleichgewicht der Eleetricit~t auf  Cylindern mit kreisf6rmigem Quersvhnitt und 
parallelen Axen. Ges. W.~ 2 nd Ed., p. 44 O. 

Uber eonforme Abbildungen mehrfach ~usammenhangender ebener Fliichen. J our nal 
L r. u. a. Math., t. 83~ p. 300. 

s Mdmoire sur les groupes Kleindens. Acta Mathematiea, t. 3, P. 49. 
4 Uber eine specielle Function, welehe bei einer bestim~ten lincaren Transformation 

lAres Argumentes unveriindert bleibt. Journal f. r. u. a. Math., t. IOI~ p. 227. 
Aeta mathematlva~ 21. Imprim~ le 7 8eptembre 1897. 3 4  
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In what follows I propose to show, that by the use of Sehottky's 
functions we can obtain for the required potential function a determinate 
analytic expression, which even lends itself more or less to actual calcu- 
tation. Moreover from the form the function W assumes, it will appear 
that, in order to solve the general problem, it suffices to consider two 
special cases only: I ~ the case of a single hole, 2 ~ the case, wherein on 
each rim the function W is equal to a determinate constant. 

Before entering however into further developments, it will be 
necessary to make some statements about Schottky's results and to give a 
short description of some of the particular functions, he was the first to 
introduce into analysis ~. 

i. Sehottky's region T and the Kleinian group belongin 9 to it. In 
the plane of the complex variable x there are drawn p circumferences 
I;1, g : , . . . ,  ,vi,h ti e ra,lii R , ,  P,., . . . ,  and the eentres a , , . . ,  
No two of these circles must intersect and each of them must lie wholly 
above the axis XX of real quantities. Reflecting these p circles upon 
the axis X X ,  "t further set of p circles K v , K 2 , , . . . ,  Kp, is obtained, 
their centres ( / ~ , , e , , . . .  a v, are conjugate to a ~ , a 2 , . ,  ap. It is the part 
of the plane outside these 2p circles that formed the base of Schottky's 
investigations "rod which we designqtc henceforth qs Schottky's region _T. 
Occasionally we will have to regard as a circl the axis XX itself, and 
as such we shall call it the circle K~, where q stands for p +  I. 

Associated with the region T, of connectivity 2p, there is an infinite 
discontinous group F of linear substitutions, p of these being fundamental  
and each derived from one of the p pairs of conjugate circles K, and K,.,. 
So, for inst:mce, supposing x to be a point in T, the relation 

defines a l)oint "x~, }nterior to the circle i(~, and by this substitution fk 

1 Reference should be given here to tl;e treatise of H. F. BAKER: Abel's theorem 
and the allied theory, i~eludin~/ the theory of the tlJeta functions. In Chapter X I I  of 

this volume the author gives an account of Sehottky's investigations and explains the 

ana]ogy between Schottky's thecwy and that of' a Riemann surface. 
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the initial region T is transformed into another one Tk, of the same 
connectivity, and bounded by the same number of circular rims. One 
of these rims is the circumference Kk, along this boundary the regions 
T and Tk are contiguous. 

It is evident that the thus defined hyperbolic substitution f~ is geo- 
metrically equivalent to a reflection upon X X  or Kq, followed by a second 
reflection upon K~, and it is also easily seen that this pair of reflections 
changes the circle Kv into the conjugate one Kk, so that corresponding 
points on these two circumferences have conjugate complex affixes. The 
inverse of the substitution fk, which we shall denote by fv, has the effect 
of changing T k again into T, thereby transforming the last named region 
into Tk,, a new region," wholly enclosed by Kv and contiguous to T along 
this circumference. By composition of a finite or infinite number of the 
foregoing fundamental substitutions f l ,  f ~ , - - - ,  fp, and of their inverses 
fl', f ~ ' , . . . ,  fp,, all the various substitutions f, of the g r o u p / '  are obtained. 
We will call a the mark of the substitution f~, employing always a greek 
letter when the substitution is not necessarily fundamental but perhaps 
composite. Thus then, a denotes an aggregate or symbolical product of 
the fundamental marks I ,  2 , . . . , p ,  i', 2 ' , . . . , p ' ,  and if, for instance, 
we have a ~ 1'245' , the loxodromic substitution f~ implies the successive 
application o f  the fundamental substitutions fs', f~, f2 and f~,. In com- 
pliance with the order, in which these operations are to be performed, 
we will call 5' the first and I' the last factor of the composite mark a. 
By' inverting the order of the factors and by interchanging accented and 
non-accented marks, we obtain the mark a'-----54'2'I of the substitution 
f~, that is the inverse of f~. If we omitted however to invert the order 
of the factors, there would result the mark a o -~ I2 '4 '5 ,  which shall be 
called the conjugate of a, and we may obviously infer that conjugate 
substitutions, applied to a pair of conjugate points in T, change them 
again into a pair of conjugate points. All substitutions of the group /7- 
can be arranged by attending to the number of fundamental marks or 
factors, that enter into the composite mark a. First of all we have the 
identical substitution" followed by the 2p substitutions'f~, f 2 , ' '  ", fp, f~', 
f 2 ' , . . . ,  fp' each with a single mark, then come the 2 p ( 2 p - - I )  substitu- 
tions of the second order, each compounded from two fundamental sub- 
stitutions, and so on. Although it is scarcely possible to form a mental 
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image of the geometrical configuration, generated by the group, it is 
analytically evident that all the regions T~, derived from the fundamental 
region T, are bounded by 2p circumferences, and that no two of them 
wilI overlap. Together they cover the complete plane, we started with, 
with exception of certain limiting points, that are not reached as trans- 
formations of points in T, whatever finite series of substitutions we apply, 

in' 

I 

A~: ___~ X 

and which remain therefore always excluded from all the regions, whe- 
reinto the plane is divided. Every substitution f, gives rise to a pair of 

such points, for if we agree to call A and B its double points, that is, 

if we define .4 and B by the equations 

~t 

Lim f,~.(x) ---- A ,  
a 

Lira fa. . (x)  ---- Lira f ,~4(x)  = B ,  
n ~  csa n ~  
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it is at once apparent, that no point whatever in T is changed into one 
of them, by subjecting it to a finite number of substitutions. 

k k 

Of particular importance are the double points A ,B  of the funda- 
mental substitutions fk. The three circles Kk, Kk, and Kq belong to a 
system of circles having a common radical axis, and the limiting points 
or loci of this system are precisely the points A and B. Hence, the 
latter are each other's inverses with regard to Kq and their affixes are 
conjugate complexes. 

We have already remarked that every fundamental substitution fk 
is equivalent to a pair of inversions, the first with respect to Kq, the 
second with respect to Irk, and from this remark it is at once apparent, 
that any composite substitution f, can always be replaced by an even 
number of inversions with regard to the p + I  circles KI, K2 , . . .  , Kp,Kq. 
For our purpose it will be convenient occasionally to resolve the sub- 
stitution f~ into its component inversions, therefore we will represent such 
an inversion by a distinct symbol. As such we choose doubly-accented 
marks, to prevent confusion with the substitutions of 2". So, for instance, 
we will denote by x~,,3,,4,,6, the point derived from x by four successive 
inversions with regard to the circles K6, K4, K3, / (1 .  On the other 
hand, if we mad~ use of the hitherto employed notation, the same point 
X1',3-4,' 6- would be designated by x~,46,, for the four pairs of inversions q"6", 
4"q", q"3", I"q" give rise successively tho the four substitutions 6', 4, 3', I. 

i. Functions existing in Schottky's region. We proceed to give a 
short description of some of Schottky's functions, existing in the region T. 
In the first place we mention the expression 

the multiplication extending over all the substitutions of /~, fundamental 
and composite. It was proved by Schottky, though his proof, as he 
himself points out, is still liable to some limitations, that the above 
infinite product is really convergent and that in T it can be considered as 
an analytic function ~(x) of the variable x. From the form of the 
primary factor we conclude, that (xy; ~ )  obeys the equations 

= (vx; = x v ) ,  
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moreover it is not difficult to see, that log(xy; ~i) or, as we shall write 
it, log ~(x) possesses in T only the two logarithmic infinities ~ and 72, 
the function log ~(x) increasing with _+ 2~i, each time the variable x 
describes a circuit enclosing either ~ or rj. 

Intimately connected with ~(x) is the function 

# 

= I I  

not depending upon some parameter. It must be noted, that in this 
expression the variable mark a does not refer to all the substitutions of 
T' without exception, excluded are all marks a, that are of the form 
fltt or fl#'. The function E,(x)  has neither zero's nor infinities in T, 
its essential property consists in the multiplication-theorem: 

= 

from which it is immediately inferred that only the p fundamental 
functions E 1 (x),  E ~ ( x ) , . . . ,  Ee(x) need be considered, since, by arranging 
these in products, all similar functions with composite marks can he 
constructed. 

Reverting again to logarithms, it can be shewn, that logEs(x) ,  
everywhere finite in T, has its value increased by _+ 2~i, whenever the 
variable x describes a closed path round one of the circles K, and K,,. 

If we subject the argument of the foregoing functions f (x )  and 
Ek(x) to any substitution of F the result is very remarkable. So it is 
found that after the substitution the function E~(x) is reproduced, save 
as to a determinate constant factor. Otherwise expressed we have 

E~(x~) "= Ek(x).E~,~. 

As for the constant E,,~, introduced here, supposing a = fiT, it satifies 
the relation 

Again it becomes apparent that we can disregard the composite marks 
and that all constants E,,3 are simply products of similar quantities Eh,k, 
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and therefore again 

dlog E~,(xk)----- dlog E,,(x), 

hence, with respect to F, the differential dlog Eh(x)  is automorphic. A 
similar result holds for the function F(x). Application of the substitu- 
tion f~ gives 

r176 = (x~ ~ ) =  r K ~ ) '  

dlog f(xo) = dlog e(x). 

3. _Rim values of Ek(x)  and f ( x ) .  It is necessary, at the present 
stage, to make some statements about the nature of the wdues, the 
functions E~(x) and f (x)  acquire on the rims of the region T. Com- 
mencing with Ek(x) ,  we observe that in the infinite product 

k 

~;(~) = I ]  x - Ao 
a X - -  B a  

we can combine the primary factors, due to every pair of conjugate 
substitutions f~ and f~.o, so that we have, writing down separately the 
leading factor corresponding to the identical substitution, 

E ~ ( z ) - x - ~ ] l  - A o  x u - - T "  " 
x - - B  . - -B , ,  x - -B~o  [ 

k k 

Now remembering that the conjugate points A and B, subjected to 
conjugate substitutions, transforln ,qgain into conjugate points, it plainly 
appears that, for real values of the variable x, the function Ek(x)  is of 
modulus unity. Hence on the axis XX, otherwise said on the circle Kq, 
the function log E,.(x), and also its differentiM dlogE~(x), is purely 
imaginary. As for the rims of  the region I', we may draw a similar 
conclusion in the following manner. Supposing x and x 0 to he conjugate 
complexes, what we shall indicate by writing x :4= x 0, we have in general 

/ log Ek(x)  ~ / log E~(xo) , . . . (rood. 27r) 

each of the latter corresponding to a pair of fundamental substitutions. 
By differentiating the relation between .E~,(xk) and Eh(x)  we get 
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since i logEk(x) is real for all real values of x. Now, if we make x 
describe the rim K h , x  0 moves on h\ , ,  and both variables are connected 
by the relation x = L ( x 0 )  , hence we have simultaneously 

i dlog E k ( x ) .  i dlog E,(Xo), 

dlog E,(x) = dlog E,(x0), 

and these equations can not be s~tisfied, unless d logE~(x)  is purely 
imaginary on the rim Kh. 

Another fact of equal importance should be noticed here. Taking 
again x on Kh, and therefore x 0 on Kh,, it follows from the simultaneous 
relations 

/ log  E~(x) :4= i log Ek(xo) , . . .  (mod. 2,~) 

E,(x) loz E~,~, 
log/L(x0) = 

that  the p :  constants E~,.~ have real and positive values. Hence one of 
the values of log E~,,k is purely real, we shall denote it henceforth by 
2rh,~ = 2Vk,h; and it is not difficult to prove, that  the complete set of 
the p~ constants vh,~ may serve as a system of moduli for a p-tuple 
theta-function. 

Quite the same reasoning does apply to the function ~(x)  = (xy;@), 
if only the parameters y ,  $,72 are fixed in a particular manner. Supposing 
y to be real, $ and ~2 to be conjugate complexes, we can easily see that, 
for real values of x, we have always 

rood. r  = t. 

For in writ ing down the infinite product represented by ~(x), we 
may again combine the factors corresponding to a pair of conjugate sub- 
stitutions, and having 

( x ) = _ . _ - ; : J 

the validity of the above assertion is obvious. Accordingly the differen- 
tial d l o g ~ ( x )  takes only purely imaginary values as x moves on the 
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axis X X ,  and the same conclusion holds, when x describes one of the 
rims. For, in the latter ca~e, we have at the same time 

i dlog ~(x) ~ i dlog ~(xo) , 

and dlog f (x)  = dlog f , (xo)  , 

and these equations necessarily involve a purely imaginary value of 
dlog f (x). 

4. Integration along the rims. The solution of the proposed Dirieh- 
let's problem will be found to depend mainly on the value of certain 
curvilinear integrals, taken along the different circumferences K~, there- 
fore it will be useful to deduce some inferences concerning these integralu 

We assume that with every point x on the rim K~. there is asso- 
ciated a determinate real and finite quantity, and though this quantity 
is in the ordinary sense not a function of the w~riable x, it will lead 
to no misconception, if we denote the succession of these real values on 
the rim K~ by the symbol Ok(x). 

We now consider the integral 

; r  ; Z [  I I I Ck(x)d x x - ~" 
o. 

I ~e.]' 
X - -  

taken along K~ in that direction, that leaves the region T to the left. 
If t h e  parameters $ and r] of the function f (x )  are chosen quite ar- 
bitrarily, the integral J~ is a complex quantity, its real part however 
is in all eases capable of an easy interpretation. 

In order to obtain this real part we substitute into the integral 

, ~o. ---- ak -t- ~o.c , ~ .  = ak + so.e'"~, 

and so we get without difficulty 

~o. I (r2a- l~k)(/Zk(x)dO I 
2,~ + B~ - -  ~roR~ cos (0-- u~) ~r, 

0 

Acta ~ath~matica. 21. Imprim~ le 9 ~eptembre 1897. 35 
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Now to the integrals occurring here we can attach a definite meaning. 
In fact, supposing the circle Kk to be the only hole in the plane of the 
variable x, there exists in that plane a real uniform and finite potential 
function U~ with the boundary values r on the rim Kk. In case $~ 
lies outside K,., it follows from the ordinary theory that the value ~;~(~) 
of U~ at the point $~ is equal to 

�9 2 

2~ r2a + .t~. - -  2 r a l ~  c o s  (b  t - -  u a )  

whereas the same integral indicates in case of an interior point r the value 

- G (r 

~'= being the inverse of $~, with regard to Kk. Hence,we may write 

I 
a : , ,  = < ( v o ) ] ,  

if we only agree to replace in the above series every interior point by 
its reflection upon Kk, changing thereby at the same time the sign of the 
corresponding value of U~:. 

The same reasoning can be applied to the integral 

I 
4 - -  2 z i f  Cq(x) dlog,c(x), 

taken along the axis XX, the positive halfplane lying to the left. In 
the positive halfplane without any holes we can imagine the real poten- 
tial function ~ ,  taking on the axis XX the assigned rim wdues ~/~q(x), 
and by introducing this function ~ ,  we shall find as before 

I V / ' t  "~ ~ (~a)] 

The function U being however only defined in the upper halfplane, 
every point in the lower halfplane must be replaced by the conjugate 
one, and the corresponding value of Uq must have its sign changed. 
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5. Dirichlet's problem for the upper half T' of Schottky's region. 
By the preceding deductions we are now enabled to treat Dirichlet's 
problem for the upper hal f  T' of Schottky's region with its q circular 
boundaries K1, K ~ , . . . ,  Kp, Kq, that is, we can construct in this area a 
real, uniform and finite potential function W, satisfying given boundary 
conditions. This function W we assume to be the real part of an unknown 
function V(x) of the complex variable x, everywhere finite in T'. Now 
as W must be uniform in T', the moduli of periodicity of V(x) must 
be either zero or purely imaginary quantities, otherwise stated, if the 
variable x describes a circuit enclosing one of the holes, say Kk, the 
initial and the final value of V(x) can only differ by an imaginary 
constant S~. 

Starting with the thus characterised function V(x), the potential 
function W can be obtained, as in the case of a single hole, in the form 
of a definite integral. In fact, it will be found that the construction of 
the required potential can be based upon the consideration of the integral 

j _  I 
zzi f V(x)[dlog f(x) --  1 h dlog E~ (x) -- h~ dlog .El ( x ) - - . . . - -  hp dlog E~(x)] 

- 

2~r i 

wherein h ~ , h ~ , . . . ,  hp denote certain real coefficients, depending upon 
the parameters $ and 72 of the function ~(x), it being moreover under- 
stood that $ and ~/ are to be conjugate points, the former belonging 
to T'. In order to fix a suitable path of integration, we draw from 
each of the p rims /(1, K ~ , . . . ,  Kp in T' a rectilinear cross-cut l~ (se 
the figure) to the axis XX. So the resolved region T' becomes simply 
connected and throughout this region the one-valuedness of the subject 
of integration is secured. Hence integrating along the complete rim: 
XA~B~C~D~A2B~C2D 2 , . . .  , DpX, we get, since $ is the only pole of the 
integrand in T', 

J =  V($ )=  

+ . .  
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:Now, for ou:" purpose, the real parts at both sides of this equation 
need only be considered, and as such we find at the left hand side the 
value W(~), the function W assumes at the point $. At the right.hand 
side we must consider separately the parts contributed by the rims of 
the unresolved area T', and those relative to the cross-cuts l~. Com- 
mencing with the axis XX, we remark that along that rim the diffe- 
rential dF(x) is imaginary, hence only the real part of V(x) must be 
retained, that is, integrating along XX we must replace the function V(x) 
by the assigned rim values r of the potential W. Thus then, con- 
tracting the sum 

J x.~, "b J ~,.4~ -']- J D~, "Jr-... + J D,.~ 

into a unique integral, we may write 

I 
~ [J.~, + J~,~., + J~,~, + . . .  + J~x] = ~ f r  

A'q 

The same argument holds for the integrals J~,c, contributed by the 
circumferences Kk. Again we shall have 

I 

Kk 

and so there remain only the integrals along the cross-cuts. Now along 
the cross-cut l~ the values of the integrand at opposite places have a 
difference equal to 

dF(x) 
8, dx 

and hence we have 

�9 = - ~ [ r ( x ) ] ~ .  

At the lower limit Ak the function F(x) has been shewn to have 
an imaginary value, therefore we may put 
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on condition that we subject the as yet undetermined coefficients 2 to 
the relation 

o = a[ log(xy;  @)- -2 ,  logE1(x)--221og_E~(x)--...~2plog E~(x)]~=B~. 

In all we get p of such relations; supposing them satisfied, the value 
W($) of the potential function takes the form 

w ( $ )  = 
k=q 

I ~fC,/x)Vdlog(xy;@)--2, dlog E 1(x)-2~ dlog E2(x)-- . . . - -  2 p dlogG(x)]. 
k = ,  K~ 

This expression can be transformed in the following manner. From 
the equation 

E~(y) (~,j: ~ ) =  (xy; ~ ) ' z ~ '  

or as we write it 

we deduce 

/~k (y) 
~k(~) = ~(x).E%- ~ , 

dlog E,(x) ---- dlog r  dlog ~(~).  

This relation enables us to eliminate from the foregoing expression 
of W(~) the functions Ek(x), and in this way we get 

w(~) = 
k=q 

~.. ~--~,fck(x) [(~--2,--2,-- .  .. --2p) dlog ~,(x) +2,  dlog f,(x)-t-2, dlog F,(x) + 

, . .  + # alog e , (x ) ] .  

Here, making use of the results established in art. 4, we can intro- 
duce the auxiliary potentials Uk considered there. U, is a real uniform 
and finite potential function existing in the simply connected area outside 
the circular hole K,, and fully determined in this region by the rim 
values ~b,(x), it takes on the only rim. For arbitrary values of the 
parameter $ and r] of ~(x) we have established the relation 

I 

2 R  "t 
Ktr 



278 J .  C. K l u y v e r .  

hence we may now affirm that  

w(r 
k - q  

k = l L  

The above expression acquires a perfect symmetry,  if we resolve 
every substitution f~ of the group F into its component inversions with 
regard to the rims of T', remembering at the same time that, $ and r/ 
being conjugate points, we may write Sq, for ~, ~'k', for r]k. 

Let the mai'k a" denote a succession of an even number (zero in- 
eluded) of inversions with respect to K1, K 2 , . . . ,  K~, Kq, then using 2q 
to denote 

I - -  '~'1 - -  ) ' 2  - -  " " " - -  ) ' P '  

we shall have finally 

X �9 
h = 1 . 

Meanwhile it is to be distinctly understood that when a point $~,, 
occurring in the above serie, is interior to the hole I~., the symbol 

U,($~,,) denote the value of 

- - -  k k~z'y') 

where $,,,z,, is the reflection of ~,, upon K. 

6. The coefficients 2. Before we proceed to examine in what manner  
the values of the coefficients 2 may be obtained, we wish to shew that  
they are in a simple and characteristic way related to the region T'. 

To this end we will consider the case that  the given rim values of 
W were zero on all rims but one, say K,, and that  the rim value on 
K, was throughout equal to unity. 

First, we have now 

x ,  - -  h , ) l  = o,  
ix" ~ 
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when h is distinct from s. In fact, whatever a" may be, the points $~,, 
and $~,,h,, are always simultaneously within or without the circle Ks, and 
U,($~,,) and U~(~,,,h,,) are therefore at the same time equal to - -  i or to + I. 

Next, we have 

~{ v,(~-~ ) -  u,(~: ,)} = 2. 

For, as before, each term of the series, save the first, vanishes, 
whereas we obtain for the first term, corresponding to a " ~  o, 

U s ( e ) -  U , ( ~ , ) =  2 V , ( $ ) =  ~. 

In the remaining series 

~I u~(eo,,)- ( ,,,,)I, 

where k is distinct from s, all the potentials U~ are separately zero, 
hence for the very special case under consideration we find 

w($) = ~.  

Thus then, we may emmciate that the coefficient ,~s indicates the 
value of the potential function W, whenever W is zero on all the rims, 
except on K~, whereon it is equal to unity. 

Moreover this interpretation of the 2's implies that the system of 
linear equations 

a [ l o g  (,~y; s v ) -  al log E l ( x ) -  x~ log E= (x) - -  . . . - -  a~ log E~(x)]x=,,-----o, 

(k---- I , 2 , . . . , p )  

i ~ + ~ + . .  + ~ + , ~ ,  

which served originally to define them, is always capable of a definite 
solution. To bring these equations in a form somewhat better fitted for 
actual calculation, we proceed as follows. 

Let, in the diagram of art. 5, F~ be the reflection of Bk upon XX,  
then we have simultaneously 

i log(xy;  ~)~=B~ :4= i log(xy;  ~)x=F, , . - .  (rood. 27c) 
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log (xv; ~N).=.~ = log (xy; ~)~=~. + log E~ (v) 

whence it is inferred that  

I -~I'(~) 
log (xy; ,~)~=a~. = 2 l~ ~s )" 

Since the points $ and r~ are conjugate, ~he value of the r ight hand 
side is depending upon ~: ~]one, accordingly we will henceforth represent 
it by L~($). 

Reverting to the points B~. nnd F~ and 1he corresponding values of 
logEs(x ) ,  we have in the same w~Jy 

and 

so that 

ilogZ,,(.).=.~./lo,.E,,(,~;,x=~~, , . . .  (rood. e~) 

~og E,,(.).=~,~ = ~og E,(~)~=,; + l o g & , ,  

I l o g  ~',,I" = ~'/,,/." 

Consequently the equations, from which the a's are to be solv.ed, 
may be written in the form 

& ( x )  --  :1,~;,1 + r._, ~),~ + r,,~4,, 

(z:= ~, 2 , . . . , v )  

= ),1 + 2. + . . .  + ),~ q- ),,. 

The solution is possible as soon as the values of the L's and of 
the r's are known, and we will now indicate how these values can be 
found by means of convergent infinite products. 

Owing to the definition of L~.($), it follows that 

the pr imary factor of the infinite product taking the form of an anhar- 

[ monie ratio St/; A~B~ , and the variable mark a indicating all possible 
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substistutions of F, save those that have a mark of the form /~k or /gk'. 
k k 

Agai., since ~ and ~ are co.jugate complexes, the two factors [~;AoBo]  

and ;A~oB~o , corresponding to a pair of conjugate marks a and a0, 

are also conjugate complex quantities, hence, if we agree to denote 

henceforth by ~;A~.B~ the absolute value of the anharmonie ratio, 

we arrive, by extracting the square root, to a result of the form 

the product extending over all marks /~, the first factor of which is 
either I ,  2 , 3 , . . . , ( k - - x ) ,  ( k +  i ) , . . . , ( p - - I )  or p. 

The last step is to introduce the inversions instead of the substitu- 
tions, and so we find finally 

[ . .] 
eU(~) = $$r ; A B 2 $$r ; Br,, A./, , 

where )-" designates a product of an odd number of the marks I" ,  2", 
. . . , p " ,  q", the first factor being neither k" nor q". 

The constants rh,~ are expressible by a similar expansion. In fact, 
whenever the point $ approaches indefinitely the rim Kh, we have 

i E~ ($) x 
Lk($) = ~ log/L(T]) -- 2 log E~,k ----- rh,k 

and so perhaps the easiest way to evaluate rh,k is to evaluate Lk($) for 
some point $ arbitrarily chosen on the rim Kh. 

7. Summary of results obtained for the region T'.  The following is 
a summary of the results that have been obtained in the preceding 
articles, relative to Dirichlct's problem for the upper half I"  of Schottky's 
region: 

I. 
formula 

Aeta mathematica. 21. Imprim8 le 9 septembre 1897. 

The required potential function W is given by the general 

[ 1] h=q I 

w($)  = ~ ? ,, {u~( ,o ) - -  u~(,o~)} 
h = l  

36 
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the mark a" designating an even number of reflections, the potential 
function Uk being defined as in art. 4. 

II. The q coefficients 2, entering in the above formula, are deter- 
mined by the p linear equations 

@: = I ,  2 , . . . ,  1)) 

and by the supplementary condition 

I = + "Jr" . . .  + + 

III. The value of L, ($)  is given by the equation 

CL...(~) *-*- ~.,. m_ qCq,, r ; ""dr" , 

where 7"' is compounded from an o&t number  of inversions, its first 
factor being neither k" nor q". In order to find ra#, we take ~ to be 
a point on & and have then ra., = L~(~). 

An additional remark suggests itself. The value of W(~:) has been 
found to involve solely the 2's and the auxil iary potentials U,. Hence, 
remembering the definition of ),~ and of ~ ,  we have made good, as far 
as concerns the region T', the assertion, made in the beginning, that  
Diriehlet's problem can be completely solved, when a solution is found: 
I ~ in ease the rim values for each rim reduce themselves to a constant, 
2 ~ in ease there is but one hole. 

8. Verifeatio~ of the 2)recedin9 soluiiom In establishing a definite 
expression for W(~) ,  we took it for granted that there really existed in 
the region T'  a potential function, obeying given bounda U conditions. 
Therefore a verification of our result i.~ necessary, in other words, we 
have to shew that, as soon as the point ( approaches indefinitely a point 
x on one of the rims, say K,,, the value of IV(~) tends to the corre- 
sponding rim value (,,,,(~). 

Now, eonsideril~g the quantities L~.(~), ave have immediately 

Lim L~ (~) ----- r,,~ ,. 

(a- = 2 ,  . . . .  2)) 
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and for this special value of L,(x) it is inferred from the equations II, 
art. 7, that 21 , 4 2 , . . . ,  2~_1,2~+1, �9 �9 �9 2p, 2q become vanishing quantities 
and that )t~ tends to unity. Hence the general formula I, art. 7, is 
somewhat simplified, we may conclude 

Lira W ( ~ ) =  Lim-~ [=~i [ ~  { Uk (# ,, ) - -  U~(# ,,m,,) } ] . 
~=x ~=x 

It is easily proved that in this aggregate of infinite series every series 

where k is distinct from m, will ultimately vanish. For as # approaches 
x from the outside of K,,, the point $,~,, will tend to the same point x 
from the inside of K~. Hence the points $~,, and $~,,,~,, ultimately will 
unite, so that each term of the above series vanishes separately. 

We may deal in the same way with the remaining series 

{ - } .  
q" 

Again the values of Um($~,,) and U~($~,,m,,) will tend to the same limit. 
An exception occurs however. According to the definition of the potential 
Uk, we find for the leading term, corresponding to the identical sub- 
stitution, 

U,.($)-- 
and hence we have 

Lim W(8) = Lim U.,($). 
$=x ~=x 

But from ihe ordinary theory of Dirichlet's problem for the plane 
with a single circular hole, it is known that U,,($) changes continuously 
into the boundary value era(x), therefore we have also 

Lim W($) ---- r 

and it is proved that the potential function W, as defined in I, art. 7, 
satisfies indeed the assigned boundary conditions. 
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9. Dirichlet's problem for a plane with q = p + I circular holes. 
In the preceding investigations one of the rims Kq was a circle of infinite 
radius, there remains to shew that this circumstance is totally irrelevant. 
In fact, when we have to solve Dirichlet's problem for a plane S with 
q circular holes, it is "always possible, by means of a proper linear sub- 
stitution, that changes one of the rims into a right line, to represent the 
area S conformally upon the region T', and as we are able to solve the 
problem for T', we can get in this way the solution for S. However 
it is easily seen that the previous mapping of S on T'  is entirely super- 
fluous, in as much the quantities, entering into our formulae, are either 
potential functions or anharmonic ratios, not ultered by linear trans- 
formation. Thus then, if among the given circumferences in S we have 
chosen one as Kq, we ]lave only to construct the p pair~ of l imiting 

k k 

points A and B, each pair belonging to one of the p systems of circles 
K~, Kq, and we may use directly all the formulae of art. 7 without the 
slightest modification. 

Merely by way of illustration, and also in order to shew that with 
the aid of our formulae even numerical approximation is not wholly 
impracticable, we finally will consider a very special case. Let K ~ , K 2 , K  3 
be three equal circular holes made in a plane, the centres a~, a2 ,a  3 of 
which form the vertices of an equilateral triangle, and let the common 
diameter of the holes be one third of the side of the triangle. As to 
the rim values of the potential function W, existing in the space outside 
the holes, we assume that IV is equal to unity on that half of each rim, 
that  is turned towards the centre $ of the triangle, and equal to zero 
on the other half. We will now ask for the value W($) the function 
W takes at the centre $. 

The first step is the construction of tile two pairs of limiting points 
1 1 2 2 

A , B  and A , B .  They are readily found as the points of intersection of 
the sides a~cq and a~a~ with the orthogonal circle of K~, K2, K 3 (so that 

1 2 

B and B lie within /(3). Then we proceed to calculate LI(~: ) and L2(~), 
necessarily equal to each other from reasons of symmetry. Now as with 
respect to their mutual  distances the diameter of the holes is compara- 
tively small, we may regard as practically coincident two points, x~,,r 



A special case of Diriehlet's problem for two dimensions. 285 

and xt,,,z,, , whenever the common factor /~" contains three fundamental  
marks at least. So the general formula III, art. 7. 

[I-$$3" ; 1 1-1~ 1 1 1 

becomes simply 

or, by a slight transformation of the last factor, 

1 1 ! 1 1 1 1 

In this form the above equation may be used to evaluate La($ ). 
From it we shall find 

L1($ ) = L2($ ) ---- -- 1 ,74o .  

Similarly we obtain, by considering, instead of ~, a point on the 
rim K a and a point on the rim K2, 

ha ~ r2~ = - - 3 , 4 7 4 ,  h2 = r21 = - -  1,736. 

Substituting these results in the equations, 

za( ) = rll al + 

L 2 ( ~ )  = q l  )'1 + q 2 ) ' 2 '  

I ---- )'i + )'~ - i-  )'~, 
we get approximatively 

)'1 ~ ) '2  ~ o , 3 3 4 ,  )'3 : o , 3 3 2 ,  

the exact result being of course 

I 
- .  

)'1 = ).2 : )'3 : 3 

Employing the latter value of the coefficients ),, symmetry  again 
permits to write the formula I, art. 7 ,  in the simplified form 

k=3 
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In expanding the right-hand side still further simplification is possible 
from the same reason, moreover a very few terms of the infinite series 
need only be retained, because we agree to consider as practically coin- 
cident two points x~,,~,, and x~,,~., as soon as #" contains three or more 
fundamental  marks. 

In fact, we shall find 

W ( ~ )  = 3 V l ( ~ ) -  6 U1($~,, ) -~- 6 U1(~2-3,, ) -[- 6 U1(~2,,1,, ) - -  2 Vl(~,,a,,~ .,) 

- -  2 ~f1($2,,1,, 2,, ) - -  2 U1($2,,1,,~,, ) - -  2 U1($2-3.1. ) 

Substituting in this expression the values of the potential U 1 .at the 
points $ ,  $~,,, $2"3-, etc., determined beforehand by the usual method, 
we arrive at the final result 

w ( ~ )  = o ,  534 .  


