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ON C E R T AI N D I S C O N T I N U I T I E S  CONNECTED W I T H  

P E R I O D I C  O R B I T S  

BY 

S. S. HOUGH 
of C A P E  T O W N .  

In the final part of his work on Celestial Mechanics which has 
lately appeared M. POINCAR~ devotes some space to the consideration of 
the orbits discussed by Prof. D~RWI~ in his recent memoir on Periodic 

Orbits. 1 From considerations of analytical continuity M. POINCAR~ has 
been driven to the conclusion that Prof. DARWIN is in error in classifying 
together certain orbits of the form of a figure-of-8 and others which he 
designates as satellites of the class A. "Je  conclus" says POINCAR~ "que 
les satellites A "instables ne sent pas la continuation analytique des satellites 
A stables. Mats alors que sent devenus les satellites A stables?" 

Besides the question here raised by PoINcAn~ a second immediately 
presents itself. After explaining the disappearance of the stable orbits A 
it is necessary also to give a satisfactory account of the origin of the 
unstable orbits A. These questions had occupied my mind prior to the 
publication of M. POI~CAR~'s work, and the present paper contains in 
substance the conclusions at which I had arrived in connection with them. 

I t  will be seen that the difficulties which have occurred in following 
up the changes in form of DARWIN'S orbits arise in some measure from 
the omission to take into account the orbits described in the present paper 
as 'retrograde', and the failure to recognize the analytical continuity between 

t A c t a  M a t h e m a t i c a ,  vo]. 21. 
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these orbits and the direct orbits. I t  had been my intention to defer 

publication of my conclusions until I had made an exhaustive examination 

of the retrograde orbits with something approaching the completeness de- 
voted by DAaWlN to the direct orbits, but as I see little prospect of 
obtaining the necessary leisure for so vast an undertaking in the immediate 

future I have thought  it desirable to announce the results at which I 
have arrived, with some confidence that a closer investigation will prove 

them to be correct in their essential features though possibly subject to 

modification as regards details largely of a speculative character. 
A summary of the contents of the paper and of the conclusions 

derived will be found in the last section. 

w 1. On  t he  f o r m  o f  a n  o r b i t  i n  the  n e i g h  bourPltood 0~" a p o i n t  

o f  z e r o  l ' o vce .  

We shall throughout  adopt the notation of Prof. DAIlWIN. Thus S 

will denote the Sun, J a planet Jove, ~ the ratio of the mass of the Sun 

to that of Jove whose mass is unit) ,  n the angular velocity of J about S. 

Then the equations of motion of a satellite of infinitesimal mass re- 
ferred to rectangular axes rotating with uniform angular velocity n about 

the centre of gravity of S and J ,  the origin being at the point S and 

the axis of x coinciding with the line S J ,  are 

(i) 

where 

d~z dy __ ~2 
~t ~ ~ 2n dt ~x 

d~y dx  ~2 
~t ~ + 2n dt - -  ~y 

(2) 2t2=~ r e +  + p ~ + ~ ,  

the length S J  being taken as unity, and r ,  p denoting the distances of 

the satellite from S ,  J respectively. 
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These equations admit of JAcom's integral 
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(3) v~ = ( d ~  (a,,~, \~a / + \,::zt / = 2 ~ - -  C, 

where V denotes the velocity of the satellite relatively to the moving axes. 

The points of zero force at which a satellite might  remain in a po- 
sition of relative equilibrium are determined by the equations 

a9 a9 _ 

(4) - ;  = o, ~y o. 

The positions of these points has been examined by DARWI.X who finds 

that  there are three of them situated on the line SJ and two more at 

the vertices of the equilateral triangles described on the line SJ. 

Now suppose that  x0, Yo are the coordinates of one of these points 
and that  $ ,  ~ are the coordinates of the satellite referred to it as origin, 
so that 

x = x  0 + ~, Y = Y 0  +7/"  

~9 a9 . 
Then if ~, ~ be sufficiently small we may expand a~ ' ~-)- m ascending 

powers of $ ,  ~ and by TAYLOR'S theorem we shall obtain 

39 . a ~9 
_~L 2 ~ ~ o  Zl- ~ . , j  Jr- . . . ,  

- -  + 2@~-~o-~yo ~ + ~yo~ j + . . . .  

Thus in the immediate neighbourhood of a point of zero force x 0 , Y0 

the motion of the satellite will be approximately determined by the equations 

(s)  
I d~ d$ a'9 a~9 

where terms involving squares and products of ~,  ~ have been omitted. 
These equations being linear, it will be possible to obtain particular so- 
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lutions of them by assuming for $, 7] the forms ae" , be ~'. On substituting 
these forms in the differential equations (5) we find 

(6) 
a ( ]Q - -  - -  

b (,~ 2 - -  _ _  

~v - - b  2n2 + = o ,  

+ a 2n2 ==- O, 
~Yo ] azo~Yo/ 

o r  

whence, on eliminating a ,  b, we obtain for the determination of 2 the 
biquadratic equation 

i' ( 
1~ 2 + 4 n ~  ~ -  = o 
\ 

(7) ~' + ~' 4n' ~o' ~v, -I- ~o'~yo' , ~ /  = o .  

The character of the motion indicated by the equations (5) will turn on 
the nature of the roots of this equation. Now the conditions implied by 
the equations (4) involve that the point x0, Yo is a singular point of the 
curve belonging to the family t2----const., which contains it, while the 
nature of the singularity for the different points of zero force has been 
examined by DAawIs. For those points which lie on the axis of x he 
finds that there will be two real intersecting branches, and thus at these 
points 

will be negative. 
Hence the values of 2~ derivable from the equation (7) will be both 

real for these points, but they will be of opposite, signs. Also at points 
on the axis of x 

azoaYo 

which introduces some simplification into the equations (6). We propose 
only to concern ourselves with the points of zero force which lie on the 
axis of x. Suppose that for one of these points the two values of 2 9 
derivable from equation (7) are 
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where a ,  fl are 
solutions of (5) 

real quantities. We then obtain the following particular 

a ' l  

OZ~o e ~t (i) ~ = a,e a', ~ - =  a, zna ' 

(ii) ~ = % e  -~*, r 1 = (19 
2ha 

(iii) $ ~-- aseS i t '  ~ ~-- ~ aa 2n f l i  

(iv) . ~ - -~  a ,e  -aa, ~ ~-- a, 2n1~ i 

and the general solution, involving the four arbitrary constants a~, a~, as, a 4 
will be obtained by adding together these particular solutions. 

I f  we put 

a 1 q - a  2 = h ,  a l - - a  ~ - ~ k ,  a 3-4-a~ = H ,  a ~ - - a  4 = - - K i ,  

and write for brevity i -~ in place of ~z--~0 ' we obtain as the general solution 

of (5) involving four arbitrary constants h ,  k ,  H ,  K 

$ = h cosh at "4- k sinh at "4- H cos fit q- K sin fit, 

a '  - -  r '  (h sinh at + k cosh at) fl' + r '  ~7 = 2 n ~  2nil (H sin fit - -  K cos fit). 

']:.his solution being free from imaginary quantities is capable of a real 
hysieal interpretation. 

To avoid circumlocution we shall speak of the region surrounding 
a point of zero force Z within which the equations (5) may be regarded 
as giving an approximation to the motion as the ' domain' of L .  If  then 
a satellite be initially in the domain of L it will be possible to determine 
four constants h ,  k ,  H ,  K so that  the equations (8) will represent its 
motion at least for a finite time, but the terms involving the hyperbolic 
functions will rapidly increase with t so that  the satellite will depart from 
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the domain of L,  and only a shol~ length of its path will be sensibly 
represented by these equations. 

In  like manner whatever be the initial circumstances, if the satellite 
should at any instant enter the dorhain of L,  it will be possible to de- 
termine four arbitrary constants h ,  k ,  H ,  K so that the equations (8) will 
represent its motion so long as it remains within this domain. :Let us 
then examine the character of the motion represented by the equations (8). 

First suppose that a satellite is describing a path within the domain 
of L such that h = - o ,  k = o .  Its motion will then be given by 

,: = H cos fit + K sin fit, 

(9) f i ,+  r~ 
r] = 2,~fl (H  sin fit - -  K sin fit). 

Without loss of generality we may put K : o, since this evidently only 
involves a change in the epoch from which t is measured. ~Ve thus have 

fl' + r' H sin t~t. : H cos fit, rl --  2,~ 

The path of the satellite referred to the moving axes is therefore elliptic 
and the satellite will not tend to leave the domain of L .  

Next suppose that H =  o, K - - o  so that the motion is given by 

(,o) 
= h cosh ~t + k sinh ~t, 

a' -- r' (h sinh at + k cosh at). 

The path of the satellite is now a hyperbola whose centre is at L. The 
satellite will enter the domain of L along one branch of the hyperbola 
and after traversing the part of the curve which lies within the domain 
it will recede along another branch. Of course the path before entering 
and after leaving the domain of L may depart rapidly from the infinite 
branches of the hyperbola, but we are at present only concerned with the 

form of the orbit within the domain of L.  
A special case of importance occurs when the path within the domain 

of L is such that  h 2 - -  k ~. The hyperbola represented by (Io) then 
degenerates into a pair of straight lines, coincident with the asymptotes. 
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If h,  k have like signs the satellite will then be continually receding from 
L along a straight line, whereas if h ,  k have unlike signs it will be 
continually approaching L, but it will not reach L until t = -t- cxo. In 
fact the nearer it approaches to L the smaller does its velocity hecome, 
so that it will not be able to reach this point within a finite time. 

If now the initial eircmnstanees of projection undergo continuous 
change in such a manner that the satellite ahvavs enters the domain of 
L,  and that its motion within the domain may be represented bv the 
equations (io), the quantities h,  k and therefore also h ~ -  k ~ will vary 
continuously. I t  may happen that in the course of the change h ' - - / , ~  
will pass through the value zero and change sign. This will imply that 
the infinite branch of the hyperbola along which the satellite enters the 
domain will cross the asymptote, and that consequently immediately after 
the change in sign of h. = ~  k = the satellite will recede along the second 
asymptote in the opposite direction to that in which it receded before the 
change. I t  follows that, if two satellites be projected simultaneously under 
initial circumstance which differ infinitesimally, but so that, when they 
enter the domain of L,  the values of h = - k  ~ for their two paths have 
infinitesimal values with opposite signs, the paths of the satellite though 
differing" infinitesimally prior to entering the domain of L will have lost 
all similarity of character before they depart from this region. The nearer 
however the hyperbolic paths approach to the asymptotes the longer will 
the satellites take in passing round the vertices, and consequently the 
smaller the difference in the initial circumstances the longer will be the 
interval before the separation commences. 

We have so far for simplicity supposed that the satellite moves within 
the domain of L either in an elliptic path (9) or in a hyperbolic path 
(~o). In general however its path will be represented by (8) which in- 
dicates an elliptic path superposed upon a hyperbolic path. We may form 
a conception of this motion by supposing the satellite to move in an 
ellipse whose form is represented by (9) while the centre of this ellipse 
moves along the hyperbola represented by (I o). 

The character of the motion of the centre of the ellipse will then 
be to some extend shared bv that of the satellite, but, when the major 
axis of the hyperbolic path becomes small, the time which the centre of the 
ellipse takes to move round the vertex of the hyperbola will increase and 
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the elliptic element of the motion will commence to shew its independent 
existence by the formation of loops in the orbit of the satellite. The 
nearer the hyperbola approaches to its asymptote the greater will be the 
number of loops described by the satellite prior to leaving the domain of 
L, until when the hyperbola actually coincides with an asymptote the 
number of loops will become infinite. The orbit of the satellite will then 
approach closer and closer to the simple elliptic orbit represented by (9), 
and will in fact be asymptotic to this orbit in the sense .in which the 
tel~n is used by POINCAR]~. 

Except in the case just considered the ~tellite will finally recede 
from the domain of L in one of two essentially different ways according 
as the centre of the ellipse recedes along a branch of the hyperbola 
which approximates to one or other of the infinite arms of the second 
asymptote. 

The 'asymptotic' orbit just dealt with is the limiting orbit which 
separates those which leave in one way from those which leave in the other. 

w 2. A p p l i c a t i o n  to the Orb i t s  o f  P r o f e s s o r  D a r w i n .  

The results proved in the last section rigorously apply only to the 
very limited region surrounding a point of zero force within which the 
motion can be sensibly represented by the approximate equations (5), but 
there can be no reasonable doubt that the general characteristics will be 
maintained over a far more extensive field. A good illustration is furn- 
ished by the orbits traced by DARWIN. 

For example the orbits of the 'oscillating satellites' figured in Darwin's 
plates are closely analogous to the elliptic orbits represented by our equa- 
t-ions (8). They are in fact the orbits at which we should arrive by the 
continuous deformation of the elliptic orbits which would result from 
diminution of the constant of relative energy C. By the time C has 
attained the values for which the figures have been drawn, these orbits 
have lost their symmetrical form but are still roughly elliptic in character. 

:Next consider the non-periodic orbits traced on p. I77 of Darwin's 
memoir, viz. those started at right angles to the line SJ  on the side of 
J reiaote from S with C equal to 39"0. As x 0 (the abscissa of the point 
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of projection) decreases and reaches a value in the neighbourhood of I"o95 
the orbit begins to approach the region of the point of zero force L. I t  
however recedes from this region towards the planet J after describing a 
loop. But when x 0 has the value 1'o9375, or a smaller value, the orbit 
after passing near the orbit of the oscillating satellite no longer recedes 
towards the planet J ,  but towards the Sun S. As in the last section 
we may regard the motion of the satellite when in the neighbourhood of 
the point of zero force as consisting of two independent motions, (I) a 
motion in a closed periodic orbit similar to that of the oscillating satellite, 
(2) a bodily transference of this closed orbit in virtue of which each point 
of the orbit is carried along a curve analogous to the hyperbola of the 
last section. We may refer to these two parts of the motion briefly as 
the 'elliptic' and the 'hyperbolic' elements. Evidently the fate of a 
satellite after passing near T, wilt turn on the character of the hyperbolic 
element of its motion, and the satellite will recede towards J or towards 
S according as the branch of the hyperbolic curve along which the elliptic 
orbit is carried recedes towards J or towards S. 

The critical case which separates orbits receding towards J from those 
receding towards S, occurs when the hyperbolic element of the motion 
takes place in a curve which plays the part of the asymptotes in the last 
section. Each point of the periodic 'elliptic' orbit then tends towards a 
fixed limiting position, but it takes an infinite time for it to reach this 
position. Consequently the satellite will describe an infinite series of loops 
each of which approximates closer than the preceding to the orbit of the 
oscillating satellite a. If the hyperbolic element of the motion differs 
only very slightly from its asymptotic form a large but finite number of 
loops approximating to the orbit a will be described, but the satellite will 
ultimately recede either towards J or towards S according as the hyperbolic 
path lies on one side or the other of its critical form. 

We are thus able to describe the manner in which the interval be- 

tween the orbits x 0 = ~'o95, x0-----I'o9375 is to be filled up. As x 0 
decreases from I"o95 , loops, the first of which" has already shewn its 
existence in the figure traced, will be formed in gradually increasing 
numbers and these will tend to approximate in figure to the orbit of the 
oscillating satellite; the path however will ultimately fall away in the di- 
rection of the planet J .  

ArAa matJ~maiiea. 2r Imprimfi le lt~ septembr~ 1900. ~4  
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At  length a stage will be reached when an infinite number  of loops 

will be described before the satellite recedes. The orbit will fllen approach 

the orbit of the oscillating satellite asymptotically after the manner  of the 

'asymptot ic  orbits' treated of by PolxcaI:I ' .  ~ 
As x 0 still further decreases the satellite will after describing at first 

a large number  of loops recede towards S. The nmnber  of loops described 

will however rapidly diminish wifll x0, until when x0-~ I 'o9375  all trace 

of them will have disappeared. 
I t  will save ciremnlocution if we make use of the terms ' lunar '  and 

'phmetary '  to distino;uish those of our orbits which, after passing near the 

orbit of the oscillating' satellite, recede towards J from those which recede 

towards S. These terms are however at present only to be used to de- 

scribe the character of the motion in the course of a single revolution 

round the primary. Thus  an orbit which is ' lunar '  so far as its first 

approach to L is concerned might  become 'planetary '  after two or more 

revolutions round the primary. 
The lunar and planetary orbits will be separated from one another 

by orbits which are asymptotic to the orbit of the oscillating satellite. 

These orbits we shall speak of 1)ricflv as 'asymptot ic '  orbits. 
Wi th  large values of C, 1)AI:W~X has shewn that  an)- infinitesimal 

body moving in the plane of the orbit of J about S may be regarded 

either as a satellite, as an inferior planet, or as a superior planet, but  that  

with smaller values of C it may be transferred from one eateo'ory to 
r~le another. ] l  circumstances deseril)ed in the present section are those 

which occur when an orbit is undergoing the change from that  of a sa- 

tellite to that  of an inferior pl'met. I t  is clear that  a similar sequence 

of events will occur when the orbit changes from that  of a satellite or an 

inferior planet to that  of a superior planet. 

1 In  consideration of the fac~ that the orbit is symmetrical with respect to the llne 

S.]- it will be asymptotic to the orbit of the oscillating satellite for t ~ -  ~ as well 

as for t - -  + ~,~, and will tlms furnish an interesting illustration of one of POI~CAR~'s 

'doubly asymptotic orbits'. 
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w 3. O~t the re la t i ve  o~'bit o] 'a  sa te l l i t e  w h i c h  al~p~'oaches 

i n d e f i n i t e l y  close to its p r i m a r y .  

Imagine a satellite P to be moving subject solely to tile attraction 
of its primary J .  The orbit will then be a conic section. 

Let us suppose that the initial circumstances are such that the orbit 
is an ellipse of large eccentricity. At perijove the satellite will then pass 
very near to its primary. FreSher suppose that the initial circmnstances 
are varied continuously in such a manner that  the distance of the satellite 
at perijove diminishes without limit, while the length and position of the 
major axis remain invariable. The elliptic orbit will become more and more 
flattened until it becomes sensibly a straight line except through very 
small portions of its length at perijove and apojovc. 

The same will be true in whichever direction the satellite is moving 
in its orbit and the two orbits which correspond to the two different di- 
rections of projection will approach the same limiting" rectilinear form. 

I t  is clear that if we suppose all the ciremnstanees remote from the 
primary to undergo continuous variation the two forms of orbit may be 
regarded as continuations of one another, the rectilinear orbit forming the 
connecting link between the direct and the retrograde orbits, thoug'h 
physically only the part. of this path between two successive perijove 
passages can be regarded as having a real existence, owing to the collision 
which would ensue between the satellite and primary at the instant which 

corresponds to the time of perijove passage. 
There will be a similar connection between the direct and the retrograde 

orbits if we suppose that  the initial eircmnstances are more general in 
character, admitting of change in the length and position of the major axis. 
If the initial conditions vary continuously the length and position of the 
major axis will likewise vary continuously, and, provided only that the 
length retains a finite value at the critical rectilinear stage, the direct and 
the retrograde orbits will merge into one another. 

Let us next consider the figures of the relative orbit, when the motion 
is referred to axes which rotate uniformly. The motion may then be re- 
garded as taking place in a moving ellipse, the line of apses of which 
revolves uniformly in a direction opposite to that of the rotation of the 
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axes. We wish to consider the form of the relative orbit when this ellipse 

is very much flattened and approximates to the rectilinear form. 

When  the satellite is at perijove it is evident that the motion in the 
ellipse takes place very rapidly and therefore that  the form of the path 

will  resemble closely that  which occurs when the axes are at rest. This 

results from the fact the axes can only be very slightly displaced during 

the passage of the satellite round Jove. The more eccentric the ellipse 
the more closely will the relative orbit correspond with the actual orbit. 
Thus the motion in the relative orbit will be direct or retrograde according 

as that  in the actual orbit is direct or retrograde. ~ 
On the other hand when the satellite is in apojove the motion in 

the actual orbit will be very slow and the apparent motion in the relative 
orbit will be chiefly that due to the rotation of the axes themselves. 

Thus the apparent motion will he retrograde whatever be the direction of 

motion in the true orbit. I t  is then evident that the path from apojove 
will be of the form indicated in the annexed diagrams (figs I and 2) according 

as the motion in the true orbit is direct or retrograde. In  these figures 
the axes are supposed to be rotating in a counter-clockwise direction, and 
the direction of motion of the satellite is indicated by arrowheads. 

Fig.  i .  F ig .  2. 

The critical form of orbit which con'esponds with our previously 
rectilinear orbit, and which separates the orbits of the type represented in 

i A 'direct' motion implies motion in the same sense as that of the rotation of 
the axes .  
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figure I from those of the type represented in figure 2, evidently possesses 
a cusp at J .  Of course if a satellite moving in this orbit arrived at J 
a collision would occur and the physical continuity would be interrupted, 
but if we suppose that in the event of a collision the satellite rebounds 
without loss of energy in the direction opposite to that in which it fell 
into the primary the physical as well as the analytical continuity between 
the direct and retrograde orbits will be maintained. 

So far we have regarded the satellite as moving subject to the attraction 
of J alone, but if it be moving under the disturbing influence of the Sun, 
its path when in the neighbourhood of J will still be governed by tlm 
laws of elliptic motion. If then all the circumstances remote from J 
undergo continuous variation in such a manner that the orbit approaches 
J and in the course of the change actually falls into J ,  it is evident 
that so far as its form in the immediate neighbourhood of J is concerned 
a series of changes will occur similar to that already described. The orbit 
will pass through the cusped form and after the critical stage the direc- 
tion of the motion round J will be reversed. If at first the satellite 
described an open loop round J as in fig. I, it would afterwards describe 
a closed loop as in fig. e and vice-ver~. 

As the orbit approaches the critical form from either direction its 
form in the neighbourhood of J will approximate closer and closer to that 
of a parabola. Suppose a, a' are the points in which the orbits (figures 
i and 2) cut any line through J as the satellite approaches J and fl, 
the points in which they cut this line as the satellite recedes. Then the 
points r fl, a', ,8" will all ultimately coincide with J ,  but the tangents to 
the orbits at a,  f ,  and at a', ~ being ultimately tangents at the extre- 
mities of a focal chord of a parabola will in their limiting position be at 
right angles. These limiting positions will be the two bisectors of the 
angles between the line a f  and the limiting position of the axis of the 
parabola, i.e. the tangent at the cusp of the limiting orbit. 

I t  follows from the figures that though we might regard the point ~' 
as the analytical continuation of a since both coincide with J at the critical 
stage, if we wished to maintain continuity in the direction of the curve at 
the point where it crosses a given line, such as aft, we must regard the point 
/~' of fig. 2 as the continuation of a fig. I and a' as the continuation of ft. 
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w 4. A p p l i c a t i o n  to  t h e  orbi t s  o1" Pro f e s sor  Darwin , .  

]Jet us deal with those orbits which start from points on the line 
S J  at r ight  angles to this line, and confine our attention to those for 

which the starting point lies outside So r on the side of J remote from S. 

Wi th  a given value of the constant of relative energy two such orbits 

may be regarded as originatin~ from each point, distinguishable by the 
initial direction of projection. We may without ambig'uity designate these 

orbits as direct or retrograde according as the initial direction of motion is 
direct or retrograde. 

I t  is now clear that  if the startin~ point moves up towards J the 
direct and the retrograde orbits will approach the same limiting' (eusped) 
form, and that so far as the circumstances in the remote parts of the 

orbits are concerned each form of orbit can be regarded as the analytical 
continuation of the other. 

Next suppose that  the region to which the starting point is confined 

is limited by a branch of the curve of zero velocity as in the figure (5) 

on page 177 of DAI~WJS's paper, and let us further suppose that the 
starting point moves up to its extreme limit in the opposite direction viz: 

the point 2;I where the curve of zero velocity cuts SJi Now the form of 

an orbit in the neighbourhood of the curve of zero velocity has been dealt 
with by DAI~WlX, who has shewn that at such a point the orbit will 

possess very large curvature. The limiting form will be cusped while the 

figures before and after the passage through the eusped form will be similar 

in character to those presented in our figures I and 2 above. 

Hence again we see that  as the starting" point approaches M the direct 
and retrograde mbits will approach the same limiting" cusped form, the 

cusp being at 3 /  on the curve of zero velocity. Likewise also the direct 

and retrograde orbits may be regarded as continuations of one another. 

As the starting point B moves along the line of syzygies the direct 
and retrograde orbits may then be regarded as forming a continuous cycle 

as P moves backwards and forwards between d and M. In  this cycle 
when P arrives at d or M the orbit will assume t, he eusped form and 

an interchange from the direct to the retrograde or vice versfi will occur. 
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The tendency of the direct orbits to assume the eusped form is well 
indicated by the orbit C = 39"0, x0 ~ I ooi  shewn by Professor DARWIN 
(fig. 5)- 

w 5. Conjectural  F o r m s  o f  Re t rograde  Orbits. 

The eusped orbit C = 4o'0, x 0 ---- I has been computed in part by 
myself and independently by Prof. DAaWlN. Its form is found to resemble 
that shown in fig. 3 below. Again when x 0 reaches its extreme limit in 
the opposite direction the form of the cusped orbit is that shown in fig. 
4- We may pass from one of these forms to the other either by following 
the direct orbits or by following the retrograde orbits. 

Fig. 3. 

s , i -  

f 
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Fig. 4. 

~ p  

Fig. 5. 

/"7"~a Pm 

Fig. 6. 

:Fig. 7. Fig. 8. 
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The sequence of changes in the forms of the orbits which occur as 
we follow the direct orbits may be inferred from the results already o'iven 

bv I)ARWI~', but as reo'ards the retrograde orbits we have as vet no positive 
data available. I t  seems to me however that the probable sequence of 

changes is that  indicated bv fio.s. 5 - -8 .  In  rio.. 5 the starting" point P 
has receded slightly from J and the direction of rotation round J at the 

next approach has been reversed by a passav'e throuo'h the cusped form. 

In  rio.. 6 the large loop has diminished in size and the small leop (no 

long'er represented in full) has increased, indicating" another near approach 
of the satellite to the primary. 

Fig'. 7 represents the form of the orbit after this loop has passed 
through the cusped stage, while fig. 8 at once fills up the interval which 
remains between this orbit and that  shewn in tlo.. 4. 

6. 9-vlrr~,es. 

The main object of DARWlX's research was to investigate the forms 
of the different varieties of l)eriodic orbits, but in order to discover these 

periodic orbits he has incidentally determined the forms of a lar~'e number 

of non-periodic orbits. The method of procedure was to trace these latter 
orbits by a process of mechanical quadratures, and to examine the values 

of the angle (9"~) at which the normal to the orbit was inclined to the 

axis-of-x at the instant when the orbit a~'ain crosses this axis. The periodic 
orbits are then selected by determining by interpolation the initial eircmn- 

stances which allow of the orbit cutting" the line of syzygies at r ight 

angles at the second crossing, i.e. those which make the value of r zero 
or a multiple of 7,. 

Now the initial circumstances with which we are concerned involve 

two parameters viz: C, the constant of relative energy, and x0, the abscissa 
o f  the starting point. If  the value of C be assigned, r may be regarded 

as a function of the single quantity x0, and the nature of this function 

may be represented graphically 1)y a curve with x 0 as abscissa and ~! as 
ordinate. When the form of this curve is known we may at once re- 
cognize the existence of, and the initial circumstances associated with the 

periodic orbits by reading off the abscissae of the points of intersection of 
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the curve with the lines r ~ =- • r = •  ~e. As Ovaries, 

the curve, which we shall describe as a 9-curve, will undergo continuous 

deformation and the variations in its form will indicate the vicissitudes 

through which tile different periodic orbits pass. 
For large values of C the planet J will be surrounded by a closed 

branch of the curve of zero-velocity, and it therefore appears that two 
forms of discontinuity in the fio'ures of the non-periodic orbits under dis- 

cussion may present themselves; ( I ) w h e r e  the satellite is instantaneously 
reduced to rest by attainin~ a point on the curve of zero-velocity and (2) 

where the satellite falls into the primary. 
The former ease has been frequently met with by DARWIX and it is 

clear from his figures that the crisis concerned invoh'es no abrupt change 

at points on the orbit other than that where it occurs. Thus no dis- 

continuity in the value of ~ will result. 
No instance of the occurrence of the second event has been found by 

1)AI~WlS " prior to the satellite first crossing' the line of syzygies. A case 
has however been found (C = 39"o, Xo = I"O95) where the satellite passes 
very close to its primary after twice erossin-' the axis-of-x, while similar 
instances appear to occur amono, the retrograde orbits in the critical forms 

which separate orbits of the characters represented in figs. 5-6-7. 
Now the angle 9 made by the nonnal with the axis-of-x at the points 

where the orbit cuts this axis must be re~'arded analvticalh as a multiple- 

valued function of x 0 having" an infinite number of determinations, since 
the orbit will evidently cut the axis-of-z an infinite nmnber of times. 

The complete f-curYe will then consist of an infinite number of branches 
each one of which corresponds with a particular crossing. In dealing with 

the direct orbits we define f,~ as that particular determination which cor- 
responds to the first crossino" of the axis after a semi-revolution round 

the primary, the values which correspond ~o subsequent crossings being 

denoted by different suffixes (f2, f~ ,  a'e.i. 
In  so far as we can pass from the direct orbits to the retrograde 

orbits, by continuous deformation throu~'h the cusped form, the particular 

crossing, to which the angle F~ belongs in the case of the retrograde 
orbits, may be defined as the geometrical continuation of that  previously 
defined so long as the point under consideration does not fall into the 
planet J .  This definition will however lead to ambia'uity when the orbit 

Aeta ~ath~,nagiea. 24. Imprim~ le 19 septembre 1900. 3 5  
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falls into J .  To remove this ambiguity we will suppose that  before and 
after the passage through the eusped form, the crossings corresponding to 

the approach of the satellite to the primary are continuations of one 

another, as also are those which correspond to the recession of the satellite 

from the primary. The angle 9, .will then be defined without ambiguity, 
and it is evident that if the sequence of changes indicated in fig. 3 - - 8  
be the correct sequence through which the orbits pass, the points marked 

with similar letters on these figures will correspond with one another, the 

determination 9~ being that  which belongs to the point a throughout.  

From the result proved at the end of w 3 it follows that the angle 

9, will no longer be a continuous function of x0, but when the crossing 
to which 9, belongs falls into J the ordinate of the 9-curve will change 

i 
abruptly by ? =. The points selected as the continuations of one another 

arc. in fact not the true analytical continuations of one another so that 
when the orbit passes through the critical form we transfer our attention 

frdm one branch to another of the F-curve. 

The advantage gained by defining f ,  in this nmnner, rather than 

by following the continuous changes in the angle 9,  is that  as we follow 

the c~'cle of orbits discussed in w 5, 9, will go through a series of cyclical 

changes, whereas if we maintained strict analytical continuity, on each 
passage through a e3"ele we should have to fix our attention on a different 

determination of the angle F. 

We are now in a position to examine that branch of the 9-curve 
which corresponds to the determination 9~. Since the direct and retrograde 

orbits merge into one another when x 0 has its extreme values (I and m) 

the curve will touch the lines .v 0 = I, x 0 = m. 

For large values of C, DAI~WIN finds only a single periodic orbit for 

which 91 = 7: among the direct orbits in question, while the angle 9~ 
decreases with increasing values of x o. Assuming that  the forms of the 

retrograde orbits are similar to those represented in ~ 5 the 9~-eurve will 
then be as below, where two passages through the eusped form are indicated 

x 
by abrupt diminutions by ~ z as x o increases. 

In  this figure the point A corresponds with DAI~WIN'S periodic orbit, 
the points J and M with orbits which start from a cusp while the points 
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P ,  P', Q, Q' correspond with orbits which have a cusp at J ,  at some 
time after starting. 

37r ~1 = ~- 

J 

~ 1  ~ - 2 

p ,i 

i / 

i 

* I 

i 

i 
I I 
I i 
i I 
I I 

Fig. 9. 

If  we follow the retrograde orbits up to their limiting form when 
eusped at M it is evident that  the normal at the crossing denoted by y 

in figs. 7, 8, which may be regarded as the true analytical continuation 
of a in figs. 5 and 6, will approach nearer and nearer to a direction at right 
angles to the line of syzygies. At  the final stage the crossing will dis- 

appear by coalescence with a second which occurs before the passage 

through the starting point. We thus conclude that the continuation of 

the branch P'Q will touch the line x o = m at the point where f~ = ~ ,  

as indicated by the dotted part of the curve in the above diagram. 
Further since the points P, Q' necessarily lie between the lines 

3z 7r P~ ~ 7  and ~ = 2 '  it may be readily seen that  the branch of our curve 

which corresponds with the retrograde orbits must  necessarily cut the line 

p~ ~ ~, indicating the existence of a retrograde periodic. 
If  as in the above figure P, Q" lie on opposite sides of the line F~ = ~r, 

P', Q will also lie on opposite sides of this line and the retrograde periodic 
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will then be of the character indicated by fi~'s. 5 and 6 in which the 

crossing' ~ becomes rectangular, i.e. it will be a 'doubly '  periodic orbit. 

On the other hand if P ,  (J' lie on the same side of f~ = 7, one of 

the branches , /P ,  M(2' must  have I)~:nt round so as to cross this line, and 

the form of the retrograde orbit will be modified in a manner which it is 

easy to trace. 

w 7. F i r s t  de] 'ormat io~  o]" the  f -c~trve  accou~tt i~f l  ]'or the  

disoi~lmctrence o]" the o r b i t  A.  

As C varies the figure of the V-curve a'iven in the last section will 

undergo continuous deformation, and we may follow the fate of the orbit 

A by fixing our attention on the point  A of this fi~'ure. Now from the 

figures given by DA1~WlX we see that  as U decreases the point A will 

approach the line z o = I. Meanwhile the point d will move alon~" the 

line a: o -= I, and it is evident that  the points A and d m a v  at some stage 

coincide. When  this occurs the cusped orbit d itself cuts the axis at 

r ight  angles at the next crossing and may be regarded as periodic. Prof. 

DA~lWI.'," who is a present examinina' the forms of some of these cusped 

orbits informs me that  the orbits in question appear to become periodic 

for a value of C about 39"5, but the actual numerical value has not  vet 
been determined. 

After  the critical stage the point  J will cross the line g~ = r and 

the point A will no longer be found in that  part of the curve which 

corresponds with the direct orbits, but  in the part which corresponds with 

the retrog'rade orbits. Subsequently the curve will bend up so as to a~'ain 

cut the line f~ = ~, indicating the growth of two new periodic orbits, 

the orbits B and C of Prof. DAl~wlx's paper. The form of the g-curve, 

so far at least as regards that  part of it with which we are concerned 

will now be as below (fig. I o). 

I t  appears then that  the starting point of the orbit A will move 

up to the planet J ,  that  the orbit will at first become eusped and that  

afterwards it will have a loop round J which is described by the satellite 

in a retrograde direction. The critical stage occurs when U is in the 

neighbourhood of 39"5. This explains why Prof. DAmVIh" who confined 
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his at tent ion to the direct orbits alone, failed to find any trace of this 

orbit when 6'--- 39"o. 

,/ 

2 

J 

J 

Fig. lo. 

M 

w 8. F o r m  oy the ~-cur~'e in, the ne ighbo~lrhood oi" o n  

a s y m p t o t i c  orbi t .  

So long as the curve of zero velocity possesses a closed branch round 

J ,  the only forms of discontinuity which the C-curve can present are those 

dealt with in the preceding sections, but  when the curve of zero-veh>eitv 

has assumed an hour-glass form more complex figures, resulting from the 

existence of asymptotic orbits, may occur. The nature of the singularity 

which appears in the neigbourhood of an asymptotic orbit may however 

he inferred from the curves given by l)Al{w~x for the case C = 3 9 0 .  
Hi ther to  by defining f~ as a partieul-tr determinat ion of a multipte- 

valued function we have been able to regard g~ as a single-valued function 

of the quant i ty  xo, but  we must  now attach a slightly extended meaning 

~o the  swnbol ~ ,  which will no longer permit  us to re~ard it as single- 

valued. 
Suppose that  the crossing on which our at tent ion is fixed and to which 

the determinat ion g~ belongs approaches the point of zero-force. We have 
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seen (w t) that  the orbit may then acquire loops, and may therefore cut 

the axis of x in several points before it recedes again either towards the 
planet or the Sun. When  such loops exist, we define ~1 as the angle 

made by the normal with the axis at any crossing prior to its again receding 
from the point of zero force. The number of real determinations of ~1 

will then depend on the number of loops which cut the line of syzygies. 

Now on reference to DArWIN's figures it will be seen that as x 0 
decreases from the value x 0 = m, ~1 - - ~ r  is initially negative and twice 

vanishes and changes sign. The vanishing points determine two periodic 
orbits B and C. The corresponding portion of the V-curve will then 

resemble that of the curves previously given. 
If we confiae our attention to the value of V1 at the first crossing 

it is evident that  after passing the point B the value of ~ diminishes, 

until when x o is rather less than i ' o6  it attains the value 5. For values 2 

of x o beyond this one, the corresponding crossing becomes imaginary by 
coalescence with a second. Hence the branch of the ~1 curve, to which 

we limit ourselves in directing our attention only to the first crossing, 

at r ight angles and will at this stage identify will intersect file line f~ = 2  

itself with a second branch. This second branch applies to the values of 

~ at the second crossing, and from the figures it is clear that  it first 

appears when x 0 is rather larger than I 'o95.  The second value of ~: 
comes into existence simultaneously with a third and its initial value is 

'~. The value of F~ as we pass along the second branch ranges between 
2 

z and q- ;~ 2 2, and consequently vanishes at some stage. The vanishing 

stage is that which corresponds to the figure-of-8 orbit of DAICwI~"s paper. 
I t  is clear that  the second branch may be continued into a third, the 

third into a fourth and so on, that these various branches are in reality 

different parts of one and the same continuous curve, which possesses an 
infinite branch consisting of a series of waves of the form shewn,in fig. I I. 

This figure gives a concise summary of the results implied in DAl~WIN'S 

figures 3 and 5, and we may interpret all the features of it in connection 

with the orbits represented in those figures. 
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Thus  consider the intersections with the era're of an ordinate which 
moves from r ight  to left. 

3 f f  

B 
~ T E  _ _ _  

I 
( 

4 
5ff ~1 = - - ~ -  

C 

~,  - - -3 tr -  

31 

~ O  ~ [ r ~ vn  

F i g .  i i .  

The first critical stage which will occur after its foot has passed B 

will be when the ordinate just  touches the crest of tile first wave. The 

ordinate will then intersect the curve in two new coincident points in- 

dicating tha t  the  orbit will intersect the axis of x in two new coincident 

points. This results from the fact that  the orbit has acquired a single 

loop which just  comes into contact with the axis of .~ at the  critical stage. 

Evident ly  the initial values of ~% will be each equal to ~ and con- 
2 

sequently the crest of the first wave lies on the line V1 = ~ "  
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The new values of F1 will then separate and the next critical stage 
will occur when the larger of them attains the value zero, i. e. when the 
ordinate passes through the point marked 81 in the diagram. The orbit 
will then be periodic and of the form of a figure-of-8. I t  is the figure- 
of-8 orbit which has been found by DARWIN. 

For fm'ther decrease in x o the ordinate will touch the crest of a 
second wave which indicates that a second loop will have been formed 
in the orbit and that this second loop bends upwards so as to touch and 
afterwards cut the axis-of-x. Subsequently when the ordinate passes 
through the point 8~ the orbit with two loops will have become periodic. 
I t  will then be one of the more complex figure-of-8 orbits whose existence 
has been foreshadowed by Prof. DARWIN (p. '89). 

Evidently the number of waves intersected by the ordinate will go 
on rapidly increasing in number, and with them the number of loops of 
the orbit intersecting the axis of x, until a critical stage will be reached 
when the ordinate attains a position shewn in the figure about which all 
the waves oscillate. When  the ordinate attains this position the orbit will 
be the asymptotic orbit described in w 2 which possesses an infinite 
number of loops. 

For further decrease in x 0 we see from the results of w 2 that the 
orbit will no longer be of the 'lunar' type but of the 'planetary' type. 
The number of real interesections of the ordinate with the V-curve will 
rapidly diminish which implies that the orbit will shed its loops. Finally 
the ordinate will cease to intersect the curve in real points and the orbit 
will have attained the form shewn by DARWIN for the cases z o = I 'o4,  
i 'o2 and t ' o o l ,  where there are no real intersections with the axis of x 
prior to the recession towards the Sun. 

The intersections of the infinite branch with each of the lines ~1 ~ o, 
F~ = ~ r ,  F~ ~ -  27r &c. wilt indicate the existence of periodic orbits 
having I, 2, 3 &c. loops. Since these orbits are all necessarily of the lunar 
type the points on the figure, marked 81, 8~, 8.~ &e., which correspond 
to these periodic orbits, all lie to the right of the critical ordinate which 
separates the lunar orbits from the planetary. 

We see then that the existence of an asymptotic orbit implies also 
the existence of an infinite number of complex figure-of-8 orbits, the first 
of which is that which has been found by DAuwIs. 
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w 9. C o m p l e t i o n  o f  t h e  g - c u r v e .  

The part of the curve shewn in our last figure is that which cor- 
responds to the direct orbits. DARWIS's investigations enable us to figure 
this part of the curve with certainty, but no attempt has been made to 
draw it to scale in order that the essential features may be exhibited in 
a somewhat exaggerated form. Thus the amplitudes of the successive 
waves will be very much smaller than they are represented, all the critical 
features being included between x 0 ~ I 'o95 and x o ----- t 'o6  (approximately). 
As regards the remaining part of the curve we however have no such 
data available, and we have to fall back entirely on considerations of 
continuity to supply them. 

:Now DARWIN finds that when x 0 - -  I'O2 and even when x 0 ~ - l ' o o I  
the orbits are planetary and that they do not intersect the axis-of-x prior 
to their recession towards the Sun. I t  seems probable that they will 
retain this same character until ~o reaches its limiting value (unity) and 
the orbit has a cusp at J .  On the other hand when x 0 = I" 3 (see fig. 3) 
the orbits are lunar, and it is probable that  they will retain their lunar 
character until the starting point reaches the curve of zero-velocity (x 0 ----m). 

If  this be the case, as we pass from the orbit x o - - m  to  the orbit 
x o = I by continuous deformation, following the retrograde orbits instead 
of the direct orbits, we must pass through a stage where the orbits change 
from the lunar to the planetary form. Thus there must be a second 
asymptotic orbit among the retrograde orbits. 

Whether  or not the above assumptions as to the form of the cusped 
orbits be correct, it is clear than in such a cycle of orbits as that under 
consideration asymptotic orbits must occur in even numbers. Thus the 
existence of a single asymptotic orbit in the cycle necessarily involves the 
existence of a second. 

:Now it might  appear at first sight that an asymptotic orbit could 
pass out of our cycle when the orbit falls into the planet and ff~ under- 

i 
goes an abrupt change by ~ r .  Such however cannot be the case. To 

prove this let us suppose that  the crossing on which our attention is fixed 
moves up to the planet J .  A second crossing will reach J simultaneously 
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with it. Now if our crossing corresponds with the approach to J ,  since 
a second crossing will occur after it on the opposite side of J ,  the orbit 
(so far as this crossing is concerned) will necessarily be of the lunar 
type both before and after the change. On the other hand if the crossing 
with which we are concerned belongs to the branch of the curve along 
which the satellite recedes from J ,  since the discontinuity in the geome- 
trical form of the orbit is confined to the critical point and does not extend 
to remote pal~s of the curve, the orbit will be of the same character before 
and after its passage through the critical form. Thus such a discontinuity, 
as that represented by the passage from the point P to P' or from Q to 
Q' in fig. 9, can never involve a transition from the lunar to the planetary 
form or vicc-vers~. 

It  appears then that asymptotic orbits can only disappear from our 
cycle by coalescence and that the development of them will ahvays occur 
in pairs. 

w 10. Second d e f o r m a t i o n  o]" the ~-cu~we. 

Having recognized the existence of the asymptotic orbits and the 
form which the if-curve assumes in their neighbourhood we next proceed 
to examine the transitional forms through which the curve will pass when 
two such orbits coalesce. A reversal of the order of the events considered 
will then indicate the state of affairs prior and subsequent to the develop- 
ment of a pair of asymptotic orbits. 

First let us consider the forms of the orbits which possess a cusp 
at J as C increases. When C--= 39"0 these belong to the planetary class, 
but when C ~  40"0 they are found to be no longer planetary but lunar. 
The cusped orbit must therefore, for intermediate values of C, acquire 
loops, pass through the asymptotic form and finally shed these loops again. 
This will occur when one of the two ordinates which correspond to the 
asymptotic orbits in our cycle moves up to the line x 0 ~ I. The corres- 
ponding asymptotic orbit will then undergo a change from the direct to 
the retrogTade form or vice-versfi, and subsequently both asymptotic orbits 
will be direct or both retrograde. It  seems probable that it is the retro- 
grade orbit which passes through the critical form and becomes direct after 
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the crisis. This assumption is however only made for the purpose of giving 
greater definiteness to our statements and is not essential to the arguments. 
After the passage of the asymptotic orbit through the cusped form the 
figure-of-8 orbits which accompany it will each in turn undergo a like 
change. For simplicity we will suppose that all these changes occur before 
the next critical stage is reached and that consequently the form of the 
~-curve, so far as it applies to the direct orbits, is now as below, having 
two infinite branches. 

B C 

f 

~ |  ~ , 

2 

8, 8, 

I 

3/ 

Fig. 12. 

There will now be a second figure-of-8 orbit of a character similar 
to Prof. DARwIs'S, which corresponds to the point 8', of the figure, while 
there will be two infinite series of more complex figures-of-8 corresponding 
to the two series of points 82, 83, . . . ,  8.~, 8; ,  . . . .  I t  should be no- 
ticed that none of these points can be between the two critical ordinates 
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which correspond with the asymptotic curves, since the periodic orbits all 

belong essentially to the lunar category. As U decreases further the next 

event of importance will bc the coalescence of the crests of the two first 

waves in the above figure. After this coalescence the infinite branches of 
the curve will be severed from the remaining part, which will form a curve 

of the type shewn in figs. 9 and 1o. 
The significance of this change is that for larger values of C orbits 

of the type represented by C =  39'0, Xo--1"o4,  which do not intersect 
the axis of x before their recession, can no longer exist. 

Subsequently as the two critical orbits approach one another the 

successive wave crests of the two branches will coalesce in turn and a 

series of isolated ovals will be formed. The curve will then consist of a 

branch similar to those of ~ 6 and 7, a finite number of isolated ovals and 
two infinite branches as below, where the curve is drawn on a reduced 

vertical scale with two ovals (fig. I3). 
We arrive next at the ease where the two critical ordinates move 

up to coincidence. The asymptotic orbits will then coalesce and disappear. 
The infinite branches of the g-curve will have degenerated into an infinite 

series of isolated ovals. The two infinite series of figure-of-8 periodic orbits 

will however still have a real existence. 
For further increase m C these ovals will shrink in size, reduce to 

points and finally' i disappear. I t  is clear that each of the points 8~, 82, 8a, ... 
will disappear by coalescence with the corresponding point of the series 

8'~, 8; ,  8 ; , . . .  indicating that each of the periodic orbits disappears by 

coalescence with a second. Also it is evident that the more distant ovals 

will be the first to vanish indicating that the periodic orbits with a large 
number of turns round the orbit a will vanish before those with a smaller 

number of turns and that the last orbits to vanish will be the simple 

figures-of-8 of Prof. DAllWlN'S paper. 
There will be an interval between the disappearance of the points 

81, 8; &e. and the final evanescence of the ovals. During this interval 

non-periodic orbits may occur having loops, but it will never be possible 
for the loops to adjust themselves so as to cut the line of syzygies at 

r ight angles. 
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w 11. S u m m a r y  a n d  Conclusion.  

The problems dealt with arise as the result of the study of an 
apparently remarkable change in the forms of certain periodic orbits 
which have been examined by Prof. DAmvIN, whereby an orbit originally 
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in the form of a simple closed oval seems to have oeveloped into the 
form of a figure-of-8. This change is of so surprizmg a character that 
M. POINCA~ and others have concluded that Prof. DAi~WIN was misled 
in regarding the simple oval orbit and the figure-of-8 orbit as members 
of the same family. But if we regard them as members of two different 
families questions at once arise as to the earlier history of the second 
family and the later history of the former. On these points DARWIN'S 
results throw very little light, but by supplementing the numerical results 
obtained by him by arguments based on the consideration of geometrical 
continuity I have shewn that the history of either family may be traced 
in part, and have verified M. POINCAR~'S conclusion as to the independence 
of these two families. The results explain fully :aow the first family has 
been lost sight of by DARWIN and how the ~,econd family comes into 
existence. I t  appears to have been largely a matter of chance that with 
the actual numerical data, adopted the appearance of the second family 
coincided exactly with the appearance of the first, a f~ct which naturally 
led DAICWIN to the conclusion that the two forms of orbit really belonged 
to the same group. 

The earlier sections of the paper (w167 I - -4 )  deal with two critical 
cases which may occur in connection with the forms of non-periodic orbits 
and lead to two classifications of these orbits. They are first classified as 
'lunar' or 'planetary' according to the fate of the sateliite after describing 
a semi-revolution round the primary. If  it recedes to-~,~ards the primary 
and proceeds to describe further revolutions round it, it is described as 
'lunar'. If  on the other hand it passes away towards the Sun it is described 
as 'planetary'. The critical orbits which separate the" iunar from the pla- 
netary describe an infinite number of loops round the ?oint of zero-force, 
approximating at each turn closer and closer to the orbit of the oscillating 
satellite. Adopting POINCAR~'S term we describe the critical orbit as an 
'asymptotic' orbit. We next clarify the orbits as 'direct' or 'retrograde' 
according as the initial direction of motion is direct or retrograde, the 
critical orbits which separate the one class from the other being described 
as 'cusped' on account of the forms which they assume. I t  is then shewn 
that by the inclusion of the retrograde orbits as well as the direct, we 
may arrange the orbits under consideration into a perfect self-contained 
cycle which may however involve certain abrupt discontinuities. The 
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disappearance of the orbit A is accounted for by the fact that at the stage 
at which it was sought by DAr~WlN it had passed through the critical 
eusped form and thus was no longer to be found in the part of the cycle 
examined by him viz: the part which includes only the direct orbits. 

We proceed to shew how all the results indicated in the figures of 
the non-periodic orbits traced by DAnWIN may be represented on a single 
curve, and how a study in the variations in the form of this curve will 
enable us to trace the history of the different families of periodic orbits. 
The method employed by I)A~wI~ to discover the periodic orbits in fact 
is equivalent to the examination of the form of this curve in regions where 
there were d priori grounds for suspecting the existence of a periodic orbit. 

The chief point of interest in connection with these curves is the form 
which they assume in the neighbourhood of an asymptotic orbit i,e. one 
of the critical orbits implied in our first classification. The form indicates 
that such an asymptotic orbit is accompanied not only by a simple figure- 
of-8 orbit of the kind found by DAawI~ -, but also by an infinite series of 
complex figures-of-8 whose exact forms have not vet been examined but 
whose existence has been predicted by DARWIN'. 

We next shew that in a complete cycle of orbits, such as that which 
we have found to exist, asymptotic orbits must occur in even numbers and 
consequently must appear or disappear in pairs. As DAitWlS'S results 
indicate only one of such orbits among the direct orbits for the case C--39"0 
we conclude that a second one must exist among the retrograde orbits. 
The two asymptotic orbits must have had a common origin and at the 
instant of their first appearance must have been both direct or both retro- 
grade. For purposes of illustration it has been assumed that both are 
initially direct though this is not essential to the arguments employed. 

The existence of two asymptotic orbits implies also the existence of 
two simple figure-of-8 orbits of the form found by DARWIn, which must 
likewise have had a common origin. The converse is however not ne- 
cessarily true. For if we trace back the changes described in the last 
section we see that the first indication of the development of a pair of 
asymptotic orbits will be the growth of loops, as in the orbit x = I 'o95 
of DARWIN's fig. 5. When  these loops first appear it will not be possible 
for them to arrange themselves so as to cut the line of syzygies at right 
angles and render the orbit periodic, but with smaller values of C pairs 
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ot; periodic looped orbits will appear which gradually separate from one 
another. The first to appear will be those with the smaller number of 
loops, the final ones being the asymptotic orbits which may be regarded 
as the limiting form of periodic looped orbits when the nmnber of loops 
becomes infinitely great. 

The passage of the second asymptotic orbit from the direct to the 
retrograde form will be preceded by a similar passage of the whole series 
of periodic looped orbits which accompany if, including the simple figure- 
of-8 orbit which at its origin coincided with that of Prof. I)ARW~I~. Here 
again the failure to find any trace of this orbit is to be explained by the 
fact that the search was confined to the direct orbits alone, whereas at the 
stage under investigation ( C =  39"o) this orbit had already passed into 
the retrograde form. 

In conclusion I have to thank Prof. l)m~wI~ not only for the unfailing 
courtesy with which be has placed at mv disposal all the details of the 
prodigious amount of numerical work which formed the basis of his published 
memoir on this subject, but also for the readiness with which be has com- 
municated to me his further results still under investigation and for valuable 
criticism which has saved me from nmnerous errors. Even should the 
present results be found to require modification on further investigation, 
and it is admitted that the detail is to be regarded as conjectural rather 
than proven, I shall feel that the paper will have served a useful purpose 
if it succeeds in enticing other investigators into the vast and hitherto 
unexplored field which seems to be opened up with each new development 
of this highly interesting subject. 


