ON THE ROOTS OF THE CHARACTERISTIC EQUATION

OF A LINEAR SUBSTITUTION

BY

T. J. I'A BROMWICH
in GALTAX, Ireland.

1. The equation in λ

$$
\left|\begin{array}{ccccccccc}
a_{1,1}-\lambda, & a_{1,2} & , & a_{1,3} & , & \cdots & a_{1, n} \\
a_{2,1} & , & a_{2,2}-\lambda, & a_{2,3} & , & \cdots & a_{2, n} \\
a_{3,1} & , & a_{3,2} & , & a_{3,3}-\lambda, & \ldots & a_{3, n} \\
\cdots & a_{3, n} \\
a_{n, 1} & , & a_{n, 2} & , & a_{n, 3} & , & \ldots & a_{n, n}-\lambda
\end{array}\right|=0
$$

has been discussed by many writers; the following results are well known.
The roots are real in case all the numbers a are real and such that $a_{r, s}=a_{s, r}$; that is, if the matrix of a 's is symmetric. ${ }^{1}$

The roots have the absolute value unity, if the matrix of a 's belongs to a real orthogonal substitution. ${ }^{2}$

The roots are pure imaginaries or zero, in case the a 's are real and $a_{r, r}=0, a_{r, s}=-a_{s, r}$; that is, if the matrix of a 's is alternate. ${ }^{3}$

However, in spite of these results relating to special types of the matrix a, nothing was known of the nature of the roots for a general
${ }^{1}$ Cauchy, 1829.
${ }^{2}$ Brioschi, 1854.
${ }^{3}$ Weidretrass, 1879.
matrix, until the problem was attacked by Bendixson ${ }^{1}$ in 1900; he obtained upper and lower limits for the magnitude of the real and imaginary parts of the roots, taking all the numbers a to be real. The extension to the case of complex numbers a was made by $\mathrm{H}_{\text {irsch }}{ }^{3}$ in 1902.

In what follows, we shall obtain narrower limits for the imaginary parts of the roots; incidentally, we also obtain Bendirson's and Hirsch's limits for the real parts of the roots.
2. Take, in the first instance, all the a 's to be real; and then write

$$
\left.\begin{array}{c}
b_{r, r}=a_{r, r}, \\
b_{r, s}=\quad b_{s, r}=\frac{1}{2}\left(a_{r, s}+a_{s, r}\right), \\
c_{r, r}=0, \\
1=\Sigma a_{r, s} x_{r,} y_{s}, \quad c_{r, s}=-c_{s, r}=\frac{1}{2}\left(a_{r, s}-a_{s, r}\right), \\
B=\Sigma b_{r, s} x_{r} y_{s}, \quad C=\Sigma c_{r, s} x_{r} y_{s} .
\end{array}\right\}
$$

It is now obvious that $A=B+C$, and that the bilinear forms B, C, are, respectively, symmetric and alternate. Following Frobenius, let us also write E for the unit form $\Sigma x_{r} y_{r}$ and let $|A-\lambda E|$ denote the determinant written out at the beginning of $\S \mathrm{I}$, while $|B-\lambda E|,|C-\lambda E|$, stand for similar determinants with b 's, c 's in place of a 's.

Suppose that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, are the (real) roots of $|B-\lambda E|$, it is then known from a theorem due to Weierstrass ${ }^{3}$ that a real linear substitution can be found which, when applied to the x 's and y 's, reduces B to the form $B_{1}=\Sigma \lambda_{r} x_{r} y_{r}$, while it leaves E unchanged. This substitution will change C into C_{1}, another alternate form with real coefficients; but it will not alter the roots of the fundamental equation. Thus the equation $\left|B_{1}+C_{1}-\lambda E\right|=0$ has the same roots as $|A-\lambda E|=0$.

Suppose now that $\lambda=\alpha+i \beta$ is one of these roots; then the bilinear form $B_{1}+C_{1}-(\alpha+i \beta) E$ has the $\operatorname{rank}^{4}(n-1)$ at most. Consequently values of $x_{1}, x_{2}, \ldots, x_{n}$ can be chosen which make the form zero, whatever

[^0]On the roots of the characteristic equation of a linear substitution.
values may be taken for $y_{1}, y_{2}, \ldots, y_{n}$; naturally, the values for the x 's will usually be complex, and some of them must be complex, unless β is zero. Write for these special values

$$
x_{r}=p_{r}+i q_{r}
$$

$$
(r=1,2, \ldots, n)
$$

and let us choose for the y 's the conjugate complex numbers

$$
y_{r}=p_{r}-i q_{r}, \quad(r=1,2, \ldots, n)
$$

it being understood that p_{r} and q_{r} are real. With these values for x_{r}, y_{r}, we find

$$
B_{1}=\Sigma \lambda_{r}\left(p_{r}^{2}+q_{r}^{2}\right), \quad E=\Sigma\left(p_{r}^{2}+q_{r}^{2}\right) ; \quad(r=1,2, \ldots, n)
$$

further

$$
x_{r} y_{s}-x_{s} y_{r}=-2 i\left(p_{r} q_{s}-p_{s} q_{r}\right)
$$

so that C_{1} becomes a pure imaginary. But, according to what we have already explained,

$$
\Sigma \lambda_{r}\left(p_{r}^{2}+q_{r}^{2}\right)+C_{1}-(\alpha+i \beta) \Sigma\left(p_{r}^{2}+q_{r}^{2}\right)=0 ;
$$

thus, since C_{1} is imaginary only, we have

$$
\Sigma \lambda_{r}\left(p_{r}^{2}+q_{r}^{2}\right)-\alpha \Sigma\left(p_{r}^{2}+q_{r}^{2}\right)=0
$$

Hence

$$
a=\frac{\Sigma \lambda_{r}\left(p_{r}^{2}+q_{r}^{2}\right)}{\Sigma\left(p_{r}^{2}+q_{r}^{2}\right)},
$$

and consequently a lies between the greatest and least of the numbers λ_{1}, $\lambda_{2}, \ldots, \lambda_{n}$, which is one of Bendixson's results (1. c. Theorem II).

We proceed next to obtain a corresponding theorem for β. Let us suppose that the non-zero roots of the equation $|C-\lambda E|=0$ are given by $\lambda= \pm i \mu_{1}, \pm i \mu_{2}, \ldots, \pm i \mu_{\nu}$, where $2 \nu \leq n$; so that there are ($n-2 \nu$) zero roots of this equation. By a theorem of Weierstrass, ${ }^{1}$ stated in $\S \mathrm{I}$, the numbers $\mu_{1}, \mu_{2}, \ldots, \mu_{\nu}$ are all real; and they may be supposed positive without loss of generality. Further the invariant-factors of the determinant $|C-\lambda E|=0$ are all linear. ${ }^{1}$ It is then possible to find a

[^1]real linear substitution, which, when applied to the x 's and y 's, reduces C to the form
$$
C_{2}=\mu_{1}\left(x_{1} y_{2}-x_{2} y_{1}\right)+\mu_{2}\left(x_{3} y_{4}-x_{4} y_{3}\right)+\ldots+\mu_{\nu}\left(x_{2 \nu-1} y_{2 \nu}-x_{2 \nu} y_{2 \nu-1}\right)
$$
but leaves E unchanged. ${ }^{1}$ Owing to the nature of this substitution, B is changed to B_{2} another bilinear form which is symmetric and has real coefficients. Then, just as in the last case, values of the x 's can be chosen so that $B_{2}+C_{2}-(\alpha+i \beta) E=0$, for all values of the y 's. Let these values of the x 's be given by
$$
x_{r}=p_{r}+i q_{r}
$$
$$
(r=1,2, \ldots, n)
$$
and take
$$
y_{r}=p_{r}-i q_{r} . \quad(r=1,2, \ldots, n)
$$

Then

$$
x_{r} y_{r}=p_{r}^{2}+q_{r}^{2}, \quad x_{r} y_{s}+x_{s} y_{r}=2\left(p_{r} p_{s}+q_{r} q_{s}\right)
$$

and consequently B_{2} is real; but

$$
x_{r} y_{s}-x_{s} y_{r}=-2 i\left(p_{r} q_{s}-p_{s} q_{r}\right)
$$

so that

$$
C_{2}=-2 i\left[\mu_{1}\left(p_{1} q_{2}-p_{2} q_{1}\right)+\ldots+\mu_{\nu}\left(p_{2 \nu-1} q_{2 \nu}-p_{2 \nu} q_{2 \nu-1}\right)\right] .
$$

Hence, from the equation $B_{2}+C_{2}-(\alpha+i \beta) E=0$ we deduce

$$
\beta \Sigma\left(p_{r}^{2}+q_{r}^{2}\right)=-2\left[\mu_{1}\left(p_{1} q_{2}-p_{2} q_{1}\right)+\ldots+\mu_{\nu}\left(p_{2 \nu-1} q_{2 v}-p_{2 v} q_{2 \nu-1}\right)\right] .
$$

But, in absolute value $2\left(p_{1} q_{2}-p_{2} q_{1}\right)$ is not greater than $\left(p_{1}^{2}+q_{2}^{2}\right)+\left(p_{2}^{2}+q_{1}^{2}\right)$, and consequently
$|\beta| \Sigma\left(p_{r}^{2}+q_{r}^{2}\right) \leq\left[\mu_{1}\left(p_{1}^{2}+q_{1}^{2}+p_{2}^{2}+q_{2}^{2}\right)+\ldots+\mu_{\nu}\left(p_{2 \nu-1}^{2}+q_{2 \nu-1}^{2}+p_{2 \nu}^{2}+q_{2 \nu}^{2}\right)\right]$.
From which it is clear that the absolute value of β cannot exceed the greatest of the numbers $\mu_{1}, \mu_{2}, \ldots, \mu_{\nu}$; which is obviously analogous to Bendixson's Theorem II. We shall now see that this theorem usually gives narrower limits for β than Bendixson's Theorem I, and cannot give wider limits.

[^2]For, since $\pm i \mu_{1}, \pm i \mu_{2}, \ldots, \pm i \mu_{\nu}$ are the non-zero roots of $|\lambda E-C|=0$, it follows that

$$
\mu_{1}^{2}+\mu_{2}^{2}+\ldots+\mu_{\nu}^{2}
$$

is equal to the coefficient of λ^{n-2} in the expanded form of the determinant; thus

$$
\mu_{1}^{2}+\mu_{2}^{2}+\ldots+\mu_{\nu}^{2}=\frac{1}{2} \Sigma c_{r, s}^{2}
$$

$$
(r, s=1,2, \ldots, n)
$$

Hence, if g is the greatest coefficient in C, we have ${ }^{1}$

$$
\mu_{1}^{2}+\mu_{3}^{2}+\ldots+\mu_{\nu}^{2} \leqq \frac{1}{2} n(n-1) g^{2}
$$

Thus it will usually happen that the greatest of $\mu_{1}, \mu_{2}, \ldots, \mu_{\nu}$ is less than $g\left[{ }_{2}^{\mathrm{I}} n(n-\mathrm{I})\right]^{\frac{1}{2}}$; and the greatest μ can never exceed this value, which is the limit given in Bendixson's Theorem I .
3. Suppose now that the numbers a are complex: and write a^{\prime} to denote the complex number conjugate to a. Then write

$$
\left.\begin{array}{rl}
b_{r, s} & =\frac{\mathbf{1}}{2}\left(a_{r, s}+a_{s, r}^{\prime}\right), \quad b_{s, r}=\frac{\mathbf{1}}{2}\left(a_{s, r}+a_{r, s}^{\prime}\right) \\
i c_{r, s}=\frac{\mathbf{1}}{2}\left(a_{r, s}-a_{s, r}^{\prime}\right), \quad i c_{s, r}=\frac{\mathbf{1}}{2}\left(a_{s, r}-a_{r, s}^{\prime}\right)
\end{array}\right\} \quad \begin{aligned}
& (r, s=1,2, \ldots, n)
\end{aligned}
$$

so that,

$$
b_{r, s}^{\prime}=b_{s, r}, \quad c_{r, s}^{\prime}=c_{s, r} . \quad(r, s=1,2, \ldots, n)
$$

Further, put

$$
A=\Sigma a_{r, s} x_{r} y_{s}, \quad B=\Sigma b_{r, s} x_{r} y_{s}, \quad C=\Sigma c_{r, s} x_{r} y_{s}, \quad(r, s=1,2, \ldots, n)
$$

Then it is obvious that $A=B+i \bar{C}$, and that the bilinear forms B, C are forms of Hermite's type.

Suppose now that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the roots of $|B-\lambda E|=0$; it is known that these roots are all real and that the invariant-factors of the determinant are linear. ${ }^{2}$ It is then possible to find a linear substitution

[^3]S (usually complex) such that when S is applied to the x 's, and the conjugate substitution to the y 's, the form B is reduced to $B_{1}=\Sigma \lambda_{r} x_{r} y_{r}$, while E remains unchanged. ${ }^{1}$ Further C is changed to C_{1}, another bilinear form of Hermite's type, (in consequence of the relation between the substitutions on the x 's and on the y 's).

The determinantal equation then becomes $\left|B_{1}+i C_{1}-\lambda E\right|=0$; thus, if a root is $\lambda=\alpha+i \beta$, we can choose the x 's so as to make

$$
B_{1}+i C_{1}-(\alpha+i \beta) E=0
$$

whatever values we give to the y 's. Suppose that these values for the x 's are given by

$$
x_{r}=p_{r}+i q_{r}, \quad(r=1,2, \ldots, n)
$$

and then take

$$
y_{r}=p_{r}-i q_{r}=x_{r}^{\prime} . \quad(r=1,2, \ldots, n)
$$

Thus

$$
B_{1}=\boldsymbol{\Sigma} \lambda_{r}\left(p_{r}^{2}+q_{r}^{2}\right), \quad E=\boldsymbol{\Sigma}\left(p_{r}^{2}+q_{r}^{2}\right) ;
$$

also, if $C_{1}=\Sigma_{\gamma_{r, s}} x_{r} y_{s}$, we have that $\gamma_{r, s} x_{r} y_{s}$ and $\gamma_{s, r} x_{s} y_{r}$ are conjugate complex numbers, because $\gamma_{r, r}=r_{r, s}^{\prime}, x_{s}=y_{s}^{\prime}, y_{r}=x_{r}^{\prime}$; further $\gamma_{r, r} x_{r} y_{r}$ is real; hence B_{1}, C_{1}, E are all three real. Consequently the relation

$$
B_{1}+i C_{1}-(\alpha+i \beta) E=0
$$

gives $B_{1}=\alpha E$, so that

$$
\alpha=\frac{\grave{\lambda_{r}\left(p_{r}^{2}+q_{r}^{2}\right)}}{\searrow\left(p_{r}^{2}+q_{r}^{2}\right)} .
$$

Thus, just as in $\S 2$, a lies between the greatest and least of $i_{1}, \lambda_{2}, \ldots, \lambda_{n}$. This is Hnrsch's Theorem II.

But it is now clear that, if $\lambda=\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are the roots of $|C-\lambda E|=0$, we can similarly transform C into the form $C_{2}=\Sigma \mu_{r} x_{r} y_{r}^{\prime}$, leaving E unchanged, while B becomes D_{2} another Hermite's form. Thus, by an exactly similar argument, we find that β lies between the greatest and least of $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$; which is the extension to complex coefficients of the theorem proved in $\S 2$ for real coefficients.

We proceed now to show the connection between these theorems and

[^4]Hirscr's Theorem I. Since $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the roots of the equation $|B-\lambda E|=0$, by comparing coefficients of $\lambda^{n-1}, \lambda^{n-2}$, we find

$$
\Sigma \lambda_{r}=\Sigma b_{r, r}, \quad \Sigma \lambda_{r} \lambda_{s}=\Sigma\left(b_{r, r} b_{s, s}-b_{r, s} b_{s, r}\right) . \quad(r, s=1,2,2, \ldots, n)
$$

Thus

$$
\Sigma \lambda_{r}^{2}=\Sigma b_{r, r}^{2}+\Sigma b_{r, s} b_{s, r}
$$

Hence, if g_{1} is the greatest absolute value of any coefficient in B, we have

$$
\Sigma \lambda_{r}^{2} \leqq n g_{1}^{2}+n(n-1) g_{1}^{2}
$$

or

$$
\Sigma \lambda_{r}^{2} \leqq\left(n g_{1}\right)^{2}
$$

Now we have seen that α^{2} is not greater than the greatest of $\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots, \lambda_{n}^{2}$; and consequently α^{2} is usually less than $\left(n g_{1}\right)^{2}$, while it can never be greater than this limit. That is, a is not greater, numerically, than $n g_{1}$. Similarly, if g_{2} is the greatest absolute value of any coefficient in C, it can be proved that ${ }^{1} \beta$ is not greater, numerically, than $n g_{2}$.

From the inequality proved above

$$
\alpha^{2} \leqq \Sigma b_{r, r}^{2}+\Sigma b_{r, b} b_{s, r}
$$

$(r, 3=1,2, \ldots, n)$
and the corresponding one

$$
\beta^{2} \leqq \Sigma c_{r, r}^{2}+\Sigma c_{r, t} c_{s, r}
$$

we find

$$
a^{2}+\beta^{2} \leqq \Sigma\left(b_{r, r}^{2}+c_{r, r}^{2}\right)+\Sigma\left(b_{r, s} b_{i, r}+c_{r, s} c_{\imath, r}\right) .
$$

Now

$$
b_{r, r}^{2}+c_{r, r}^{2}=a_{r, r} a_{r, r}^{\prime},
$$

and

$$
b_{r, s} b_{s, r}+c_{r, s} c_{s, r}=\frac{1}{2}\left(a_{r, s} a_{s, r}^{\prime}+a_{s, r} a_{r, s}^{\prime}\right)
$$

so that

$$
a^{2}+\beta^{2} \leqq \Sigma a_{r, r} a_{r, r}^{\prime}+\Sigma a_{r, a} a_{s, r}^{\prime} . \quad(r, s=1,2, \ldots, n)
$$

Thus, if g_{3} is the greatest absolute value of any coefficient in A, we have

$$
\alpha^{2}+\beta^{2} \leqq n g_{3}^{2}+n(n-\mathrm{I}) g_{3}^{2}
$$

[^5]or
$$
|\alpha+i \beta| \leq n g_{2} .
$$

That is, the absolute value of $(\alpha+i \beta)$ is not greater than $n g_{2}$.
The results

$$
|\alpha| \leqq n g_{1}, \quad|\beta| \leqq n g_{3}, \quad|\alpha+i \beta| \leqq n g_{3}
$$

constitute Hirsca's Theorem I, which is therefore included in the general theorem obtained previously.
4. I have also attempted to obtain some relation between the indices of the invariant-factors of $|A-\lambda E|$, and those of ${ }^{1}|\lambda B+\mu C|$; but hitherto I have not succeeded in finding any general theorem in this connection. The two following examples show that the relation (if there is one) is not very obvious.

If

$$
|A-\lambda E|=\left|\begin{array}{cccc}
1-\lambda, & 2 & , & 4 \\
0 & , & 1-\lambda, & 6 \\
0 & , & 0 & 1-\lambda
\end{array}\right|, \quad\left[\begin{array}{c}
\text { One invariant-factor } \\
\left.(\lambda-1)^{3}\right]
\end{array}\right.
$$

then

$$
\begin{aligned}
& |\lambda B+\mu C|=\left|\begin{array}{cccc}
\lambda & , & \lambda+\mu & , \\
2(\lambda+\mu) \\
\lambda-\mu & , & \lambda & , \\
3(\lambda+\mu) \\
2(\lambda-\mu), & 3(\lambda-\mu), & \lambda
\end{array}\right| . \begin{array}{r}
\text { [Three invariant- } \\
\text { factors } \left.\lambda\left(\lambda^{2}-2 \mu^{2}\right)\right]
\end{array} \\
& \text { Again if }|A-\lambda E|=\left|\begin{array}{cc}
a-\lambda,-1 \\
1 & ,-\lambda
\end{array}\right| \text {, then }|\lambda B+\mu C|=\left|\begin{array}{cc}
a \lambda, & -\mu \\
\mu, & 0
\end{array}\right| .
\end{aligned}
$$

In this case both determinants have a squared invariant-factor if $a^{2}=4$; but if a has any other value, the first has two different invariant-factors $\left(\lambda^{2}-a \lambda+1\right)$, while the second has always a squared invariant-factor $\left(\mu^{2}\right)$.

Dublin, IIth October, 1904.

[^6]
[^0]: ${ }^{1}$ Öfversigt af K. Vet. Akad. Förh. Stockholm, 1900, Bd. 57, p. 1099 ; Acta Mathematica, t. 25, 1902, p. 359.
 ${ }^{2}$ Acta Mathematica, l. c., p. 367.
 ${ }^{2}$ Berliner Monatsberichte, 1858; Ges. Werke, Bd. I, p. 243.
 ${ }^{4}$ Rang, according to Frobenius.

[^1]: ${ }^{1}$ Weierstrass, Berliner Monatsberichte, 1870; Ges. Werke, Bd. 3, p. 139.

[^2]: 1 That such a reduction is possible is contained implicitly in Kronecker's work on the reduction of a single bilinear form. For an explicit treatment, see my papers, Proc. Lond. Math. Soc., vol. 32, igoo, p. 321 , § 4; vol. 33, 1901, p. 197, § 3; American Journal of Mathematics, vol. 23, 190I, p. 235.

[^3]: ${ }^{1}$ There are only $n(n-1)$ non-zero coefficients in C, because $c_{r, r}=0$.
 ${ }^{2}$ Christoffel, Crelle's Journal, Bd. 63, 1864, p. 252.

[^4]: ${ }^{1}$ See for example $\S 6$ of the first, or $\S 5$ of the last, of my papers quoted above.

[^5]: ${ }^{1}$ If it happens that the coefficients in C are pure imaginaries, so that $c_{r, r}=0$, $c_{r, s}=-c_{s, r}$, it can be proved (as in § 2) that

 $$
 |\beta| \leqq g_{1}\left[\frac{1}{2} n(n-1)\right]^{\frac{1}{2}}
 $$

[^6]: ${ }^{1}$ It is obviously hopeless to use the invariant-factors of $|B-\lambda E|$ and $|C-\lambda E|$, because these are always linear; while $|A-\lambda E|$ may have invariant-factors of any degree up to n. In this paragraph the a 's are supposed real, so that B and C are deduced from A according to § 2 (not § 3).

