ON THE FOUR ROTATIONS WHICH DISPLACE ONE ORTHOGONAL SYSTEM

OF AXES INTO ANOTHER
BY
W. BURNSIDE
of GREENWICH.

This question has been treated by Herr Lipschitz in a very elegant analytical manner in the first three sections of a memoir in the Acta mathematica (Vol. 24, p. 123). It is the object of the following short note to shew that the question is susceptible of a simple kinomatical treatment which brings out, even more clearly perhaps than an algebraical process, the essential space-relations of the configuration involved.

The one kinematical theorem of which repeated use is made, namely that successive rotations about three radii of a sphere through twice the angles of the corresponding spherical triangle produce no displacement at all - is due originally, I believe, to Hamilion (Lectures on Quaternions, p. 267). It is equivalent to a construction for the resultant of any two rotations about intersecting axes. Moreover from the theorem itself the converse - if successive rotations about two radii $O P, O Q$ of a sphere have $O R$ for the axis of their resultant, then the amplitudes of the two rotations are $2 R P Q$ and $2 P Q R(\bmod 2 \pi)$ - immediately follows. It may be noted that Hamilion's theorem is established almost intuitively by drawing $O p, O q, O r$ perpendicular to the planes $Q O R, R O P, P O Q$. For successive rotations through two right angles about $O q$ and $O r$ is the same as a rotation round $O P$ through $2 R P Q$. Hence successive rotations through $2 R P Q, 2 P Q R, 2 Q R P$ about $O P, O Q, O R$ are equivalent to successive rotations through two right angles about $O q, O r, O r, O p, O p, O q$, which clearly give no displacement.

I denote the two systems of orthogonal lines by $A O \bar{A}, B O \bar{B}, C O \bar{C}$ and $A^{\prime} O \bar{A}^{\prime}, B^{\prime} O \overline{B^{\prime}}, C^{\prime} O \overline{C^{\prime \prime}}$, and I suppose that a rotation through an angle α in an assigned sense round an axis $O D$ brings the first set to coincidence with the second. Then the resultants of rotations (i) α round $O D$ and π round $O A^{\prime}$; (ii) α round $O D$ and π round $O B^{\prime}$; (iii) α round $O D$ and π round $O C^{\prime}$, each bring the first system to coincide with the second. Moreover if R is any rotation that has this effect; then the resultant of R reversed and a round $O D$ brings the second system to coincide with itself. Hence the four rotations specified are the only ones which produce the required displacement.

If the rotation a round $O D$ brings $O A, O B, O C$ to coincidence with $O A^{\prime}, O B^{\prime}, O C^{\prime}$, then the remaining three rotations in order bring $O A$, $O B, O C$ to coincidence with (i) $O A^{\prime}, O \bar{B}^{\prime}, O \bar{C}^{\prime}$, (ii) $O \bar{A}^{\prime}, O B^{\prime}, O \bar{C}^{\prime \prime}$, and (iii) $O \bar{A}^{\prime}, O \bar{B}^{\prime}, O C^{\prime}$.

Let $O A, \ldots, O A^{\prime}, \ldots$, meet a unit sphere centre O in $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$. Join $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$, and bisect the first two ares at right angles by $D_{1} D$ and $D_{2} D$. The spherical triangles $A D B, A^{\prime} D B^{\prime}$ are equal in all respects, and therefore the angles $A O A^{\prime}$ and $B O B^{\prime}$ are equal. Hence a rotation round $O D$ through $A D A^{1^{1}}$ brings $O A$ and $O B$ to coincidenco

[^0]On the four rotations which displace one orthogonal system of axes into another. 293
with $O A^{\prime}$ and $O B^{\prime}$; and therefore necessarily $O C$ to coincidence with $O C^{\prime}$. Hence $D_{刃} D$ bisecting $C C^{\prime}$ at rigth angles passes through D.

Draw $A D_{1}, A^{\prime} D_{1}$ perpendicular respectively to $D A$ and $D A^{\prime}$; and similarly $B D_{2}, B^{\prime} D_{2}, C D_{3}, C^{\prime} D_{3}$ perpendicular to $D B, D B^{\prime}, D C, D C^{\prime}$. Then by Hamilton's theorem a rotation $A D A^{\prime}$ round $O D$ followed by a rotation π round $O A^{\prime}$ has for resultant $A D_{1} A^{\prime}$ round D_{1}. Hence $O D$, $O D_{1}, O D_{2}, O D_{3}$ are the axes of the four required rotations and $A D A^{\prime}$, $A D_{1} A^{\prime}, B D_{2} B^{\prime}, C D_{3} C^{\prime}$ are the corresponding amplitudes.

Let U be the point of intersection of $B C$ and $B^{\prime} C^{\prime}$. Then a rotation $B U B^{\prime}$ round $O U$ followed by a rotation round A^{\prime} through the difference of $B U$ and $B^{\prime} U$ brings $O A, O B, O C$ to coincidence with $O A^{\prime}, O B^{\prime}, O C^{\prime}$; and is therefore equivalent to a rotation $A D A^{\prime}$ round D. Hence by the converse of Haminton's theorem the angle $A^{\prime} U D$ is one half of $B U B^{\prime}$, and the angle $A^{\prime} D U$ is the supplement of one half of $A D A^{\prime}$. It follows that $D_{1} D$ passes through U. Again it is evident from the figure that a rotation $B U C^{\prime}$ round $O U$ followed by a rotation $B U+U B^{\prime}$ round $O A^{\prime}$ brings $O A, O B, O C$ to coincidence with $O \bar{A}^{\prime}, O B^{\prime}, O \bar{C}^{\prime}$; and is therefore equivalent to a rotation $B D_{2} B^{\prime}$ round D_{2}. Hence by the converse of Hamilon's theorem the angle $D_{2} U A^{\prime}$ is one half of $B U C^{\prime}$. Therefore $D_{2} U$ bisects $B U B^{\prime}$; and similary $D_{3} U$ bisects $C U C^{\prime}$, so that $D_{2} D_{3}$ passes through U. Moreover since $A^{\prime} U D$ is half $B U B^{\prime}$, while $A^{\prime} U B^{\prime}$ is a right angle, it follows that $D U$ and $D_{2} U$ are at right angles. Hence $D D_{1}$ and $D_{2} D_{3}$ meet at right angles in U : and similarly $D D_{2}, D_{1} D_{3}$ meet at right angles in V, and $D D_{3}, D_{1} D_{2}$ in W. The axes of the four rotations must therefore be such that the planes through any two pairs, into which they may be divided, are at right angles. The well known trigonometrical conditions for this, which may be derived directly from the figure, are

$$
\cos D D_{1} \cos D_{2} D_{3}=\cos D D_{2} \cos D_{3} D_{1}=\cos D D_{3} \cos D_{1} D_{2}
$$

Further it follows at once from the figure that when D, D_{1}, D_{2}, D_{3} are given in position on the sphere, subject to these conditions, the corresponding angles of rotation are uniquely determinate. Thus since the two triangles $D_{2} D D_{3}, B D C$ have the same angle at D, while $B C$ is a quadrant,

$$
\cos D_{2} D_{3}=\cos D D_{2} \cos D D_{3}-\sin D D_{2} \sin D D_{3} \cot D B \cot D C .
$$

W. Burnside.

But if α is the angle of rotation round $O D$, so that

$$
B D D_{2}=C D D_{3}=\frac{\alpha}{2}
$$

then

$$
\cot D B=\cot D D_{2} \sec \frac{\alpha}{2},
$$

and

$$
\cot D C=\cot D D_{3} \sec \frac{\alpha}{2}
$$

Hence

$$
\cos D_{2} D_{3}=-\tan ^{2} \frac{\alpha}{2} \cos D D_{2} \cos D D_{3}
$$

or

$$
\tan ^{2} \frac{\alpha}{2}=-\frac{\cos D_{2} D_{\mathrm{s}}}{\cos D D_{2} \cos D D_{\mathrm{s}}},
$$

which in virtue of the relations connecting the ares is unaltered by any permutation of the suffixes $1,2,3$. Similarly if $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the angles of rotation about the other three axes,

$$
\begin{aligned}
& \tan ^{2} \frac{\alpha_{1}}{2}=-\frac{\cos D_{2} D_{3}}{\cos D_{1} D_{2} \cos D_{1} D_{3}}, \\
& \tan ^{2} \frac{\alpha_{2}}{2}=-\frac{\cos D D_{1}}{\cos D_{2} D \cdot \cos D_{2} D_{1}}, \\
& \tan ^{2} \frac{\alpha_{3}}{2}=-\frac{\cos D D_{1}}{\cos D_{3} D \cdot \cos D_{3} D_{1}} .
\end{aligned}
$$

The angles $\alpha, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are therefore either all real or all imaginary. When the four points D, D_{1}, D_{2}, D_{3} are given on the sphere, subject to the two conditions,

$$
\cos D D_{1} \cos D_{2} D_{3}=\cos D D_{2} \cos D_{3} D_{1}=\cos D D_{i} \cos D_{1} D_{2},
$$

the necessary and sufficient conditions that the $\alpha^{\prime} s$ should be real is clearly that either just three or all six of the arcs $D D_{1}, \ldots$, should lie between $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$. When this condition is satisfied the angle α is $(\bmod 2 \pi)$

On the four rotations which displace one orthogonal system of axes into another. 295 uniquely determined, and the positions of $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ are obtained by drawing $D A, D A^{\prime}, \ldots$, making angles $\frac{\alpha}{2}$ with $D D_{1}, \ldots$, and drawing perpendiculars to them from D_{1}, \ldots.

Lastly from the previous equations, the further system

$$
\begin{aligned}
& \cos ^{2} D D_{i}=\cot ^{2} \frac{\alpha}{2} \cot ^{2} \frac{\alpha_{1}}{2}, \ldots \\
& \cos ^{2} D_{2} D_{3}=\cot ^{2} \frac{\alpha_{2}}{2} \cot ^{2} \frac{\alpha_{3}}{2}, \ldots
\end{aligned}
$$

may be immediately deduced. Hence when the amplitudes of the rotations are given (subject for real displacements to certain obvious inequalities) the relative position of the four axes is determinate.

[^0]: ${ }^{1}$ The sense of the rotation will be thas denoted; $A D A^{\prime}$ and $A^{\prime} D A$ representing equal and opposite rotations.

