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II.  

The t r igonomet r i ca l  series associated w i t h  the e l l ip t ic  
O-functions. 

2 .  o .  - -  I n t r o d u c t i o n .  

2. oo. The series 

2 ~  q - " - - ' .  ~ + ~ q,~, ~ + 2 ( -  ~).q.', 
1 1 1 

where q ~ e ~i*, are convergent when the imaginary par t  of �9 is positive, and 

represent the elliptic O-functions 

02 (o, ~), .% (o, ~), O, (o, ~).~ 

When v is a real number x, the series become oscillating trigonometrical series 

which, if we neglect the factor 2 and the first terms of the second and third 

series, may  be wri t ten in the forms 

x T h e  n o t a t i o n  is  t ha t  of TANNERY a nd  Molm's Th~orie des fonef ians elli~tiques. W e  s h a h  
re fe r  to t h i s  hook as  T. and  M. 

Aorta m a ~ .  37. Imprimd le 21 a'vril 1914. ~5 
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These series, the real trigonometrical series formed by taking their real or 

imaginary parts, and the series derived from them by the introduction of con- 

vergence factors, possess many remarkable and interesting properties. I t  was 

the desire to elucidate these properties which originally suggested the researches 

whose results are contained in this series of papers, and it is to their s tudy 

tha t  the present paper is devoted. ~ 

2. oi. We shall write 

(2. 0 I I )  
,v<n ~<n *,<n 

I t  is obvious that ,  if *~ is any one of s~, a~, a~', then 

(2. 012) 8n m-~. O ( n ) .  

Our object is to obtain more precise information about 8,; and we shall begin 

by a few remarks about the case in which x is rational. In this case sn is 

always of one or other of the forms 

O(x), A n  + O(x), 

where .4 is a constant. I t  is not difficult to discriminate between the different 

cases; it will be sufficient to consider the simplest of the three sums, viz. s~. 

We suppose, as plainly we may do without loss of generality, tha t  x is 

positive. Then x is of one or other of the forms 

2 g + I 2g 2g + I 2g 
2f~ 4~1 + I 2~* + I 4V + 3 

according as the denominator of ~ = I x  is congruent to o, x, 2, or 3 to mod- 
2 

ulus 4. 

Some of the properties in question are stated shortly in our paper 'Some problems of 
Diophantine Approximation' published in the Proceeding8 of the fifth International Congress of 
Mathematicians, Cambridge, I912. 
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Now it is easy to verify that  

195 

s--1 
2 eev~zirl, 
0 

is of the forms 
( + ~ •  V~, •  o, •  

according as s ~ o ,  I ,  z, 3 (rood. 4); and from this it follows immediately that  

s~ is of the forms 

( •  I • i ) A n  + O(r), 

• A n  + 0 (I), 

o(~), 

• i A n  + O(I), 

in these four cases. Thus, for example, the series 

c o s  (~,, ~ ~) 

oscillates finitely if x is of the form ( 2 J L + I ) / ( 2 , u + I )  or 2 g / ( 4 f * + 3 ) ,  and 
diverges if x is of the form ( 2 g +  i ) / 2 9  or 2~,/(4ft + x). t 

2. i .  - -  0 a n d  o T h e o r e m s .  

2. so. We pass to the far more difficult and interesting problems which 

arise when x is irrational. The most important  and general result which we 

have proved in this connexion is that  

(2. ~oi) s .  = o (n) 

for any irrational x. This result may be established by  purely elementary 

reasoning which can be extended so as to show that  such series as 

1 This  resul t  (or ra ther  the analogous result  for the sine series) is stated by BROMWICH, 
Infinite Series, p. 485, Ex. Io. We have been unable to find any complete discussion of the 
question, but  the necessary materials  well be found in DImCHLET-D~.DEKIND, Vorlesungen t~ber 
Zahlentheorie, pp. 285 et seq. See also Rm~ANN, Werke, p. 249; GE~OCCHI, Atti eli Torino, vol. io, 
p. 985. 
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also possess the same property.  We do not  propose to include this proof in the 

present  paper. Although elementary, it is by  no means particularly easy; and it 

will find a more natural  place in a paper dealing with the higher series (2. Io2). 

In the present paper we shall establish the equation (2. xox) by arguments of a 

more transcendental, though really simpler, character, which depend ult imately on 

the formulae for the linear transformation of the ~9-functions, and will be found 

to give much more precise results for particular classes of values of z. 

2. xI. I t  is very easy to see that,  as a rule, the equation (2. Iox) must be 

very far from expressing the utmost  that  can be asserted about  s~. 

I t  follows from the well known theorem of RI~sz-FISCH~.R that  the series 

v c o s  n ' ~ z  sin n ' ~ z  (2 .  IXI) 
n 21_+ 

Hence, by  a theorem of W. H. Y o u ~ o  ~, it follows 

of a 

the  

are FOURIER'S series. 

that  they become convergent almost everywhere after the introduction 

convergence factor n -~ (c~'> o). As d and dr are both  arbitrarily small, 

series themselves must converge almost everywhere. Hence the equation 

must hold for almost all values of x. I t  is evident that  the same argument 

may be applied to s~ and 8'~, and to the analogous sums associated with such 
ser ies  as  (2.  xo2) .  

If, instead of the series (2. IIx), we consider the series 

cos n Z ~  sin n ~  
(2 .  x 3) , ' 1 ~'J 1 1 ' 

n~ (log n)~ +~ n~ (log n)~ +~ 

and use, instead of Yolr~G's theorem, the more precise theorem that  any 

FOURIER'S series becomes convergent almost everywhere after the introduction of 

a convergence factor x / log  n, ~ we find that  we can replace (z. x x 2 ) b y  the 
more precise equation 

/' / (~. II4) s,~ o n2-(log n) ~-+a s_~. ; 

t Comptes Rer~h~, 23 Dee. I912. 
2 HARDY, .Pr0C. Lof~d. ~r~th. ,~oc., vo]. 12, p. 370. The theorem was also discovered inde- 

pendently by M. Rmsz. 
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and it is evident that  we can obtain still more precise equations by  the use of 

repeated logarithmic factors. These we need not state explicitly, for none of 

them are as precise as those which we shall obtain later in the paper. These 

lat ter  results have, moreover ,  a considerable advantage over those enunciated 

here, in that  the exceptional set of measure zero, for which our equations may 

possibly cease to hold, will be precisely defined instead of being, as here, 

entirely unspecified. The main interest of the argument sketched here ties in 

the fact that  it can be extended to series such as (2. io2). ~ 

2. I2o. We proceed now to the analysis on which the principal results of 

the paper depend. These are contained, first in the equation (2. ioi) ,  and 

secondly in the equation 

(2. 12el)  s .  = 0 (V~) ,  

which we shall prove for extensive classes of values of x. 

In Chap. 3 of his Calcul des Rdsidus, LINDEL6F gives an extremely elegant 

proof of the formula 

~-1 g l  i-~ ~-le_n~ , 
0 0 

where p and ~ are positive integers of which one is even and the other odd. ~ 

Our first object will be to obtain, by  an appropriate modification of LIND~L6F'S 

argument, analogous, though naturally rather less simple, formulae, applicable 

to the series ~ e ' ~ ,  where x is irrational, and to the other series which we 

are considering. 

We shall, however, consider sums of a more general form than those of 

which we have spoken hitherto, viz. the sums 

1 ' , 2  . 

s:, (x, 0) = ~ e (~ -~  ~ ~ cos (2 ~ - -  I) ~ 0 ,  

(2. I2o3) s~ (x, 0) = ~ e ~ ~ cos 2 ~ 0 ,  

,t, < ~t 

1 T h e  a r g u m e n t  may  even  be  e x t e n d e d  to ser ies  of t he  type  Z~ ~ ,  where  In is no t  
necessar i ly  a mu l t i p l e  of ~; b u t  for  th i s  we requ i re  a whole  ser ies  of t h e o r e m s  conce rn ing  
DIRICHLET'S series. 

The  fo rmula  is due to G~OeCHI and  SCHWa. See LINDEZ~F, 1. C., p. 75, for  r e fe rences  
to t h e  h i s to ry  of t he  ~ormula.  
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Here x and 0 are positive and less than I ,  x is irrational, and n is not neces- 

sarily an integer. These sums are related to the functions ~92(v,v) . . . .  as s ~ , . . .  

are related to #2(o, ~) . . . .  

2. I2I. We consider the complex integral 

~e * ~ x  cos 2 ~r zrz ZTgO c o t  dz 

taken round the contour C shown in the figure. We suppose that  the points 

o, n are in the first instance avoided, as in the figure, by small semicircles of 

iH ( n + i H  

\ / 

o-) 

- - i H  

radius Q, and tha t  q is then made 

CAUCHY'S Theorem gives the result 

\ 
/ 

to tend to zero. 

/ \  

n - - i H  

An obvious application of 

(2. ~2H) 2 '  e ~ i ~  c o s  2 ~ z e  = I .  e ''-~i" c o s  2 z z a  c o t  ~z  dz ,  
--,  2,  

o 

where P is the sign of CAUCHY'S principal value, and the dashes affixed to the 

sign of summation imply that  the terms for which v =  o and v =  n are to be 

divided by 2. 

We shall find it convenient to divide the contour C into two parts C1 and 

C2, its upper and lower halves, and to consider the integrals along Ci and C2 
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separately. When we a t tempt  to do this a difficulty arises from the fact that,  

owing to the poles of the subject  of integration at z = o  and z = n ,  the two 

integrals are not separately convergent. This difficulty is, however, trivial and 

may be 'avoided  by  means of a convention. 

Suppose that  /(x) is a real or complex function of a real variable x which, 

near x = a ,  is of the form 

C 
- -  + ~ ( x ) ,  
X - - ~ t  

where ~p(x) is a function which possesses an absolutely convergent integral across 

x = a ;  and suppose that,  except at  x ~ c t ,  ](x) is continuous in the interval 

(a, A), where a < a < A. Then CAUOHY'S principal value 

A 

P j ) ( ~ ) d x  

a 

exists; but  / (x)  has no integral in any established sense from a to a or from a 

to A. We shall, however, write 

~ m 8  

a t% 

A A 

P f /(x)dx=-lim { f  /(x)dx + C log 
a a+e 

and it is clear that,  with these conventions, we have 

a 4 A 

P f t(x)d~ + Pj l(x)dz---P f /(x)d:~. 
a c~ r 

I t  is clear, moreover, tha t  a similar convention may be applied to complex 

integrals such as those which we are considering; thus 

i H  

P j "e *'~a*' cos 2 z z~ O 

o 

zr cot ~z dz 



200 G. H. Hardy and J. E. Littlewood. 

(taken along the line o, i l l )  is to be interpreted as meaning 

i H  (/ lim e a~/-" 
$"""~ 0 

cos 2z~rO r cot ~rz dz + log,}.  

We may now write (2. 1 2 1 1 )  in the form 

(2. 1212) ~ 'e~ '~ i*cos2vzO= I. - -  e * ~ c o s 2 z ~ O c o t ~ z d z ,  
--I 2 $ 

o C~ 

where now C, and C 2 are each supposed to be described starting from o. In 

the first of these two integrals we write 

and in the second 

2i 
c o t  f/:r ~ $ + $2#~i__  I , 

2i 
COt ~ Z  ~ ~ ~ - -  e _ 2 ~ i  ~ I " 

The two constant  terms in these expressions give rise to integrals which may be 

taken along the real axis from o to n, instead of along C~ and C~; uniting and 

transposing these terms we obtain 

" j :  
0 0 

where 

cos 2z~rOdz= I~ + 12, 

f e  ~ / ~  COS 2 z z 0 , 
I~ = F~ e--:z,.i----- ~ az, 

We now write 

s  cos 2 z ~ O .  
12= r ~ -d;-~--7 az. 

/ 
O~ 

e- -2svd__ i 

e2ku~i 

I ~ ~2x~i 

in I1, and 
e-- 2ka~i 

I e _ 2 t ~  + e _ ~ i  + . . .  + e _ S ( b _ D ~  i + e - ~  
e2 ~ i _ _  I I -- 
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in I2. If we observe that  

; s zix + 2 ~,z ~i cos 2 z ~vO d z + / e *2 aix-~'zzl 
c~ 

cos 2zzOdz 

n 

2 r e  z~ix  COS 2 ~ Z ~  COS 2 Z ~ : O  dz t  

0 

we see that  (r I213) may  be transformed into 

n 

(2. 1214) ~ ' e ~ ' ~ e o s  - - f  
0 

where 

2vzO--2 ~ | e  "~'a~ cos 2 vzz  cos 2z~O dz = K, + K2, 
7 ' d  0 

e2kzzl , 
K1 = P e ~ i~  cos 2z~Oi__e~  dz, 

0 1  

f e-2 ]~ai K2 ---- P e ~ eos 2 z ~ O dz.  
�9 I - -  e -2*'~I 

C~ 

2. 122. We shall now suppose that  H-- .oo ,  so that  the parts of C, and 

C2 which are parallel to the axis of x g o  off to infinity. If z - - - -~+i~,  and ~ 

is large and positive, the modulus of the subject of integration in /171 is very 
nearly equal to 

Iexp { - - 2 ~ ( k  +~x--O) } 

while if z----~--i~, and ~] is again large and positive, the modulus of the sub- 

ject  of integration in K2 is very nearly equal to 

Iexp  {~2~v~(k--~x--O) } 

From this it follows immediately that,  if 

(2. i22I) k > n x  + 0, 

the contributions to K, and K2 of the parts of C1 and G2 which we are causing 
to tend to infinity will tend to zero. 

Aefa rttatheraatica. 37. Imprim~ le 21 avril 191~. 26 
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We are now left with two integrals each of which is composed of two 

parts taken along rectilinear contours, and we may write 

K 1 

im n+ioa 

- - P  e ~ cos 2 z z O - -  dz  
I - -  e 2K~i 

o n 

- - i ~  n--iao 

K2---- P - - P  e "~"~ cos 2 z ~ O i _ e _ ~ l . ~  i dz .  

0 n 

Of the four rectilinear integrals thus obtained two, viz. the two taken along 

the imaginary axis, cancel one another. In the other two we write 

z = n  + i$, z ~ - n - - i t  

respectively, and then unite the two into a single integral with respect to t; 

and when we substitute the result in (2. 1214) we obtain 

n 
it k--1 "' 

2 ;  __ J ea'aix c~ 2 v z z  c~ 2 z z O  dz ~ K ,  e ~ ' ~ v  COS 2 V a:  0 - -  2 ~ i  

0 0 0 

where 

co 
f "  o--2b:~t 

K = i l e  € ~ ( n - - i t ) z O - -  e -2nx:~t cos 2(n + i t ) z O }  d t .  , ]  I - -  e - 2 ~ t  { e2r~at  COS 2 

2. 123. We now write 

K = i  = i  + i -----K I + K"" 
tY ~2 �9 
o o 1 

and we proceed to show that  

(2. 1231 ) 

uniformly in respect to 0, 

s tant  A such tha t  
by which we imply tha t  there is an absolute con- 
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A 
I g ' l <  ~ x  

203 

for o < x < i ,  0 < 0 < i ,  all values of n, and all values of k subject to the in- 
equality (2. 122I). 

We may plainly ignore the factor i e '~'~ in K. The factor in curly brack- 
ets is equal to 

2 (cos 2 n ~ 0  cosh 2t~0  sinh 2 n x z t  + i sin 2n~0  sinh 2tzO eosh 2 n x z t ) .  

The factor e - ~ i ~  we separate into its real and imaginary parts. When we 
multiply these two factors together our integral splits up into four, of which 
the integral 

c ~  

e_2k:~t 
(2. 1232) cos t2~vx eosh 2t~vO sinh 2nx~vt e_~= t dt 

�9 I - -  

1 

is typical; and it will be sufficient to consider this integral, the same arguments 
applying to all four. 

The function 1 / ( 1 - - e  -2~t) decreases steadily as t increases from 1 to ~ .  
Hence, by the second mean value theorem, the integral (2. 1232) may be writ- 
ten in the form 

(2. 1233) 

T 

/ A cos tSzvx cosh 2t~O sinh 2 n x z t  e-~k~tdt, 

1 

where A (as always in this par t  of the paper) denotes an absolute numerical 
constant, and T > z. In (2. 2233) we replace the hyperbolic functions by their 
expressions in terms of exponentials; and the integral then splits up into four, 
of which we need only consider 

(2. 1234 ) 

T 

A ['cos t2~vx e -~t(k-nx-#) dr, 
,J 
1 

the arguments which we apply to this integral applying a/ort ior i  to the rest. 
The integral (2. 1234) may, by another application of the second mean value 
theorem, be transformed into 
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T, 

(z. 1235) afcos tll2KX d~, I ( I  < T '  < T ) .  

1 

Now, if T and T' are any  positive numbers whatever, we have 

T' T'V~ / c o s t ' z x d t ~ - ~ / c o s z u ' d u ;  
r ~  

and the integral last written is less in absolute value than an absolute constant. 

We have therefore proved the equation (2. I23I), and it follows that  

n 

(2. 1236) ~'er 
! 

0 

2 ~ 0 - - 2  ~ l e ~'~i~ c o s  2 ~ T z  cos 2z~zO dz ~ KW + 0 ~ -~//~. 
O'o d 

2. I 2  4.  The next step in the proof consists in showing that, in the equation 

(2. I236), k may be regarded as capable of variation to an extent  O(z) on either 
side, that  is to say tha t  we may replace k by any other integer k w lying between 

k - - A  and k + A, without affecting the t ru th  of the equation. That  this is 
so if k is increased is obvious from what precedes, as the inequality (2. i22 i ) i s  

still satisfied; but when k is decreased an independent proof is required. 
We consider separately the effects of such a variation on the two sides of 

the equation (2. I236). As regards the left haud side, it is plain tha t  our 

assertion will be true if 

0 

uniformly for all values of n and a, and therefore certainly true if 

n 

0 

i The  A in this  formula is of  course not  the  same numerica l  constant  as before.  
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But  
n n 

r ~- e ~a~lx z~x(z+alx) 2 
( /  

o o 

n+alx 

-~- e -~ia~t z / e  z2aix d z  

a l ar 

nl"~+atV~ 
'~- I--~--e-~ia~lXVx / eaiu~ du' 

aIV~ 

and this expression is evidently of the form desired. 

We have now to consider the effect of a variation of k on the right hand 

side of (2. I236). The difference produced by such a variation is plainly of 
the form 

1 
O J "  [ e-2k~t - -  e--2k'~t I i e2~tlax+ol d~ 

I -- ~--2~rt 
0 

1 

~- Ore  -2~t(k-nz-O) dt 
o 

V 7 

Thus finally we may regard the k which occurs on either side of (2. I236) as 
capable of variation to an extent  0 (i). 

2. 125. We proceed now to replace the integrals which occur on the left 

hand side of (2. 1236) by  integrals over the range (o, ~ ) .  We write 

0 0 n 

Now consider the integral 

/ e z~zlx COS 2 ~ Z  COS 2 Z ~ O  ~ Z ,  

taken round the rectangular contour whose angular points are n, n + N,  
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n + N + i H ,  n + i H .  

a constant  multiple of 

G. H. Hardy and J. E. Littlewood. 

The modulus of the subject  of integration is less than 

e--2z~(~ z-~-O) ; 

and from this it is easily deduced that,  if 

v + O < n x ,  

the contributions of the sides ( n + N ,  n + z V + i H )  and ( n + N + i H ,  n + i H )  

tend to zero as N and H tend to infinity, and so that  the second integral 

which occurs in our expression for Iv may be replaced by one taken along the 

line (n, n + i Qo). In order that  this transformation may be legitimate for 

= o, I,..., ]r we must have 

(2.  I 2 ~ I )  k ' < n z +  i - - 0 .  

I t  is important  to observe that  this condition and the condition (2. 1221) 

cannot always be satisfied with k =  kt; but  that  the difference between the least 

k such that  k > n x + O  and the greatest /~ such that  k r < n x +  I - - 0  cannot be 

greater than 1.1 

On the assumption that  (2. i25i)  is satisfied, we have 

n+i~ k'--I / 
2 ~ , I " =  e"~i"cos 2z~O sm (2k'--I)~Zdz 

" sin ~z 
0 n 

? / 

/ cos 2 (n + it)~:0 sinh (2 k ' - - i ) ~ t  dt 
sinh ~ t 

= L ,  

say; and so, bearing in mind the results of the analysis of 2. 124, 

(2. 1252) 
n k*--I re 

2:ev$~i~ COS 2,f~O--2Z. j e ' i "  cos  2,~r~cos2,:Tg/Odz 
0 o o 

= K'- -L + 0 V -~. 

* I t  is t he se  fac ts  w h i c h  r e n d e r  neces sa ry  the  ana lys i s  of 2. 124. 
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2. I26. We next write 

|  

L = / = / +  =L'+L", 
o o 1 

and we proceed to show that  

L"-~O V I ,  
X 

so tha t  b may be replaced by L r in (2. I252). The argument  is practically the 
same as that  of 2. 123. We have to consider a number of integrals of which 

(2. 1261) 

o o  

, feos  
1 

t~zx cosh 2t~O e - 2 n x n t -  
sinh (2k r -  i ) ~ t d t  

sinh ~ t  

is typical. Writing 2 e - ~ / ( I - - e - 2 ~  0 for cosech ~ t ,  observing that  the factor 

I / ( i - - e - 2 ~ 0  is monotonic, and using the second mean value theorem as in 

2. 123, we arrive at  the result desired. 
We may accordingly replace L by L r in (2. 1252). And our next step is 

to show tha t  the k r which occurs in this modified form of (2. 1252) may  be 
regarded as capable of variation to an extent  0 (I). Here again our analysis is 

practically the same as some of our previous work (in 2. I24), and there is 
therefore no need to insist on its details. We may  now write (2. 1252)in 
the form 

(2. 1262) 
n! k--1 ; 

2 eV'~ cOS 2 ~/~:0-- 2 2 e z'aiz cos 2 r~Tz Cos 2 Z~TO dz 
f 0 ~ 

where 

(2. I263) 
o 

e--2k~t 
i_e_2, t {e e '~t  cos 2(n --it) ~vO--e -2n'~t cos 2(n + it)zO} dr, 

1 
= ifeZiX{n~--t2)--2sxzt 

0 

cos 2 (n + it)~0 sinh (2k- -  I) ~tdt; 
sinh z~t 
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and, as the k's which occur in these equations may all be regarded as capable 

of variation to an extent  

between k and k'. 

2. 127. Again 

0 ( I ) ,  there is no longer any  reason to distinguish 

1 
[~e~rk~{nt--tt) 

(2. 1271) ,~--  ~ = ~ i J  si--~-~ ~ O dr, 
0 

where 

Q ~-  e - ( 2k -1 )n t  { e  2nzat  c o s  2 (r t  - -  i t )  ~ 0  - e -2nz '~t  c o s  2 (r t  -4- i t )  ~ / 9 }  

- -  2 e -2'~'a sinh (2k - -  I) zrt cos 2 (n + it)~rO 

= 2 cos 2nzrO cosh 2triO s inh  ( 2 n x - - 2 k  + x)~ t  

+ 2i sin 2n~O sinh 2t~rO eosh ( 2 n x - - 2 k  + i) err. 

We select the value of k for which 

I < 2 n x - - 2 k  + I < I ;  

and the integral (2. IZ7I) splits up into two, of which it will be sufficient to 
consider the first, viz. 

1 

(2. 1272) i cos 2 n r c O / e  ~zc"~-a) cosh 2t~rO 

0 

s inh ( 2 n z - -  2k + i ) n td t "  
sinh ~ t  

This is of the form 

(2. 1273 ) 

1 

0 (x)j'e -p'~ 
0 

cosh 2t~r0 sinh aZCtdt 
sm h zrt ' 

where a ~ 1 2 n z - - 2 k  + I]. I t  will be enough to consider the real part  of this 
integral, the imaginary par t  being amenable to similar t reatment .  

The function 

sinh a~rt 
sinh ~rt 

(o<a<l) 

decreases steadily from a as t increases from zero. Hence 
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1 

COS 

0 

sinh a z t  dt = a / c o s  ~ x t  ~ cosh 2tzO sinh ~ t  
0 

z x t  n cosh 2t~O dt 

a cosh 2v~rO/cos z x t  ~ dr, 

v and 4' denoting positive numbers less than i .  Since o < a < I ,  o < 0 < I ,  the 
first factor here is of the form 0(1);  and the second is (ef. 2. 123) of the form 

0 V I .  Hence finally 

~ - - ~  = 0  V ' ~ ,  

and so the left hand side of (2. 1262) is itself of the form 0 V I .  
~g 

2. 128. But  

e ' ' ~  cos 2v~z cos 2z~O dz = 2 x cos - - .  
0 

2v~O t 
:V 

Substituting this expression in (2. 1262), and observing that  k may 

supposed to be the integral part  of nx,  we obtain 

Theorem 2. 128 I /  o < x < i ,  o < 0 < i ,  then 

now be 

2 e  v~zix c o s  2 ~'~0 -- V e -aiO21x e -vezilx c o s  - -  ~ O , 

1 / 7 ,  
where 0 V L denotes a/unct ion o/ n,  x, and 0 which is in absolute value less 

V than a constant multiple o/ ~. 

We have omitted the lower limits 
are now plainly irrelevant. 

We can also prove, by arguments 

w167 2. 12I et seq., 

of summation, and the dashes, which 

of the same character as those of 

I LINDEL(iF, ~. O., p .  44.  

Aeta math~matica. 87. Iml)rimd le 22 avril  1914. 27  
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Theorem 2. 1281. Under similar conditions 

V " o V  I ,~ I 1~, . i e_,~iO~tx ~ ( _  i),, e__~=r cos2VZO I ~ e  ~'-~1 ='Zoos (2v- -  I ) ~ 0 - -  x ~ ' 

V ~ i  . " I " ( 2 , . - I ) ~ o V ~ = . , .  (-- I)" e "=`z cos 2 w r O - -  e -='O'lx z.~, ( ' -~ )  cos 0 �9 

I t  will hardly be necessary for us to exhibit any details of the proofs, 

and we will only remark tha t  the integral 

f ~#r COS 2Z:rf, O COt ~Z'Z d z  

of 2. 121 is replaced by one or other of the integrals 

f f e"=~ cos 2z~rO tan ~rz dz ,  e"=iz cos 2z~vO cosec z~z dz. 

I t  is on the transformation formulae contained in Theorems 2. 128 and 2. 1281 

that  all the results of this part  of the paper will depend. 

2. 13. We have the following system of formulae: 

s~(z + ~, o)= VT s'.,(x, o), 

(2. I3I) 

s ~ ! x + i ,  0 )=  

s.' (x + i ,  O) = 

s:,(--x, 0 ) =  

s~(--x, 0 )=  

s'(--x,  0 ) =  

~ X  

8" (x, o) = V ~- e-'i~ ~ s~, 

s;, (x, O) = V ~- e-"~~ ~ 8~ 
x 

s~(x, o), 

88, (x, 0), 

~,(x, 0), 

s'. (z, 0), 

- '  (x, O) 8n 

I ,  

+ o V  I 

- - ~ , ~  + o  x" 
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Here s~ denotes the conjugate of s~. I t  will be convenient in what follows to 

V write 0 x in the equivalent form 

O(i) 
V~ 

Now suppose that  x is expressed in the form of a simple continued fraction 

(2. 132) I + I +  I 
at a2 aa 

and write 

I I 
(2. I33)  x X 1 �9 . . 

a t  + Xl'  aa + a~2' 

so tha t  

o [o] o, 
0 , = ~ - -  ~ , 0 2 =  , . . . ,  

o < x t < I ,  o<8,.  < I 

for all values of r. Further,  let ~ denote an unspecified index chosen from 

the numbers 2, 3, 4; and let w denote a number whose modulus is uni ty but 

whose exact value will vary from equation to equation. 

This being so, we have 

s~(x, - ~---* ( ~) o ( i )  

Vx " ' ( - - a t - - x l '  0,) + 0( I )  
V~ 

_ ~Os~ ~ O( i )  
Vz  '= ( -  x,,  o,) + V-~ 

- 0 ( i )  
- -  - ~ '  0,) - - -  V~ 8.. (.,, + V~ 

z, (x,, 0~) in the same way, we obtain Transforming snx 

*, . o=)+0 { ~ g--~,} 
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Repeating the argument, we find 

8~(x, 0) = (0 

V x  T, 1 .  . . Xv--I 
z. " x 0~) 8 ~ z x l . . , X v _ l (  v,  

(2. 134) 

I +o(i) i i } 
+ ~/~7~, + "'" + V ~ , ,  . . . ~ , _ ~  

LO 

V2~ ~ 1 . . . X~--IX~ 

~" (x,+1, 0~+1) 8 ravx I...  x~- - I  xv  

Now 

I 1 
+ o ( 1 )  V g  + V ~ g  + . . .  + 

I 
X r  < - - '  

- -  I -{-" ; g r + l  

V~:~ X 1 I . Xv---1 Tr }" 

(2. 135) x ,  xr+l < 1 x,.+1 < I 
-~ Xr+l 2 '  

and so x x t . . . X r ' - - , o  as r - *  ~ .  We may therefore define v by the inequalities 

(2. 136 ) 9~X I... Xv--lX~< I < 9~i... ~v---l. 

This being so, the first of the equations (2. I34) gives 

(z. 137) 

8 ~ ( x ,  O ) = O ( n V ~ % ,  . . . x~; )  

and the second gives 

(2. 137~) s~ (x, o) = 0 (x) 

{ ~  I 1 __}, 
+0(i) I + ~ x V ~ x  + . .  . + V x  x~ . . . x ~ _  ~ 

I I }. 
+ ~ + " ' + V x x , . :  x,-lx, 

(x, 0), the further  s tudy of which depends We have thus two inequalities for s n 

merely on an analysis of the continued fraction (2. I32). These inequalities, 

<E however, may be simplified. For, by (2. 135), xrx~+l and so 
2 '  

I I I 

~ + ~ , ,  + "" + v ~ , . . .  ~,_, 

Vx-~ 1 . . . xv_l 
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I ( I ~- I ~" ) 
- _ _  I + I +  + + - + - - + - . .  

<V~-~l x~-i V2 ~ 2 2 

K < 
vxx, . . .  x~,_~ 

Hence (2. I37) may be replaced by 
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(2. I38) s,~,(~, o ) - - o  ( n V ~ ; x , . . - x ~ j )  + o 

and similarly (2. I37I ) may be replaced by 

V x x  1 . . . Xr 

(2. I38I ) S ~ ( X ,  ~ ) = 0  I 
Vx Xt , . .  x~-xx~" 

2. I4. From (2. I38) and (2. I38I) we can very easily deduce the principal 
results of this part  of the paper. 

Theorem 2. 14. We have 

s .  (x ,  O) = o (n)  

/or any irrational x, and uni/ormly /or all values o/ O. 

we have 

s~ - -  o (n) 

I n  particular, i / 0  = o, 

Since n x x ,  . . . x , - l ~ I ,  the second term on the right hand side of (2. I38) 

is o[ the form O(Vn). And since x x~ . . . x ,_ l - -*o  as v --~oo, the first is of the 

form o (n). Thus the theorem is proved. 

Theorem 2. 141. I /  the partial quotients a~ in the expression of x as a con- 

tinued /raction are limited, then 

s . ( x ,  o) = o (V~n),  

uni/ormly in respect to O; and in particular 

s .=O(V~).  

These results hold, /or example, when x is any quadratic surd, pure or mixed. 
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For,  if a ,  < K ,  x~ lies be tween  

and  so 

I K 
K '  K + I  

xx~. . . x , _ l x , >  zx~. .  .X,_l/  K > I / (nK) .  

Using (2. z38z), the  resul t  of the  theorem follows. 

T h e o r e m  2. 142. I ]  a .  = O(n0),  then 

{1 ,} 
s,,(x, O)= 0 h i ( l o g  n) ~~ . 

I 
T h e o r e m  2. 143. I[ a , ,=O(e~) ,  where • < 2  log 2, then 

(1  o ~) 
s,,(x, O) 0 n ~ + ~  + 

]or any positive t~tlue o/ e. 
F o r  

. ,  < i  1 
X t . ~ < X 2~ 1 . . .  ligv---1 < 2 - -  ~/t  

where tt = v or tt = v - - I ,  accord ing  as v is even  or odd. Hence  

1 

n > 2 ~ ,  

B u t  

(2 + *) log n 
v < log 2 

X X  1 . . .  X~, > H ~ f - ' o X X  t . �9 �9 X ~ , - - 1 ,  

where H is a constant ,  and  so 

I 0(~, ~' Vn)  = O{n ~ (log n)~~ �9 

This proves  Theo rem 2. 142. Similarly,  unde r  the condi t ions  of Th eo rem  2. 143, 

w e  h a v e  

_ 1  . + 

i = O(n 9" 
W x ~ l  �9 * - x2, 
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2. 15. Suppose  now t h a t  ~0(n) is a 

(L-funct ion)  of n such t h a t  the series 

(2. 151) ~ i 
r  
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logar i thmico-exponent ia l  func t ion  i 

is, to  pu t  it  roughly,  near  the  b o u n d a r y  be tween convergence  and  divergence,  

so t ha t  the  increase of cp(n) is near  to  t h a t  of n .  Then,  arguing as in 2. x4, 

we see tha t ,  if a n ~ O ( e f ( n ) ) ,  

H 
X ~ 1 . . .  X v  > ~ - 2 - 7 - - 7 1 1 1  �9 . �9 X v - - 1 ,  ~p (v) 

I =OVncp(v )  = O V n g ( l o g n ) .  
V x x l .  . �9 x~ 

Now it  has been  p roved  b y  •OREL and BEI~NSTEII~ ~ t h a t  the  set of values of 

x for which 

a ,  = 0 Qp (n)} 

is of measure  zero when the series (2. 151) is d ivergent ,  and of measure  un i ty  

when the  series is convergent .  Hence  we obta in  

I /  el(n) is a logarithmico-exponential /unction o/ n such Theorem 2. 15. 
that 

is convergent, then 

i 
~ o ( n )  

/or almost all values o/ x. 

s .  = 0 V n 9 (iog n) 

In  particular, i / ~  is positive, then 

} 
/or almost all values el x. 

I t  was this  last  resul t  to  which reference was made  in 2. z i .  

1 HARDY, Orders of Infinity, p. 17. 
See BOREL, l~endiconti di Palermo, Voh 27, p. 247, and Math. Annalen, u 72, p. 578; 

BEBNSTEIN, Math. Annalen, Vol. 7 I, p. 417 and Vol. 72, p. 585. 
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2. 16. Suppose that  a series ~ n  possesses the property that  

8n = u ,  + u2 + . . .  + ~n - -  0 ( ~0 ( n ) } ,  

~0 being a function which tends steadily to infinity with n; and let (p be a 

function which tends steadily to zero as n ~  oo, and satisfies the condition that  

~ ( n )  

is convergent. Then it follows immediately, by an elementary application of 

ABEL'S transformation, tha t  the series 

~ (n) ~-~ un 

is convergent. This obvious remark may  be utilised to deduce a number of 

corollaries from some of our theorems. To give one instance only, it follows 

from Theorem 2. 15 that  the series 

is convergent for almost all values of x, and, for any particular x, uniformly 

with respect to 0. 

A rather more subtle deduction can he made from Theorem 2 .14 .  I t  does 

not follow that, because 8n = o (n) the series ~ u~ , ~ - i s  convergent;  and indeed 

we shall see later that  it is not true tha t  (e. g.) the series 

(2. 161) ~ en-~- ~ 

is convergent for all irrational values of x. But  it is true that, if # , ,=o (n ) ,  

the series ~ u_~ is either convergent or not summable by  any of CES~kRO'S means~; 
n 

and this conclusion accordingly holds of the series (2. 16I). Similarly, if x is 

such that  a ~  O(i) ,  the series 

V~ 

1 HARDY and LITTLEWOOD, PrOO. Lond. Math. Soe., Vol. i I, p. 433. 
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possesses the same property.  We shall see later that  it is the second alternative 

which is true. 

2. 17. So far we have dealt with series in which the parameter  8 occurs 

in a cosine cos 2 n z 0  or cos (2n - - i )~v0 .  I t  is naturally suggested that  similar 

results should hold for the corresponding series involving sin 2nzO and 

sin (2 n - - i ) z 0 ;  and this is in fact the case. These series are, from the point  of 

view of the theory of functions, of a less elementary character:  they arc not 

limiting forms of series which occur in the theory of elliptic functions. But  it 

is not difficult to make the necessary modifications in our analysis. 

We write 
1 

a~(x, 0 ) =  zhe sin ( 2 • - - I ) : 7 / ; 0  

(2. 171 ) a~(x, O)= ~ e  ~ i z  sin 2vzO 

a~(x, O) = ~ (--  i)~ e ~ix sin 2vzO 

Theorem 2. 17. I] o < x < i ,  o < 0 < i ,  then 

,~ - ~  + 0  , 
~, a7 

8 X I, o V  I ' 

V i) V ar (x, 0) = e - ~ a l  ~ a ~  L ,  + 0 

unilormly in respect to O. 

Let  us consider, for example, 

from the integral 
the second of these equations. 

and we arrive, 

at  the equation 

(2. 172) e ~ sin 2 v~O ~ 2 e ~i~ 
o 

Avta mathamatica. 37. Imprirn6 1o 22 avril 1914. 

We start  

f e ~ix sin 2zzeO z cot z z  dz, 

by  arguments practically the same as those of 2, i2 i - -2 .  127, 

1 / ; -  
cos 2V~Z sin 2z~O dz=OI/"  x .  

28 
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The only substantial differences between the reasoning required for the proof of 

this equation and those which we used before lie in the facts, first that  some 

of the signs of the principal value which we then used are now unnecessary, 

and secondly that  the two integrals along the axis of imaginaries no longer 

cancel one another. These integrals, however, are of the form 

e_2ka4 
e -e~e  sinh 2 t zO  dt ,  

1 - -  e -2wt 
o 

and are easily seen to be small when k is large. They are accordingly without 

importance in our argument. 

The integrals which occur in (2. I72 ), unlike the corresponding cosine 

integrals, cannot be evaluated in finite form. We have, however, 

(2. 173) 

where 

(2. 174) 

ot~ 

2 / s  z2zi~ COS 
o 

2 v ~ z  sin2z~:0 dz----I(v + O)--  l ( v - -O) ,  

I (A) =) 'e  "~i" sin 2 z z A  dz.  

o 

Now let us consider the integral 

f e z~iz+2*nIA dz  (A  > o) 

taken round the contour defined by  the positive halves of the axes and a circle 

of radius R. I t  is easy to show, by  a type  of argument familiar in the theory 

of contour integration, that  the contribution of the curved part  of the contour 

tends to zero as R--* o~. Hence we deduce 

/ f e z2alx+2r~iA dz  ~ ~ e -t~nix-2tnA dl;  

o o 

and so 
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1 (A) z 5 fe~,~ix (e2,~a__ cos 2zz~A) dz i j  
0 

c o  

Again, it is easy to show tha t  

cos 2zzcA dz + 

o o  

; e -t2~i~-2t~A d t. 

0 

0o  

0 

where fl = I/2~r. Hence 

OO 

I (v + 0) - -  I (v ~ O) = i / e  z~iz (cos 2 (v + O) ~rz - -  cos 2 (v - -  O) zcz} dz 

0 

+ # fl + o I l l  (2.175) v + O  v----O \!-~ 

From (2. ITI), (2. 173), and (2. I75) we at  once deduce the second equation of 

Theorem 2. 17; and the others may be established similarly. 

2. z8. From Theorem 2. 17 follow the analogues for the sums ~ of these 

already established for the sums s. Thus we have 

Theorems 2. 18, 2. 181--4. The results established in Theorems 2. I4, 

2. I4I--3,  2. I5, /or series involving cosines, are true also /or the corresponding 
series involving sines. 

2. I9. The preceding results have a very interesting application to the 

theory of TAYLOR'S series. 

Let  

be a power series whose radius of convergence is unity, and let, as usual, M (r) 

denote the maximum of If] along a circle of radius r less than i .  Further,  

suppose tha t  

M (r) = 0 (I  - -  r ) - %  
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and let 

Then it is known tha t  ~ 

G. H. Hardy and J. E. Littlewood. 

g (r) = l ad  r " .  

1 

g (r) - -  0 (z  - -  r)  - a - ~ .  

Further,  it is known that  the number ~ occurring in the last formula cannot 
2 

be replaced by any smaller number, tha t  is to say that,  if ~ is any positive 

number, a function [(z) can be found such tha t  the difference between the 

orders of g(r) and M(r) is s  But  so far as we are aware, no example 
2 

has been given of a function [(z) such tha t  the orders of g(r) and M(r)  differ 

I 
by as much as - .  We are now in a position to supply such an example. 

2 

Let 

where ~ is an irrational of the type considered in Theorem 2. 141, so that  the 

partial quotients in its expression as a continued fraction are limited. Then, if 

z =  re 2"iO, we have, by Theorems 2. 141 and 2. 181, 

n 

8 .  =  ..io = 0 ( V g ) ,  

uniformly in O; and from this it follows tha t  

V 
. 

/ (z)  = / ( r e  ~iO) = ~.~ r" e '~'at+2"~iO = 0 [ , 
I ~ r  

uniformly in 0. Hence 

while 

M(r) 0 V I 
I - - r  

I 

t HXRDY, Quarterly Journal, Vol. 44, p. 147. 
2 HARDY, I C., p. 156. 
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Thus the orders of g(r) and M(r) differ by exactly i .  
2 

of /(z), the function 

( 

If we consider, instead 

we obtain in the same way  an example of a function such tha t  

M ( r ) = O ( i - - r ) - : %  

g (r) l 
(I "--- r) a+~ 

These examples show tha t  the equation 

M (r) = 0 ( i  - -  r ) - ~  

does not involve 

(a > o) 

1 
g ( r ) = o ( I - - r )  ; 

a possibility which had before remained open. t 

2. x 9. Theorems 2. 14 etc. also enable us to make a number of interesting 

inferences as to the behaviour of the modular functions 

as q tends along a radius vector s to an irrational place e~ii on the circle of con- 

vergence. Thus from Theorem 2. 14 we can easly deduce that,  if [(q) denotes 

any one of these functions, then 

1 

l(q)=o(z--lql) ~; 

and from Theorem 2. 141 that,  if ~ is an irrational of the class there considered, 

then 
1 

/(q) = o (z  - - Iq l )  - ~ .  

1 HAIIDY, l. C., p. 150. 
Or along any 'regular pa th '  which  does not  touch the  circle o f  convergence.  
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These results are, however, more easily proved by a more direct method, which 

enables us at  the same time to assign certain lower limits for the magnitude of 

[/(q)[, and to show that  Theorems 2. 14 et seq are in a certain sense the best 

possible of their kind. I t  is to the development of this method, which depends 

on a direct use of the ordinary formulae for the linear transformation of the 

O-functions, that  the greater par t  of the rest of the paper will be devoted. 

z .  z .  - -  ~ T h e o r e m s .  

2. 20. We have occupied ourselves, so far, with the determination of cer- 

tain upper limits for the magnitude of sums of the type  sn. Thus we proved 

that s~ = o (n) for any irrational x, and that  sn ~ O(Vn) for an important  class 

of such irrationals, including for example the class of quadratic surds. But  we 

have done nothing to show that  these results are the best of their kind that  

are true. The theorems which follow will show that  this is the case. 

We shall begin, however, b y  proving a theorem of a more elementary cha- 

racter which involves no appeal to the formulae of the transformation theory. 

Theorem 2. 20. Suppose that ~ (n) is a positive decreasing /unction o/ n, 

such that the series ~ T ( n )  is divergent. Then it is possible to /ind irrationals x 

such that the series 

r (n) 

is not convergent. The same is true o/ the series 

, 

and o/ the real and imaginary parts o] all these series. 
Consider, for example, the real part  of the first series. We shall suppose 

that,  among the convergents p~/q, to x, there are infinitely many of the form 

z/~/(4~t + r). Let  (q~) be a subsequence selected from the denominators of these 

convergents. We are clearly at l iberty to suppose that  the increase of a~+x, 

when compared with that  of any number which depends only on q, and the 

function q0, is as rapid as we please. 

We shall consider the sum 
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k.~a d 

Avqv-- I  

(n) cos  (n' = x) ,  
qv 

where A~ is an integer large compared with q~ but  small compared with q~,+l/q~,. 

We shall suppose A~ so chosen tha t  

(2 .  2 0 I )  

3 Avqv 

qv 

(2. 202) a~+l / A~ q~ --~ co ; 

and we shall show that ,  in these circumstances, IS~l tends to infinity with v, 
and hence tha t  the series 

(n) cos  (n'=x) 

cannot  converge. 
We may  consider, instead of S~, the sum 

Av qv --  1 

(2. 2o3) S'~ = ~ 0 ( n )  cos ( n ~ p , , / q ~ , ) .  
q.  

For  

Now 

. ~ q ~ - -  1 

S~,--S', ,  = ~ (f (n) (cos (n '  ~r x) - -  cos (n '  ~r p~ / q~) }. 
qv 

[n~ (x_~_~) [ = ~ n  2 < A~ q, 

where a'~+l is the complete quot ient  corresponding to the partial quot ient  a~+l, 
and q',+x ~ a'~+lq~ + q~-a; and from this it follows tha t  ]S,, - -  S',,[ is less than  a 
constant  multiple of 

and so of 

A ~  Avq~--I  

q'~+l 7, 9~ ), 

.zJ~ ~ t q~ / q ~+1 < A~* q~ / a++x. 

Thus ~%--SI, --. 0 as v - .  oo, in virtue of (2. 202). 
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We may write S', in the form 

Av--1  qv--1 

S ' , = ~  ~,~ q~(rq~ + s) cos (s~rp~/q~). 
r  s--O 

If in this sum we replace r s) by q~(rq,), the error introduced is not 

greater than 

Av--1 q~,--1 A~--I 

~ (~(rq~)--ef(rq~ + s)}<q~ ~ {q~(rq~)--ef[(r+ z)q~]} 
r--I s--O r 

<_ q,q~(q~). 

Thus, with an error not greater than q, cp(q~), and a [ortiori not greater than 

q, ef(i), we can replace S'~ by  

(2. 204) 

Now 

Av--1 qv--1  A~--I  

S ' , =  2 ef (r q~) 2 cos (s'zrp,/q~) = 4- V~ 2 (f (r q,). 
r--1 $--0 r--I 

A~ qv 

~(q,) + r  + ... + ~((A,--~)qJ > ~ ~ ~(n) 
2q~ 

a n d  s o  

Hence 

Avq~ 

> ~- ~ ~ (n)-  r (~), 
q~, 

A ~qv 
>_J_~ IS"d_ v~, ~ ~(~)- V~( , ) .  

q~ 

q,~(r)-~(,) q2~ ~ ~(n)-- Vq~' 
q~ 

which tends to infinity with v, in virtue of (2. 201). Hence S'~, and so S~, 

tends to infinity with v; which proves the theorem. 

In particular it is possible to find irrational values of x for which the series 

cos  (n'~x), 
n 

c o s  ( n ' ~ x )  
n l o g  n . . . . .  

are not  convergent. 
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2. zI. We shall find it convenient at this stage to introduce a new nora- 

We define the equation 

I = ~ (~o), 

where ep is a positive function of a variable, which may be integral or con- 

tinuous but which tends to a limit, as meaning tha t  there exists a constant H 

and a sequence of values of the variable, themselves tending to the limit in 
question, such that  

I l l>H9 

for each of these values. In other words, /=Y~(9) is the negation o/ 1 = o ( 9  ). 

In the notation of Messrs WHITEHEAD and RUSSELL we should write 

l = ~ ( 9 ) .  - - .  o o  (1 = o ( 9 ) ) .  D I .  

2. 22. We shall now prove the following theorems. 

Theorem 2. 22. I1 x is irrational, then 

s .  = ~ (v-~). 

Theorem 2. 221. 1/ fp is any positive /unction o / n ,  which tends to zero as 

n--.  oo, then it is possible to lind irrationals x such that 

s.=a(ng). 

These theorems show tha t  the equation 

sn = 0 ( ~ ) ,  

established by Theorem 2. 141 for a particular class of values of x, cannot pos- 

sibly be replaced by any better equation; and that  the equation 

s , ,  = o ( n )  

of Theorem 2. 14 is the best tha t  is true of all irrationals. We shall deduce 

these theorems from certain results concerning the elliptic modular functions. 

2. 23. We write 

= r e  ~ ( x > o ,  y ~ > o ,  o ( r < ~  I ) .  
.4da matheraatiea, aT. Imprim6 lo 23 avril 1914. 29 
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( .  1~t 
02(o, 3 ) = 2 ~ q ~ -  ~ / ,  

l 

0 s (0 ,  ~') = I + 2 ~.~ qo~, 
I 

"t9,(O, "L') = I + 2 ~ ( - - I )  n q n ' ,  
1 

We suppose tha t  p , , I q ,  is a convergent  to 

and  write 

I I x = - - +  -- + " - ,  
~t  a2 

p . - I  q .  - -  p , ,  q . - t  = ~, ,  = :i: I .  

We shall consider a l inear t ransformat ion  

where 

T c + d v  
= a  + b------~' 

a = p. ,  b - - - -  q.,  / (P- odd), 
c = ~. p . - l ,  d = - -  ~. q~-l, ! 

a = - -  p,~, b ~ q,,, ~ (p,, even).  

c = ~ ~,, p , , -1 ,  d -~ v,,~ q, , -1,  I 

In  ei ther  case a d - - b c  = ~7~-----x. 

Final ly,  if s is the complete quot ient  corresponding to a.+l ,  we write 

qrn+l ~ aln+l qn + qn-1, 
and  we take  

y ----- T / (q,, q ' .+~).  

When 

p. - - t  ia even,  p .  i s  o d d , .  

q . - 1  i s  odd, q,, is  even,  

we shall say tha t  the  convergents  P , , - 1 / q . - l ,  p , , / q n  form a sys tem of type  

o) 
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There  are six possible types  of sys tem,  viz. 

o)(o o)(o o)(o 
which we n u m b e r  

I ~ 2 ~ 3 ~ 4 ~ 5 ~ 6 ~ 

The  following r emark  is of f u n d am en ta l  impor tance  for our  p resen t  purpose.  

In  any continued /faction whatever, one or other o / the  systems 1% 2 ~ 5 ~ 6 ~ must 
occur infinitely o/ten. This  appears  f rom the  fact  t h a t  the  second column in 

cases 30 and  40 is O, O, and  t h a t  all cases in which the  first  co lumn is O, 0 

fall unde r  i ~ 20 , 5 ~ , or  6 ~ 

2. 24. In  cases i o, 20 , 50 , or 6 ~ we have  

OJo, ~ ) =  I ~9(o, T), 
wVa + bv 

where ~0 is an  8-th root  of un i ty ,  and  0 s tands  for  one or o the r  of 03 and  0 , .  1 

Now 

]a + b~]-~[p,~--qnx--q, , iy]-= ]+ l - - i ] _  V-i2 
~IT/.+I - - -  q tn+l  

Also, if Q = ,~ir, we have  

where  
IQI  = e -% 

[c + d~ I {d 
; ~ = I ( T ) = I / a + b ~ /  = I  

i } 
b(a + b~) 

Hence 

y q ln+l  I 
(I/q'.+l)3 + q~y 2 2q .  > 2 

1 

]Q] < e - 2 " <  i / ( 4 . 8 )  < .  21 ,  

2 IQI + 2 IQl '  + "" < 2 (. 2 i )  + 2 (. 2 i ) '  + . . .  

I < - ,  
2 

T. and M., Vol. 2, p. 262 (Table X L I I ) .  
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IO(o, T ) I ~ I I •  ~-. 
:2 

Consequent ly  
4 4 

IO~(o, ~)I>KVq'.+~ > K Vq,,q'.+x ~ Kg~/y. 

F r o m  this follows a t  once 

Theorem 2. 24. I [  q ~ re "~,  where z ia irratiqnal, then 

1 

a 8  r ~ I .  

F r o m  this  we can deduce  Theorem 2. 22 as a corol lary.  F o r  if we had 

. . = o ( ~ ) .  
the  series 

I + ~ 2 e n " l ~ r  n '  ~ 2 ~Afn r n 

1 

would sat isfy the  condi t ion  
4 

~o + u, + . . .  + u , = . o ( V ~ ) ,  

and  so we should have  

~ . ~ - =  ( ~ - r )  ]~(~. + ~, + ..- + ~, )r" 

4 

= 1I - r) ]~  o (V; )  r" 

- - T - .  

an equa t ion  which Theorem 2. 24 shows to  be un t rue .  

Again, let  qD(i/y) be a n y  func t ion  which tends  to zero wi th  St. We have  

[o , (o ,  ~)[ > K ~ ' , + 1  = K V I / q , y .  

We choose a va lue  of x such tha t ,  for  an inf in i ty  of values of n corresponding 

to one of the  favourable  cases 1% 2 ~ 5 ~ 6 ~ we have  

/ ~. > ~ (g. q'.+l); 
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this m a y  cer ta inly  be secured by  supposing t h a t  an+l is sufficiently large. We 

have then  

F r o m  this we deduce 

Theorem 2. 241. 

108(o, v)l> K V : / y c p ( : / y ) .  

Given any /unction qJ which tends to zero, it is possible to 

/ind irrational values o/ x such that 

+ 

1 

when q = r e  ~ and r ~ : .  
From this theorem Theorem 2. 221 follows as a corollary just  as Theorem 

2. 22 followed from Theorem 2. 24. 

2. 25. I t  is interest ing to consider a l i t t le more closely the case in which 

x is an  i rrat ional  for which a , ~  0 ( : ) .  

Le t  us, instead of considering only the special value : / ( q ,  q',~+a) of y,  

consider the range R~ defined by 

I I 
q,~+~ -< y <  q~ 

o r  

< y <  x 
q~q,,+l ~q,,q',,+l 

where ~ = q. / q' .+l. 

cover up the whole 
~ < ~ < : / ~ ,  we have 

I t  is clear tha t ,  for different  values of n,  these ranges 

range of var ia t ion of y .  I f  now y ~ ~ / (qn qr,,+l), so t h a t  

---- Y = ~ q',,+l. 
g 2 ~2 ( I / q ' a + l )  8 + q,*y : +  q, 

The least values of /t correspond to ~ ~ 7, i /~/;  and  then  

~, q'-'+l > I 
q~ + q'~+t 2 

Suppose first  t h a t  n corresponds to a sys tem of one of the types  :% 2 ~ 5 ~ 6 ~ 

Then the a rgument  of 2. 2 4 shows tha t  the absolute  value of 0 (0 ,  T) lies 

between i and  3_. If  on the  other  hand  n corresponds to a sys tem of t ype  3 0 
2 2 

or 4 ~ , we have 
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Now 

i 0~ (o, T). 
0 , ( o ,  v)  = ~Va~+ b~ 

1 
02(o, T ) = z Q 4  ( I + Q ' + Q 6 + - - . ) ,  

and the absolute value of the second factor lies between 3 and 5.  On the 
4 4 

other hand ~. lies between r, q ,+l  / (q[ + q'~+l) and q',,+l / 2 q,, and a/ortiori between 

and i (K + i), where K is the greatest value of a partial quotient. Hence 
2 2 
in this case also ]0(o, T) I lies between fixed positive limits. 

Thus, as the ranges R ,  fill up the whole range of variation of y, we can 

determine two constants Ht ,  H~ so tha t  

But 

H 1 H~ 
V~a + b~ I < los (o, v)l < V ~  + bv I" 

/ (  )/ V i 
and it is easy to see that  the second factor under the radical lies between fixed 

positive limits. Hence we obtain 

T h e o r e m  2 .  2 5 .  

r - .  x, then 

z. 26. In the 

- was independent of any hypothesis as to the continued fraction. 
z 

we have in any case 

H~ H, 

Via + by[ V (I / qtn§ z + q~ y* 

I /  q = r e  ~'~, the partial quotients to x being limited, and 

preceding discussion, the argument which showed tha t  

Hence 

as q n ~ .  Hence we obtain 

Theorem 2. 26. For any irrational value o/ x, we have 

The formula f : ~ ?  implies that [f[/T Lies between fixed positive Limits: see HARDY, 
Orders of lnfinity, pp. 2. 5. 
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�9 - 7 -  . 

1 

This resul t  m a y  of course also be p r o v e d  as a corol la ry  of T h e o r e m  2. 14, by  

reasoning analogous to t h a t  used in 2. 24 . B u t  the  di rect  p roof  is none  the 

less interest ing.  

2. 27. The  a r g u m e n t  used in 2. 24 , in deducing Theorem 2. 22 f rom Theo-  

rem 2. 24, m a y  be adap ted  so as to  p rove  an in teres t ing general isa t ion of the  

fo rmer  theorem.  Le t  us write,  as before  

i + 2 ~ e n ~ i ~ r , , ~ = ~ u , r  n, 
1 

and suppose t h a t  k! S~/n k is one of C•SARO'S means  associated wi th  the  series 

un. Then  

(2 

For  if this were  no t  so, we should have  

F r o m  (2. 27I) it  follows t h a t  the series ~ u n  canno t  become summable  (Ck) on 
1 

the  in t roduc t ion  of a convergence  fac to r  n - i .  1 And f rom this we deduce  

T h e o r e m  2. 27. The series 

cannot be convergent, or summable by any el C~sAl~O'S means, /or any irrational x. 
We need ha rd ly  r emark  t h a t  the  same is t rue  of 

n- a  e\ 2 ]  ) ~ ( - -  Z) n n - a  s 

r all these series converge  presque partout (2. I I ,  2. I6). On the  o ther  hand,  if a > - ,  
2 

x HARDY and LIT~rLEWOOD, l~rOC. Lend. Math. See., Vol. 11, p. 435. 
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2 .3 .  - -  An application to the  theory  of  tr igonometr ical  s e r i e s :  

2. 3o. The problem of f inding a t r igonometr ical  series whose coefficients 

tend  to zero, and  which converges,  if ever, only  for a set of values of the ar- 

g u m e n t  of measure  o, was first formula ted  by FATOU ~ and  first  solved by  

Lcsn~.  s The results  of the earlier pa r t  of this paper  have led us to a solution 

of FATOU'S problem which seems to us to have  considerable advan tages  over  

LUSlN'S. 

We can, in fact,  prove the following theorem, which is an extension of 

Theorem 2. 27. 

Theorem 2. 30. T h e  series  

n - ~ c ~  ( n 2 z x ) ,  2 n - a  sin ( n l z x ) ,  

where o ( a < I - ,  are never  convergent,  or s u m m a b l e  by a n y  o/ C~s,kRo's ~neans, /or  
2 

a n y  i rra t ional  value  e l  x .  ~ 

Considered s imply as solutions of FATou's  problem, these series have,  as 

agains t  LvsI~ 'S ,  two advantage~.  In  the first place, t hey  are series of a simple, 

na tura l ,  and  elegant  analy t ica l  form. In  the second place, the problem of con- 

vergence is solved complete ly ;  there  is no except ional  set of values of x for 

which d o u b t  remains.  6 

2. 3L We proceed to the  proof  of Theorem 2. 30. This theorem is a 

corollary of 

t An abstract of the contents of this part of the paper appeared, under the title ~Tri- 
gonometrical Series which Converge Nowhere or Ahnost Nowhere., in the Records o f  .Proceed- 
ings o f  the London Math. 8oe. for I3 Febr. I913. 

Acta Mathematica, Vol. 3o, p. 398. 
s Rendiconti di l~alermo, Vol. 32, p. 386. 
4 The cosine series converges when x is a rational of the form (2~+ I) / (2p+ I )or  

22/(4p+ 3), the sine series when x is a rational of the form (22+ I ) / (2p+I )  or 22/ (4p+ I) 
(see 2. el). In the abstract referred to above this part of the result (which is of course trivial) 
was stated incorrectly. 

It is only since this paper was written that we have become aware of a different solution 
given by H. STEINHAUS (Com~tes Rendus de la Soci~tJ Scientifiqu~ de Varsovie, 1912 , p. 225). 
STSINHXUS also solves the problem of convergence for his series completely; they converge, in 
fact, for no values of x. Thus in this respect our examples have no advantage over his; the 
advantage, if anywhere, is on his side. In respect of silnplicity etc. our examples have the 
advantage over his as much as over Lus]s's. 
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T h e o r e m  2. 31. I[  q = re ' ~ ,  where x is irrational, then, as r ~  z, both the 

real and the imaginary parts o[ 

oe 

1 

--S-- 
are ol the lorm S2 { ]/ /~_ r }. 

In fact ,  when once this theorem has been established, Theorem 2 . 3 0  follows 

f rom it in the same w a y  as Theorem 2. 29. followed from Theorem 2. 24. And 

the proof  of Theorem 2. 31 is in principle the  same as t ha t  of Theorem 2. 24, 
t hough  na tura l ly  more complicated.  

Our no ta t ion  will be  the  same as in 2. 23. We  shall p rove  first  that ,  in 

cases i ~ 2 ~ 5 ~ and 6 ~ we have 
1 

(i) [0, (o, *)l > K Y  -~,  

( i i )  [am 03(0, * ) - - ~ m ~ l > ~  

/or all integral values o/ m, K and ~ being positive constants, provided either 

(a) an+l > I 
or 

(fl) an+a= x, an+~'= I .  

We shall express this shor t ly  b y  saying tha t  z ~ z ~ 5 ~ 6 ~ are ]avourable cases, 
except  poss ib ly  when 

a ~ + l ~  z, an+2>I; 

a ' f avourab le  case '  being one in which we can p rove  the inequali t ies 

1 1 

IR{O.(o, v)}l>gy-i, II{O~(o, v))l>Ky-i. (2. 3 = )  

We have  

(2. 312) 

If a,+l > i ,  

O~ (o, ~) I 0 (o, T). 
to + b~= 

IQI = e-  nr 

and if a,,+t = z, a,~+~ = z, 

A e t a  ~,nathema~iea.  ~'Z. Imprim~ le 22 avri |  1914. 

I 
< e -~, < - - ;  

23 

30 
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q l n + l  

q,, 
I q- -1  3 

- -  = I + - -  + - - } - - ,  
~grn+2 q n  2 

In either case 

and so 

(2. 313) 

Again 

3 

IQl<e-i" < ! .  
I 0  

2IQ I + 2~Q[' + .-- < I ,  
4 

3, ] a m 3 ( o ,  T) J< arc tan ~ <--1 ~.  13(o, T)I>~ 4 I2 

a + b v  -~ 4- (~,~ + i ) /q~,~+l ,  

1 I 1 

(2. 314) la + b~l-~---2 4 Vq'.+~ >Ky -i ,  

(2. 315) am{ (a + 5T) -~ - /~ - -8~n~T  (rood. I ~)" 

From (2. 312), (2. 313), (2. 314), and (2. 315) it follows, first t ha t  the modulus 
1 

of 03 (o, v) is greater than a constant  mult iple of y -  i (as has been shown already 
under  z. 24), and secondly tha t  

(2. 316) am03(o ,  ~ r ) ~ - - ~  + ~-~ rood. ~ , 

/ } i 
where i z denotes a number  whose absolute value is less than  - - z .  

I 2  I 2  

am 3s(o,  ~) must  differ by at  least 

Hence 

- - B - - ~ - -  

8 I 2  2 4 

I from any multiple o f - z ;  and so the cases which we are considering are all 
2 

favourable. 
2. 32. We shall now prove that ,  as n--~ oo, favourable eases m u s t  recur in-  

[ ini tely o/ten. This will complete the proof of Theorem 2. 31. 
We represent the state of affairs, as regards the oddness or evenness of 

Pn and qn, in a way which will be made most  clear by an example. If every 
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p~ is odd, and q~ is al ternately odd and even, we represent the continued frac- 
tion diagrammatically in the form 

0 0 0 0 0  . . . .  

O E O E O  . . . .  

- -  and so in other cases. 

Suppose first that  0 0 occurs infinitely often above. Then one or other 
of the systems 

(o o), (o o) 

must  occur infinitely often. If the first, which is system 2% either favourable 
cases recur infinitely often, or the ensuing partial quotient is always x. We 

represent this state of affairs by the symbol 

~ 1 7 6  I 0 

In this ease our diagram continues 

0 0 I E  
O E O ;  

as (O E ) i s  case 5 e, either favourable cases recur continually, or the next and 

quotient is also I ,  so that  we have 

O E  o  1ol 0 

But then the first four letters represent a system of type  2 ~ followed by two 

quotients a,,+l-~z, a~+2=~I; and this i s a  favourable case. Thus if (0 E) recurs 

continually, favourable cases recur  continually. 

We consider next the result of supposing that  ( O ~)} continually. recurs 
$ 

This is ease 4 ~ If  the diagram continues with an 0 above, it must continue 
in the form 

O 0 0  
E O E  
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and then we can repeat our previous argument. 

it should continue 

OOE 
E O 0  

G. H. Hardy and J. E. Littlewood. 

The only alternative is tha t  

and as the last four letters form a system of type 6 ~ , the next quotient 

must (in the unfavourable case) be i.  Hence we obtain 

OOEIO. 
E O O E  

The next quotient must also be I;  and so the system of type 6 ~ gave in reality 

a favourable case. 

We have thus proved that,  whenever the succession OO recurs continually 

above, we obtain an infinity of favourable cases. I t  only remains to consider 

the hypothesis tha t  p~ is alternately odd and even. 

If we have O E  above, we have one or other of the systems ( O E),  (E El ;  

systems 5 ~ and 6 0 . Thus we have a favourable ease unless a n + l ~ I .  If the 

system is of type 5 0 , we are led to 

O O 

so tha t  the 

we are led to 

system is favourable. On the other hand, if it is of type 6 ~ 

~ I 
E O  

EO0" 

As the next numerator is even, the next denominator is odd. Hence the next 

sy s t emi s  (O oE), and we have seen tha t  this case must befavourable .  

We have now examined all possible hypotheses, and found that  they all 

involve the continual recurrence of favourable cases. Thus Theorem 2. 31 is 

established. 

2. 33. From this theorem we can, as was explained in 2. 3I,  deduce 

Theorem 2 .30  as a corollary. The latter theorem has an interesting consequence 

which we have not seen stated explicitly. 
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n-a COS (n' x z), ~ n-~ sin (n' x x), 
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where a < I -- ,  are not  ~OURIER~S 8er~e8. 
- - 2  

F o r  if t h e y  were t hey  would be summable  (C i)  a lmost  everywhere ,  by  a 

theorem of LEBESGUE. 1 I t  follows t h a t  t r igonomet r ica l  series exist,  such t h a t  

(la-I 2+~ + Ib.I TM) 

is conve rgen t  for  eve ry  posi t ive 5,~ which are no t  FOURIER'S series. This  

is of interest  for  the following reason. If  2 (a~ + b~) is convergent ,  the series 

is the  FOURIER'S series of a func t ion  whose square  is summable ,  a F u r t h e r  if 

p is any  odd integer ,  and  

is convergent ,  t hen  the  func t ion  has  its (I + p)-th power  summable .  4 I t  

would be na tu ra l  to  suppose t h a t  the  RIESZ-FISCH~,R Theorem might  be capable  

of extens ion in the opposi te  direct ion.  One might  expect ,  for  example ,  to f ind 

t ha t  a series for  which 

is conve rgen t  mus t  be the  FOURIV.R'S series of a f u n e t i o n w h o s e  ( x + ~ ) - t h  

power is summable. That  this is not  true has been shown by YounG, by 
means  of the series 

1 Math. Annalen, Vol. 61, p. 951. See also Lefons sur les sdries trigonomdtriques, p. 94 
where however the proof is inaccurate. A FOURIER'S series is in fact suinmable (C8), for any 
positive 3, almost everywhere (HARDY, -Proc. Lend. Math. Soc., Vol. i2 p. 365). That our series 

are not FOURIER'S series when a < ~-can in fact be inferred merely from their non-conver- 
2 

gence, since to replace n-a  by n--fl, where fl is any number greater than a, would, if they were 
FouRi~a's series, render them convergent almost everywhere (YovI~o, Comptes Rendus, 23 Dec. I912). 

Or even for which 
[an[  ~ + ]bn]  ~ 

~ (log n)l+o 
is convergent. 

a This is the 'RIEsZ-]~'ISCl~:R Theorem'. 
W. H. YOUNG, t)roc. Lond. Math. Soc., Vol. 12, p. 71. 
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~ cos nx  + sin n x 
1 1 

n i (log n) ~ 

- - h e r e  P ~ 3 .  Our examples however show a good deal more, viz. tha t  as 

soon as the 2 which occurs in the RIEsz-FmCHER Theorem is replaced by any 

higher index, the series ceases to be necessarily a FOURXER's series at  all. 

2. 34. There are other classes of series the theory of which resembles in 

many respects that  of the series studied in this paper. One such class comprises 

such series as 

c o s e c  ( - -  c o s e c  

and the corresponding series in which the cosecant is replaced by a cotangent:  

these series are limiting forms of q-series such as 

Another class comprises the series 

and the corresponding series in which ( n x ) -  I_ is replaced by nx.  We have 
2 

proved a considerable number of theorems, relating to these various series, of 

which we hope to give a systematic account on some future occasion. 
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