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A state of motion in a dynamical system with two degrees of freedom 

depends on two space and two velocity coiirdinates, and thus may  be represented 

by  means of a point in space of four dimensions. When only those motions are 

considered which correspond to a given value of the energy constant,  the points 

lie in a certain three-dimensional manifold. The motions are given as curves in 

this manifold. One such curve passes through each point. 

Imagine these curves to be cut  by  a surface lying in the manifold. As the 

time increases, a moving point  of the manifold describes a half-curve and meets 

the surface in successive points, P, pr . . . . .  In this manner a particular trans- 

formation of the surface into itself - -  namely that  which takes any point  P into 
the unique corresponding point  pr _ is set up. 

This fundamental  reduction of the dynamical problem to a transformation 

problem was first effected by POINCAR~, and later, more generally, by  myself? 

In order to take further advantage of it I consider such transformations at length 

in the following paper, which appears here by  the kind invitation of Professors 

MITTAG-LEFFLER and N6RLU~D. The dynamical applications are made briefly 

in conclusion. These bear on the difficult questions of integrability, stability, 

and the classification and interrelation of the various types of motions. 

Chapter I. Formal Theory of Invariant Points. 

w I. H y p o t h e s e s .  

For the present we shall confine attention to the consideration of a one- 

to-one, direct, analytic transformation T in the vicinity of an invariant point of 

1 Dynamical systems with two degrees of~'eedom. Transactions oftheAmerican Mathematical 
Bociety, vol. I8, r9r 7. 
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2 George D. Birkhoff. 

the surface S undergoing transformation. Hence, if u, v be properly taken 

eoSrdinates with the invariant point at  u = v  = o ,  the transformation may be 
written 

u~ = au + by +. . . ,  
(I) 

v~ -~ cu + dv + . . ., 

where the right-hand members are real power series in u, v (i. e. with real 

coefficients), where u~, v~ are the coSrdinates of the transformed point, and where 

(2) ad - -  bc > o. 

More generally, the notation (u~, vD or Pk ( k =  o, • i ,  • 2 . . . .  ) will stand 

for the point obtained by applying the k th  iterate (power) of T to (u, v) or P.  

Furthermore it will be assumed tha t  there exists a real analytic function 

Q(u, v), not zero for u-~ v = o, such tha t  the double integral 

, i ~ /  Q(u, v)du dv 

has the same value when extended over any region as over its image under T. 

Following a dynamical analogy such a transformation will be called conservative. 

Also Q will be termed a quasi-invariant /unction o/ T. 

An explicit form for the condition tha t  a quasi-invariant function must 

satisfy is well-known 1 and may be readily derived. If the double integral be 

expressed in terms of the new variables u~, v~, it takes the form 

;/ [ ] Q(u,v) Ou Ov Ov Ou 
~u, Or1 Oul ~ du, dr , ,  ,J 

where the integration extends over the image of the given region under T. 

Since the given region is arbitrary, and since by hypothesis the last written 

has the same value as I - ] -Q(u l ,  v l )du ldv  t taken over the integral same region, 

we infer tha t  the two integrands are equal. But the Jacobian of u, v as to 

u~, vl is the reciprocal of the Jacobian of u~, vl as to u, v. Hence we obtain 

(3) VOul av t  Ov~ /)ut] 
Q(u 'v )=Q(u~ 'v ' )LOu ~ v - - O u  Or J" 

i Cf. E. GOURSAT, Sur les transformations ponctuelles qui conservent les volumes. Bullelin des 
Sciences MatMmatiques, vol. 52, x917. 
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Conversely, if Q(u, v) is a real analytic function, not  zero for u = v  = o, 

and if (3) is true, it follows at once that  Q is a quasi-invariant function. 

If  there exists a second quasi-invariant function Qr not  a constant  multiple 
Qr 

of Q, it is clear that  the ratio ~ is an analytic invar iant /unct ion o/ T ,  not 

zero for u = v = o. Moreover, if any quasi-invariant function be multiplied by 

such an invariant function, the product  is clearly a quasi-invariant function. 

When a conservative transformation T has an analytic invariant function 

(not a constant), the transformation will be said to be integrable. ~ 

A transformation T remains conservative under a change of variables, say 

from u, v to u, v. The quasi-invariant function Q is thereby modified to a 

function Q obtained by  multiplying Q by  the Jacobian of u,  v as to u, v. 

w 2. Pre l iminary  Classification of  Inva r i an t  Poin ts .  

We first make an evident and well-known preliminary classification of in- 

variant  points which is wholly based on the nature of the linear terms in the 

power series for .ui, %. Under real linear change of variables these first degree 

terms are transformed among themselves without reference to terms of higher 

degree. Consequently the theory of linear transformations applies to these terms. 

According to this theory the chssifieation depends largely upon the nature of 
the roots of the quadratic equation in q, 

q~--(a  +d)  q + a d - - b c ~ o .  

In the case at hand this equation is a reciprocal quadratic equation, i. e. 

(4) a d - -  bc ~ I. 

For, if u ~ v ~ o ,  we have Q = Q I # o  and also 

3 u t ~ u I ~ v t 8 vt 

Thus from (3) the stated equation (4) follows. 

equation will be designated as q and ~ .  
r 

The roots of this r e c i p r o c a l  

x It should be observed that the definition refers to the vicinity of an invariant point. 
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The re  are  the  fol lowing th ree  cases to  consider .  Firs t ,  r m a y  be real  wi th  

a numer ica l  va lue  no t  u n i t y ;  T can  then  be t a k e n  in the  n o r m a l  f o r m  

I.  

I U t =QU+ ~ (fmnUmV n, 
rn+n=2 

( v ~ - - v +  ~m,UmV '~. 

( e r  + z), 

We subd iv ide  this  case accord ing  as q is pos i t ive  (case F) or  nega t ive  (case I").  

Secondly ,  ,o m a y  be complex  and so of modu lus  I .  Wi th  this case we g roup  

t h a t  case Q =  • I in which the  two  e l e m e n t a r y  divisors  a re  d is t inct .  H e r e  T 

m a y  be t a k e n  in the  no rm a l  fo rm 

ui = u cos 0 - -  v sin 0 + ~ % , u " v " ,  (~ = eY~i~ 
r e + n - - 2  

I I .  

v, - -  u sin 0 + v cos 0 + ~_~ ~p,,,,,u"v". 
re+n=2 

I t  is conven ien t  
R 

to  subd iv ide  case I I  in to  the  irrational case I I '  when  ~ is 
2 I g  

i r ra t iona l ,  and  the  rational cases l I "  when  0 = o, a n d  I I ' "  when  O_ _~ _p wi th  -p- 
2:~ q q 

no t  an  in teger .  Case I I "  yields  the  case Q =  i ;  and  I I " ,  the  case Q = - - I .  

Th i rd ly ,  we h a v e  t h a t  case in which the  two  e l e m e n t a r y  d iv isors  a re  no t  d i s t inc t ;  

he re  T m a y  be t a k e n  in the  no rma l  f o r m  

I I I .  

U 1 ~ "4- U + ~ q)mnUmV n, 
re+n--2 

vl = + v + du + ~ (p,,,, u ' v" ,  
m-l-nu2 

(e---- + z), 

(d , '  o). 

We subdiv ide  this case acco rd ing  as q -~  i (case I I I ' )  or  Q = -  z (case I I I " ) .  

I f  on ly  l inear  t e r m s  are  p r e s e n t  in ul ,  v t we ob ta in  the  l inear  t r a n s f o r m a -  

t ions:  
I 

I .  u ,  = e u ,  vl  = - v ,  ( e ~  ~ z ) ,  
r 

I I .  ui = u cos O--v sin 0,  v~ = u s i n  O+v c o s  0 ,  

I I I .  (d ,= o). 
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These may be regarded as furnishing a first approximation to the corresponding 

general types. According to our I definition all three linear transformations are 

conservative with Q = I a quasi-invariant function since areas are left invariant. 

Furthermore these cases are integrable with invariant functions u v ,  uS+  v ~, u s 

respectively. 

In the first case a point  P will move on a hyperbola u v - ~  const, upon 

successive application of T or T_I (u, v being taken as rectangular coSrdinates); 

in the third case P will move along a pair of parallel lines u ~ const. Unless 

the point P lies on the degenerate hyperbola u v  ~ - o  in the first case, or on the 

pair of coincident straight lines u s -  o in the third, P will recede to infinity 

upon successive application of T or T_I .  When P lies on the degenerate hyper- 

bola in the first case, it will approach the invariant point (o, o ) u p o n  successive 

application of T or else of T - l ,  and recede to infinity upon application of the 

inverse transformation. In the third case all points of the line u --~ o are invariant 

or are reflected into points of the same line on the other side of (o, o), according 

as the + or - -  sign is used. 
On the other hand, in the second case the transformation is a rotation 

about  (o, o) through an angle 0, and every point P remains at  a fixed distance 

from (o, o) upon successive application of T or T_x. 

The essence of the distinction here existing is brought out  clearly by  means 

of the following fundamental  definition: if a neighborhood of an invariant point  

can be so taken that  points arbitrarily near the invariant point leave this neigh- 

borhood upon successive application of T (or of T- l ) ,  the invariant point is 

unstable;  in the contrary case the invariant point  is stable? 

Thus the linear transformations I, I I I  are unstable in this sense, while 

those of type  I I  are stable. 

w 3. An auxiliary Lemma. 

Before proceeding to the consideration of formal series for u~, vk (k--~o, 

• I ,  + 2,. . .) ,  we will establish the following obvious bu t  useful lemma: 

L e m m a .  The linear difference equation of the first order in y(k), 

y ( k  + I ) -  ay(]r = c~ k ]c% 

x See T. Lzvx-CivxTx, SoFra alcuni criteri di instabilith. Annali di Matematica, Ser. I I I  
vol. 5, 19ox. 
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(a, c, X real ,  and  ~ a pos i t ive  in teger  or zero) admi t s  a so lu t ion  

9) (real  p o l y n o m i a l  in k of degree  ~) 

if Z@ ~, and  o the rwise  a solu t ion  

s  po lynomia l  in k of degree  tt + I).  

Suppose  f irst  t h a t  Z ~ a. L e t  us m a k e  the  subs t i t u t i on  y = ) k w ,  when  the  

d i f ference  equa t ion  t akes  the  f o r m  

w(k + ~)-- ~w(k), = ~t, k, .  

I f  we wri te  
w ~ w(0) k~ § w(1)k ,~-1 ~- .-- ~- w (~), 

we f ind t h a t  w will be  a so lu t ion  if the  following condi t ions  a re  sat isf ied 

�9 . �9 . �9 . �9 �9 �9 �9 ~ �9 . 

On accoun t  of the  a s s u m p t i o n  made ,  we see a t  once t h a t  these  equa t ions  d e t e r m i n e  

real  quan t i t i e s  w(0), w(~) . . . .  , w(~) in succession,  a n d  lead to  a so lu t ion  of the  k ind  

specified.  

I f  ), ~ a a s l ight ly  modi f ied  a r g u m e n t  appl ies .  H e r e  we wr i t e  y ~ -~kw as 

before,  and  t hen  
w - -  w (~ k ~'+~ -F w (1) ]c~ § -.- + w(~+l). 

The  condi t ions  on  the  coeff ic ients  t ake  t he  fo rm 

(~ + ~)w (~ = ; ,  

(~t + x) ~ w~O) + t~w(~) = o ,  
1 . 2  

�9 . �9 , �9 �9 �9 �9 �9 �9 �9 

w (~ -F w (1) -~ �9 �9 �9 -l- w (~) ~ o. 

These  equa t ions  de t e rmine  real quan t i t i e s  w (~ w ( l ) , . . . ,  w(") in succession b u t  

leave  w(, +~) unde te rmined ,  a l t hough  i t  is to  be t a k e n  real.  
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w 4. Fo rma l  Series for u~, v~. Case I. 

By  iteration one can obtain convergent series for us, vs in terms of u, v. 

In case I the linear terms of these series are evidently ~Su, r respectively. 

This fact suggests that  higher degree terms may be similarly given an explicit 

form in k, and we shall show this to be the fact. 

If u~, v, are real series o/ the /orm I with r  (case I~), u~,, vs may be 
represented /or all integral values o/ k in the /orm 

Ilk.  

co 

us = ~ u + ~ q~),, u'nv ", 
re+n--2 

m + n = 2  

where ~),~, ~2(km),, are real polynomials in Qs, Q-s, k o/ degree at most m + n in these 

variables. 

Let  us consider first the quadratic terms in the series for Uk, Vl,. 
If in uk, vs we replace u, v by  u~, vl respectively, we obtain u~+~, vk+~ by  

definition. By  comparison of coefficients in Ifs above, this leads to the equations 

The first three of these equations are obtained by  comparing the coefficients of 

u ~, uv, v 9 respectively in Uk+l(U, v) and uk(ul, vl); the second three are found by  

a like comparison of vk+l(u,v) and v~(ul,v~). 
By considering ~)~ ,  ~p~) with m + n = 2 as undetermined functions of the 

index k, it is clear that  these six equations consti tute six difference equations 

of the type treated in the lemma of w 3. 
Moreover these equations suffice to determine these six functions fully for 

all integral values of k if their value is known for any particular k. In the case 

at  hand we have of course eD (~ = ~(m~ = o for all m and n, since u0 ~ u, v0 = v. 
According to the lemma we can find explicit solutions of these difference 

equations of a very  simple type, namely constant multiples of Qs for the first 

three equations, and of Q--k for the second three equations. Also the six reduced 
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homogeneous equat ions  obta ined by  removing  the first  te rm on the r ight  in the  

six equat ions admi t  the following respective par t icu la r  solutions:  

By  adding real cons tan t  mult iples of these solutions to the respective 

solutions of the non-homogeneous equat ions,  we find a new set of par t icular  

solutions vanishing for k = o as desired. 

In this  way  we obtain the explicit  values of ~(}1 , ~p~) for m + n = 2: 
m ~  

(5) 
t~72 =r176 ~i~ )=r162 ~f?2 ~~162162 q__Q2 , Q - - I  ' r q-'z , 

i,/,(k) -- 'P,o(e-~--q 2~) tV~2 --  'p'~ (e-~--~) 'P~2 = 'Pc, ( r  - ~ )  

We proceed to show tha t  explicit  expressions for to(k) k) ~m.,  @~. of the type 
s ta ted  exist  also for r e + n = 3 ,  m + n  = 4  . . . .  in succession. 

To begin with,  we write the  equat ions  obta ined by a comparison of the  
coefficients of u~v  " in ve+l(u, v), uk(u~, v,) and vk+l(u, v), vk(u, ,vt)  in the  

respective abbrevia ted  forms:  

~(k+l) __ ok ~0 + Ore-. q0~ + Pro.,  
f e r n  - -  ~ g f / l I l  

~p~+') = q - '  qJ,.. + e "~-- ~(~) + Q. , . .  

The expansions cf  ekul and Q-k vi in u~ (u,,  v,) and  vk(u~, v,) respectively yield 

the  first  terms on the r ight  in these equations.  The second terms arise from the 

expansion of _m,,UW (k) mVln and --m, w(~) umv"l -1 in the same functions.  The last  terms arise 

from the expansion of ~o(k) u ~ eft and  ,0~k~ ~,a Vf respectively,  wi th  a + fl < m + n ; 
" r a f t  1 1 " r a f t 1  1 

thus  Pran and  Q,n,, are 1/near and  homogeneous in r~(kJ ,tj(k~ respectively,  with ~af ,  ~af  
real coefficients, polynomial  in r e - a ,  e l , , ,  ~p~(.tt + ~< a + fl). 

Suppose now tha t  we take  m +  n = 3  and assume tha t  the explicit  expres- 

sions for r (a + fl -= 2) are subs t i tu ted  in Pmn, Q,~,. The above equat ions become 
" r a f t  

l inear  difference equat ions  in w ~k) w(k)  Fur the rmore ,  it  is clear t h a t  these 

equat ions,  together  with the fact  t ha t  ~f~)n, W(.~ vanish, determine these variables 
complete ly  for all integral  values of k. 

By  a similar process to t h a t  employed in the  case m + n = 2 we m a y  arr ive 
now at  explicit  expressions for ,~(k) ,,,(k) in the case m + n---= 3. 

'lt~Tt ~t ) "Vr t ~ 
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In this new case we have a non-homogeneous part  composed of more than 

one term. But  each term is of the form c)~kk ~ occurring on the right-hand side 

of the equation of the lemma (w 3), since the non-homogeneous par t  is a polynomial 
in Q~, Q-~ of degree at most 2. 

If  we add together the various particular solutions corresponding to each 

of these terms, as given by  the lemma, we obtain a solution of each difference 

equation for m §  = 3 in the form of a real polynomial in Qk, Q-k, k, of at  most 

the third degree in these variables. 

The corresponding homogeneous reduced equation has a solution Q(~-,)k. 

If  a suitable real constant  multiple of this solution is added to the above parti- 

cular solution of the non-homogeneous equation, a new particular solution is 

obtained which vanishes for /r ~ o. Solutions of this type  are real polynomials 

in Q~, ~-~, /r of degree at  most 3 in these variables, and form the desired 
expressions. 

Proceeding indefinitely in this way we establish the truth of the italicized 

s ta tement  for m § n = 3, m + n ~ 4 . . . . .  

I t  is obvious that  the coefficients in the polynomials ~ !n ,  ~ are them- 

selves real polynomials in the coefficients of the series u~, v~, save for divisors 

of the form Q~--Q~ where a and fl are unequal integers. 

In the later discussion it is convenient to bring back the case I" (Q < o) to 

the case I' by  means of the following remark: 

If ul, v 1 are real series el the ]orm I with Q < o (case I"), then u2, v2 are o/ 
the ]orm I' treated above. 

w 5. Formal  series for u~, v~. Case II .  

Next let us consider series of type  II  in the general case when 0 is incom- 
mensurable with 2 z .  

I / u l ,  vl are real series o] the /orm I I  with 0_0 irrational (case IIf), uk, vk may 
2 ~ r  

be represented/or all integral values o/ k in the ]orm 

uk -- u cos k O - - v  sin kO + ~  r f ~ u m v  n, 

II'k. m+,~-2 

vk ---- u sin k~+v cos kO +~ ~( k)~,~ u~v ~, 
r/t  + n ~ 2  

where q ~ ,  ~ are real polynomials in cos kO, sin k~, k o[ degree at most m § n in 
these variables. 

Acta  m a r g a r i t a .  43. Imprim6 le 17 mars 1920. 2 
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L e t  us in t roduce  new var iables  u ,  v, namely  

~ = u +  V - - I v ,  ~ , = u - - V - - I v .  

The  equa t ions  I I  give series for  ~I, ~ in t e rms  of u ,  v, which are  of the  form I 

with q = e V ~  0. 

Now the lemma of w 3 can ev iden t ly  be ex t en d ed  to  the  case when a, c, 

are  complex  cons tants .  H e r e  of course the po lynomia l  factors  in the  solut ions 

are no longer real  in general.  Hence  the  same formal  t r e a t m e n t  of ~k, Vk is 

posssible as was made  in case I '  for  uk, vk; in fac t  for  the  case at  hand  none of 

the  divisors qa - -qz  are o so t h a t  the  solutions are  precisely of the  same form.  

Thus  uk, vk can be expressed as power  series in u, v with coefficients  ~ f ~ ,  

~ )  of ~ m ~  respect ively ,  po lynomia l  in ,o k, `o-k, k of degree no t  more  t h an  m + n.  

Recal l ing the  simple re la t ion be tween  u, v and u,  v, and util izing the  

t r igonomet r i c  fo rm of qk, `o-k we ar r ive  a t  series uk, Vk of the  desired type ,  save  

t h a t  the  rea l i ty  of the polynomials  ,~(k) ~p~)~ is no t  establ ished.  

Al though an  inspect ion of the  ac tua l  formulas  employed  would establish this  

real i ty ,  i t  suffices to  note  tha t ,  since uk, Vk are real  power  series, the  real  pa r t s  

of ~p~)~, ~ )  cons t i tu te  real  polynomials  of the  t y p e  requi red .  

In  the  ra t iona l  case II ,  0 = o ,  series of t y p e  I I  are also of t y p e  I wi th  

q =  r. Consequent ly  the me th o d  of w 4 leads a t  once to  the  conclusion:  

I ]  us, vl are real series o/ the ]orm I I  with O = o (case I I" ) ,  ul,, v;, may  be 

represented /or all integral values o/ k in the /orm 

ll"k. 

- -  u v ' ,  

m§ 

- -  v v",  
r e + n - - 2  

where ~(k~ ~]') are real polynomials in k o/degree at most m + n -  I. 1 

The  ra t iona l  case 0 ~ o can be b ro u g h t  back to the  case O = o: 

I /  ul ,  vl are real series o/ the [orm I I  with _ 0  = P_ (case II '") ,  then uq, vq 
2 ~  q 

are of the /orm I I " .  

There  are series similar to  II'k in the  general  ra t iona l  case, b u t  we do  n o t  

need  to  use them.  

This fact has been noted by C. L. BouTo~', Bulletin of the American Mathematical Society, 
vol. 23, I916, p. 73. See also A. A. BESSETT, A case of iteration in several variables, Annals of 
Mathematics, vol. tT, x9xS--I9x6. 
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w 5. F o r m a l  series for uk, v~. Case I I L  

Finally we have t o  consider case I I I :  

I /  u~, v~ are real series of the form I I I  with Q = i (case I I I ' ) ,  uk, vk may  be 

represented/or all integral values o] k in the /orm 

III'k. 

I oD 
uk = u § ~ ~p(k) u m v'* , ,g~ mn m-~n~2 

m4-n--2 

where - m . ,  w(k) ~P~)n are real polynomials in ]c o/ degree at most 2 m +  n - - .  i .  

We propose to deal with this case by reducing it to the case II" as follows. 

Write 

and let us make this change of variables in the given transformation. We obtain 

u~ v~ = ~ + ~ ep,,,,, u m v m+'*, 

rot lr/t 4- n ~ ~ + d ~ + ~ m . u  v . 

Now the right-hand member of each of these equations contains v as a factor. 
Hence, dividing the first equation, member  for member, by the second, we find 

the equivalent equations 

ul ~ u +2 q)mn umvn' 
f, rt 4-n -- 2 

a~ 

m - i - n ~ 2  

which is formally of the type II". Hence by our result in w 5 we may  write 
for all integral values of k 
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Y fT$  g$ ~ ' 

r e + n = 2  

m + n ~ 2  

where ~(k)r,,~, ~ are real polynomials in k of degree at  most m + n ~ i .  

Multiplying these two equations together, member for member, we got 

m + n ~ 2  

where ~(~ is a real polynomial in k of degree at  most m + n - - 2 .  Compare this 

equation with that  for uk as a power series in u, v, and so in u, v. The two 

series must be identical so tha t  the exponent of ~ must be at  least as great as 

that  of ~ in every term. Hence ~(k~ vanishes identically for n < m. Consequently, 
m n  

if we write 

"m, m + n  ) 

we have ua expressed in the stated form. 

Likewise, if we compare the series for Vk with that  for vk, we are led to 

see tha t  ~ vanishes identically for n < m and to write 

so tha t  vk is of the stated form. 

I t  may be observed that  all of the series employed converge for u,  v suf- 

ficiently small in absolute value. This fact justifies the method of formal com- 
parison employed. 

The case I I I  with q = - - i  is taken care of by the following remark: 

I[  u~, vt are real series o/ the [orm 111 with 0 = -  x (ease 111"), u2, v~ are o/ 
the form II".  

w 7. Uniqueness of  series for uk, vk. 

The following is easily proved: 

Lemma. Unless q is a root of unity, a polynomial in Q&, Q-k, k,  e l, Q-l, 1 . . . .  

cannot vanish for all integral values of k, l . . . .  , without vanishing identically. 
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If possible, suppose tha t  the lemma is not true when there is a single 
variable /r i. e. suppose that  there exists a polynomial in Qk, Q--k, k which 

vanishes for all integral values of k without vanishing identically, although Q is 

not a root of unity. 
In the first place we cannot  have ]Q]>I .  For  in this case divide the 

hypothetical polynomial by the highest power of Ck which appears explicitly. 
Let /r take on larger and larger integral values. All of the terms of the modified 

polynomial tend to zero save the term formed by the coefficient of this highest 
power, inasmuch as Qk becomes infinite more rapidly than any power of k. This 

coefficient is itself a polynomial in k which is not identically o. Hence it cannot 
approach o as k becomes positively infinite. But, since the hypothetical  poly- 
nomial vanishes for all integral It, this is absurd. 

The possibility ]Q]< I is disposed of similarly by dividing through by the 

highest power of ~-k which appears. 
Hence we have [r ~ I  and may write r ~eY=-i 0 where 0 is real. Here we 

fix upon the coefficient of the highest power of k which appears in the hypo- 
thetical polynomial. An argument  like that  made above shows that  this coef- 
ficient must  approach o as L- becomes infinite through integral values. However, 

0 
this coefficient is a polynomial in cos k0, sin k0; and - -  is irrational since Q is 

2 7 g  

not a root of unity. Hence k0 can be made to differ from an integral multiple 
of 2 z  by nearly any assigned quant i ty  t for large integral k. Thus tbe coefficient 

polynomial must  vanish when k0 is replaced by the arbi t rary  real variable t. 
This is impossible. 

A similar proof disposes of the case when two or more variables enter. 

An application of the lemma shows at once: 

The polynomials ~(k)~,,,,, ~p~ o/w167 4, 5, 6 are unique. 
In  fact it is clear tha t  the difference of two such polynomials with the 

same subscripts m, n vanishes for all integral k. But these polynomials are of 

the type dealt with in the lemma, and must  therefore coincide. 

w 8. The  formal  group for T.  

The various integral powers of the transformation T combine according to 

the rule TkT~ ~ Tk+z, where k and l are any  integers whatever. 

In the preceding sections we have been led to real ]ormal series giving Tk 
/or all integral values o/ k in the cases I t, I I  1, II", III ' ,  to which all other cases 

were reduced. 
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(6) 

The /ormulas 

uk(u .  v~) = uk+z(u, v), vk(.z,  v~) = vk+t(u, v) 

hold /or all real values o/ k and 1. 
The conten t  of this  s t a t emen t  is wholly formal  of course. 

In the eases I I ' ,  IIIr its t r u th  is a t  once obvious. The equat ions (6) s t and  

for an infinite number  of ord inary  polynomial  relat ions between the coefficients 

~dk) (P~)~, c~(tl ~ 1 , ,  c~(k+0, ~p(k+z~ which are known to hold for all integral  values 

of /c and  1. Since these coefficients are themselves o rd inary  polynomials  in k, l, 

these relat ions hold identically.  Similar reasoning, based on the lemma of w 7, 

shows t h a t  the s t a t emen t  is also t rue  in cases I ~, IIr. 

F r o m  the italicized s t a t emen t  thus  established it  appears  t h a t  we have to 

deal wi th  a one-parameter  cont inuous  group of formal  t ransformat ions  and  t h a t  

b is an  addi t ive  parameter  for the  group. ~ In t rea t ing  of its propert ies we need 

a few of the general  formal ideas for such groups.  

We shall write formal ly  

uk $v Ovk I (7) ~ u =  ~dk l k=o '  = -5~,k=o" 

so t ha t  we have the following table:  

(s) 

(I'), $ u = u l o g  Q+ . - , ,  Sv = - - v  log r  

(II~), O u ~ - - - O v + . . . ,  5 v - ~ O u + . . . ,  

(II"), Su~r s+- . . ,  S v ~  ~P~0u !+' ' ' ,  

(III ') ,  ~ u =  qJ2o--~qDll + ~q~o, u~+ " ' ' ,  ~ v = d u  + . . . .  

The series (~u, Sv are real formal  power series in u,  v. 

The series Uk, V~ satis/y the /ormal di//erential equations 

duk = ~u(u~ vk), ~ - ~  ~v(uk, v~), (9) dk ' 

and the initial conditions Uo ~ u, % = v; conversely Uk, Vk are ]ormaUy determined 
by these equations and conditions. 

C. L. BOUTO~ observed these facts in case II ' ,  loc. cir. 
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To begin with, by differentiating the first equation (6) formally as to /r 

and noting symmetry,  we find 

d d d 
uz  ( u k  . ~ u k ( u .  vz)= ~uk+z(u, v)= , vk) 

Put t ing l =  o and recalling the definition of $u we obtain the first of the diffe- 

rential equations (9). The second equation may be deduced in like manner. 

The initial conditions u0 ~ u, vo ~ v are clearly satisfied. 

Conversely, if we write uk, Vk as power series in u,  v without constant term 

and with coefficients which are undetermined functions of /r and substitute in 

the differential equations, we get at  each step linear differential equations of 

the first order in these coefficients. When joined with the condition that  all 

of these coefficients are o for k ~ o ,  save the coefficients of u in u0 and of v 

in v 0 which are i ,  these equations successively determine the coefficients. 

These facts explain the complete analogy between the classification of trans- 

formations T near an invariant point and the classification of differential equa- 

tions of type (9) at  a point $u = ~v = o. This analogy was noted by PoI~cAR$. ~ 

w 9. The invar ian t  operator  L(w). 

We shall now define the invariant  operator L(w): 

(~o) L(w) ~ u ~  + ~VS~v .~ 

I t  is clear the L(w(u, v)) is the formal derivative of w(uk, vk) as to k for k = o. 

Consequently L(w) is unaltered (formally) by a change of variables. The fund- 

amental  property of this operator is expressed in the following statement:  

The necessary and su[/icient condition that a [ormal series F be invariant under 
T is that L(F)= o. 

First, this condition is necessary. In fact, if F is an invariant  series we 

have F(u~, vk)= F(u, v) for all integral values of /~. Hence, by the lemma of 

1 Sur les courbes ddfinies 2ar les dquations diffdrentielles, Journal de mathdmatiques, ser. 3, 
vols. 7--8, t88 t - - i882  and  ser. 4, vols. i - -~,  x885--i886. The  analogy was exp la ined  par t ia l ly  by  
mearts  of a l imi t ing  process  by  S. Lx~T~s, Sur les 4quations fonc~ionelles qui d~finissent une courbe 
ou une surface invariante par une transformation, Annali di Matematica, ser. 3, vol. x3, i9o 7. 

This is t he  *symbol of t he  in f in i t e s imal  t ransformat ionm in the  t e rmino logy  of LI~. 
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w 7, this relation holds for all values of k. 

k ~  o, we find L ( F ) =  o. 

Secondly, this condition is sufficient. 

Differentiating as to /r and taking 

For if L ( F ) =  o we find, using (9), 

d OF(ua, vk)dul, OF(us, va)dva 
~-fcF(ua, va) Oul, dk  + Ova dk  

~- L(F(ua,  va)) = o. 

Hence we infer tha t  F(uk,  Vk) is a power series with coefficients independent 

of k. Put t ing k = o we get F(ua, vD = F(u ,  v), and in particular F (u l ,  vi) 

F(u,  v). That  is, F is invariant  under T. 

w ~o. Exis tence  of invar iant  series. 

In w167 2-- 9 the fact that  T was assumed conservative did not enter, save 

that  we made use of the equation (4). We shall now prove the following: 

Any  conservative trans/ormation T o/ the /orm I r, I I  r, I I "  or IIIr  leaves in- 

variant a real /ormal series F* de/ined by the equations 

0 F* 0 F* 
(Is) Ov = Q ~ u '  ~ - - - Q ~ v .  

By multiplying together the equation (3) for u, v, for u = ul,  v = vz . . . . .  

for u = u a - 1 ,  v = va-1, we obtain 

Oua Oua 
Ou Ov 

(3a) Q(u, v) = Q(ua, va) 
Ova Ova 
Ou Ov 

for any positive integral value of k. We employ the familiar rule for the 

combination of Jacobians in obtaining this result. Likewise (3k) holds for 

k-----o and also for negative integral values of k, as is easily seen. 

Hence this relation (3k) will hold identically when the formal'series for 

us, va are substituted. This follows from the lemma of w 7. 

Differentiating with respect to k and se~ting k = o, we find 
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Here we have employed the definitions (7) of 6u, $v and we have made use of 

the fact that the Jacobian determinant reduces to 

II~ I [o i 

for k----o. Now consider the terms of a particular degree in Q6u and - -Q~v .  
These homogeneous polynomials p and q have the property 

Op Oq 
OU Or' 

deduced from (I2). Hence there exists a homogeneous polynomial r of degree 
one higher such that 

Or Or 
- - ,  

P=Ov '  q = o u  

The sum of the polynomials r of all degrees (>2) is the formal series F* 
required. 

From the equations (ii) we have immediately L(F*)----o, so that by w 9 
the series F* is formally invariant under T. 

If a change of variables from u, v to U, V be made, the series F* for the 

new variables can be obtained by direct substitution. For, from the equations 
(~i) we find 

OF*OU OF*OV [Ou Ou ] 
O---if- O-v + O--V O~ = Q [.O U O U + -O-V 6 V , 

OF*OU OF*OV COV 6 u  Ov ] 
o--U o~--7 + o~V o~-= -  q [U6 + U~o v2 �9 

Ov Ou 
Multiplying the first of these equations by ~ ,  and the second by ~-~, and 

adding, we find 

OF* ^r0u 0v 0u 0vl  

But the quasi-invariant function for the new variables is the product of Q(u, v) 
and the Jaeobian of u, v as to U, V (w i). Hence the equation last written 
shows that F*(u, v), regarded as a formal series in U, V, satisfies the first 

equation (zx) for the new variables. Similarly the second equation (ix) is seen 
to hold in these variables. 

Acta mathematlca. 43. Imprim6 le 18 mare 1920, 3 
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From the equations (8) 

immediately evident: 

and ( i i )  the explicit forms of the series F* are 

(I'), F * = u v l o g e + . . . ,  

(II'), F * = - - 0 ( u ' + v  ~ ) + . . - ,  
2 

(II"), F* -- - -  ~ ~/2o uq + "" ,  

(III'), F* = --d-u '  + -.-. 
2 

I t  is apparent tha t  any formal power series in F* furnishes an invariant  
series. 

In order to determine to what extent the existence of formally invariant 

series for a transformation I', II', II", III '  is characteristic of conservative trans- 

formations we need to make a digression. 

w i i .  Faetor iza t ion of  fo rmal  series.  1 

We consider formal series without constant terms. Such a series will be 

called pr ime  when it cannot be expressed as the product of two others. Since 

the lowest degree of any term in a product is the sum of the lowest degrees 

for any terms in the factors, any formal series can be decomposed into prime 

factors in at  least one w a y ,  and the number of such factors cannot exceed the 

degree of the initial terms of that  series. 

Two factors, either of which can be obtained from the other by multipli- 

cation by a formal series with constant  term, are regarded as essentially equi- 

valent. Since products and quotients of formal series with constant terms yield 

series of the same type, the propriety of this convention is obvious. 

By a linear change of variables any series G ( u ,  v) can be given the form 

cv ~ + . . . ,  c ~  o, where the indicated terms are of degree at  least n. Any pos- 

sible factor of G is readily seen to have the same prepared form. Also Wv.IV.R- 

STRASS's faetorization theorem holds formally, i. e., we may write G = E H  where 

E is a power series with constant term c and H is a power series, vn+ -.., in 

which v does not occur with an exponent as large as n after the first term. 
_1 

Now let us determine the formal series 8 (u  -~) in powers of u ~ which satisfy 

the equation H = o, and let us proceed at  each step of this determination pre- 

i Cf. W. ~'. OSeOOD, Factorization of analytic functions of several variables, Annals of Mathe- 
matics, vol .  z9, Z9iT--X918. 
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cisely as though H(u,  v) were a polynomial in u,  v. The well-known method 

for doing so yields higher and higher terms of such series, with ~a  ~ n.  

At first sight it might seem conceivable tha t  this process breaks down at  

some point  so that  it is not  possible to proceed further.  But,  since the process 

used involves only a finite set of terms of H at  each stage, the same difficulty 

would necessarily arise if H were broken off at  some advanced term. This is 

absurd since then we are dealing with a polynomial. Thus we obtain a contra- 

diction. Consequently we can obtain formal series of the s ta ted type  in u s 

which, when subst i tuted for v, reduce H to o. The initial terms in these power 

series are a t  least of the first degree in u .  

Let  ~ be any ath root  of I and consider 

This product  is precisely H ,  at  least if H is a polynomial in u as well as in v. 

By breaking off H at  an advanced term and employing a limiting process, we 

infer tha t  the same is always true. 

The bracketed products  involve only integral powers of u as well as of v, 

and are prime factors of G. Indeed, if such a product  P is not  prime, its 

component  factors are of prepared form and may be decomposed as G has 

been. But  any new series S so obtained must fail to reduce P to o when we 

write v ~ S .  This is absurd. 

For  a similar reason it  appears that,  if a prime series divides a product ,  

the series must  divide one of the factors.  

Ib follows that ,  as /ar as the /undamental theorems o/decomposition are con- 
cerned, the situation /or convergent series carries over directly to divergent series. 

w i2. Condition for conservativeness. 

We are now in a position to prove the following: 

A necessary and su//icient condition that a trans/ormation T given by real 
series I r, I I  r, I I ' ,  I I I  ~ (but otherwise unrestricted) be conservative is (z) that there 

exists a real invariant series F o/ lowest terms one degree higher than those o/ 

8u, ~v and containing each common prime /actor o/ ~u, ~v to precisely one power 
higher than it appears as a common /actor in ~u, ~v, and (z) that the /ormal 
power series given by the equal ratios 
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OF OF 
Ov Ou 

u ' ~v 

conver~Tes. 

Before entering upon the proof, it may be observed that  an inspection of 

~ u , ~ v  as given by  (8) shows that,  in the cases I r, ][I r, ~u and ~v have no 

common factor. In these cases the condition (I) reduces to the condition merely 

that  there exists a formal series F with lowest terms of the second degree. I t  
will appear later that  ~u and ~v admit of a common factor only in the extra- 

ordinarily special cases I I ' ,  IIIr when there exist curves through (o, o) made up 

of invariant points. 

We first prove the conditions necessary. 

We take F =  F*. The equations ( i i )  show that  this invariant  series has 

lowest terms of degree one higher than the terms in ~u, ~v of least degree, 

inasmuch as Q possesses a constant  term. 
From the equations ( iI)  it follows also that  the ratio series of the italic- 

ized statement  converges to Q. I t  remains to show that  F* contains the 

common prime factors of ~u, ~v to a power one higher than these occur as 

common factors of ~u, ~v. 

Let  pk be the highest power of any such prime P occurring in 3u, ~v. 

By  (II) we have 

OF* p1,a, OF* 
Ou 8-~ = Pkb 

where either a or b is prime to P .  
~F* 

If F* contains P to higher than the (k + i ) th  power, ~ -  and - -  

contain P to higher than the kth power. 

the equations last written. 

If F* contains P to a power m 
F* ~ PING, we find 

OP p OG = pk+l_,,~a, 
mG uu + ~u 

OF* 
~-v will 

This is in manifest contradiction with 

with o < m < k + I ,  and if we write 

0 G = p1,+l_,,~b" 
m G ~  + P ~ v  

0 P  OP 
Hence, since G is prime to P ,  both ~ and ~ are divisible by  P .  At least 
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one of these partial derivatives is possessed of initial terms of lower degree than 

P ,  so that  this possibility is likewise excluded. 

The statement under consideration is certainly true then unless, perchance, 

F* is not divisible by the prime factor P .  We have merely to eliminate this 

possibility. 

I t  was seen in the preceding section tha t  we can write 

CO 

when E is a formal power series with constant term, where S in an ascending 

power series in it, s argument, and where ~o stands for any nth root of I .  

Now introduce the variable t ~  u ~ instead of u. We have 

OF* ntn_ 1 ~F* 

OF* e? F* OF* 
while ~ is unaltered. Hence the Partial derivatives ~ and ~ are divis- 

ible by v m S ( t ) .  Let us effect a further change of variables from v, t to w, z 

where w ~ v w  S(t), z = t. Evident ly  one has 

OF* 8 F* 8 F* OF* O F* d S  
Ow i)v ' 8z O~ + ~)v dt 

OF* OF* 
so tha t  ~ and ~ -  are divisible by w. 

0F* 
The fact tha t  - ~ -  is divisible by w shows tha t  F* contains no terms in z 

alone and is divisible by w. 

Passing back to the variables v, t, we infer  tha t  F* expressed as a power 

series in v, t is divisible by v - - S ( t ) .  I t  follows tha t  F*(u,  v) is divisible by 

v-S(u ) and by P of course.  his oompletes the proof that the conditions 
stated are necessary. 

I t  remains to prove them 8u]]icient. 

We may assume tha t  an invariant series F* exists for which (II) holds in 

which Q is a convergent power series with constant term I. These equations 

follow at once from the second part  of the italicized statement under considera- 

tion. Our aim is to show tha t  T is conservative. 
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By  direct differentiation and use of the formal differential equations (9) 

we obtain 

IJ 

/ ~ Q (uk, vk) ~ u (uk, 
IOUk OUl,] 

OQ(uk, vk) dV(Uk, vk) + 
+ ~)vl, 8 Vk 0 Vk 

I 

+ 
+ Q(uk, vk) Ova 8vk O~v(uk, vD 8~v(uk, vk) 

~u 8v ~)u 8v 

But  the first determinant  in the final brace is the Jacobian of ~u(uk, vk). Vk 
with respect to u, v. This determinant may be broken up into the product  of 

O u(uk, vk) I the Jacobian of ~U(Uk, Vk), Vl: as to uk, Vk which is ~ ! and the Jacobian 

of uk, v~ as to u, v. Likewise the second determinant in the same brace may 

&~v(uk, Vk) and the Jacobian of u~, vk as to u, v. be expressed as the product  of ~Vk 

Hence we find that  the right-hand member of the above equations reduces to 

I O + 

IOuk Ouk 

O@k[Q(uk' Ovk Ovk Vk) ~Vk] 

I-g-uu ov 

The first factor vanishes identically by  (ii) .  Hence the left-hand member of 

the above equation vanishes identically in k. Integrating formally we obtain 

(3~), For  k ~ I this becomes (3), which is precisely the condition that  T be 
conservative with a quasi-invariant function Q. 

I t  is natural  to call a transformation T of types I', I I  t, I [  ~, IIIt ]ormally 
conservative if there exists a formal series F satisfying the conditions in par t  (I) 

of the italicized statement.  

We may inquire precisely what  condition the existence of formally in- 

variant  series lays upon transformations T of these types. The ratio Q of the 
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italicized statement may or may not be convergent. If it is convergent, 

then t t Q ( u  , v ) d u d v  is invariant  under T. If the ratio is not convergent, the 

double integral is only formally invariant. 

These considerations bring out the vitally close connection between conserv- 

ativeness and formally invariant series. 

w ~3.  T h e  f o r m a l  v a n i s h i n g  o f  t h e  J a c o b i a n .  

To complete our t reatment  of formally invariant  series we need to establish 

the formal extension of a well-known property of Jacobians: 

The Jacobian o~ two /ormal series in u, v without constant terms vanishes 
identically i/ and only i/ either can be expressed as a power series in the other or 
in /ractional powers o/ the other. 1 

I t  is immediately apparent that ,  if two functions A, B are so expressible 

one in terms of the other, their Jacobian will vanish identically. 

Suppose, conversely, tha t  A and B are power series in u, v with vanishing 

Jacobian: 

0A 8B ~A 8B 
~)u ~v ~v ~u o. 

Both A and B are exact powers of base series for which it suffices to establish 

the functional relation. But  the Jacobian for the bases also vanishes. Conse- 

quently we may confine at tent ion to the case in which neither A nor B is an 

exact power other than the first. 

We begin by showing tha t  A and B have the same prime factors. 

If this is not the case, suppose tha t  A is divisible by a prime series P ,  

while B is not. After a suitable preliminary change of variables, P is expres- 

sible as a product  of series v - - S ( u  ~) (w i i ) .  Now take new variables 

S ( 1 )  
W ~ V -  U ~ t ~ U ~ . 9 

The series A and B are power series in these variables without constant terms, 

and their Jacobian as to w, t is o by direct reckoning: 

The presence of fractional powers means that the root indicated is to be formally 
extracted. 
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OAOB ~?AOB 
i)w Ot Yt Ow o. 

OA 
But A is divisible by w, and ~ is divisible by w to a power at least as high. 

OA 
Also ~ is divisible by w to a power at  least one lower than A. Hence O-B-Bot 

is divisible by w. From this it follows tha t  B is divisible by w. 

Proceeding to the original variables we infer tha t  B is divisible by the 

prime factor P ,  contrary to hypothesis. 

Suppose that  a prime factor P is contained p times in A and q times in B, 

and choose that  factor for which p- ~ o is as small as possible, and thus smaller 
q 

than for some other factor unless p- is the same throughout.  Except in this 
q 

Aq 
case, ~ will yield a power series without constant term and not containing P .  

But  the Jacobian of this series and A is easily verified to be o also. This is 

Aq 
not possible by the argument used above, since B~ has not the prime factor P 

which A admits. 
Aq 

We are thus forced to the conclusion that  the power series ~ starts off 

with a constant term. But A and B are not exact powers so that  we must 

have p ~ q .  Consequently the prime factors of A and B occur with the same 

multiplicity in A and B. 

Now consider 
A = B(c + C), (c ~ o), 

where U is a power series without constant term. I t  is readily inferred tha t  
_1 

C q  . 
the Jacobian of C, B is o, and thence that ,  if C is an exact qth power, ~ is 

a power series with constant term. Hence we may write 

C = Bq (d + D),  (d ~ o),  

where D is a power series without constant  term. 

definitely we find 

A = cB  + dBq + . . . .  

Proceeding in this way in- 

This establishes the statement.  
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w I4. The  to ta l i ty  of  invar ian t  series.  

We may now prove the following: 

1/ F* is a qth power the most general invariant series is an arbitrary power 

series in F*q. The integer q is I unless all the prime /actors o/ F* are common 

to ~u, ~v. 

The results of w I3 assure us tha t  the most general invariant  series can be 

represented as s tated if the Jacobian of F* and any invariant series F vanishes. 

Bu t  we have L(F*) - - -o ,  L (F) - - -o ,  whence it appears that  the Jaeobian does 

vanish. 

If  q ~ i we may write F*  = Gq, and (ix) gives 

OG OG Q~v, 
qGq-l~v ~ QJu,  qGq-li) u 

so that  all of the factors of G (and hence of F*) are common to 3u and ~v. 

w x5. Conditions for Formal Conservativeness. 

At the very outset of the paper the condition (4) was obtained as a conse- 

quence of the fact that  T was assumed to be conservative. There exist an in- 

finite set of similar conditions on the coefficients of higher degree terms in the 

power series ul and vl. These conditions may  be found by  use of the existence 

of invariant formal series. We illustrate the method in case I r. 

Since F* begins with a term uv log t~ in this case, an invariant series F ,  

also with first degree term uv log  e, can be written down without  any other 

terms having equal exponents in u, v: 

00 

F = uv log Q + ~ F~nu'nv '~, (m ~ n). 
m-l-n--3 

This series F may be obtained by  writing F-~  F * +  cF *~ + ...,  and choosing 

the arbi trary coefficients so as to eliminate terms with equal exponents. 
Moreover, it is easy to see that  there is only one such series, since any 

invariant  series can be expressed as in a power series in F* (w I4). 
Now, when coefficients of umv n are compared, the formal relation F(ul ,  v,) 

F(u ,  v) gives a series of equations 
Acta raathcmatiea. 43. Imprim6 le 18 mars 1920. 4 
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Fm, (e  ~ n - ' -  1) = P m n ,  (m + n > 3 ) .  

Here  Pan is a l inear expression in the  quant i t i es  Faa with a + fl < m + n.  Thus  

we de te rmine  Finn for m + n = 3 ,  m + n =  4 . . . . .  as polynomials  in the  coeffi- 

c ients  ~m~, ~vm~ of the  series for  ut ,  yr. F o r  m = n we have  P , , , - - - -o .  

In  the case I f the polynomials P,,,, in ~0,~, ~,~ (c~ + fl < 2n) vanish/or n = 

2~ 3~ . . . .  

Conversely,  if these vanish  we have  a formal ly  i nva r i an t  series F ,  and  

formal  conserva t iveness  of T in consequence.  

Similar conditions /or formal conservativeness can be ]ound in the other cases. 

w i6. I n v a r i a n t  f o r m a l  curves .  

Le t  ] and g be two formal  power  series in a p a r a m e t e r  t, w i thou t  cons t an t  

t e rms  and  no t  bo th  ident ica l ly  o. Then  we shall regard  the equat ions  

u = / ( 0 ,  v = g ( t ) ,  

as furnishing a /ormal curve through the point (o, o). If  the  series / ,  g converge  

for  ]t I small we have  an ana ly t i c  curve.  

Two curves of this sor t  will be r ega rded  as ident ical  if one can be ob ta ined  

f rom the  o the r  by  change of p a r a m e t e r  t = l(v) where  l is a formal  power  series 

in ~ or a f rac t ional  power  thereof .  

A formal  curve  is r ega rded  as real if the  coefficients  in / and  g can be 

t aken  real. 

B y  means  of T a formal  cu rve  of this sor t  is regarded  as carr ied over  in to  

the  formal  curve  

u = u , ( l ( t ) ,  g ( t ) ) ,  v = v , ( l ( t ) ,  g ( t ) ) .  

I f  this t r ans fo rmed  curve  is ident ical  wi th  the given curve  u = / ( t ) ,  v -~g( t ) t hen  
the  given curve  is said to be /ormally invariant under  T .  

The  de t e rmina t ion  of the  formal ly  i nva r i an t  curves  is essential  for  our  

purpose .  A fundamen ta l  division of types  of invar ian t  points  will be made  

according as there  do or do no t  exist  curves  of this sor t  given by  real series. 

In  cases I r, IF,  I I ' ,  I IF  the  t r ans fo rma t ion  T will be called hyperbolic if 

real  formal ly  i nva r i an t  curves  exist,  and elliptic in the  c o n t r a r y  case. In eases 

I I  "r or I l l " ,  T is hyperbolic or elliptic according as T~ or T2 (of t y p e  I I ' )  

is one or the  other .  
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If tl denotes the power series in t or a fractional power thereof along the 

transformed invariant curve which relates its parameter  and t, we have 

/ ( t , )  - -  u , ( / ( O ,  g ( t ) ) ,  g(t,) = v , ( / ( t ) ,  g(t)). 

In virtue of the fact that  the determinant of the coefficients of the first degree 

terms in u,, % is not o (see (4)) we can show that  the power series tl starts off 

with a first degree term in t. For suppose it commences with a term of higher 

degree. The initial term of one of the two right-hand members above will be a, 

where a is the lowest degree of any term in / or g. But  the left-hand members 

will s tar t  off with higher degree terms, which is impossible. Similarly we may 

rule out the possibility tha t  the initial term in t is of lower degree than the 

first, by  making use of the inverse equations 

/(t) = U _ l ( l ( t , ) ,  g ( t , ) ) ,  g(t )  = v _ i ( l ( t , ) ,  g ( t , ) ) .  

Hence tl is a power series in t or a fractional power thereof beginning with a 

term of the first degree. 

If a is the degree of the lowest term in / or g (say in ]), then from the 

corresponding equation (the first) we obtain on the left a series in t 1, a t l  + . . . ,  

and on the right a similar series in t commencing with a term of degree not 

less than a and therefore of degree precisely a by  the above. Extract ing ath 

roots we conclude finally tha t  tl can be expressed as an ordinary power series 

in t with first degree term: 

t~ -~ q* t  + . . . .  

Having this explicit form of t in mind, let us compare anew the two 

members of each of the pair of equations first written. We write 

l ( t ) = v t  ~ + ' ' ' ,  g ( t ) = q t  ~ + . . . ,  

so that  I P ] + ] q I r o, and obtain 

pq*'~ = a p  + bq,  qr = cp + dq .  

I t  follows at once that  Q*~ is a root of the characteristic equation, i. e. that  
r  r 

If (o, o) is an 'ordinary point'  of the formal curve we have a = I ,  r  

By successive transformation of the invariant  curve by  T ,  we obtain not  

only t, but  parameters t2, t~ . . . . .  Likewise by  the inverse transformation we 

obtain parameters t_~, t _ 2 , . . . .  These can all be obtained from the series for t~ 

by  iteration. 
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w ~7. The formal  ser ies  for tk and the  formal  group.  

Since the constant  Q* is an a th  root of Q, it is clear that, if we write 

v~(v) = t~(v), then we have v~ = Qr+ .--. By  iteration vk may be defined for all 

integral values of k. Moreover, the methods used in w 4 serve at  once to show 

that 

(k) m 

where eft) is a polynomial in Qk of degree at most m if Q ~ i, and a polynomial 

in k of degree at  most m - - z  if r  I. 

For all integral values of k and l we have obviously 

Therefore, by the lemma of w 7, this holds formally for all real values of k and 1. 

We write 
dvki 

and can then show (compare with w 8) that  the formal differential equation 

dk 

is satisfied, and, together with the initial condition v 0 = v ,  wholly determines 

the series for Vk. 

w ~8. The invariant operator L(u, v). 

We shall define a second invariant differential operator:  

(z4) L(u, v ) = ~ u d v - - ~ v d u .  

I t  can be immediately verified that, if the variables u, v are changed to 

u, v, then L(u, v) becomes L(~,  ~) multiplied by  the Jacobian of ~, ~ as to u, v. 

I t  is also obvious that, if u = / ( t ) ,  v----g(t) is a formal curve, then L(u, v) is 

independent of the particular parameter  chosen for the curve. 

The necessary and su]/icient condition /or the invariance el a ]ormal curve 
u ~ / ( t ) ,  v=g( t )  under T is L ( u , v ) = o .  
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By definition of invariance we have for such an invariant curve 

l(t,) = u,(l(t), g(t)), g(t,)-- v,(t(t), g(t)), 

and thence for integral values of k 

/(tk) = uk( / ( t ) ,  g(O) ,  g(t~) = vk( / ( t ) ,  g( t ) ) .  

If we take k as an integral multiple kra of a (w I7) and write t ~ ,  ~l~t~(~)  

(w i7), we have in particular 

/(~k,) = .k,~(t(~), g(~)), g(~k,) = vk,.l/(~), aO:)), 

for integral values of k r. 

Let  the general series for uk,,,  Vk,~, vk,, be substi tuted in the last equations. 

All the coefficients are either polynomials in r q--k,, k F (case It), or in cos k'O, 

sin krO, k r (case IIr), or in k' (cases I I ' ,  III'). Hence, by the lemma of w 7, these 

equations are identically true from a formal standpoint.  

Differentiating formally as to k' and setting k ' =  o, we get 

d ! ~ = . ~ u ( / ,  g), ~ = . ~ v ( / ,  g), 

whence at  once L(u ,  v)-~ o. 

Conversely, let us assume tha t  L ( u ,  v) is o for a formal curve u----/(t), 

v ~ g(t), and let us show that. the curve is invariant under T. 

In this case we have 

I 
where ~ is the sum of a polynomial in ~ and a power series in t. Now, since 

6u, ~v begin with terms of the first degree or of higher degree, both right-hand 

members have initial terms of degree at  least as high as / or g. On the other 

hand d/  dg d-t a n d s /  are of degree one less than t and g respectively. I-Ience z(t) 

cannot contain negative powers of t or even a constant term. Thus • is an 

ordinary power series in t without constant  term. 
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Define tk by  the differential equation 

and the initial condition to ~ t. Thus t~ is formally determined as a power series 

in t with coefficients analytic in k. 

For  example in case I', c~u and c~v are given by  (see (8)) 

~u-~ u log q + . . - ,  ( } v = - - v l o g q + . . . .  

Hence an inspection of the above equations introducing u( t ) shows that  this 

function possesses a first degree term in t, log Q t, a an integer. a 
Write then 

t k =  rp~)t m, ~(t) ~ l~  + x.~ ~(')tm, 
a 

and the differential equation gives 

dcf(, k) _ log 0~k) 
dk a ' 

def(k~ = log O q~(~) + • 
dk  a 

on comparison of terms in t, t 2 , . . .  Remembering the initial conditions ~(~~ 

ep(0) = o . . . .  , we find 

2k k 

k 

Thus the successive coefficients are poIynomials of increasing degree in Qa. 

Likewise in case H'  these coefficients are polynomials of increasing degrees 

k0 k0 in c o s -  sin �9 and in cases II", IIY, polynomials in k only, since here ~(t) Cr ~ - ~  

starts  out with a term of the second degree or higher. 
Consider now the formal series [ ( tk )and  g(tD. Differentiating and using 

the definition of t~, we find 
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df(tk) = d/(t~) x(tk) = au(f(tl,), g(tk)), 
d k  dtk 

31 

dg(tk) _ dg(tk) u(tk) = 6v(l(tk),  g(tk)), 
dk  dtk 

These series ](tk) and g(tk) reduce to /(t) and g(t) for k= o. 

Consider next the formal series u~(/(t), g(t)), vk(/(t),  g(t)). 
and using (9) we find 

Differentiating 

d [uk(/(t) ,  g(t))]  = Ou[uk(/(t) ,  g(t)) ,  v~(/(t),  g(t)) ] ,  

d d-~ iv~(/(t),  g(t))J = ~v [u~( / ( t ) ,  g( t ) ) ,  v~( / ( t ) ,  g( t ) ) ] .  

Also these series reduce to /(t), g(t) for k = o. 

Hence, if either pair of series in t be denoted by pk(t), qk(t), the differential 

equations 

dpk dqk ~v(pk,  q~), 
dk  = $u(P~' qk), d k  = 

and the initial conditions Po = / ( t ) ,  qo = g(t) will be satisfied. 
But, just as in an analogous situation earlier, these equations and conditions 

uniquely determine the series. Hence the two solutions coincide: 

l(tk) = u~(l(t) ,  g(t)),  g(tk) = vk(l( t) ,  g(t)) .  

Taking k = x, we conclude that  the given formal curve is iuvariant under T.  

w ~9. Existence of invar ian t  fo rmal  curves. 

When a formal power series in u, v without constant term is resolved into 

its prime factors in the sense of w I I ,  each such factor evidently corresponds to 

a formal curve u = t  n, v = S ( t )  where S is a power series in t. When the 

eoSrdinates of this curve are substi tuted in the given formal series in u,  v, it 

vanishes identically. Conversely, if the co~irdinates of a formal curve render 

such a series equal to o, then it renders one and only one of the prime factors 

equal to o, and this formal curve must be the one corresponding to the factor. 

With these facts in mind we may prove: 

The totality o/ ]ormally invariant curves /or a conservative trans/ormation T is 
given by the equation F = o, where F is any invariant series under T .  
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First, let us take any curve for which F = o .  Now we have F(uk, vk)= 
F(u, v), and thence, by formal differentiation as to k and taking k =  o, 

OF 
.~uF~u + ~v ~ v =  o. 

But  we have also 

OF 
~ d u  + ~v d v = o .  

Combining these equations we find L(u, v )= o. By the preceding paragraph 

the formal curve is invariant.  

Conversely, for any invariant  formal curve u ~  ](t), v ~  g(t) we have 

l ( tk)  = u~ ( l ( t ) ,  g(t)), g( tD = v k q ( t ) ,  g(t)), 

as we have seen. Hence it follows tha t  

~(/(tk), g (tk))= F[uk(/(t), g(O), v~,(/(t), g(t))] = ~v if(t), g(t)). 

Now, taking k =  k'a, ta = V, we may regard this equation as holding for all k' 

(w i7). Differentiating as to k r and taking k r ~  o, we find 

OF d/  OF dg] ~u ~ + ~ v  ~ ~ = o .  

dF 
Unless S v ~  o we infer tha t  ~------o. But F(/(t),  g(t)) is a power series in t 

without constant term. Hence except in this case we have F(/(t), g(t)) ~ o, as we 

desire to prove. 

However, if we take the equations which state tha t  u----], v =  g, and its 

iterates under T coincide (as written above), and differentiate as to k I (k ~ kra), 

we find for k f ~  o 

dvd-/ ~v=  6u(/' g)' ~ v = ~ v ( / ,  g). 

Hence ~v vanishes formally if and only if Su(], g), (~v(/, g)vanish. In other 

words the given curve corresponds to a common factor of 6u, 6v. But  it has 

been proved (w x2) that  such factors occur to a one higher power in F .  Hence 

we have F(/(t), g( t ) )=o in this case also. 
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Applying the above condition to F* (see (x3)), we perceive that  in case I! 

we have two real formally invariant  curves so tha t  T is hyperbolic, while in 

case IIr we have a pair of conjugate imaginary formally invariant  curves so that  

T is elliptic. 

w 20. Invar ian t  point  curves. 

In an extremely special case the invariant point (o, o) may not be isolated 

but may lie on one or more analytic curves of invariant points passing through 

(o, o). These curves can be determined as the solutions of the ordinary equations 

u , ( u ,  v) = u ,  v , ( ~ ,  v)  = v .  

By iteration we get 

u~(u,  v) = u ,  vk(u,  v) = v,  

which holds along these curves. 

and setting k = o, we f ind  

Differentiating as to k, as we have often done, 

~U-~-O, ( ~ V ~ O ,  

along the invariant  point curve. In other words the invariant point curves 

correspond to common factors of du, 6v. According to w i2 this means tha t  

the curve corresponds to a multiple factor of F*. 

Conversely, let us assume tha t  F* has a multiple factor corresponding to a 

formal curve u ~ / ( t ) ,  v=g( t ) ,  so tha t  6 u = 6 v = o  along the curve. By formal 

integration we get uk(/, g )=] ,  vk(], g ) ~ g ,  and the formal curve is an invariant 

point curve, 

There exist ]ormally invariant point curves i/ and only i / F *  has a multiple 
]actor, and these curves are then analytic curves given by the equations ul-~ u, 

V l ~ .  

w 2~. N o r m a l  form.  Case I'. 

Under a formal change of variables from u, v to U, V such as 

co 

(I5) U = u  + U.~.umv ", V = v + ~  V...umv% 
m4-n~2 re+n--2 

transformations of the type I r, I t ,  I I ' ,  I I I '  evidently maintain their type, and 

also remain formally conservative if they are so at  the outset. 
Acta mathematica. 43. Imprim6 le 19 mara 1920. 5 



34 George D. Birkhoff. 

We propose to develop a normal form for the t ransformat ion  T in the 

cases I r, IIr. In  the other cases there appear  to be an infinite number  of invar iants ,  

and  a similar normal  form does not  exist. 

By a /ormal change o/ variables (I5), a /ormally conservative trans/ormation o/ 
type I ~ may be r either the normal ]orm 

(16) Ut~-~-oUeer-flvt , V t = I  ve -r 
r 

or the /orm 

(16') U, = O U, V, = ~- V. 
q 

(C ~ 0)~ 

We propose first  to choose U, V so t h a t  

1~ U = U [ I 3v [ ( U V)] Iog Q, d V = - -  V [1 + g(U V)] log q, 

where ] and  g are power series in their  a rgument  UV. More explici t ly wri t ten,  

these equations take  the form 

(I7) 

OU6 OU 
Ou u +-f~vdv= U[x+/(UV)]logq, 

OV d v = - -  V[i+g(UV)]logr 
~ d u  +~v 

recall the equat ions  

0 Uk Uk ---- U(uk, vk), 
~ U = - ~  ~-o' 

and similar equat ions  in V. 

By  the  first equat ion (8) the first degree terms on both sides of the above 
equat ions are the same. 

Equa t ing  coefficient of umv n in these equations,  we find 

( m - - n - - l )  U ~ ,  = pro , ,  

(m - -  n + 1) V~ ,  = Q~ , ,  

0 ~ Pn+I,  n + /2n+ l ,  

(m ~ n + i ) ,  

(n ~ m + I) ,  

o ~ Q~, n+l  + g2,~+1, 
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where Pro,, Q,n, are polynomials in U ~ ,  V~ ,  [~, q~ with a + fl < m + n, 7 < m + n, 
and where /2~+1, g2k+l are the coefficients of (UV) k i n / a n d  g respectively. These 

equations are manifest as soon as the explicit series for U, V are subst i tuted 

in (17). 
Let  us compare second degree terms, so that  m + n ~ 2 .  The first two 

equations determine Um,~, Vm,~ for m + n = 2 uniquely. 

Next  let us compare third degree terms so that  m + n ~ 3 .  Here the 

quantities Umn, Vm,, excepting U2,, V12, are determined by  the first two equa- 

tions while/5,  g8 are determined by  the second two equations. 

Continuing in this way we determine in succession U,,,,, Vm,,,/~, gp, save 

for Us,, VI~, U~2, V23 . . . .  which can be taken arbitrarily. 

Therefore it is possible to determine formal series U, V so that  (i7) holds. 

In order to avoid complexity in our notation let us call these new variables 

u, v. I t  may be observed that  the set of changes of variables ( i 5 ) f o r m  a 

group. Accordingly, in accomplishing the desired normalization, we can compound 

any number of  such changes of variables. With this understanding we may 
write 

~ u =  U[l + /(uv)] iog q, ~ v - - - - v [ i  + g(uv)] log e- 

If  Q denotes the formal quasi-invariant function, we have by  (12) 

~-~[Qu(z +/)] = ~v [Qv (r + g)] 

on substi tut ing in the above values of ~u, ~v. Here ] and g are series in the 

product  uv. 

I t  follows from the equation just  writ ten that  Q must  also be a series in 

the product  uv. Suppose if possible that  this is not  the case, and let dumv" 
be a term in Q of minimum degree for which m ~ n .  A term (m+l)dumv'~wi l l  
then appear on the left of the equation written. But  no other term of equal 

or lower degree in which the exponents of u, v are unequal can occur on the 

left inasmuch as terms with unequal exponents are not present in ]. A similar 

term ( n + I ) d u m v  n will occur on the right. If then the above identi ty holds we 

must  have d ~ o, contrary to hypothesis. 

Thus if we write z ~ u v ,  and use accents to denote differentiation with 
respect to z we have easily 

[Qz(z + ] ) ] ' =  [Qz(z + 9)]' 
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By formal integration we get then / ----- g = h, where h a formal power series 

in z without constant term. Consequently we have 

r = u[I + h(uv)] log r 6v = --  v [I + h (uv)] log r 

When use is made of this fact, the formal differential equations (9) for vk, 

vk take the form 

dvk  
dUkdk -- uk[I+h(ukvk)] log r dk t'k [I + h(ukvk)] log Q. 

Hence, if we consider the product series ukvk, we have d'ukvk'~ dk -- o. Noting tha t  

we have Uo=U, Vo=V, we conclude U k ~ k ~ U V .  

If we substitute this value for ukvk in the differential equations, these 

become 

dvk 
dUkdk u k [ i + h ( u v ) ] l o g r  - d ~ - + v k [ I + h ( u v ) ] l o g o = o .  

If we multiply these two equations by 

~--(l+h(uv))k Q(l+h(uv))k 

respectively, the left-hand members become exact formal derivatives. Integrating 

formally we find 

Q--(l+h(uv))ik Uk ~ coast., Q(l+h(uv))k v h  ~ -  const. ,  

where the constants are power series in u, v with coefficients independent of k. 

Employing the initial conditions Uo = u, Vo=V, we get the following explicit 

formulas 

"Ult ~ Qk Ueh(uv)k Yk ~ ~--k Ue--lh{uv)k~ 

for the given transformation after the change of variables determined earlier. 

If h vanishes identically, a reduction to the normal form (i6') has been 

effeeted. 

In the contrary case we may write 

h(uv) -= cu~d + . . . .  
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Dividing by c ~ o and extracting l th  root, we find 

- u v p (  u v)  
C - -  

when p(uv) is a power series in uv with constant term i. If we define a further 

change of variables (I5) 

U=uVp(uv), V=vVp(uv), 

we obtain immediately the first normal form (i6). 

The normal forms are clearly of integrable type with U V invariant. 
I t  is apparent  that,  if T is given by real series, the normalizing series U, V 

can a|so be taken real. 

w 22. Generality of normal form. Case I'. 

The normalizing series U, V were not uniquely determined. The most 
general set U*, V* of such series is related to any particular set U, V as follows: 

The most general normalizing variables U*, V* in case I' have the explicit ]orm 

(x8) U*-~ Ue x(vv~, V * =  Ve ~(vv~,  

where ~ is an arbitrary power series in U V without constant term, and U, V are any 
particular set o[ normalizing series. 

Clearly we can pass directly from U, V to U*, V* by a change of variables 

(xS). Since the invariant curves U = o ,  V~--o are carried into U * = o ,  V * ~ o ,  
we infer further  

V*= V(z+...).  

Now the products U V, U* V* are invariant under T. Hence (w I4) U* V* 
is given by a power series in U V, whose initial term is UV of course. By the 
aid of this result we may  conclude tha t  in the series for U*, V* only terms in 

UV occur in the parentheses. 
In fact, if we replace U, V, U*, V* by U,, V~, U~*, Vt* respectively, the 

first of these equations gives 

r .z* = qUe~VZVZ(i +. . . ) .  
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On the left the exponential factor is a power series in U V with constant term i 

inasmuch as U 'V*  is given by a power series in UV without constant term. 

Suppose if possible that  a term d U m+l V ~ (m ~ n) occurs in the series for U* and 

let this term be of the minimum degree. On the left of the equation last written 

the corresponding term of this type is Q d U  "n+l V n, whereas on the right it is 

r V ~. The two terms to be compared cannot be equal so tha t  a 

contradiction results. In this way the parenthesis in the series for U*, and 

likewise that  in the series for V*, are seen to only contain terms in U V. 

We may now write 

U*-= U(~+Z ' (UV) ) ,  V*= V ( z + Z " ( U V ) ) ,  

where )/, Z" are power series without constant terms. 

Replacing U, V, U*, V* by U~, V~, U~*, V~* respectively here, we get 

q U*ec" u.z" v.z" = q UeCVZ v~[i + )/(U V)], 

and also a companion equation. Bearing in mind the form of U*, we conclude 

at  once c * ~ c ,  l * ~ l  and then U * V * ~ U V .  This yields the relation stated 

between U*, V* and U, V, as well as the additional result: 

The integer l and constant c are independent o/the normalizing series employed. 

Thus 1 and c are the only invariants. In the ease of the normal form (I6 t) 

we write 1-~ r e-~ o for convenience. 

Conversely, it is a t  once shown that  any change of variables from U, V to 

U*, V* yields normalizing variables. 

w 23. Normal form.  Case II ' .  

I t  has appeared earlier tha t  cases Y and I[ '  are of the same formal character 

in the complex domain. This is evident if variables 

~ = u + V - - I v ,  ~ = u - - V - - I v  

are introduced in case II  r, when we have 

u l  ~ 0 ~ § , ~1 x _ . . . . .  v+. . . ,  (e=eV=l ~ 
Q 

Moreover in case IIr we have Q ~  i for any integer k ~  o. Consequently the 

same formal manipulation of the variables ~,i) is possible as for u, v. Moreover 
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changes of variables (15) of u, v yield changes of variables (15) of ~, ~. Keeping 

those facts in mind, we deduce without difficulty the following important  result: 

By a /ormal change o] variables (I5), a ]ormally conservative trans/ormation o/ 
type IIr may be given either the normal [orm 

(I9) 

or the torm 

U1 ~ U cos (0 + c ( U  ~ + V*) Z) - -  V sin (0 + c (U  ~ + V2fl), 

Vt = U sin (O+c(U2+ V*f) + V cos(O+c(U*+ V*fl), 

(19 r) U1 ~- U cos O-- V sin 0, Vt -~ U sin 0 + V cos O. 

Also, on account of the possibility of preserving the conjugate relation of 

the series u, v employed at every step of the formal work (so that  u, v are real 

series), we conclude that,  if T is given by  real series, the normalizing series U, V 

can also be taken real. 

w 24. Generality o f  normal form. Case IF.  

Likewise in analogy with w 22 for case I r we find: 

The most general normalizing variables U*, V* in case I1  r have the explicit ]orm 

(20) 
U * ~  UcosZ(U* + V*)-- Vs inZ(U 2 + V~), 

V*-~ U s i n Z ( U  * + V*) + VcosZ(U* + V*), 

where ~ is an arbitrary power series in U ~ + V 8 without constant term, and U, V are 

any particular aet o/normalizing aeries. 

w 25. The integrable case. 

T h e  formal series u~, vk used in the preceding par t  of the paper may con- 

verge. Suppose that  these series converge uniformly for lu [, Ivl, I k] sufficiently 

small. By  the definition of Su, Sv as derivatives of uk, Vk respectively as to 
for k =  o, we see that  in this case Su, Sv are given as convergent series. Conse- 

quent ly the formal differential equations (9) are of the ordinary type  with Su, 

Sv analytic functions of u, v vanishing for u - - - - v ~ o .  I t  follows that  u~, v~ 

converge uniformly for I hI_-< K,  an arbi trary positive quanti ty,  if lu l ,  Ivl are 

sufficiently small. I t  is then that  we speak of us, vk as convergent series. 
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A necessary and su//icient condition /or the convergence o/ the series uk, vk 

(as specified) is that the correspondin 9 conservative trans/ormation T be integrable. 

The fact tha t  the integrability of T is necessary is proved at  once. In 

the convergent case the formal differential equations are of the ordinary type 

as noted above. Consequently the formally invariant function F* defined by 

means of the equations ( i i )  is an actual invariant function. That  is, T is 

integrable. 

To prove the sufficiency is not such an easy task. Let F r be the given 

invariant  analytic function. Every  invariant  series can be expressed as a power 

series in F t or in fractional powers thereof (w i4). In the lat ter  case F is an 

exact formal qth power if the qth root is to be extracted. And furthermore 

this root is of course also given by a convergent invariant series. Hence, without 

loss of real generality, we may assume that  the invariant  formal series F* is a 

formal power series in F '  i. e. F* = r 

:Now write 

, , dv'k OF'(u'k, v'D du'k OF'(u'~, v'l,) Q(u'k, vkJ d k  
Q(u'k, v'k) dk  8v'k ' 8u'k 

where Q is a quasi-invariant function belonging to the conservative transforma- 

tion T.  The differential equations so defined, joined with the initial conditions 

u'0 = u', v'0 = v' determine convergent power series u'k, v'k which converge uni- 

formly for I kl< K (K arbitrary) if [u'[, [v'[ are sufficiently small. These func- 

tions define a conservative, integrable transformation T'. 

Furthermore,  T' will be of the same type Y, II', II" or III '  as T,  except 

possibly tha t  when T is of type II", T' may be of types I', II '  or III ' .  For 

example, if T is of type I' then F* has an initial term uv  log r (see (8)) of the 

second degree. Hence F'  begins with terms of at most the second degree. But  

the initial terms cannot be of the first degree because of the relation F* = ~(F') .  

Hence we have F ' =  cuv  + . . . ,  and, by introducing a constant  factor in F', we may 

take c = log Q. An inspection of the initial terms of the transformation T' shows 

then that  u'l = qu' + . . . ,  v'l = I v '  + -.., as desired. An entirely similar argument 
r 

holds in the cases II', III ' .  

In all cases it is clear tha t  either we can take the initial terms of F* to 

coincide exactly with those of 2", or these terms are of higher degree in F* 

d~p 
than in F'. In the first case ~ , = i  for F ' = o ,  while in the second case 

dcp _ _  F'  
- -  -- o for ---- o. 
d F' 
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Consider the formal series 

4 1  

u'l,,(u', v'), v'l,,(u', r 

where k r . dep ~d-F" I t  is necessary to elaborate further what is meant. 

Tak~ case I t for example. Here urk, vrk are power series in u r, d with coef- 

ficients polynomial in Qk, e-k, k. Since 

d~ 
~ - - F  = i + a F  r + .-., 

we have 

Q~' ~ ' ( I  + a F k  log Q-F -. ' ) .  

That  is, Q~' can be writ ten as Qk multiplied by  a power series in u r, v ~ with co- 

efficients polynomial in k. A similar remark is true of Q--k, and k r. When these 

series are subst i tuted in urk,(u r, vr), dl,,(u r, d ) ,  and the finite number of terms of 

any particular degree in u r, d are collected, new power series in u f, d with 

coefficients polynomial in ~ ,  Q-k, k are formed. I t  is these series which we 

designate by  u'k,(u r, d ) ,  v'l,, (u', v'). 

Similarly in all of the other cases the new series urk,, vrk, are of the same 

form as the series for uk, v~. 

Now we have evidently 

du'k, du'k, dq~ 
d k  --  d k  r d F  

by a rule of formal differentiation which evidently applies to each consti tuent 

element of u~, and thus to the entire series. A similar result holds for d~,. 

Making use of these results, and also of the defining differential equations for 
urn,, d~, we find 

durk, ~ F  r dq~ Qddk,  ~ F  r dq~ 
Q d k  8v'l,;-d-~' d k  Ourk, d F  r' 

where the arguments in Q, F r are understood to be urk,, vrk,. But,  from the 

relation $'* ~ ( F ' ) ,  it is clear that  these differential equations for u~k,, vrk, are 

the same as those for u~, vk. Also these two pairs of functions reduce to u r, v r 

and u, v respectively for k =  o. 

Since such formal differential equations and conditions determine a unique 

power series in u, v with coefficients functions of k of the stated type, we obtain 
Ac'ta mathematica.  48. lmprim6 le 19 mars 1920. 6 
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the formal identities 

u'k,(u, v) = uk(u, v), v'k,(u, v) = vk(u, v). 

In particu]ar, the above relation holds for k = I and gives 

u'~,(u, v ) = u l ( u ,  v), v'~,(u, v ) =  v,(u, v), 

where now k ' =  d(p . 
d F' 

The noteworthy feature of these equations is that  the only possible diver- 

gent element appearing is k'. 

Now write kr--  dep(~ dF t + k'. Then U'k,(U, V), V'~,(U, V) become convergent 

power series in u, v, k" for sufficientJy small values of these variables. A formal 

power series in u, v without constant term satisfying the two equations above 

is k" dcp(F) dcp(o) Since these equations are of the ordinary analytic type, 
= d ~  dE' " 

k" is a convergent power series. Consequently dq~(Fr) is a convergent series, 
d F' 

def(z) 
and, since F ~ is also, it follows that  ~ -  is a convergent power series in z. 

Finally then ~0 is a convergent series. 

I t  follows that  F* is given by  a convergent series in the integrable case 

and thus, by  the differential equations (9), that  the series ~k, vk are .convergent. 

The simplicity of the integrable case is sufficiently evident from the fol- 
lowing fact: 

In  the integrable case explicit /ormulas /or Uk, Vk are at hand, namely 

Uk, Vk Uk, Vk 

Qdu f Qdv 
F*(uk, Vk)= F*(u, v), k = .  OF* J OF* ' 

u,v i)V u,v OU 

where the integrals are taken along the curve F* = const. 

The normal forms (z6), (i6 I) and (i9), (i9'), for cases I r and IF respectively, 
are integrable. If these normal forms can be obtained by  means of a change 

of variables (I5) in which the series U, V are convergent, the given trans- 
formation T is integrable. 

Conversely, suppose T to be integrable and of type  I f. The series F* 

converges and by  (8) can be wri t ten UV log q, where U, V are convergent series 
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of the form (15). If we introduce these new variables, which we call u, v for 
brevity, then uv is an invariant function. 

For the integrable transformation T in these variables, the convergent 
series Ju,  Jv must  be of the forms up IogQ and - - v p l o g Q ,  where p is a con- 
vergent series with constant term i .  In fact v~u + u6v vanishes and the initial 

terms of du and 6v are u log Q and - - v  log Q respectively. 
If a further actual change of variables ( 1 5 ) c a n b e  made which gives T 

the form 

UI = ~ U e  h(~v~, VI = x Ve_h(uv~ ' 
r 

then an additional actual change of variables as in w 2i yields the desired 

normal form. But  U1, Vl have this form if and only if 

i. e. if 

dU--- - -U(logQ+h(UV)) ,  dV = - -  V(Iog Q + h(UV)) ,  

OU ~-~-)plog = U (log + h(UV))  ( U U~u - -  V ~ ~ , 

O r  v a V l  U~uu-- ~-vv/p log Q = - - V ( l o g  Q + h(UV)) .  

We have then to find convergent series U, V, h which satisfy this pair of equa- 
tions, in order to establish the proposition under consideration. 

I t  is sufficient to satisfy the equations 

) 0U 
u - ~ u - - v -  ~ p log e =  U (log Q + 9(uv)), 

0V OVl 
u ~  u - -  v~-~] p log ~ = - -  V(log e + fp(uv)), 

with convergent series U, V, (p, provided that  U and V have initial terms u and 

v respectively. For, multiplying the first equation by V, the second by U, 
adding and integrating, we conclude that  U V is a function of the product uv 

alone. Hence we have U V = uv + .. . .  Therefore uv can be expressed inversely 

as a power series in U V, and cp(uv)~-h(UV) where h is convergent. 
But, by the same equations, U and V contain no terms in v and u alone 

respectively, since p has a constant term I .  Consequently we may  write 
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U ~ u e  M, V - v e  -N, 

where M and N are convergent power series in u ,  v without constant terms. 

The equations above take the form 

O M  O M  x ( ep(uv)  t 
u-o-~u --v--dV-v = f I +  l o g Q / - - x ,  

ON ON ~ ( q~(u~,) I _  
I.  

If convergent power series solutions M,  N and r without constant terms can 

be found our proof will be complete. 
We observe in the first place that  there are no terms in u, v with equal 

powers of u and v on the left. Hence, for any conceivable solution, the series 

development of 

contains no similar terms. But  this proper ty  of a series is not modified if it is 

multiplied by  a series in u v  only but  having a constant  term. Hence 

z log Q 
p log Q + q~(uv)  

is a similar series. The second term must  consist precisely of those terms p~(uv)  

in u v  alone found in x and we have 
P 

I ~ pr 
9 ~ - - ~  log Q. 

Thus the only possible formal series ~ is convergent. 

When this particular (p is substi tuted,  the right-hand members above be- 

come power series in u, v without terms having equal exponents. Write then 

off 

M-~ N =  ~ l:',,,,,u"v", (m ,~ n). 
rn+n--1  

The equations for the formal determination of the coefficients P,n~ show 

that  these are uniquely determined and not greater numerically than the cor- 

responding coefficients in the right-band members. Thus the desired convergent 

solution M,  N,  ~ is obtained. 
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An entirely similar discussion can be made in case IIr. 

In  the integrable cases T, I1', and then (rely, the normal /orms (z6), (z6') and 

(z9), (x9 f) can be obtained by a change o/ variables (I5), where U, V are convergent 

series. 

w 26. The non-integrable ease and the integrable case. 

Let two transformations T and T' be said to osculate to the l~th order i~ 
u ~ -  ufl and v l -  vrl are given by series beginning with terms of at  least the 

(/~ § i ) th  degree; T~ and Trk will also osculate to the /ath order for any integral 
value of /r I t  is clear tha t  the formal series for 6u, 6v and ~u r, 6v r agree to 

terms of the (/~ + z)th degree. Conversely, if 6u, 3v and ~u r, dv r agree out to 

terms of the (t~ + z)th degree, then T and T' osculate to the t~th order. 
Let T be a given conservative transformation o/ types I ~, I I  r, 1I" or IIIr 

with a quasi-invariant /unction Q and a /ormally invariant series F*. 1/ 

and F* are convergent series agreeing with Q and F* to terms o/ the (~ + i)th and 
(l~ + 2)th degrees respectively, then there will exist a corresponding integrable trans- 

/ormatlon T with a quasi-invariant /unction Q and an invariant /unction F*, which 
T osculates to the ?~th order. 

The transformation T is evidently that  defined by the equations 

o duk o~* 5dvk OP ~ 
- ~ =  vk "~ dk ~uk 

with initial conditions uo ~ u, v o = v .  

Chapter  II. Hyperbol ic  invar iant  points.  

w 27. The analytic invariant curves in ease I'. 

In the non-integrable as well as in the integrable case I r the two real 

formally given invariant curves correspond to actual curves. A proof of this 
fact was first given by POINCAR~. (]oc. cir.) and later by HADAMARD. 1 Our 

proof will be of a different character,  and involves the hypothesis that  T is 
conservative. A similar method will be used later by us in treating more general 

c a s e s .  

1 Sur l'itdration et les solutions asymptotiques des dquations diffdrentieZles, .Bulletin de la So- 
cidt~ Math~matique de France, vol. 29, xgo~. 
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The two formally invariant curves in case I r may either be obtained from 

the equation F * ~ o  or from the equations U ~ o ,  V = o  where U, V are the 

normalizing variables of w 2i. In fact, when the transformation is in the normal 

form, these equations yield the formally invariant curves. 
I n  case I r the two real /ormally invariant curves give two analytic invariant 

curves through the invariant point. 

We commence our proof by  choosing variables which osculate the normal- 

izing variables U, V to the ~th order ( ! t>2) .  According to w 2i we have then 

u, =eueC"tv~ + o,(u, v), v, = ~ v e  -c'lvz + ~(u, v), 
Q 

where w, ~] are convergent power series beginning with terms of the (~t + x)th 

degree or of higher degree. 

Our proof will consist of the following three steps: 
(I) the limits limk=~Uk(O,--kt, 0), limk--~Vk(~--kt, O) exist as formal power series 

u*(t) ,  v*(t), and yield a formally invariant curve; 
(2) Uk(~--kt, o), Vk(e--kt, O) are dominated by fixed convergent power series in t 

for all b; 

(3) and hence these series converge uniformly to limiting functions of t for It] 

sufficiently small, namely to u*, v* respectively, which are thus the co- 

ordinates of the invariant curve V = o. 
A similar t reatment  of the invariant curve U = o can be based on the in- 

verse transformation T_I. 

Prool o/ (x). 

We have directly 

u~ ~ ~ u e  k ' zJ  + ~o(u, v, b), vk = o,-kve - k ' z J  + V(u, v, k),  

where w(u,  v, Ic), ~(u,  v, k) are convergent power series beginning with terms of 

the (u + i) th or higher degree. Furthermore,  the first term on the right-hand 

side of either equation has evidently the property that  when expanded in power 

series in u, v the coefficient of a term of the ruth degree is linear in Q~ or Q--k 

and polynomial in /c of degree less than the degree of the term. But  Uk, Va 

have the property that  the coefficient of umv '* is a polynomial in Qk, Q-t, k of 

degree at most m + n (w 4). Therefore the same is true of co(u, v, Ic), ~(u, v, Ic). 
Thus we obtain at once 

u~(e -kt ,  o) = t + p(,~)(~-~, k)t'~, v~(e-kt, o) = ~qi , , ) (e -k ,  k)t,~, 
n--~+l n--~+l 
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where  p(m, q(m are polynomials  in q--k, k, and  where ev e ry  t e rm  involving k is 

af fected with a mul t ip l ier  q-~ raised to  a posi t ive  power.  

I t  is thus  seen tha t ,  inasmuch  as Q > I ,  each coefficient  of the  series for  

Uk(q--kt, O) and  Vk(q--kt, O) approaches  a l imit ing value  as k becomes infinite.  In  

o the r  words the re  exist  l imiting formal  series u*, v*. Clearly u* is given b y  a 

series with f irs t  t e rm t and  following te rms  of degree  a t  least  ~t + i ,  while v* 

begins with a t e rm  of degree no t  less than  ,u + i .  

Now we have  the  formal  ident i t ies  symbol ized b y  

T(uk(Q--k[,, o), Yk(Q--kt, o)) ~ (Uk+l(Q--k--lt ', O), Vk+l(~--k--lt r, 0)), 

where t r s tands  for qt. B y  allowing k to  become infini te  we obta in  the  identi-  

ties symbol ized by  

T(u*( t ) ,  v* ( t ) )=  (u*(et),  v*(~t)). 

This  is precisely the  condi t ion  t h a t  u = u* (t), v = v* (t) be a formal ly  invar ian t  

cu rve  under  T .  The  p a r a m e t e r  t on the  curve  goes over  in to  Qt. 

Proo/ o/ (2). 

To  establ ish (2) we begin b y  observing  tha t ,  inasmuch as Uk(U, V), Vk(U, V) 
are compu ted  by  successive subs t i tu t ions ,  ev e ry  coefficient  in these series will 

ce r ta in ly  become posit ive,  and  as large numer ica l ly  as i t  is originally,  if us, v~ 

are  replaced by  any  series in u ,  v wi th  each coeff ic ient  pos i t ive  or zero and  as 

large numer ica l ly  as the  like coeff icient  in ul,  vl.  Such series can be t aken  of 

the  form 

K ( u  + v) ~ K ( u  + v) ~ 
qu + x - -  L ( u  + v ) ' qv + i - -  L ( u  + v) ' 

prov ided  t h a t  K and  L are  suff ic ient ly  large pos i t ive  cons tan ts .  1 

Hence  when we compu te  uk(u,  v), vk(u, v) for  u ~ r  v ~ o, tak ing  ul ,  vl 

to  be these modif ied series, we ob ta in  power  series in t which have  posi t ive  

coefficients g rea te r  t han  originally and  so domina te  the earlier  series. Again 

these series will ce r ta in ly  be domina t ed  b y  the  sum 

Uk(e--kt, O) + Vk(e--kt, 0), 

where ul,  v~ are  the  domina t ing  series exhib i ted  above.  

i The linear terms taken are clearly large enough. The coefficients of umvn (m + n>_~ 2) 
in either series is at least as large as KJL ra+n-2, which evidently exceeds numerically the 
coefficient of umvn in u 1 or v I if K, L be chosen sufficiently large to begin with. 
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The sum ak = uk + vk obeys the law of formation 

ak+a=pak+ - -  

Kal 
i -- Lak 

with a o = a = u + v .  

But  the sequence ak is itself obtained by the method of successive substi- 

tution. Therefore the dominating series as is increased if we take 

pa 
ff~ ----- I _ _  M a '  

K 
provided we take M to be positive and as large as -- and L. 

P 
Under these circumstances we get the following general formula for ok: 

~G 
Gk 

I__M~__--IG 

The corresponding series in t is then 

t 
- - k  J 

--M L-Q t 
Q - - I  

which is dominated for all k by the convergent series 

Mt 
I . . . .  q - - I  

Hence this same series dominates the original series ~k(q-~t, o), Vk(p--kt, O) for all 
positive integral values of k. Q . E . D .  

Proo! o! (3). 
With the aid of (i) and (2), established above, we can at once show that  

the power series uk(q--kt, O), vk(p--kt, o) must be approaching a limiting pair of 

functions uniformly for I tl sufficiently small. 

To this end we choose k so large that  all of the coefficients up to the ruth 

in both series (m arbitrary) differ by less than an arbitrari ly assigned positive 
from their limiting values, which exist by our result (I). The sum of these m 

terms never varies for greater k by  more than a fixed t' if It] be restricted. 
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But  the remaining terms cannot exceed the sum of the corresponding terms 

of the fixed dominating series with t replaced by It[. Hence the sum of these 

terms is arbitrari ly small if m is sufficiently large. 

The fact of uniform convergence is evident. 

Thus u*(t), v*(t) are not  only formal series but  these series converge to 

actual analytic functions which we denote by u*( t ) ,  v*(t) .  Consequently we have 

an analytic invariant curve u = u*(t), v ~ v*( t ) .  Since u*( t )  begins with a term 

t while v*(t)  begins with a term of degree at least ~ + I ,  this invariant curve 

has contact  of order ~ at least with the u-axis at  the invariant point, and 

corresponds to the invariant curve V = o .  The parameter  change under T 

along the curve is tt = ' r  

Evident ly  the existence of these two analytic invariant curves U = o ,  V =  o 

establishes the fact that  the invariant point is unstable in case I r. 

w 28. I general  p rope r ty  in case I'. 

Introduce new variables of the type  (I5) 

U = u - -  (p (v), V = v - -  ~p (u), 

where u = 9(v) and v = tp(u) are the analytic invariant curves of the preceding 

section. In the UV-plane the invariant curves are the axes. For the sake of 

brevi ty of notation we will let u, v denote any set of variables which make the 
axes and the invariant curves coincide. 

When such variables have been selected it is clear that  ul = o if u = o, 
and that  v ~ = o  if v = o .  Hence we have 

u l = u ( Q + . - . ) ,  v l = v ( ~ + - - - ) .  

From this form of T we infer at  once 

I v I < I Q_~<u~<Q+~, ---~<-- -+~ 
u Q v Q 

for points near (o, o). Here ~ is an arbitrarily small positive quanti ty.  Thus 

u increases numerica]ly and v decreases numerically upon iteration of T,  in 
such wise that  the following result is obvious. 

I / t h e  invar iant  curves are taken as the axes  in  case I r by means  o] a pre l im-  

inary  choice o/ variables (I5), every point  o/ the region u s + v~ <=$ 2 wi th  u r~ o is 

Aeta mathematlca. 43. Imprim6 le 20 mars  1920. 7 
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carried out o/ the region by iteration o/ T, while every point v ~ o is carried out o/ 

the region by iteration o/ T_I .  The excluded points o/ the axes approach (o, o) 

under the same conditions. 

These considerations show that  there can exist no further invariant curves 

through (o, o) besides the two analytic curves above obtained. 

w 29. On the invariant  series in case r .  

The treatment  of invariant points in case I t as given above is sufficient for 

the later parts of the paper. Nevertheless, there remains open the question of 

the actual existence of divergent formal series F* in case I r. Unfortunately I 

have not been able to answer this question. In the present paragraph upper 

limits for the coefficients of a particular invariant formal series are obtained. 

1/ the invariant curves are taken as the axes in case I r by means o/ a prelim- 

inary choice o/ variables (I5) and i/ F denotes the invariant /ormal series having no 

terms with equal exponents in u, v save uv log 0, then the coe//icient o/ umv '~ in F 

does not numerically exceed C,~Q 2'nn, where Cmn>o is the coe//icient o/ u'nv n in a 

convergent power series. 

Before entering upon the proof of this statement,  we note that  in a series 

F with coe/]icients so restricted the terms in any power o/ u or of v /orm a converg- 

ent series. 

There exists such an invariant series F,  for, by  forming cf(F*) as a power 

series in F* beginning with a term F*, we can eliminate the terms with equal 

exponents in F. Since the most general invariant series is a power series in F* 

in case U, it follows that  this particular series ~' is uniquely determined by the 

given condition. 
In order to effect a proof of the italicized s ta tement  we first write the 

equation F(u l ,  v~)= F ( u ,  v) in the form 

?2 v u 

u 
obtained by  replacing u, v by ~ ,  Qv respectively. We have 

u v u 
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where p and q are convergent power series in u and v with constant term z. 

The equation above may be written 

F(~ ,  Qv) = F(up ,  vq). 

Likewise from the equation F(u_l ,  V - l ) =  F(u,  v) we obtain an equation 

F eu, -e = F(ur ,  vs), 

where r and s are convergent power series in u, v with constant term i. 

If F a n  denotes the coefficient of umv ~ in F so tha t  F~  = log r F20 = F0: = o, 

there results, by a comparison of coefficients in these two equations, 

Frau(~ n-m - - I )  = P m n ,  ~mn(~m--"--I)  = Q~., 

where Pm~, Q,~. are linear homogeneous expressions in Fa~ with a < m ,  f l<n ,  
a + fl < m + n.  The coefficients of Fa~ in Pan  are polynomials in the coefficients 

of the series p, q with positive integral coefficients, while the coefficients of F ~  

in Qm~ are similar polynomials in the coefficients of the series r, s. Combining 

the above equations we obtain 

F.~(q'~-,,~ + e , , ~ - . - - 2 ) =  P.~,, + Q.~, ~. 

For m # n the coefficient of Fro. is positive. 

Suppose that  p, q, r, 8 are replaced by a single dominating series, say 

I 

I - - A ( u + v )  

Then Pm~, Qm~ takes a common form Rm~, and the modified equations 

F,..(Q ~-m + em-~- -2)  = 2Rm~, (m ~ n), 

define new positive quantities Fan  for m # n, at  least as large as before in 

absolute magnitude�9 

Along with these equations we consider the equations 

Gmn(e"+"--~) = R ~ . ,  (m + =3)  
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in which the arguments F in Rm~ are replaced by G. These equations determine 

Gin,, for m + n = 3, m + n = 4, --., in succession, provided tha t  we take G11 = l o g  q, 

G2o ~ Go2 = o. These differ from the equations determining the modified values 

Fm~ only in that  the divisors L(q~-m + O r e - , _ 2 )  are replaced by the larger 
2 

divisors Qm+~--r. Consequently we have 

Fl'n n 

G m n  

- - <  H qm'+n' ~ i 

I n ~ _ m  r - -  2) ~-(~ + ~,,,,-,,, 

where the values m r, n' written are for all the divisors explicitly entering into 

some one term of the complete expression for Fro,.  

NOW take these divisors in order beginning with m ' = m ,  n t = n .  The next  

divisor has mr<_m,  nr < n ,  mr + nr < m +  n ,  and in general m r , n' do not increase 

while m ' +  n' decreases by at  least uni ty  at  each stage. 
:For m r > n  r we have 

Q mr+nf - -  I Q m~+nt - -  I Q 2nr 

qn'-m' + o m ' - n ,  2 = qm'-'*'(I --  qm'--n')B < ( ~ ' I - -  

and there is a symmetrical inequality which holds for n ' > m  r. Let us replace 

the factors above by these larger factors. If m > n  a superior limit for the. 

product H is therefore obtained by making m t diminish by uni ty  successively 

and keeping n r =  n until we have m r =  n + I, and thereafter decreasing n r and m r 

alternately by I. Hence the product of the factors is less than 

and thus less than 

2 m+n Q2n(m-  n) Q2 ( n - l )  Q2 ( n - 2 ) . . .  I 

I 12(re+n) 

Thus we have 

2m+n Q2 n m 

I ) 2 (m+n) 

2 m+n G,,,,, 
I / ~(m+nl Q~nm IF,~.I < (~-- ~-/ 

for m > n, with the same inequality holding for n > m. 
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I t  is clear therefore that  [Fm,,[ is restricted by an inequality of the type 
stated if the series 

G ~ ~ Gmn um v n, 

converges. 

The coefficients Gm,~ and Gnm are equal so that  G, nn + R,nn is the coefficient 
of u'nv" in either 

( ~ ~ ) t v o ) G i _ _ A ( u + v ) ,  I - - A ( u + v )  or G . i _ A ( u + v ) ,  i - - A ( u + v ) "  

Moreover, it follows also from the equations of definition of Gm~ that  the 
difference 

i [ o (  u v ) (  v ~ )] 
G(qu, Qv)---~ I - - A ( u + v ) '  Jc A ( u + v )  +G , , i - - A ( u + v )  I - - A ( u + v )  

considered as a 
reduces to 

formal series, has no terms in umv n for m + n ~ 3 ,  and so 

(~'-- I) uv log r 

Furthermore,  G is determined formally by this property.  
If we replace this last difference by 

I 2 ~- (r - -  ~) (u + v)', 

which dominates it, a modified G series is obtained, satisfying the equation 

i [ o (  u o ) (  ~ u )] 
G(r Qv)-----~ I - - A ( u + v ) ' i q A ( u + v )  +O I - - A ( u + v ) ' x - - A ( u + v )  + 

and certainly dominating the former G series. 
determines the new series. 

But  the functional equation 

l (ez)  = / 

+ ~(r -- i )  (u + vp, 

This functional equation wholly 

I + ~(r 
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admits of an analytic solution, namely 

q ' - - I  Z'~o 2q' = (I 

George D. Birkhoff. 

I--~-nAz) 2 
q - - I  

I t  follows that  G(u, v ) = / ( u  + v) gives the solution of the modified equation 

for G, and thus that  the original G series converges. Consequently the proposi- 

tion under consideration is fully established. 

w 30. The case I ' .  

This case is easily disposed of inasmuch as T~ is of the type Y treated 

above. 
If we choose formal normalizing variables, T2 becomes precisely 

U 2 ~ Qz?~eeuZvZ, Y z ~ Ve -r 

This is possible by w 2I. 
We have u2v2=uv .  In case u l v ~ u v ,  write 

u~ vl --- uv + rf(u, v) +. . .  

where ep is a homogeneous polynomial in u, v of least the third degree in u, v. 
This gives 

u~%=u~vl  + ep(ut, vl) + . . . .  uv + ~(u, v) + fp(eu, ~v )+ . . . .  

1 T  \ 
Hence ~ ( u , v ) + ~ ( q u , ~ v ) v a n i s h e s  identically. This is impossible for any poly- 

nomial not  identically o since ~ - - i .  Thus we conclude that  u,v, = uv,  and 
accordingly that  u 1 and vl are divisible by u and v respectively. 

We may now write 

v 

u , = e u g ( u ,  v), vl eg(u, v) 

Here g(u, v) is a power series in u, v with initial term x. 
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The first of these equations gives u2 = r  v ) g ( u , ,  vl) whence, by  com- 
parison with the normal form, 

g(u,  v) g(ul ,  v,) = e ~ 

Replacing u, v by u~,vl in this equation, we have 

g(u l ,  v,) g(u2, v2) = e ~ 

so that,  by a comparison, g(u2, v,~) .-- g(u,  v), i. e. g(u,  v) is an invariant function 
s  

under T2, and must be a function of the product  u v  only (w x4), namely e 2 ~  

The form of the transformation T is now fully determined. 

I n  the case I "  by the aid o/ a /ormal change o/ variables (i5) the trans]orma- 

tion T may  be reduced to the /orm 

1-culvl I --~-r t 
U l = e U e 2  , V I - ~ -  V e , 

where we may  have c----- o, l -~  ~ as in case I'. 

This same reduction shows that  the formally invariant curves under T and 

T2 coincide. 

I n  case I "  there is a /ormally invariant /unction F*  and two analytic invariant 

curves through the invariant point, these being the same as /or T 2 . 

We can at once infer that  the same property holds in case I"  as is given in 

case I r by the italicized statement o~ w 28. Hence there are no further invariant 
curves through (o, o). 

In the integrable case these normal forms can be obtained by  means of 

ordinary changes of variables (w 25). 

w 3I. An example in the hyperbolic case II". 

There are of course no real invariant formal curves in case I r  inasmuch 

as F* is of the form - - I -O(u~+v~)  by (I3). Thus the case I r treated above may 
2 

be regarded as the general hyperbolic case, while IY is the general elliptic case. 
The cases II", IIIr may  be either hyperbolic or elliptic. 

In the hyperbolic case II" we can set up an example showing that  the 

formal series F* may diverge and also illustrating other significant features. 
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The transformation T is the following 

u u , -  , v ,=(I+u)  s(v+us). 

This is evidently of type II" at the invariant point (o, o). Moreover, since the 
Jacobian of u~, v, as to u, v is x, areas are preserved, and T is conservative 

with quasi-invariant function Q = x. 
By direct i teration we find 

[ ( i )] 
= ~ - - - ,  v k = ( z + k u )  ~ v + u  ~ z + ( z + u ) ~ + ' . . + ( z . ( k _ x ) u ) 4  Uk I -~ k u  

for all integral values of k. The expression for uk is of the type given in w 5- 
d l o g F ( z )  1 

To express vk in such a form we introduce the well-known function ~p(z) : d z  

We have, by means of the functional equation for F ( z )  

so that 

I 
~p(z + ~) = ~- + ~p(z), 

~p"'(z +x) - ~ + ~p'"(z), 

where ~0 "~ stands for the third derivative of q~ as to z. Hence we have 

,,,(~ ) ,,,(~t) ,,,(~ ) --6u' 
~P u + : t - - - - - 6 u 4 + ~ p  ~ ,  q., u + 2  ( i+u)4  ) rl;( I +~p u + ~  , . . . ,  

whence, by addition, 

tp, , iI  + k u i  k - x  u" 

Thus we may write for positive integral values of k, and likewise for k a 
negative integer or o, 

z (~ ( - - ~ - - t  - ~  (u/t]" vk = ( i  + k u ) ~ [ v _ _ g  ,,, z + k u  ,,, I 

x For  a s imple  d e v e l o p m e n t  of the  p rope r t i e s  of r used here ,  see K. P. WILLXA~S, The 
asymptotic form of  the function r Bulletin of the American Mathematical Society, vol. I9, i9x2 
--1913. 
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Now qJ(z) is given asymptotically by the series 

57 

c o  

logz__ I _ _ + ~  ( - - I ) " B .  
2Z 2 n  Z 2n 

n ~ l  

in the right half of the complex z-plane, in which Bn denotes the nth Bernoullii 

number. By  differentiating three times ~ we infer tha t  ~p'"(z) is given by  an 

asymptot ic  series, 

z ~2 + z'3 --2~ (--i)"(2n+i)(2n+2)Bnz 2"+s 
rt--1 

in the right half of the complex z-plane. This series satisfies formally the 

functional equation for ~p"'(z) given above, although the series diverges of course. 

If replace tp"' by this divergent series in the expression for vk found above, 

vk becomes a power series in u, v with coefficients polynomial in k. Moreover, 

for k = x, 2, 3 . . . .  the series involved must converge. In fact vk is then a function 

analytic at  u = o, and therefore its asymptotic  series is its power series expansion. 

Hence we have here the unique formal series for vk of the type  considered 

i n w  
By  direct formal differentiation of these series for u~, vk and setting k = o, 

we obtain 
�9 

r ~ u = - - u  ~, Ov=2uv---d~O(4~ �9 

Moreover, since Q = i, we have for the invariant series F* by  formula ( i i )  

8 F* OF* Ov = - - u "  -Ou - -  = -  2u , + 

6 u  j ~ul 

whence we get immediately 

I m I 

This of course is a divergent formal power series in u, v. B u t  it was seen 

in w 25 that  the series for F* converges in the integrable case. 

t See J .  F. RITT, On the differentiability o f  asymptotic series. ~ulletin of the American Mathe- 
matical Society, eel.  24, X9XT--I918, fo r  a d i scuss ion  of such  d i f fe ren t i a t ion .  

Acta mathematiea. 43. Imprim6 le 20 mars 1920. 8 
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Thus T is el non-integrable type. 
We note the very significant fact that  if (p"' be regarded as a function and 

not as a formal series, we have here an actual invariant  function, real and 

analytic for u >  o, and asymptotically given by the formal series for F* for u 

small, so that  this function is continuous together with all of its derivatives 
for u > o .  

At first sight this seems to leave available no similar function for u < o .  

Such a function is readily furnished as follows. The function ~p(i--z) satisfies 

the same functional equation as ~0(z), is analytic in the left half of the complex 

z-plane, and is given asymptotically by the same divergent series as ~. Hence 

a similar invariant  function F* can be obtained by replacing the function ~pt'(z) 

by the function --  ~p'r(i-- z). 

If the invariant functions for the two halves of the uv-plane are united we 

obtain a real invariant function, analytic save for u = o ,  continuous together 

with its partial derivatives, and given asymptotical ly by F* at  (o, o). 

I t  is this general type of invariant function which probably exists in all 
cases. 

In the case I r, I can prove the existence of a real invariant function, 

continuous with all of its derivatives and asymptotically given by F* at  (o, o). 

But  this discussion is omitted since the existence of an analytic invariant function 

is highly probable in the general hyperbolic case. 

We come now to the question of formally invariant curves. These are 

obtained by factorization of F* (w I9). Since ~"(I -  I has an initial term 2u 3, the 
\Ul  

curves are at  once seen to be the curve u = o  taken doubly, and the formal 

I ,,(I) The latter curve also gives an invariant curve, analytic curve v 6u ~ ~P u "  

for u ~ o such tha t  v is continuous together with its derivatives of all orders in 

u at  u = o .  Half of this curve ( u ~ o )  is that  arising when by ~P(z) we under- 

stand the function lp(z) introduced above. For u < o  we get of course the other 

I ,,,(_ 11 half of the invariant curve V = s u  ~ ~p ~- -u /"  

The analytic invariant curve u ~ =  o corresponds to a multiple factor of F*, 

and accordingly is an invariant  point curve (w 2o). This is readily verified from 

the explicit formulas for ut, v~. 

I t  is also worthy of note that,  for any point (u, v) not on either invariant  

curve and with u > o ,  uk increases for k = - - I , - - 2  . . . . .  Also for k = I ,  2 . . . . .  
we note that  
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_ V * = - - u ~  v k + ~ q F  ~ = c ~ o .  

59 

Hence as uk diminishes the expression in brackets  increases. In other words 

any such point (u, v) leaves the vicinity of (o, o), both upon indefinite iteration 

of T-a  and of T. A similar argument shows that  the same is true for a point 

(u, v) with u < o. 

w 3z. P re l imina ry  n o r m a l i z a t i o n  i n  t h e  h y p e r b o l i c  case II".  

We will consider first what  may  be termed the non-specialized case II", 
The characteristic feature of the case II" is that  the invariant formal series for 

F* begins with terms of higher than the second degree. In general then we have 

F *  ~ aao u s + a~l u s v  + al~ u v  ~ + aoaV s + �9 . . ,  

where the roots of the cubic in s, 

tZ~o + O,2t 8 + a12 8 s + ao3 8 s ~ o ,  

are distinct and at least one of these roots is real. To each such real root s 

corresponds a real formally invariant curve v = s u +  . . . .  In general therefore 

case II" is of hyperbolic type. We consider any such real formally invariant 

curve C. 

By a linear change of variables C can be taken tangent to a new u-axis. 

That is, we can make s = o in this way. The equation of C is now of the form 

v - ~ ( u ) ,  where ~ ( u ) ~ - a u 2 + . . . .  By  a further formal change of variables (I5), 

U ~ u ,  V = v - - r  the formal curve C can be taken into the U-axis. I t  is to 
be observed that  any such linear change of variables as well as a change of 

variables (I5) leaves T of the same type  II". Since V ~ o is the equation of the 

invariant curve, both VI and F* are divisible by  V. 

If we do not make the above formal change of variables but  make an 

actual change to variables which are the same to arbitrarily high degree ~t + ~, 

uL, vl are unaltered to terms of degree ~t + i, Q to terms of degree g, and thus, 

by (xI), F* is unaltered to terms of degree ~t + ~. Consequently we may write 

v, = v[i  + . . . ]  + ,~(u, v), 

F * ( u ,  v) = v[a21u 2 + a12 u v  + aoav~ + . .. ] + ~ ( u ,  v ) ,  
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where  the  b r a c k e t s  are  po lynomia l s  in u,  v of degree  a t  m o s t  ~ t - - i  a n d  where  

co, ~ a re  power  series wi th  initial  t e r m s  of degree  a t  leas t  /~ + I .  

U n d e r  our  h y p o t h e s e s  a ~  is not  o, for in t h a t  case s = o would be a double  

roo t  of the  equa t ion  in s.  

B y  d i rec t  i t e ra t ion  of the  fo rmal  series in the i r  or iginal  f o rm (w 2) we find 

Uk = U + k (r Us + r UV + r V~) + "" ", 

v~ = v  + k(~p~o u~ + ~p~uv + ~Po2V ~) + . . . .  

H e n c e  we find, on d i f fe ren t i a t ing  as to k and  t ak ing  k----o, 

~u=cp2ou" + qh~ uv  + r s + ". ' ,  

~v = ~2o u~" + ~ u v  + Ipo2v~ + . . . .  

Using  the  equa t ions  (z i )  and  bear ing  in mind  the  fac t  t h a t  Q commences  wi th  

a c o n s t a n t  t e r m  x, we see t h a t  

r = a 2 1 ,  e l l  = 2a12, r ~ 3ao3, 

lP~o--= o ,  ~11-~- -2a21 ,  (Po2------a~2, 

These  resul ts  m a y  be s u m m a r i z e d  as follows: 

Let T be a conservative trans]ormation o/ type I I "  /or which there are three 

[ormally invariant  curves with ordinary point8 and distinct tangents at (o, o). 1] 

variables u ,  v are properly chosen, any  real ]ormal curve o] this sort can be made 

to osculate the v-axis  to any  order t~ > 2. Under these circumstances we have 

u~ = u  + a2t u: + 2a12uv + . . . ,  (a2t ~'o) ,  

v l = v [ x - - 2 a 2 1 u - - a n v  + . . .]  + w ( u ,  v), 

F * ( u ,  v) = v [ a n  u s + a12uv + aoaV ~ + . . .]  + ~(u ,  v), 

where the bracketed expressions are polynomials of degree at most t ~ - - i  and w, 

are power series with ini t ial  terms o] degree at least t~ + I .  

w 33- Some inequalities in the hyperbolic case II". 

L e t  us t a k e  va r i ab les  u ,  v as above .  We will t ake  ?e > 5 a n d  also a~  ~ o. 

F u r t h e r m o r e  u,  v are  t a k e n  to  be  complex ,  of smal l  modul i ,  and  such t h a t  
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(22) ~ ( u ) > o ,  Ivl<lul  2, 

where f~(u) designates the 'real par t  of u' ,  

The series for ut gives us at  once 

(23) I ut - -  u - -  a:t  u ~ ] < E(l~l u I s, 

where E (1) is a defini te  posit ive constant .  I f  we in t roduce  a new variable 

I 
z = -  (23) can be given the  essentially equivalent  bu t  more convenient  form 

U '  

(231) [ zl - -  z + a2t ] < E (2) ] Z [_1. 

Suppose now t h a t  we take  v-----o, 9r R,  R a large posit ive quan t i t y ;  in 

this  case the inequali t ies  (22) are satisfied. By  i tera t ion of T we obta in  (z~, %), 

(z2, %) . . . .  L e t  us assume for the present  t h a t  9~(zz)>R, I~zl<lzz l  -~ for 
l ~ - o ,  I . . . . .  n - - r  wi th  n > o .  

F r o m  the inequalit ies (23 t) for z, z~, z~ . . . .  , z,-1 we infer 

] Zl - -  Z/--1 + a21 ] < E(2) R - 1 ,  (l = I ,  2 . . . . .  n ) .  

These inequali t ies show t h a t  the  real par t  of zt diminishes by  approximate ly  a2t 

as 1 increases by  I, while the imaginary  component  varies slowly. By  combi- 

na t ion  we obta in  

[ zt - -  zj + (l ~ j)  a2~ [ < (1 - -  j) Ec~)R -x ,  (o < j < 1), 

and  thence 

I zj I > ! zz + (z - -  j) a~, I - ( l - -  j) ~2~R-1. 

But ,  since z~ has a posit ive real par t ,  we have  

I z, + q -  j) a~, I > ( z -  j) a~,, 
whence 

1 --~" < a~ I z~ + (l - -  j) a2, I. 

Replacing l - - j  > o by  this  greater  value in the negat ive  term of the inequal i ty  

for I zr we find 

Izr (~ ~c2~ R-11 a~--; / I z~ + ( l - -  j) a2, I. 
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The polynomial of degree ,u, ~V= F * - - ~ ,  has the same terms as those of 

Consequently if (22) holds 

But  this sum is less than 

where we have written n = I zzl t. The final integral which appears has evidently 

as greatest value 

i d_t i 
I + ta.~, I "+l 

o 

inasmuch as zl has a positive real part. Thus finally we obtain 

(24) lYzl < E(5)I z~l-" ,  (1 ~ i ,  2, . . . ,  n) ,  

where E (5) is a definite positive constant  which does not increase as R increases. 

Furthermore, from the explicit form of F we have 

IF, I Iz, l '>E(+lv, I 

Z--1 

I -~l [ < E (4} 2 [zz + (l - -  i) a2, I -" -1  
j - 0  

co 

< E (4) 2 1 z z  + j a:, I - " - '  " 
j - 1  

zz + ha2, [.+l = ~ .  zz + ta21 .+1' 
o II z~l 

the formal series F* out to terms of degree ~t + I. 

we have 

[ F ,  - -  F I < E(3) [ z [-,-1. 

Thus, under the above hypotheses, we have 

I F l  - -  -Pl-, i < E(a)]zz -1 i - " - 1 ,  (l ~- I,  2 . . . .  , n ) .  

Moreover _~= o since F is divisible by v. By combination we therefore obtain 

l--1 

I-F,I < E(3) ~ I zil-"-'. 
j - 0  

Using the preceding inequality for [zi[ we find 
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so long as (22) holds for (z, v). Thus we obtain 

Ivzl< I-~ll Izzl~ ( l = x ,  2, n). 
E(6~ , . . . ,  

Combining this inequality with (24) there results 

E(5) 
I v~l < ~ ) 1  ~zl - '+~, (~ = ~, 2 . . . . .  n). 

Since ~t- -2  > 3  the second inequality (2z) continues to hold until 9r 

Our main result may be formulated as follows: 

I /  ,t > 5 ,  an > o ,  ~ ( I ) > R > o ,  and i/  v : o ,  then we have 

(25) I~l  < E(~)I ~1 "-~ < I ~1 ~ 

, : ~ , 2 ,  . .  . ,  u n t a  ~(~)<~ : R .  /or  

I t  is evident that  i~{I I  ult imately becomes less than R.  \ ! 

w 34. F u r t h e r  inequal i t ies  in the  hyperbo l ic  case I I ' .  

The inequalities of w 33 are not sufficient for our purposes. 

to evaluate ut more precisely than we have done. 

To this end we write 

I t  is necessary 

I 
w = -  + a log u + flu + ...  + xu  k, 

U 

where k is arbitrarily large. 

in ul which involve u only. 

so that  

Also let 4 stand for the series formed by  the terms 

We propose to determine real quantities a, f . . . .  , z 

[w(~t ) - -w(u)  + a21[<K[u]  k+l. 

This condition will be met if 

u l N - -  ! +a~t  + a l o g u  + f l ( ~ x - u ) + ' ' ' + x ( ~ 2  k - u  ~) 
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is of the (k + i ) th  order in u. The term in brackets is a convergent power 

series in u without constant term. The following term is a similar series begin- 

ning with a linear term aa21u; hence a can be so chosen that  the first two 

terms form a power series without  constant or first degree term. The third 

term is a similar series with leading term 2~a2tuS; hence fl can be so chosen 

that  the first three terms form a power series beginning with terms of the 

third degree or higher. Continuing in this way we arrive at a determination of 

a, fl . . . . .  • which yields an expression w with the desired property.  

Suppose now that  we introduce the variable w instead of the similar var- 

iable z =  i u (w 33), taking !R (~ )>  R and choosing the principal value of log u 

in the expression w. It  is clear that  !R(w) is large when !R(z) is large and that  

the region 9~(z)> R corresponds to a region of similar character in the w-plane, 

with nearly vertical tangent throughout and crossing the w-axis far to the right 

of the origin in the w-plane. Hence, by  DAaBOUX'S well-known theorem, the 

correspondence between these regions in the w-plane and z-plane is one-to-one 

and conformal. Moreover, in this par t  of the w-plane w is nearly I .  
z 

From the definition of 4 it appears that  

l u , - ~ l  < E(8~lv[, 

and thence from tbe explicit expression for F ,  

n u , - ~ l < Z ( . , l ~ l  l u l - ,  

when (2z) holds. Further,  we have 

I u, - -  ~ I < Ec,  Ecs) I u I . -~ ,  

when (25) holds, from which 

I w ( u , ) -  w(~) I < Ecl~ u I ~-4. 

If we recall the defining proper ty  of w(u) and take k < # - - 5 ,  we get 

finally 

[w(u l ) - -w(u)  + a21 [ <~ E(m[u[ k+l. 

Applying this inequality successively for the sequence of values (u, v) of 

w 34 (when (22), (25) hold), we obtain 
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I w, - -  w + a~l I < E(12) I w I - k - l ,  

[w 2 - -  w, -t- a~l I < E(12) [ w, I--k--l, 

�9 . . , . . �9 . . , . . . .  

] w ~ - -  wn-1 + a21 ] < E (ie) ] w ~ - i  ] -~-1.  

Thus in the complex w-plane each point  w, wl . . . .  , w~ in the region 

R ( w )  > R'  falls approximate ly  a t  a dis tance a2~ to the left of its predecessor. 

By  the  me thod  used in w 33 it  is apparen t  t h a t  the sum 

X I I 

I w~ I k+' + I Wz-ll TM + "" + I w I TM 

and  I w ~ w  + la2,] are of the  order  Iwzl -k .  Hence  we have:  

A s s u m e  ~t > S,  k < # - -  5 , a2, > o, ~ (~) > R ,  and  v = o. Wr i t e  

x 
w = -  + a l o g u  + f lu  + . . .  + x u  k, u 

where a,  fl . . . .  , z are sui tably  de termined  constants�9 T h e n  we have 

(26) [ wl - -  w + la2, [ < E (la) [ w - -  la.zl [-k 

(i)< /or l--= I ,  2 , . . . ,  un t i l  ~ ~ = R .  

w 35. The  i n v a r i a n t  curves in t he  h y p e r b o l i c  case I r ' .  

Wi th  the  facts  deduced  in w167 33, 34 in mind,  we can readi ly  prove the 

existence of an  invar i an t  curve. 

Le t  us t ake  w, v as our  variables where w is restr icted to the region of 

Consider the  two sequences of funct ions of w: 

w,  w~ (w + a2,, o) ,  w2 (w + 2a2, ,  o) . . . . .  

o, v , ( w  + a~1, 0) ,  v2(w + z a n ,  o) . . . . .  

According to the  inequali t ies (26), (25), we have 
At ta  mathtmatita. 43. Imlprtm6 le 22 mars 1920. 9 
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I wl  (w + la2 , ,  o) - -  w I < E(la) l w i -k ,  

I v~ (w § la2~, o) J < E(14) lw I -~+2, 

w 
inasmuch as -- approaches z. 

z 

Thus, for 9~(w) suffioient]y large and positive, the sequences wz, vz remain 

hounded and define a closed set ~ of limiting functions w*(w), v*(w) analytic 

within the same w domain, 1 and restricted by the inequalities 

[w* (w) --  w [ < E(l~)[w [-/', [v* (w)[ < Et14)[ w [-z+~. 

Now we have 

T(wl(w § la:,, o), vz(w § lan, o)) ---- (WlTI(W "~ la21, o), v~+l(w § la21, o)). 

Thus the transformed sequences of functions have as limiting functions 

w*(w--a2,) ,  v*(w--a~l).  

In other words the total i ty  ~ is carried over itself by T, the change of para- 

meter being w~ ~ w - - a : ~ .  
Now let us suppose w and v to be real, with w sufficiently large and 

positive. The transformation from (w, v) to (w~, vl) is then a real analytic trans- 

formation, and the total i ty  of curves specified above are analytic with the pos- 

itive w-axis as asymptotes. In fact these curves ~. have contact of order ~ - - 2  

at  least with the w-axis at o~. 

Let  us return now to the prepared real uv-plane of w 3 2 . The relation 

between w and a shows tha t  in the real uv-plane the curves ~ are defined for 

u sufficiently small and positive, and are analytic curves with contact of order 

~t--2 at  least with the u-axis at  (o, o). On account of the mode of definition 

of the curves in the complex domain the inequality Iv I< E(15) lu l ' -2  holds uni- 

formly for all of these curves. 

I t  follows tha t  the total i ty  ~ consists of only one curve. 

In fact, consider the region u > o bounded by these curves and the line 

u----d. If there were more than a single such curve, such a region would ne- 

cessarily arise and lie within the region 

o < u < d ,  Ivl<EtlS)lul ~-~. 

I Cf. W. F. OSQOOD, On the uniformisation of algebraic functions, Annals of Mathematics, vol. 
z4, 19z2--z9x3, pp. 152--I54. 
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By the transformation T we have 

U t m _ u + a 2 1 u  8q- . ' - .  

67 

We see at  once tha t  this region goes into another which includes it. For, the 

upper and lower boundaries of the region bounded by the ~ curves are carried 

into themselves (the total i ty  ~ being invariant), while the line u = d is moved 

to the right. This is impossible since [ I Q d u d v  is invariant  under T.  

Passing back to the original uv-plane, we infer the existence of an analytic 

invariant  curve ending at  the invariant point and having contact of order of 

~,--2 with the corresponding formally invariant  curve. When the curve is 

represented in the form v ~-~(u) say, ~ is continuous together with its deriva- 

tives of the first ~*--2 orders for u ~ o. 

Now ~ is an arbitrarily large integer. By increasing ~t we cannot obtain 

further invariant  curves, as is seen at  once by a repetition of the above argu- 

ment as applied to the region between such curves. Therefore, the invariant 

curve when represented in the form v ~ ~(u) say yields a function ~0 analytic 

for u # o, continuous together with its derivatives of all orders for u-~ o, and 

formally coinciding with the formally invariant  curve. 

All of the above only applies if a21 > o. But  if a2~ < o then the analogous 

quant i ty  for T_I is --a2t .  Hence we can arrive at  the same conclusion if an < o 

by considering T_I instead of T.  

Clearly we can deal with the case u < o by merely rotating the axes in the 

prepared uv-plane through the angle z .  

Let us call a real function ](t) of a real variable t hylgereontinuous for t ~  to 

if ](t) is analytic for t # t 0 ,  I t - - t 0 [ < 6 > o ,  and continuous together with all of 

its derivatives for t ~ to. Similarly a curve is hypercontinuous at  a point if its 

eoSrdinates can be expressed as hypercontinuous functions of a parameter t. 

With these definitions we can summarize our results as follows: 

I n  the case I I  ~ when there are three ]ormally invariant curves with ordinary 
70olnts and distinct tangents, one or all three o] these will be real. To each such 
real [ormal curve corresponds a unique hypercontinuou8 curve through the invariant 
poini which is invariant under T and has the corresponding asymptotic representa- 
tion at the invariant point. 

I t  is clear tha t  the method above is not essentially limited to the discus- 

sion of real invariant curves but these are all we need to consider. 
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w 36. Extens ion  to the  general  hyperbol ic  case I I" ,  II" ' .  

I t  is easy to see that  the above work admits of an extension to the most 

general case ]I". 

Suppose first we fix at tent ion on any real formally invariant curve C in 

the case II" which has an ordinary point at (o, o). 

We can begin as before (w 32) by taking a prepared uv-plane in which this 

curve osculates the u-axis to order /~. 

The series for u~ can be taken to contain a term cup of least degree r > x ,  

where p does not increase indefinitely with ~t. Otherwise, when the u-axis is 

made the invariant  curve by a formal change of variables, it will be an invariant 

point curve, and such a curve has previously been observed to be analytic. 

The series in v I is divisible by v out to terms of degree u + I as before. 

The formal series Fe  consists of a polynomial of degree at most ~ divisible 

by v with a leading term cvu~' and a formal series with initial terms of degree 

at  least /z + z. 

Let  us assume c > o and take 

9t(u) > o, {v l< luF .  

Fur ther  let us iutroduce the variable z ~ u-p+1. We find easily that ,  for 9~(z) > R, 

1 

Iz,--z+(p--~)cl<Elzl p-l, 

where E is a suitable positive constant, and we can carry through a discussion 

analogous to tha t  contained in w167 33, 34- 
Introducing next a variable w, 

w = ~  + ~ - ~  + .-. + ~  log u + . . .  + a n  k + l - p ,  

we can determine a, ~ . . . .  , a so that  

Iw(~)--w(u) + (p-- ~)c{ < E'lu{~+' 

as in w 34, and can generalize the results there obtained. 

The existence of a unique invariant curve can then be proved as in w 35- 

When the real formally invariant curve has a 'cusp' at  (o, o), this can be 

reduced to an 'ordinary point '  by a succession of changes of variables of the 
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t ype  u = ~ ,  v = ~, and  then  an  a rg u m en t  m a y  be made  like t h a t  car r ied  t h r o u g h  

in w167 33--35. 
We will no t  s top to  en te r  in to  details,  b u t  mere ly  s ta te  the  conclusion:  

I n  any case I I "  to every real /ormally invariant curve corresponds a unique 

hypercontinuous invariant curve with the corresponding asymptotic representation. 

In  the  hyperbol ic  case IIr ' ,  Tq is of t y p e  II".  Hence  we infer:  

I n  the hyperbolic case I I  "r, 0 = 2 p ~ ,  the invariant curves under Tq are 
q 

o] type I I "  and their images are invariant as a set under T.  

w 37. A g e n e r a l  p r o p e r t y  in  case I I ' .  

I n  case I I "  under the restrictions o/ ~ 35 every point o/ the region u~+ v2< ~ ~ 

not on one o/ the real invariant curves is carried out o/ the region by iteration o / T  

or T - l ,  while every point on one o/ these curves approaches the invariant point 

(o, o) by iteration o/ T and is carried out o/ the region by iteration o~ T - l ,  or 

vice versa) 

There  m a y  be e i ther  th ree  real  i nva r i an t  curves,  or  a single such curve.  

L e t  us consider  the  first  of these subcases.  H e re  the  ne ighborhood  of (o, o) 

in the  p lane  is d iv ided  in to  six par ts ,  b o u n d ed  b y  ares of the inva r i an t  ana ly t ic  

curves.  These  six regions ev id en t l y  go over  in to  themselves  unde r  T or T - 1 .  

L e t  us consider  a pa r t i cu l a r  one of these  regions, and let  us f irst  t ake  t angen ts  

to  the  cor responding  arcs of the  two inva r i an t  curves  a t  (o, o) as axes.  The  

hype rcon t inuous  inva r i an t  curves  have  equat ions  v = ( f ( u ) ,  u =  ~p(v) re fe r red  to  

these  axes. 

Make the  fu r the r  change  of var iables  

U=u--~p(v), V=v--9(u). 

The  r igh t -hand  members  of these equa t ions  are  cont inuous  toge the r  with the i r  

par t ia l  der iva t ives  of all orders  in u ,  v, ana ly t i c  excep t  for  u =  o or v----o. In  

the  new variables  the  i nva r i an t  curves  appea r  as the U- and V-axis, while the  

region u n d e r  cons idera t ion  becomes the  first  q u a d r a n t  in the  U V-plane. 

It is apparent from this result that no other invariant curves through the invariant 
point can exist. 

LEvI-CIvIT/L (I~c. cir.) proved that certain nearly points are carried away frmn the invariant 
point in this and other hyperbolic cases, showing that the point is unstable. 

See also A. R. CIG&L&, Sopra un critcrio di instabilith, Annali di Matema~iea, ser. 3, vol. 
Ii, i9o 5. 
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This further change of variables is formally of the type  (I5) so that  we 

have (see w 32) 

U l - - - U [ I + a n  U + 2 a 1 2 V + . . . ] ,  V I = V [ I - - 2 a 2 1 U - - a I 2 V + . . . ] .  

The factors in brackets are analytic for U >  o, V > 0 of course. We can readily 

show that  these factors are continuous together with all of their partial derivatives 

for U > o ,  V > o .  

In fact consider 

U~ 
lim - ~ ,  

as a point  (u, v) approaches the invariant curve U----o. By  the ordinary rule 

for the evaluation of an indeterminate form the limit will be given by  

lau, dr or, / 
lira \~-uu d v , ~u  ! 

at the point in question. Hence the first bracket, and likewise the second bracket,  

are continuous functions for U > o ,  V ~ o .  By successive steps of like nature 

all of the partial derivatives of the brackets may be shown continuous. 

In the subcase under consideration there is a third real invariant curve in 

the second and fourth quadrants obtained by  factoring formally 

F* ~ UV[a,I U +al2 V + . . . ] .  

We see that  a2~ and a12 are of the same sign (say positive), for this third 

invariant curve is given by 

an U +a,2 V +  . . . .  o. 

Returning to the explicit form of U~, V, above, we infer that  U (V)  increases 

and V(U) diminishes under iteration of T(T-1)  for any point in the first quadrant.  

If (U, V) approaches a definite point (U,  V) with U > o (V > o) within the region 
U ~ + V~<c~ ~, this point is necessarily invariant under T. But,  inasmuch as there 

are no multiple factors of F* and thus no invariant point curves in the case at  

hand, there will be no invariant point in this region except (c, o). Thus the 

first part  of the italicized statement  holds in this case. 
The par t  of the s tatement  which deals with the bebavior of points on the 

invariant curves is obviously true in all cases. If it was not we should have 
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isolated invariant points on these invariant curves lying arbitrari ly near to (o, o), 

and this is impossible. 

We have next to discuss the subcase where there is a single real formally 

invariant curve. Let  us take this curve into the U-axis by  a transformation like 

that  made above. We have then 

U~ = U +an U*+2a~2 UV + 3ao3 V~+ "' ' ,  

V t =  V [ i - - 2 a ~  U- -a I ,  V +. . .] ,  

where the brackets stand for a type  of functions similar to those in brackets 

above. 

Here  one has 

$'*----- V [ a 2 1 U * + a x 2 U V + a 0 8 V  s+ ' ' ' ] .  

The quadratic form in brackets is definite since there are a pair of conjugate 

formally invariant curves with distinct conjugate directions. 

We find 

U1V--  V I U =  V[3(a2, U.' + a,2 U V  + ao, V ~) + ""]. 

V This equation renders it apparent  that  v ~ t a n - l ~  varies continually in one 

sense under indefinite iteration of T or of T-1 as long as a point and its iterates 

remain near (o,o). If  l i m ~ = o  or~r ,  IVI approaches o, and the formulas for 
I I 

U1, V~ show that  [ U ] and [ V [ vary in opposite senses. In this case ] U ] increases 

and the point cannot remain near (o, o). 

Moreover the point cannot remain near (o, o) in the contrary case. If 

lira v = u 1 6 2  z the above equation shows that  V approaches o; in fact tim 

variation in v is of the first order in V. The variable U must likewise tend to o. 

But  the geomet ry  of the figure in the plane makes it clear that  V 1 - - V  U1--------U must  

V 
approach tan ~ indefinitely often, at  the same time. If we recall tha t  

approaches this value also and employ the formulas for U1, V~, we find readily 

m 2a2~ tan ~- -a ,2  tan 2 ~r 
tan 

an + 2a~2 tan u + 3aos tan 2 
whence 

which is impossible. 

3 tan u (an + a12 tan u + a0s tan ~ ~) ~- o, 
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w 38. E x t e n s i o n  to  a m o r e  g e n e r a l  c a s e  II". 

The same property holds in the most general hyperbolic case. 

The kernel of the method of proof employed in w 37 depends on the use 

of a function which increases or decreases upon iteration of T. This method 

can be applied to a somewhat more general case than has been treated above, 

namely tha t  in which all the real directions of formally invariant curves at  (o, o) 

are distinct. I t  is this case which we treat first. In dealing with the most 

general case (w 39), however, we are obliged to employ less direct means. 

Suppose tha t  the property fails to hold, so tha t  there are real points not  on 

an invariant  arc which remain in an arbitrarily small neighborhood of (o, o) 

under indefinite iteration of T (or of T - l ,  if not of T). 

There will then exist such points in some one of the regions into which the 

invariant arcs divide the vicinity of (o, o), and it is upon such a region tha t  we 

fix attention. For the present we assume there is more than a single real 
invariant curve. 

By a change of variables U=u--qJ(v),  V=v--qD(u) (w 37), the region 

between the invariant boundary arcs may be taken into the first quadrant,  in 

such wise tha t  the invariant arcs become the U- and V-axes. The variables U, V 

are analytic in u, v, save for u = o or v = o when U, V are continuous together 

with all of their partial derivatives. Furthermore we have 

, (,, ], Ut = U[I + (H + V ~ ]  ...] -- + 

where UVH is the homogeneous polynomial of lowest degree m_>3 in F*, and 

where the brackets stand for functions analytic for U # o, V # o, and continuous 

together with all of their partial derivatives. The factors U, V in U VH correspond 

to the invariant axes. The factors of H are either real linear factors a U +/~ V (a/~ > o) 

or complex linear factors, since there are no real invariant curves in the first 

quadrant  of the UV-plane. Hence H is of one sign, say positive, near (o, o) 

and of the order m - - 2  in ~ +  g ' .  

From the above equations and the facts s tated we have 

UtV--  V tU= UV[mH +...]>o; 

17 
in consequence ~ ~ t a n - 1 U  varies continually in one sense upon iteration of T 

or of T- l ,  and must approach a limit. 
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7g 
This limit must  be o o r - .  In fact since there are no invariant points 

2 
near (o, o) (invariant point  curves correspond to multiple factors of F*), the 

corresponding point  would necessarily approach (o, o) in the contrary case. If 

V r > o denotes the corresponding lira ~ the fraction 

V,-- V -- H + V~?)+.. 

OH U,--U-- H+U~-~ + 

can be made nearly equal to r with negative denominator  and numerator;  this 

is easily seen geometrically. Hence we have (compare w 37) 

OH 
H + V - -  

OV 
lira OH = --I 

H + U o u  

V along this direction, whence H = o for ~ = r. This direction will correspond to 

a real formally invariant curve, which is absurd. 

Also this limit is not o, for the formulas for U~, V~ show then thai  lUl l ,  

I V~I will vary  in opposite senses and the point will recede from (o, o ) a l ong  

the U-axis. Similarly the limit is not, _z. 
z 

This completes the discussion when there is more than one real invariant 

curve. The argument is easily modified to meet the case of a single such curve 

(compare w 37)- 
The property o] ~ 37 holds there/ore i/ the real tangent directions o/the/ormally 

invariant curves are all distinct. 

w 39. Extension to the general case II", II"'. 

We propose to deal in outline with the general case II". As before, we 

assume the proper ty  not to hold, and show that  a contradiction results. 

The region under consideration is bounded by  two invariant arcs which may  

or may not  have the same tangent direction. An argument like that  used above 

may be partially applied. If we form the difference u , v - - v , u ,  it is given by a 

series beginning with a constant  multiple of the homogeneous polynomial of 
Acts  mathematlca. 43. Im~rim~ le 23 m~rs 1920. 1 0  
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lowest degree in F*. But  for directions within the region making this polynomial 

vanish there must be an even number of equa l  factors au + fly, since if there 
were an odd number there would be at least one corresponding real formally 

invariant curve and thus an invariant curve within the region, contrary to 

hypothesis. Hence u l v - - v l u  preserves a constant  sign save near these critical 
directions. 

Moreover, if, under iteration of T, a point moves away from the vicinity 

of such a critical direction, it rotates in a constant sense about  (o, o) to the 

vicinity of the next  following critical direction (compare w 38). 

Since there are only a finite number of such critical directions, there will 

then be points remaining in the indefinitely small vicinity of one such direction 

under indefinite iteration. I t  is upon such a critical direction and its neigh- 

borhood within the region under consideration that  we now fix attention. 

Let  us take this critical direction along the positive u-axis, and make the 
change of variables. 

u----~2, v = 4 O ;  

in the new variables 

form II" 
the transformation T then is readily found to have the 

u ~ u + " ' ,  v l - - - - v + " ' .  

The series F*(~,  ~0) is of course formally invariant, and in general the same 

methods of formal reckoning apply as earlier. 
f ~  ~ 

to be noted is that  the invariant integral / / Q d u  The first distinction dv 

b e e o m e s . j i / ~ Q d ~  dO; the new quasi-invariant function ~Q is analytic but  

vanishes at (o, o). The second distinction is that  the line ~--~ o in the 6O-plane 

is evidently an invariant point curve corresponding to the invariant point (o, o) 
in the uv-plane. 

Also there are infinitely many points ~ >  o in the ~ - p l a n e  which remain 

near (o, o) under indefinite i teration of T, and yet  do not lie on an image of an 
invariant curve in the uv-plane. 

The formal differential equations (9) in 4k, ~k are clearly 

d ~k OF* ~ d uk OF* 
-- , ~k~2k d k  ' ~k r ~ ~ Ok 0 ~k, 

where by  F* is meant  the series F*(~ ,  ~ ) .  
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In the ~ - p l a n e  there are also certain critical directions, finite in number, 

along which the points above referred to cluster. In fact ulv--v~u has the 

same initial terms as 

- +  Or j "  

As before, the lowest terms here form a homogeneous polynomial in ~, 9 of one 

sign or zero for ~2 > o. 

Repetition of the reasoning and further like changes of variables can now 

be made. I t  may be observed tha t  the invariant  point curve ~ ~-o introduced 

at  any  stage is either eliminated by a further change of variable, or corresponds 

to the new ~2-axis. Consequently the extraneous invariant point curves arc either 

~----o or ~ o  and ~ = o .  

Since there are only a finite number of formally invariant  curves and the 

changes of variables used lower their order of contact, a stage must finally be 

reached at  which either (I) there is no formally invariant  curve not of extraneous 

type or {2) there is only one such curve. In case (2) it is clear tha t  we may 

assume this curve to have an 'ordinary point'  at  (o, o) with tangent  direction 

distinct from tha t  of an extraneous invariant  curve; the changes of variables 

employed separate formally distinct curves and eliminate a 'cusp'. One further 

change of the same type will then make ~2----o the only extraneous invariant  

curve. 

Let us begin with case (i) when 4 ~-o and ~ = o are extraneous. 

Since t / ~ ) ( ~ , ~ ) d ~ d ~  is an invariant  integral it is clear tha t  points 

Q(~,~) = o  go into points (~(~, ~ ) ~  o. Thus ~)----o gives a set of real analytic 

curves invariant  under T. Such curves are necessarily individually invariant  

inasmuch as ~ = o is invariant. But  there are no such curves save q2=o and 

~ o .  Hence we have 

(~ (~, ~)---- uZ~mR(~, ~), ( l>o,m>o) ,  
where R (o, o) # o. 

Also F* = o yields formally invariant curves so that  

F*==~p~qG{~,~),  ( p > / + i ,  q>m +I), 

where G is a formal power series with constant term. 

Now by the formal differential equations (9) for this case we have 

-z :m R d~k ~ 0 
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Thus the series for u,,  v~ have the form 

+ ~p-z~q-m-l[qc + A], ~ + @ - l - l o - - m [ - - p c  + B] 

respectively, where A and B are power series without constant  terms. Under  

iteration of T or T_I either ]fi] increases and [vl decreases, or vice versa. Con- 

sequently a point which remains in the vicinity of (o, o)will approach a limiting 

point on the ~- or i)-axis, distinct from (o, o). 

For  definiteness suppose the point to lie in the first quadrant  with c > o. 

Such a point will then approach a point of the positive ~-axis near (o, o) under 

iteration of T. But  the series above show that  for such a point 

J ~  
~ > - -  2 Kv,  (K > o). 

Thus ~ decreases less rapidly than if 

d-~=- -  K~, 

when by  integration we find v =  ce - K s .  Hence ~ cannot approach a limit as 

approaches o but  must increase indefinitely. 

The case when only ~ = o is extraneous admits of similar discussion. 

Case (I) is now disposed of. Let us consider case (2). 

By  a formal change of variables of the type  employed in w 37 we may take 
~ = o  as the invariant point curve and ~ = o  as the other invariant curve. 

Formally then we are essentially in case (I), above disposed of. Indeed if the 

invariant curve is analytic no modification is required. 

If the hypercontinuous invariant curve is not analytic there can be no 

corresponding factor of Q, i. e. after the new change of variables we have 

0 (~, ~) = ~z R (~, v), (l > o), 

where R (o, o) ~ o. 

Moreover, after this change of variables, ~ only occurs once as a factor of 

F*. For  a multiple factor gives an analytic invariant point curve (w 2o). Thus 
we have 

F* = ~ G ( ~ ,  ~), ( p > l  + ~), 

where G (o, o) # o. 
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Consequently we have here 

~ =4[z + c ~  -z-1 + --.], i~,=~[i--cp~ '-~-~ + . . . ] ,  

where c r  The brackets s tand for functions continuous together with all of 

their partial derivatives (see w 37), and with the asymptot ic  representation in- 
dicated at (o, o). 

But  the points remaining near (o, o) under indefinite iteration of T or T-1 lie 

approximately in the direction of the ~2-axis; otherwise, before the above non- 

analytic change of variables was made, we might have removed the invariant 

curve by another change of variables, and thus have arrived at case (1). 

As a result l ul  increases and Iv I decreases. The above formulas demon- 

strate this fact. This possibility is excluded since there are no invariant points 

near (o, o) not on ~ =  o. 

Thus case (2) is also disposed of. 

Since in case II "r, T~ is of type  II" we may state:  

The property o] w 37 holds in the most general hyperbolic cases I I ' ,  I I " .  

w 40. The hyperbol ic  case III',  lII".  

The non-specialized case I I I  ~ is of hyperbolic type  as appears from an 

inspection of (I3). If  we assume that  the coefficient of v 3 in F* is not zero, 

we obtain a real formally invariant curve with cusp at (o, o). 

Now by  the change of variables (see w 6) 

u ~ ~ ,  v = v, 

T takes the form II". By  the use of the methods of w 32--39 we can infer. 

I n  the hyperbolic case I I T  to each real ]ormally invariant curve corresponds a 

unique hypercontinuous curve which is invariant under T and has the corresponding 

asymptotic representation at the invariant point. 

I n  the hyperbolic case I l i "  the invariant curves under T~ are o] type IIr and 

their images are invariant as a set under T.  

The property o] ~ 37 holds in the hyperbolic case H1 .  

w 4z. Invar iant  curves and the hyperbol ic  case. 

We aim finally to show that a certain kind of converse to the above can 
be found: 
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I /  T is a conservative trans/ormation I', II ' ,  I I" ,  I I I '  /or which (o, o) is an 

invariant point, and i/ there exists an in~r ian t  continuous arc ending at (o, o) /or 

which tan - i v  remains/ ini te ,  then the invariant point is hyperbolic and the invariant 
u 

arc is an arc o/ a hypercontinuous invariant curve obtained above. 

If the invariant point can be proved hyperbolic the remainder of the state- 

ment can be demonstrated at  once. In fact all points not on one of these hyper- 

continuous arcs leave a definite vicinity of (o, o) under both T and T- i ,  ac- 

cording to the general property developed above. But  the invariant arc is 

carried into part  of itself either by T or T-1. Therefore it must  consist of 

points on one of the hypercontinuous arcs. 

Let us take first the general case when T is of type I' or III at the in- 

variant point (o, o) and let us suppose if possible tha t  T is elliptic at  that  point. 

Let a, fl be the upper and lower limits of tan - i v  along the curve. These u 

are invariant under T of course. Hence the lines through (o, o) in these direct- 

ions are carried into curves tangent to these respective lines at  (o, o). Thus 

we have the phenomenon of invariant directions, which is absurd in case III. 

Hence T is of type I r, and (o, o) is a hyperbolic point. 

If T is of type II" every direction through the invariant point is invariant.  

I t  is necessary here to have recourse to a more elaborate argument to show tha t  

T is hyperbolic. 

For definiteness we assume tha t  T carries the invariant  arc into part  of 

itself. Define a and fl as above. If a ~ fl we can find a line v - ~ c u  which 

intersects the invariant arc infinitely often near (o, o). But  the image of this 

line lies on one side or the other of the line near o, at  least near (o, o), since 

T is analytic. Thus it is apparent tha t  the total area between the line and in- 

variant  arc on the same side of the line is carried over into part  of itself by T, 

which is absurd. Hence there is only a single limiting direction, i. e. a ~ fl, 

and the invariant arc does not meet the corresponding line v ~ c u  near the 

invariant  point. 

This direction corresponds to the real tangent  direction of a formally in- 

variant curve. Indeed the arguments employed in w 38 show tha t  points not 

approximately in such a real invariant  direction from the invariant point are 

rotated into such a direction under iteration of T,  provided tha t  the point re- 

mains near (o, o) as is the case for a point of the invariant arc. 

This formally invariant curve which has a real tangent  direction will cor- 

respond to a real formally invariant  curve in general so tha t  we have the hyper- 

bolic case I I ' .  
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There remains the possibility, however, that  we have an even number  of 

formally invariant curves with real tangent directions but  not  with all coef- 

ficients real. Here further consideration is required. 

Take the straight line from (o, o) in the limiting tangent direction as the 
u-axis and write 

U ~ ,  V ~ U ~  

as in w 39. The ~-axis in the u~-plane is a line of invariant points under T,  

and the invariant arc approaches (o, o) in this new plane. But  this invariant  

arc does not  cross the line of invariant  points of course. 

Repeat ing the argument  above we infer that  this arc approaches (o, o) in 

a definite limiting direction in the ~ - p l a n e .  But  it was established in w 39 that  

such a limiting direction can only be along a real tangent  direction to a for- 

mally invariant curve. Hence again we argue that  the invariant arc has the 

direction tangent to ~ = o or to a formally invariant curve, when another change 

of variables as above is in order. 

At each stage these changes of variables diminish the number of real co- 

efficients in the series for the formally invariant  curve, until  at last the first 

coefficient is not  real and there is no invariant direction. This is impossible 

by  our argument for case (i), w 39. 
Similarly the case IIIr is disposed of. 

Chapter III. Elliptic invariant points. Stable  case. 

w 4 2. Existence of closed invariant curves in the  s table  case. 

In the integrable elliptic case there is a family of closed analytic curves 

F* = const, about  the invariant point, each invariant under T but  not  of the 

type  above considered since these curves do not  pass through the invariant 

point. Such an invariant point is stable of course. 

A somewhat analogous proper ty  can be established in the non-integrable 

stable case. Let  us understand by a closed curve the boundary  of a simply con- 

nected open continuum in the finite plane, while regarding tha t  plane as com- 

pleted by the adjunetion of a 'point at  infinity'. 

In  the stable case there exist an in/inite number o/invariant closed curves sur- 

rounding the invariant point and lying within any prescribed neighborhood o/ it. 1 

i Compare the method of proof with a proof given by H. POI~CaR~, Les methodes nouveUe8 
de la m~canique c~lestr vol. 3, Paris, ~899, pp. ~49--x5~. 
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Choose any arbitrari ly small neighborhood of the invariant point. I t  is 

then possible to find a second neighborhood r < d  < d such that  any point of 

this lat ter  neighborhood remains within the first under indefinite iteration of T.  

This is the direct s ta tement  of the proper ty  of stability. 

Now the open region r < J and all of its images under T include (o, o) as 

an inner point and overlap. Let  us speak of a point P as occluded by this set 

of regions if it is possible to draw a regular closed curve lying entirely within 

the set and enclosing P and (o, o). The set of occluded points Y, is e~idently 

an open simply connected continuum containing all of the set of regions. 

The image continuum 21 is also made up of points 2 ;  the curve enclosing 

P and (o, o) is carried into a curve enclosing P1 and (o, o), lying within the set 

of regions, and so P1 is occluded, i. e. is a point of 2 .  

Now 2~ cannot contain points not in ~ since t h e n . J . J Q d u d v  would be 

larger over :~ then over 21. Hence ~ coincides with 2 .  The boundary of 

is therefore an invariant curve lying in the arbi trary neighborhood ~ < r < d and 

surrounding (o, o). Since d is arbi trary there is clearly an infinitude of such 

curves, invariant under both T and T_I. 

Conversely, i] there is an in/initude o/ such invariant curves about (o, o), that 

invariant point is clearly stable. 

w 43. Some fundamenta l  p roper t i e s  in the  case II ' ,  l =  1. 

The cases I f, IF, l----- i ,  may  be regarded as constituting the non-specialized 

case of an invariant point. In the second of these cases we have the first pos- 

sibility of stability. The discussion of this elliptic case IY, 1-----i which we shall 

make (both in the stable and unstable case) will be based on certain properties 

established in the present paragraph. 

Let  us choose variables u, v which osculate the normalizing variables U, V 

of w 22, formula (19) , to the order tt(~, > 2). We will then have 

(27) 
ui ---- u cos [0 + c(u 2 + v~)]-:--v sin [0 + c(u ~ + vg)] + P(u ,  v), 

~ ~ u sin [0 + c(u z + v2)] + v cos [(9 + c(u ~ + v~)] + Q(u, v), 

in which P ,  Q are given by  convergent power series which begin with terms 

of the (~t + i ) th  or higher degree. 

We shall assume c > o for definiteness. I t  is clear that  in the contrary case 
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T- I  will be of this same form with - - c  replacing c, so that  our assumption is 

no essential restriction. 

The particularly simple integrable case P ~ Q = o affords a clear insight as 

to the character of T.  Circles with (o, o) as center are ro ta ted into themselves 

through an angle 0 + cr ~, increasing with or decreasing with the radial distance 

r according as c > o or c < o .  

This special case shows clearly the vortical nature of the transformation T 

in the neighborhood of the invariant point. 

I t  will be convenient for us to introduce polar co6rdinates r, ~. In these 

variables the equations above take an equivalent form 

(2s) r~=r + R(r , r  e p j = r  ef), 

where 

~29) 
{~  ~ Vr ~ + 2r(P cos ((p + 0 + or ~) + Q sin (~ + 0 + crY)) + ps + Q.,_ r, 

= 
P sin (~ + 0 + cr ~) + Qcos (~ + 0 + cr ~) 

tan-1 r + P cos (cp + 0 + cr ~) + Q sin (cp + 0 + cr 2) 

Since P ,  Q are analytic power series in r beginning with terms of degree # + I 

or higher, and with coefficients analytic in ~ with period 2 z ,  it is apparent  

tha t  R, S are continuous functions of r, ~ for r > o ,  expansible as power series 

in r with coefficients analytic in r of period 2 z .  The first of these will begin 

with terms of at  least the (# + i ) th  degree in r, while the second will begin 

with terms of at  least the ~th degree. 
These same considerations show that  R,  S admit continuous partial deri- 

vatives in r, ep of all orders. 
The coSrdinates r, ~0 will be regarded constantly as rectangular coSrdinates 

in an re-plane, so that  the r-axis corresponds to the invariant  point, and the 
half plane r >  o to the uv-plane. Two points for which the coSrdinates r are 

the same, but for which the coSrdinates (p differ by  a multiple of 2z ,  are 

called congruent. Two congruent points represent the same point of the uv-plane. 

Suppose now that  we have a point  in the r~-plane and a direction at  the 

d~ 
point given by  drr' which is the reciprocal of the slope. The corresponding 

dcpl 
reciprocal slope at the transformed point under T is then given by  d-~. This 

quant i ty  may  be computed by  means of (28) and has the value 
Acta mathematiea.  43. Imprim6 le 23 mars 1920. 11 



82 George D. Birkhoff. 

dr1 

d e  d S  
d--r + 2cr + d-r 

- - ~  d R  ' 
z +  dr 

where the indicated differentiation is directional in character. 
From this equation there results 

def, dep 
~ 2 c r  + 

dr~ dr 

dr 2cr + ~-~1 -dr 

d R  
I-~ dr 

If we evaluate the directional derivatives on the right in terms of the partial 
derivatives of R, S, we perceive at once that  

and thence 

dr [ hru-X 

dr, dr  ~dr] 1' 

as long as i do l  < erX-" say. 

That  is, we may write 

dcp, dep xru- l  { (dg) ~} 
(3o) dr 1 dr = 2or + I + ~ , 

where i z [ < h  r as long as ~-~ is restricted as stated. 

dr sheaf of slopes d-~ at any point in the re-plane Let us term the small 

for which 

the barred angle. When (3z) is not satisfied, the left-hand side of (30) is positive. 
Our conclusion may be formulated as follows: 
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In  the rg-plane the trans]ormation T leaves r unaltered to terms o[ order ~ + I in 

r, increases ~ by 0 + cr B to terms el order ?e, and rotates any direction not in the 

barred angle in a negative sense. 

An entirely analogous discussion of T-1 shows that ,  if ~ be taken small 
enough in defining the barred angle, we have 

In  the rqo-plane T-1 rotates any direction not in the barred angle in a posi- 

tive sense. 

A quant i ta t ive  discussion of the amount  of rotat ion of directions can be 

based on (3o) and a similar equat ion for def,1. 
dr-1 

In part icular  we note tha t  
Under iteration o/ T (T-l)  any direction at a point is ultimately rotated into 

or past a barred angle negatively (positively) i/ r remains small. 

If possible assume this s ta tement  not  to be true. 
In  the first place we must  have lira r----o. For  in the contrary case there 

is a rotat ion of definite negative amount  occurring indefinitely often, and  the 
s ta tement  mus t  hold. 

r d~0 
If we let ~ ~d-r- the inequality (3o) gives 

zl~ ~ > 2arl, (a > o), 

as long as r remains small and 9r does not  lie in the barred angle. At the same 
t ime the formula (28) for rl shows tha t  

Consequently we have 

I J r  ] < brl ~+1, (b > o). 

I J r ]  b ~-~r <--r~.2a 

Hence r diminishes as ~ increases not  more r ap id ly : than  if 

dr b 
~ m _ _  r ~ . 

d ~o i 2 a 

But  a direct solution of this differential equat ion establishes the fact tha t  ~r 
mus t  increase indefinitely and be of order at  least r l - ,  if r is to approach zero. 
This is in contradiction with the hypothesis  tha t  the direction is not  ro ta ted  
into or past  the barred angle. 
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Thus we see that  the stated proper ty  holds for T.  In the same way  it 

may be proved for T_~. 

The following property is also useful: 

Given an arbitrary positive K ,  then /or any  point (r, el) with o < r < $ (~ su/- 

]iciently small) we have 

ef ,, ~ ~f § n O + K 

/or n > N until rn > d. 

From the equations (28) we get the inequalities 

i r l - - r ]<  crr', ~fl--~ >fl + c'r~, (e r>o ,  c" >o) .  

From the second of these inequalities there results 

n--1 

j--0 

as long as r, rl . . . . .  rn-1 are less than d. It  suffices to prove that  the sum on 

right exceeds ~ before r n > d ,  provided that  r is sufficiently the small. Now 

from the first inequality we deduce 

p--1 

j--q 

If rp and r a are the maximum M and minimum m of r i, this yields for ~L > 5 

p--1 
M--m<c'MZ~r~, 

j ' q  

w h e n c e  

o) 
j--q 

Consequently, if r is sufficiently small and varies to a relatively much larger 

(hut still small) value or to a relatively much smaller value, the corresponding 
p--1 K 

sum ~ r) is very  large and exceeds c ' "  
j - q  
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w 44. Nature o f  the  invariant  curves.  

Let us define a regular neighborhood of an elliptic invariant point (o, o) as 

a neighborhood such that  any radial direction in the r~-plane is rota ted through 

a negative angle by  T ,  and through a positive angle by  T-1. 

Probably  a hyperbolic point cannot lie in a neighborhood of this kind. 

The reasoning of w 43 shows a regular neighborhood of this type to exist 
in ease II', l =  i .  

The elliptic case does not arise in the general case II" or III'.  But  a 

direct computat ion shows that ,  in case II', l finite, and in what may be termed 

the general elliptic subcases II" and III ' ,  a regular neighborhood exists. 

Throughout such a neighborhood we can evidently construct  a barred angle 

through each point  of the neighborhood such that  directions outside the barred 

angle are rota ted negatively by  T and positively by T_I,  and ult imately are 
ro ta ted into or past  the barred angle. 

I n  a regular neighborhood o/ an elliptic invariant point el type II ' ,  l =  i ,  
any invariant curve enclosing the invariant point meets every radius vector through 
the invariant point in only one point. I f  the barred angle in the plane be drawn 
at the corresponding point the curve lies entirely within it on either side in the vi- 
cinity o / the  point. 

In order to demonstrate this fundamental  proper ty  of the invariant curves 
we make use of the r~-plane employed above. 

Let  us suppose first tha t  the invariant curve L under consideration is de- 

fined by  means of an inner simply connected open continuum F containing 
(o, o) in the uv-plane. 

If  the first italicized statement  is not true consider the continuum of points 

accessible from r -- o along a perpendicular line cp = const, in the r~-plane without  

passing a point of the invariant curve itself. 

This open continuum F* forms all or par t  of 

the open continuum F bounded by  the in- 

variant  curve L and r-----o (see figure). The 

boundary of F* is evidently a closed curve 

made up of points of L and open segments 
of lines ~0-----const. 

If F and F* coincide then either the 

first property  is true or there exist one or 
more boundary segments ~0----const. of F and 

Surface transformations and their dynamical applications. 
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F*. Now either F* lies to the right or to the left of such a segment. In the 

first case the tangent to the boundary makes an angle ~ with the ~-axis. A n  
2 

application of T-1 will carry this segment into another with tangent  argument 

greater than ~-. But, on account of the form of the boundary, any tangent  

argument must be intermediate between ~ and ~ - -  - - ,  so that  this is not possible. 
2 2 

In the same way it may be concluded that  F,  F* cannot lie to the left of such 

a segment ~ ~ const. Hence there is no such segment, if F and F* coincide. 

In this case of coincidence every radial line must meet F only once, as we 

wished to prove. 

Let  us now turn to the case when the two continua r and F* are distinct. 

Consider the part  F of F accessible from r-~ o along a regular simple curve 

in F (such as M N  in figure above) with tangent argument never less than - .  
2 

This part  of F evidently includes F*, but can only coincide with F* if there 

are no bounding segments ~ ~ const, of F* which have a part  (see region t of 

figure above) of F on the right. By the transformation T-1 which increases 

every tangent  argument which is equal to z and does not diminish to z any  
2 2 

greater argument, the points of F are carried into points of F which are still 

accessible from r ~ o along an auxiliary regular simple curve in F with tangent  

argument greater than -~, namely along the image of the auxiliary curve. Thus 
2 

the continuum F1 forms part  of F.  Hence F 1 coincides with F,  since T is 
conservative. 

Consequently F* has no boundary segments ~ const, with part  of F on 

the right. Similarly we can exclude the possibility of boundary segments q0 

const, of F* with part  of F to the left. Hence F* coincides with F. The 

first italicized s tatement  has previously been demonstrated in this case. 

I t  is now easy to show tha t  the invariant curve lies within the barred 

angle in the vicinity of any one of its points. 

Suppose for example it lies partially above the upper right arm of this 

angle. By sufficient iteration of T_I the direction of this arm rotates positively 

past the vertical, and it is intuit ively clear tha t  the radial line ~ ~ const, through 

this point will meet the invariant curve more than once, contrary to what has 

been proved above. 

If the invariant curve is defined by means of an outer continuum, essentially 

the same argument leads us to the same conclusion. 
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w 45. R o t a t i o n  n u m b e r s .  

Consider a n y  closed set  of points  defined b y  an angula r  coSrdina te  , of 

per iod  2~ .  Le t  us suppose a t r ans fo rma t ion  given which takes  each  point  of 

the  set into a def ini te  poin t  vl, in such wise t h a t  if P precedes  Q (i. e. the  v of 

P is less t han  the  v of Q) then  P1 precedes  or coincides wi th  QI, and  also such 

t ha t  ~ varies con t inuous ly  wi th  v. In  par t i cu la r  if P and  Q are the  same point ,  

r ep resen ted  by  angula r  c05rdinates  v,  vr differ ing by  2 / z ,  then  v~, v r differ  b y  

21z  also. 

Consider now the  difference v ~ - - v  for  all points  P.  If  v increases th rough  

all the  values  of the  set by  2 z  so does vk. I t  follows t h a t  we have  

a (k) < ~ - -  v < b(k). (b (k) < a (k) + 2 z )  

In  fac t  suppose v ~ -  ~ is a min imum for ~ ~ v* an d  let  ~ v a r y  by  2 z  f rom this  

minimum.  Since ~k increases b u t  on ly  b y  2 z  a l toge ther  we have  a t  the 

m a x i m u m  of ~ k -  v 

which establishes the  s t a t emen t .  

The re  is a n u m b e r  a such t h a t  for  ev e ry  k 

a(k-~k <- a < bk). 

[a (k) b(k)l (~) ~) 
For ,  if this is no t  the  ease, two intervals  l - k - '  -k-]'  - - '  will fail to  have  a 

common  poin t  so t h a t  for  ins tance  

whence  

b (k) a(O 

l b (k) < k a(:). 

Bu t ,  since v ~ - - v < b  {k) for  an y  v, we have  successively 

vk - -  v < b (k) , ~2k - -  ~ < b (~, �9 �9 �9 ~z~ - -  ~q-  a)k < b {~) , 

whence by  addi t ion  
vzk - -  v < l b r . 
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Also since ~z- -~  ~ a  (z> for a n y  �9 we get  s imilarly 

~zk - -  r > k a (z) . 

These  two  inequali t ies  and  the  inequa l i ty  wr i t ten  above  are con t r ad ic to ry .  

The  n u m b e r  a will be called the  rotation number of the  t r ans fo rma t ion  

~ l = / ( v ) .  1 E v i d e n t l y  a measures  wha t  m a y  be regarded  as the  mean  angular  

advance  of the  points  under  this t r ans fo rmat ion ,  inasmuch as we have  for any  

and  k 
I ~ k - - ~ - - k a l < z J ~ .  

Since ka  lies on the  in te rva l  (a eke, b ~ )  some points  advance  more  t h an  ka ,  

and  some by  less t han  ka .  

When  ~t-----[(~) is a one-to-one t r ans fo rmat ion ,  t hen  its inverse has ev iden t ly  

the  negat ive  ro ta t ion  n u m b e r  ~ a .  

I f  ~ is ra t ional ,  say  a _  = p p,  q re la t ive ly  pr ime integers,  then  we have  
2ff 2ff q ' 

a{q) 2 p~v b(q) 
q --  q q 

and hence 

a (q) < 2p~v < b (q) ~ * 

Consequent ly  v q - - v  is exac t ly  equal  to z p z  for some ~. I t  follows tha t ,  

if a~_= p ,  there  is a t  least  one po in t  P for which ~ increases by precisely  2 p z  2~  q 

upon  q i terat ions of the t r ans fo rma t ion .  

w 46. Rotat ion numbers  along invariant  curves. 

R e t u r n i n g  now to the i nva r i an t  curves  ab o u t  an i nva r i an t  po in t  in the  

elliptic case I I  r, l = i ,  i t  appears  t h a t  for  each such cu rve  the re  is a def ini te  

ro t a t i on  number ,  for T yields a one-to-one,  con t inuous  t r ans fo rma t ion  of each 

such cu rve  in to  itself which preserves  order .  

I1 such an invariant curve has a rotation number commensurable with 2 ~ ,  say 

2 p~v, it is made up o / a  /inite number o/ analytic arcs ending at hypercontinuous 
q 

points, invariant under Tq. 

Introduced by Polxcxa~ (lot. cit. w 8). 
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For mark off the invariant points under Tq on this curve about  (o, o). 

There exists at  least one such point by  the remark proved in w 45. The invariant 

curve near these invariant points forms then invariant curves in the sense 

of w 4i. These points are thus hyperbolic and the invariant curves are 

hypercontinuous at  the invariant points. But,  by indefinite iteration of Tq or 

T_q, the par t  of the arc is carried into all of itself, since there are no invariant 

points on the arc save at its end points. 

There are only a finite number of isolated invariant points on the invariant 

curve under Tq or else the limit invariant point would have a non-analytic 

invariant curve of the type  excluded in w 4 I. 

Thus the s tatement  is proved. 

I f  two such invariant curves have one or more points in common, the rotation 

numbers of the two curves are the same and of the /orm 2 p z .  These common points 
q 

and ares are finite in number and invariant under Tg. 

If two invariant curves have points in common, but  nevertheless are not 

coincident, there will be one or more continua included between them. Since 

the invariant curves are each cut only once by  a radial line (p----const. in the 

r(p-plane, these continua are of the form 

1(~o) < r < g(~), ~'__< ~ < ~ "  

where /, g are continuous functions of cp with / < g  for ~0~<(p<~0" and / ~ g  for 
cp = r f  or ~ = (p'. 

Evident ly  the transformation T carries any continuum of this type  into 

another of the same type, included between the same two invariant curves. By  

further repetition of T this continuum is carried into others which cannot all be 

a s . ~ . t Q d u d v  has the same value for any of them, and the distinct inasmuch 

total value of this integral taken over the complete neighborhood of the invariant 

point is finite. Thus after q iterations the original continuum is carried into 

itself, and its two boundary  arcs are carried into themselves. The end points 
of these arcs are therefore invariant under Tq. 

If  these invariant points are rotated p times around the invariant point  

by  Tq, clearly the rotation number belonging to either invariant curve is 2 p z .  
q 

This demonstrates the first par t  of our statement.  

Moreover it has been seen above that  on such an arc there are a finite 

number  of invariant points and invariant point arcs of the specified type  under 
•cta math~natiea,  43. Imprim6 le 22 mars 1920, 1~ 
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Tq. A n y  point  of an  invar ian t  arc t e rmina t ed  b y  inva r i an t  points  will app roach  

one end  or the  o ther  under  indefini te  i t e ra t ion  of Tq or of T_~.  

I] two such invariant curves are entirely distinct ]rom one another, the rotation 

number o] the one ]urther removed /tom the invariant point is the greater, and both 

rotation numbers exceed 0. ~ 

Consider the two curves  in the r~f-plane. Since T carries a line ep = eonst .  

in a regular  ne ighborhood  into a cu rve  cut  b y  an y  line ~f ~ - eo n s t .  a t  mos t  once 

we see t h a t  of 1 for  the  ou te r  cu rve  exceeds ~i for  the inner  curve,  and  both  are  

g rea te r  t han  the  initial ~f by  more  t h an  0. Hence  we can affirm t h a t  ~ along 

the  ou te r  cu rve  exceeds ~ along the  inner  cu rve  b y  a def ini te  a m o u n t  ~, and  

t ha t  this  cp~, in turn ,  exceeds  the  ini t ial  ~p b y  a t  least  0 + ~. 

This fact  shows a t  once t h a t  the ro t a t ion  n n m b e r  of the  ou te r  curve  is a t  

least  as grea t  as t ha t  of the  inner  curve.  For ,  poin ts  ini t ial ly with the  same ~p 

on the  two curves are t aken  into points  such t h a t  the  ~0 of the  ou te r  cu rve  

exceeds  t ha t  of the  inner  curve  by  at  least  3 under  indefini te  i tera t ion of T.  

To establish our  s t a t e m e n t  t h a t  the  ou te r  curve  has the  grea te r  ro t a t i on  

n u m b e r  it  is thus  only  needful  to exclude the possibi l i ty t h a t  the i r  ro t a t i on  

numbers  are  the same. 

I f  the  two ro t a t ion  numbers  are the same and  ra t iona l ly  re la ted  to  2 ~ ,  

t hen  for  some q the  t r ans fo rma t ion  Tq will have  a ro t a t i on  n u m b e r  2 p ~  (p an  

integer) ,  so t ha t  there  will exis t  points  on bo th  curves  which are  carr ied in to  

themselves  by  this t r ans fo rma t ion ,  (p being increased b y  precisely 2 p z .  

Suppose  now t h a t  we follow the  t r ans fo rma t ion  Tq b y  a ro t a t i on  in the  

uv-plane  th rough  2p comple te  nega t ive  revolut ions .  The  re su l t an t  t r an s fo rm a t io n  

will ev iden t ly  be conse rva t ive  with the  same inva r i an t  area in tegral  as before,  

and  the  two curves  will appea r  as i n v a r i an t  curves  wi th  the  ro ta t ion  n u m b e r  o. 

I t  is also ev ident  t h a t  by  this resu l t an t  t r ans format ion  points  on the ou te r  cu rve  

have  the i r  coSrdinate  cp increased b y  a t  least  0' more  t h a n  the  increase in the  

like c05rdina te  of the  corresponding po in t  on the inner curve.  

Cons t ruc t  a curvi l inear  quadr i la te ra l  in the  r~-p lane  as follows. One v e r t e x  

will be an invar ian t  poin t  of the  inner  cu rve  unde r  the  r e su l t an t  t r ans fo rma t ion  

and  a second ve r t ex  the cor responding  po in t  on the ou te r  curve.  A third ve r t ex  

will be the  first  i nva r i an t  po in t  on the ou te r  curve  wi th  grea te r  el, and  a fou r th  

the  cor responding  po in t  of the  inner  curve.  The  quadr i la te ra l  will then  consist  

of the  two radial  segments  ~ =  const,  t h ro u g h  the  two pairs  of cor responding  

points ,  and  the  two arcs of the  i nva r i an t  curves  included be tween  them.  

1 The assumption c > o is still made. This entails no specialization of course. 
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Consider the  image of this quadrilateral under the resultant transformation. 

The invariant points remain fixed, but  the two sides 9 = const, are carried into 

curves with tangent argument which is everywhere less than ~-, the argument 
2 

before the transformation. In the image quadrilateral then, the curvilinear side 

through the invariant point on the inner curve lies to the right of the point, 

whi le  the opposite side through the other invariant point on the outer curve 

lies to the left of this second invariant point. Consequently the quadrilateral 

has been taken into par t  of itself, the two sides formed of ares of the invariant 

curves being carried over into par t  of themselves. This is impossible of course 

with a conservative transformation. 

I t  is still easier to dispose of the case when both rotation numbers O r are 

assumed to be equal but  not rationally related to 2 z .  Here again if a point on 

the outer  invariant curve has a coSrdinate ~ not less than that  of a point on 

the inner invariant curve, then, under indefinite iteration of T, it will always be 

true that  t h e  eoSrdinate of any image of the first point will be greater by  at 

least ~ than the coSrdinate ~ of the like image of the second point. 

Choose now a positive integer q such that  qO r is less than some integral 

multiple of 2z ,  say 2pz ,  by  a quant i ty  less than d. I t  is always possible to do 

this precisely because O r is incommensurable with 2 z .  Every  point on the inner 

invariant curve will then be advanced b y  less than 2 p z  under Tq. On the 

other hand, since the transformation Tq has a rotation number qO r, it is always 

possible to choose a point of the inner curve which has its ef coSrdinatc increased 

by  at  least qO r under Tq. The corresponding point  of the outer  curve then has 

its ~ coSrdinate increased by  at least as much as qOr+ 6 i. e. by  more than 

2 p z .  Hence the rotation number of the outer  curve under Tq is at  least as 

2 p ~  
great as - -  This is impossible. 

q 

w 47. On rings of instability. 

If Cl and C2 are invariant curves in a regular neighborhood of an invariant  

point in the stable case II r, there may  either be further invariant curves on the 

ring GiG2 or not. If there are, the ring C~C~ may be subdivided further into 

similar rings. Thus the neighborhood of the invariant point is divided into an 

infinite succession of rings o] instability (reducing to single invariant curves in 

the integrable case). Each ring of this sort is bounded by two invariant curves 
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C r C '  and has no invariant curve upon it other than C r and C r~. We shall only 

prove : 

Let C r, C" be entirely distinct invaria~t curves /orming the boundary curves 

o/ a ring of instability. Then /or any ~ > o an integer N can be assigned such 

that a point pr exists within a distance e o/ any point P o/ C r (or C')  which 

goes into a point Qr within distance ~ o/ any point Q o/ C" (or C') in n < N 

iteration o/ T (or T-l).  

In the contrary case points P and Q exist for which no point pr can be 

found for some Q~ and any N .  Consider a small circle with P as center and of 

radius e in this case. By  iteration of T this region is carried into others, all lying 

par t ly  within the ring, but  not  extending to C ~. Consider the open continuum 

lying outside of C r and occluded by  all of these regions. This continuum is 

carried into all or par t  of itself by  T. But  it cannot be carried into par t  of 

itself. Hence the boundary curve is invariant under T. But  this curve is distinct 

from C" as well, as C ~, since it does not approach within distance e of the point 15. 

Such an invariant curve does not exist in C t C rr by  hypothesis. 

In the case 
replaced by  

w 48. The other stable ell iptic cases. 

IY, 1,~ i but  finite, the fundamental equalities (28) may be 

r~ ~ r +  R( r ,  90), ell ~ e p + O + c r e Z + S ( r ,  of), 

where R,  S have the same character as before. Hence we see that  a regular 

neighborhood of (o, o) exists in this case. Here the arguments made above for 

the case II f, l ~  r, apply without  modification. 

This is also true in the general elliptic subcases II", ] lY (see w 45). 
I n  the case I I  r, 1 /inite, in the general elliptic subcases I I ' ,  l i T ,  and, more 

generally, whenever there exists a regular neighborhood o/ an elliptic invariant point, 

all o/ the properties o/ invariant closed curves established in case I I  r, l ~ I, continue 

to hold. 

I t  is highly probable that  an integer analogous to 1 in the case II  ~ can be 

defined in all elliptic cases and that,  if the notion of regular neighborhood be 

generalized appropriately, such a neighborhood exists when l is finite. When 

l----r it appears possible tha t  an invariant linear family of series G - t - c H  

exists. 

The formal and analytical questions to be answered here are extremely 

important  and interesting. 
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w Invariant curves and the function F*. 

In case II r, 1----I, the invariant closed curves investigated above are closely 

like the curves 2' ~ const, where $' is a polynomial in u, v obtained by  breaking 

off F* at  terms of high degree ~. 

To see this let us employ the variables u, v osculating the normalizing 

variables of w 22 to high order. The formulas (28) and (3I) show that  the tangent 

directions along the invariant curve in the r~0-plane have a slope less than 

-~--1 
I-r2 . If the slope exceeds this magnitude the invariant curve will not  lie 
e 
within the barred angle at the corresponding point of the invariant curve. 

On the other hand F* is given b y - - ~ 0 ( u  * + v  z) out  to terms of degree /z+ i .  
2 

Combining these results and observing that  ~ is arbitrary, we find: 

In  the stable case 11 I, l ~ i, i/ F stands /or the polynomial in u, v /ormed by 

the terms o/ degree less than ~ in F~, then i F - -  2"II < k iF1! ~ at any points pr, p ,  
o / a n  invariant curve. 

Evidently similar results hold in any case IT ,  II", I I I  r, I I I "  when a regular 
neighborhood exists. 

w 50. R e m a r k  on the  in tegrable  elliptic case. 

In the integrable elliptic case there is a family of closed analytic invariant 

curves F * =  const, about  the invariant point. 

an area i n t e g r a l . / . J Q ( u ,  v ) d u d v  is invariant under T, an integral Since 

of the form 

ffP(a, )dad3 
remains invariant, where a is a parameter  varying from curve to curve, and 

an angular parameter  varying from o to 2 z  as each curve is described. But  T 

has the form 

so that  
0! 

P(al ,  % ) ~  ~ P(a ,  3). 
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Consequently along any particular curve 

B B1 

/P(a ,  v)dv =/P(a, ,  v,) dv,. 
A A~ 

s 
Thus, i f J P ( ( ~ , v ) d v  be taken as proportional to a 

equations for T take the form 

modified parameter, the 

a, -- a, v, ---- v + g(a), 

where ff is an analytic function of a for a~ o. 

A noteworthy special feature of this case now appears: 

In  the integrable elliptic case i/ any invariant closed curve o/the analytic/amily 

F * ~  const, has a rotation number 2 p z ,  then Tq leaves every point o/ the curve 
q 

invariant. 

I t  is obvious that  the integrable case is not the general case, inasmuch as 

such an invariant point curve will not exist in general. 

I t  would be a vital advance to be able to determine the distribution of the 

invariant curves in the non-integrable case by analytic tests. This appears to 

be possible only in the case of a rotation number commensurable with ~z ,  when 

the invariant curve is hypercontinuous. 

Chapter IV. Elliptic invariant points. Unstable case. 

w 5L E x i s t e n c e  o f  a and ~ po ints .  Genera l  case.  

In the unstable case a neighborhood of the invariant point (o, o), of the 

form r < d  say, can be so taken that,  under indefinite iteration of T or of T - l ,  

points arbitrarily near (o, o) leave this neighborhood. It  has previously been 

pointed out that  this property holds for both T and T-1 if it holds for either 

(w 42). We restrict at tention to such a neighborhood D. 

Let  us fix at tent ion upon eo points which remain in D under indefinite 

iteration of T and upon a points which remain in D under indefinite iteration 

of T-1. The two sets of points are clearly closed sets. 
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An co poin t  is ev iden t ly  car r ied  into an ~o po in t  b y  T ,  and  also b y  T-1  if its 

image unde r  T-1  lies in D .  Similar  resul ts  hold for a points .  

For an unstable elliptic point the point set o] a(w) points has a connected subset 

A (~) extending Item r-----o to the boundary o/ D. 1 

Take  a v e r y  small  ne ighborhood  r < ~  of (o, o). U n d e r  i t e ra t ion  of T-1  iV 

t imes (N large), some poin t  of the  image ex tends  out  to  r = d,  by  v i r tue  of the  

ins tabi l i ty .  Wi th in  this image we can d raw a curve  from r = o to  r - ~ d  which 

remains  wi thin  D unde r  N i te ra t ions  of T of course. This curve  cuts  a n y  closed 

curve  abou t  (o, o) in a t  least  one point .  B y  a l imit ing process,  in which N 

becomes larger  and larger,  we see t h a t  a t  least  one co po in t  lies on a n y  such 

curve .  Similar ly an a poin t  lies upon  it. 

I t  is t hen  in tu i t ive ly  ev ident  t h a t  the  italicized s t a t e m e n t  holds, inasmuch 

as a po in t  a lies upon  eve ry  such closed curve  in D which encloses the inva r i an t  

poin t .  

The  following is ev iden t :  

The connected sets A ( ~ )  are carried into parts o/ themselves by T-1 (T) and 

into all o/ themselves together with a part outside o~ D by T (T - I ) .  

L e t  us t e rm an  uns tab le  inva r i an t  poin t  regular if the re  do not  exist  closed 

i nva r i an t  curves  in D of which i t  is a b o u n d a r y  point .  

The  regular  case embraces  the  general  uns table  ell iptic case for 1 f inite 

and  indeed a n y  case in which the i nva r i an t  po in t  is su r rounded  by  a regular  

neighborhood.  Consider for  s impl ic i ty  the  general  case I I  t, l ~  i .  Here  r----o 

funct ions  as an inva r i an t  cu rve  in the r(p-p]ane of polar  coSrdinates.  If  a n o t h e r  

inva r i an t  cu rve  has a po in t  in common wi th  this i nva r i an t  cu rve  (i. e. wi th  

r ~ o )  the  ro t a t i on  n u m b e r  is 0 of course and commensurab le  wi th  2 z  (w 45), 

and  this is impossible in case IIr by  defini t ion.  

I n  the regular case the set A (~2) connected with r = o tends uni/ormly to 
r = o under iteration o] T-1 (T).  

Suppose if possible t h a t  this does no t  hold for the  set ~ .  There  exists  

then  a q u a n t i t y  ~ > o such t h a t  for  n indef in i te ly  large the  set T~(~)  does no t  

lie ent i re]y  within r < ~ .  Now an y  po in t  of T , ( ~ )  is an  co po in t  which remains  

in D unde r  n i te ra t ions  of T-1  also. Therefore ,  recall ing t h a t  9 and  its images 

are connec ted  with r - ~  o, we see t h a t  any  curve  wi th in  r ~  and  su r round ing  

r = o has on i t  a t  least  one po in t  P which remains  in D under  indef ini te  i ter-  

a t ion of T and  n fold i te ra t ion  of T-1  (n a rb i t r a r i ly  large). Hence ,  b y  a lim- 

i t ing process, we conclude the  exis tence of a poin t  of type  ~ and  a on this curve.  

1 That is, a chain of a (or ~o) points, each point arbitrarily near its successor, extending j 
from r = o to r ~ d, can be found. 
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Thus we arrive at  a set of points A~2 common to A and ~2, and connected 

with r ~ o, which reaches out at least to r ~ ~. This set is clearly carried into 

itself by T and forms the inner boundary of an open continuum. Thus the set 

A ~  forms a closed invariant curve within the scope of the definition. 

However, in the regular case for a sufficiently restricted region D such an 

invariant  curve does not exist. Thus we have reached an absurdity, so tha t  

the italicized statement under consideration must be true. 

An obvious consequence of this property is tha t  the content of the set of 

A (~) points connected with r ~ o is o. 

We easily infer the following fact to be true: 

I n  the irregular case there exists a connected set o/ points A ~  reaching to 

r ~ o /rein r ----- 6 > o i] ~ is small enough. The set A (.Q) tend uni/ormly toward 

the set A ~  under inde/inite iteration o[ T-1 (T) .  

Although the introduction of a and w points was not necessary in the s tudy 

of the unstable hyperbolic points, it is instructive to note tha t  the above de- 

finitions hold there (and even in the stable elliptic case). In particular the 

o~ points are the points on the analytic invariant  curves tending toward (o, o) 

or at  least not away from (o, o) under iteration of T. Similarly the a points 

lie on the invariant analytic curves which tend toward (o, o ) o n  iteration of 

T_I or at  least do not tend away from it. Thus the sets A and ~2 are analytic 

c u r v e s .  

In general these two sets have only a finite set of points in common and 

the points A (~) tend uniformly toward (o, e) under iteration of T-1 (T). This 

is the regular case. The irregular case arises when invariant point curves are 

present. These constitute the points A ~ .  

Thus our methods in the hyperbolic case have revealed the precise nature 

of the a and ~ points - -  these fall along certain analytic branches ending at  

the iuvariant  point. In the following paragraphs we shall extend the idea of 

branches to the unstable elliptic case. 

w 52. F u r t h e r  s tudy of the  regu la r  case I I  r, l f i n i t e .  

Let us confine at tent ion to the r~-plane of polar coSrdinates and let us 

fix at tent ion upon any point Q which belongs to the set A(~) of points a(w) 

connected with r-----o. At least one such point Q lies upon r ~ d. Let ~ denote 

the set of a(~) points connected with Q for r__>•>o, where ~ is an arbitrarily 

small quant i ty  depending on the point of ~ to be obtained. 
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If a continuum abutt ing on r ~ d  has the property that  all of its points 

are aeeessiblo from r ~ d along regular curves without double points and with 

tangent argument greater (less) than - - -~ ,  its boundary  will be said to be le/t- 
2 

handedly (right-handedly) accessible. Thus the curve of the figure below ending 

at  Q is right-handedly accessible with M N  an auxiliary curve with tangent 

argument less than - - - .  With this definition we have the following: 
2 

I n  the case I I  r, l ]inite, the continuum o] Toints accessible / tom r ~ d along 
a regular curve to the le/t (right) o] the set ~, o/a(eo) points is right-handedly (le[t- 
handedly) accessible, and its boundary extends below r ~ d inde/initely /a t  to the 
le]t (right) (see /igure). 

r : d  

Take firsb l~= r. The proof of the first park of this s ta tement  follows the 

line of argument already employed in w 44. If it is not  true, there will exist 

above ~ and on its left regions inaccessible from r - ~ d  along regular curves 

without double points and with tangent  argument less than - - - .  Since T-1 
2 

rotates vertical lines positively such regions will be carried into similar regions 

toward r = o by  iteration of T-1. This fact stands in contradiction with the 

existence of an invariant area integral. 

In particular the point Q is the point furthest  to the right of the con- 

t inuum so defined. 

If now the second par t  of the s tatement  fails to hold, the set :~ does not 

extend indefinitely far to the left. Thus we have a connected set ~ extending 

from r ~ o to r ~ d for which cp is limited. But  it has been shown that  under 

iteration of T_I the range of variation of ~ along such a set increases indefinitely 

(w 43)- Hence an image exists which will cross ~ from left to right. Here we 

allow the use of congruent images. But  this shows that  ~ must be extended 

further to the left, since it contains all connected a points. This is absurd. 

The properties s tated in w 43 extends at once to the general case I!  r, l 
Aeta mathcmatica. 43. Imprim6 le 23 mars 1920. 13 
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finite, so tha t  our s ta tement  is true in this case also. I t  is probably t rue  when- 

ever a regular neighborhood surrounds the invariant  point. 

De[inition. An unstable invariant  point  is branched o] a(co) type if a con- 

tinuos c u r v e C  from r = d  to r = o  can be drawn in the uv-plane with no a(w) 

points on C which are connected to the invariant  point  by a(co)points.  In 

the contrary  case it is unbranched. 
For the elliptic unstable case I I  r, l finite, o[ a (co) branched type, the sets 

A (~) fall into a set o/ closed connected branches extending inde[initely /at  to 
the left (right) with lira r = o ]or lira rf = -  co (+  co ), but only a ]inite distance to 
the right (left). 

Consider first the set ~ and its congruent  sets in the branched case. These 

divide the region r < d  into component  continua and their limit points. The 

continuous curve from r ~ d to r----o in the uv-plane which exists in the branched 

case becomes a continuous curve lying in one of these continua and approaching 

the line r = o. Since each of these continua lies to the right of an initivl point  

such as Q this auxiliary curve extends only a finite distance to the right and 

infinitely far to the left, approaching r = o. The analysis situs of the figure 

now renders it clear tha t  each lower boundary  curve of one of these continua 

tends uniformly toward r = o as ~ becomes negatively infinite. 

But  the set ~ cannot cross the auxiliary curve and its congruent  images. 

Hence ~ forms a closed connected set of a points having the properties specified 

for the branches. 

Two a points A and B connected with r = o through a points will be said 

to belong to the same a branch if no auxiliary curve C can be drawn between 

these points to r = o .  Otherwise two such points belong to di/[erent branches. 

If B lies to the right of C and A to the left then we will say tha t  the B branch 

lies to the right of the A branch. 

A branch clearly includes all a points connected with one of its points for 

r > 6 > o .  
I t  is apparent  tha t  if the A branch lies to the left of the B branch and 

the B branch to the left of another  branch, then the A branch lies to the left 

of this branch also. Thus there is a cyclic ordering of the branches. 

The existence of a single auxil iary curve C ensures the existence of an 

infinitude of dist inct  branches, occurring in congruent  sets. Such branches have 

clearly the form specified, inasmuch as these lie between congruent curves C. 

By "the t ransformation T any a branch is carried into a par t  within r < d  
and certain other  portions outside. However,  there is clearly an a branch of 

the image wholly within r < d .  If there were more than one, these branches 
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together with the parts outside of r < d  would enclose an area, and this area 

would tend toward r = o upon iteration of T .  There must then be only one 

image branch under T.  

By  the transformation T-1 an a branch is evidently carried into a part  of 

such a branch or all of it. 

Similar remarks hold for the oJ branches. 

In  the branched elliptic unstable type 11 I, 1 finite, the trans/ormation T (T_I) 

carries an a(eo) branch into such a branch (as specified). The cyclic order o / the  
branches is preserved. 

The last par t  of the s tatement  is obvious and the first part  has just  been 

proved. 

I t  is clear that  we have associated with a branched point an a and ~o 

rotation number, say Oa and fl~, indicating the rotat ion of the branches. 

The identi ty of the branches in no way depends on d, Upon iteration by  

T each branch is carried into r < ~  where 6 is arbitrarily small. 

Thus 0~ and 0~ in no wise depend upon d. 

For a branched invariant point in the unstable elliptic case II' ,  1 finite, the rotation 
number o/ the a (~) branches is at least (at most) 0. 

First, we shall prove that  if 0 is positive the rotation number 0~ is positive 

or zero. In fact if fl > o the branch ~ with terminal point  Q on r -~  d goes into 

a branch 2-1 entirely to the left of Q. Now :~-1 cannot lie below ~ for then 

the region made up of points below 2 and to the left of Q is carried by  T-1 

into a region lying under 2 and thus forming only par t  of the region below 

and to the left of Q. In the uv-plane we have a corresponding area which is 

carried into par t  of itself, which is not possible. Thus ~ is taken into a branch 

to its left and above it, which shows that  0~ is positive or zero in this case. 

Consider now the general case and suppose if possible 0 a < 0 .  Find an 

integer m such that  for an integer k 

mOa < 2b~v < mO. 

Consider the transformation T r obtained by  following T~ by  a shift of the plane 

2b~v to the left. For T r the rotat ion number of the invariant point  is 0~= 

m O - - 2 b ~  and is positive, while Or~= -- m O a - - 2 k ~  is the rotation number of the 

branches and is negative. But  T r satisfies all the conditions imposed on T for 

d sufficiently small. Hence we are brought  back to the case proved impossible 

in the first place. 
In the branchless case greater complexity exists. A discussion of this case 

is much to be desired. 
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w 53. In te r re la t ion  of  a and ~ points. 

Consider the a and co points of D which are connected with r = o .  The 

first set A forms a closed connected set reaching from r = d  to r--~o. The 

second 52 has the same properties. In the r(f-plane it appears at  once tha t  the 

two sets must intersect infinitely often. 

Let us develop briefly the proof of this fundamental  fact. The basic reason 

which permits this conclusion is tha t  if we have a and w curves of the type 

Y, specified in w 52, one to the left of a point Q of r ~ d  and the other to the 

right of a point P of r = d ,  and if P is taken to the left of Q, there lies 

between P and Q a continuum with boundary points all of type a or w. 

Thus there are points of this closed boundary of both types, i. e. belonging to 

the boundaries of both regions. 

I n  the branched elliptic unstable case I I  ~, 1 ]inite, every a branch intersects 

every to branch in/initely o/ten. 

I n  the unbranched case also the A and 52 sets have in/initely many points in 

t o m , n o n .  

In the branched case then we have what may be described as a network 

of a and w branches. In the general case it is clea~ tha t  the A and 52 sets 

together separate r ~ o from r ~ dr> o for d ~ sufficiently small. 

The lack of definiteness in our general conclusion for the elliptic case is in 

startling contrast with tha t  found in the hyperbolic case. I believe, however, 

tha t  this corresponds to the extremely general character of the situation. A 

fundamental distinction between the two cases is this: the natural  domain in 

the hyperbolic case is the complex variable; in the elliptic case, the real. 

Chapter V. Recurrent point groups. 

w 54. Point  groups. 

Consider an analytic closed surface S of any genus and for the present let 

T denote any one-to-one, direct, analytic transformation of this surface into 

itself. The problem which we at tack is that  of determining the behavior of 

various classes of points of S under indefinite iteration of T and T-1. Hitherto 

we have only considered points in the vicinity of an invariant point. 
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Let  P be any point of S and consider the infinite sequence of points 

. . . .  T-2(P),  T- I (P) ,  P ,  T(P) ,  T2(P) . . . . .  

which will be termed the point group of P .  If two members of this sequence 

are the same, say if T~ ~ Tz, a < fl, then we have T~_~(P) ~ P.  Here the point 

P will periodically iterate through a set of f l - - a  distinct points under T. Thus 

by considering Tz_~ instead of T we may apply our earlier results to the s tudy 

of the points near this set of points under iteration of T.  

The existence of infinitely many point sets of this particular type and of 

special properties may be considered as established by general theorems con- 

cerning the invariant points of such surfaces. 1 A set of points of this type 

forms a periodic point group. 

Every limit point of the set P ,  T(P) ,  T2(P) . . . . .  will be termed an co limit 

point of P ,  and every limit point of the set P,  T - I (P ) ,  T_2(P) . . . . .  will be 

termed an a limit point. A point is counted as often as it appears. In the 

periodic case the finite set of points are all a and w limit points, and there are 
no others. 

In all cases the limit points of either class form a closed point set. 

The set o/ a (co) limit points o/ P /orm a set o/ complete point groups. The 
distance o/ Tk (P) /rom this limit set approaches 0 /or lira k ~ - -  r ( + oo ). 

Let Q be an a limit point which Tk(P) approaches for k = / c l ,  k2 . . . . .  

Evident ly  Tk+I(P) will approach T(Q) at the same time. That  is to say T(Q), 
and likewise T-I(Q), are a limit points if Q is. By repetition of this argument 

we infer tha t  all points of the point group of Q are a limit points. 

To establish the second par t  of the theorem we employ an indirect argu- 

ment. If Tk(P) did not approach the set of a limit points uniformly for 

lira ]c = -  ~ it would be possible to select an infinite set of negative values of 

k such tha t  Tk(P) would be distant from any limit point of P by at  least a 

definite positive quant i ty  d. There would then be at  least one limit point L 

of this set, and this point would be at  least d distant from any a limit point. 

By  definition however /5 is an a limit point, so tha t  a contradiction results. 

w 55. Recurrent Point Groups. 

Consider now an arbi t rary closed set ~ of complete point groups. I t  was 

observed above tha t  the a or ~o limit points form such a set of point groups. 

I See my paper first cited. 
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More generally, if we take any set of complete point groups and adjoin to it 

the limit points, we obtain an enlarged set Z. 

If a set Z contains no proper closed subset Z t of the same type we shall 

say tha t  Z is a minimal set. In this case if P is any point of Z its a (or w) 

limit points form a closed set which must therefore coincide with Z. 

Any complete point group in a minimal set forms a recurrent point group. 

The simplest type of recurrent point group is the periodic type referred 

to above. 

In all cases but this simplest one, in which Z has only a finite number 

of points, a minimal set Z consists of a perfect point set. For  suppose 

a closed minimal set to have an isolated point. This point is its own limit point 

under T or T-1. Hence this point is a member of a periodic point group, which 

must constitute the minimal set. 

In  order that a point group generated by P be recurrent it is necessary a~wl 
su//icient that /or any positive quantity e, however small, there exists a positive integer 

Ir 8o large that any k successive points in the point group o/ P, 

T~(P),  T,n+I(P) . . . . .  T,~+k-I(P),  

have representatives within distance e o/ every limit point o/ P. 
This condition is necessary. 

If not there is a recurrent point group generated by P, and a positive e 

such tha t  sequences of k points (k arbitrarily large) can be found no point of 

which comes with distance e of som~ limit point Q of P.  As k increases the 

point Q has at least one limit point Qr and thus it is clear tha t  for a properly 

taken set of sequences: no point lies within distance -~ of Qr. Take k odd and 
2 

consider the middle point L of such a sequence. I t  and its k - - -  I iterates under 
2 

T and T-1 lie at  a distance at  least-~ from Qr. Consequently for a limiting 2 

position L r of L we infer tha t  every point of the complete point group of L is 

at  distance at  least ~ from Q~. Hence L r defines a closed set of point groups 
2 

lying within the closed minimal set defining the given recurrent motion, but 

forming only part of it, and in particular not containing Q~. This is absurd. 

To prove the condition sufficient we note first that  the set of a and ~o 

limit points of a point group satisfying this condition must coincide. We need 

only to take m > o in the arbi trary set to see the t ruth  of this fact. Call the 

set of these common a and ~a limit points 2~. 
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If the set ~ is not minimal it would contain a proper subset ~r of the same 

sort to which some point Q of ~ would not belong, l~ow, when one of the set 

of points P ,  T(P) ,  T2(P ) . . . . .  approaches sufficiently near to a point of :~r it 
will remain very near to this closed set for an arbitrari ly large number of iter- 

ations under T, and so will not approach Q; it is to be kept  in mind that  ~r is 

a closed set of complete point groups. Thus the assumed condition would not 

be satisfied by  the point  group generated by  P.  

Hence ~ is minimal and the point group of P is recurrent. 

w 55. The general point group and recurrent point groups. 

The importance of the complete point groups of recurrent type  for the 

consideration of the general point group is evidenced by  the following result: 

There exists at least one recurrent point group in the a (w) limit point group 
o / a n y  given point P. 

Let :~ denote the closed set of a limit points. We need to prove that  the 
set ~ contains a minimal subset. 

Divide the surface of S into a large number of small regions of maximum 

span not  greater than d, an assigned positive constant. Among the points of 

there will be one which enters a least set, S t of regions of S under indefinite 

iteration of T and T_I .  Let  :~r be the corresponding closed set of complete limit 

point groups. This set is part  of ~ and lies wholly in the same regions S r. 

d 
Divide S r into regions of maximum span - .  Among the points of ~r there will 

2 
be one which enters a least set S" of regions of S r under indefinite iteration of 

T and T-1.  Define ~" as the closed set of complete limit point groups, which 
is part  of ~r. 

Proceeding in this way  we determine an infinite sequence ~1, ~ ,  . . . .  of closed 
sets of complete point  groups lying wholly upon S r, S rr . . . .  respectively. Now let 

p(n) be any point  whatever  of ~(n) on S(n) and let P denote a limit point  of the 

set pr, p ,  . . . .  The point P belongs to ~ of course since it is a limit point  of 

points of ~ .  Furthermore,  since P(~) is contained in ~ , ~ r , ~ , ,  . . . ,  the limit 

point P lies on all of the regions S, S f, S ' , . . . .  Likewise all of its images under 

T or T_I  lie on these regions. Thus the complete point group generated by P,  

and its a and ~ limit points, do the same. 
Moreover, every point  lying in every region S r, ~" . . . .  is an a and w limit 

point of P.  Otherwise for large positive (or large negative) k, T~(P) does not 
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approach some point Q in S r, S' ,  . . . .  Hence it is apparent that  the set of points 

P__ T(f f )  . . . .  will not enter into some one of the regions S Ik), namely the 

particular one containing Q. But  this set of points has a set of to limit point 

groups, each with a representative in every one of the minimum set of subregions 

which make up S(k). Thus a contradiction results. 

The same argument shows tha t  any  point P lying in every region S r, S" . . . .  

has this complete set as its set of a or to limit points. In other words the set 

of points common to S r, S rr . . . .  form the desired minimal set. 

The following further result shows tha t  either a point P generates a recurrent 

point group under T or else that  it successively approaches and recedes from 

such recurrent point groups: 

For any ~ > o there exists a k so large that any sequence o / k  points P, T(P)  . . . . .  

Tk (P) contains at least one point within distance e o/ a recurrent point group. 

The proof is immediate. 

If the theorem is not true it is possible to obtain points of this type not 

coming within distance e of any recurrent point group for k arbitrarily large. 

Let then Q denote the middle point of such a set (k being taken odd). If ~) 

is a limit point of points Q for lim k ~  oo evidently the complete point group 

generated by Q has none of its points within distance e of any recurrent point 

group. But  the set of a and co limit points of Q contains a minimal set. Thus 

a contradiction appears, since every point group in a minimal set is by 

definition recurrent. 

w 57. Continuous recurrent point groups. 

Recurrent point groups ~ may be classified as follows: if a point P of 

exists such that  all sufficiently near points of ~ are connected to P through 

then P is of continuous type; in the contrary case ~ is of discontinuous type. 

From every standpoint the first type is the simpler. 

There are two extreme types of continuous recurrent point groups, namely 

the zero-dimensional or periodic type in which ~ consists of a finite set of isolated 

points, and the two-dimensional type in which ~ fills an area. But  this area 

has no boundary since these boundaries would form a closed subset of point 

groups of the minimal set ~ .  Hence this area comprises all of S. Consequently 

S has no invariant points under T, and so has the connectivity of a torus, a t  

least i/ T can be generated by a deformation. 1 

See m y  paper  f i r s t  cited. 
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If ~, ~p are angular coSrdinates on a torus and if a, fl are incommensurable 

with ~z  and with each other, a transformation T of this type is defined by 

of 1----- ~ + a ,  

Thus the two-dimensional type exists. 

here determined further. 

The precise structure of this type is not 

The remaining one-dimensional continuous type arises when some but not 

all of the points of S near P belong to ~,  and are connected with it through 

nearby points of ~.  

Thus :~ fails into a set of connected subsets, which undergo some sort of 

permutat ion under T or T--1. Since P is carried into its own immediate neigh- 

borhood on sufficient iteration of T, the connected set containing P is carried 

into itself after a finite set of iterations. 

I t  appears then tha t  ~ consists of a set ~0 containing P, and of its distinct 

successive images :~rl, :~2 . . . .  , ~k-1,  while ~rk coincides with ~0. Let us consider 

then Tk, which carries ~ into itself, and for which ~r0 is also a recurrent point 
group. 

Now ~0 is either a simply or multiply connected point set. By using a 

known theorem due to BROUWER 1 we will prove tha t  it must  be multiply con- 

nected. For, if not, ~r 0 forms a simply connected set on a part  of S which can 

be represented in the plane, and is invariant under T. Moreover this set has 

no inner point, for the boundaries would then constitute a smaller closed set of 

complete point groups. Consequently by the theorem referred to there exists 

an invariant point of ~r0, which is absurd. 

Hence the set ~r 0 is multiply connected. 

If S has the connectivity of the sphere then ~r 0 divides the surface of S into 

two or more parts. But in one of these there is a point invariant under T by 

another theorem also due to BROUWER. 1 Consequently its boundary is invariant  

under T and must constitute all of ~r 0. Here then ~ consists of a finite set of 

closed two-sided curves, all outside of one another. 

More generally, consider the neighborhood of a point near ~ but not on it 

and follow along near :~ until a complete circuit is made. The boundary so 

outlined is carried into itself or into one of a finite number of similar boundaries 

I Continuous one-one transformations of surfaces in themselves, _Proceedings of  the Section o f  
Sciences, Koninklijke Academic van Wetenschappen te Amsterdam, vols. i I - - I 5  (I9o8-x912). I n  t he  
last  pa r t  of t h i s  pape r  BRouw~,R develops  the  no t ion  of class of a t r ans fo rma t ion ,  g iven  la ter  by  
myse l f  in  t h e  pape r  f i r s t  ci ted w i t h o u t  knowledge  of h i s  work. 

Acta mathematica. 43. Imprim~ le 23 mars 1920. 14 
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under Tk. Hence Tkz carries this boundary and similarly its images under Tek, 

T3k . . . .  , T(l-1)k into themselves. Each boundary is thus recurrent under Tkz, 

and if two boundaries have any points in common all of their points are in 

common. Since all of the boundaries form a set which hangs together the images 

can consist only in the boundary of a single closed two-sided curve. 

Thus continuous recurrent point groups lie in minimal sets which are either 

made up (i) of a finite set of points, (2) of a finite set of closed two-sided 

curves on S, or (3) of all the points of S. 
In the one-dimensional case a single angular variable and a definite rota- 

tion number arise. A fundamental  question is whether a similar representation 

in the two-dimensional case, by means of two angular variables and two 

characteristic rotat ion numbers, is possible. 

w 58. Discontinuous recur ren t  point  groups. 

An immediate division of the types of discontinuous recurrent point groups 

is possible. In the first case no point P of the minimal set 2~ is connected with 

any other point through 2~; this is the totally discontinuous type. In the second 

this is not the case; here we have the partially discontinuous type. 

For the second case ~ falls into connected sets which are permuted among 

themselves by T just as the points are in the first case. The existence of this 

second category of recurrent point groups is doubtful when T has the properties 

which we have assumed. On the other hand the totally discontinuous type of 

recurrent point groups exists in important  cases. 

Inasmuch as analytic weapons are lacking we content ourselves merely 

with some examples and with making an a t tempt  at classification in the totally 

discontinuous type. 

Let /(t) be a continuous increasing function of such tha t  ] ( t ) - - t  is periodic 

of period 2z .  Then t I ~- / ( t )  defines a one-to-one continuous direct transformation 

of a circle (on which t is an angular coSrdinate) into itself. This is associated 

with a definite rotation number 0 and defines at  least one recurrent point group 

on the circle, which need not coincide with the whole circle. Its minimal set is 

represented by a perfect nowhere dense point set on the circle. 1 We limit 

at tent ion to the corresponding values of t. 

1 See G. D. BIaKHOFF, Quelques thdorbmes sur le mouvement des systbmes dynamiques, Bulletin 
de la Socidtd MatMmatique de France, vol. 4o, I912. 

The reader will observe the complete analogy between the recurrent motions of that 
paper and recurrent point groups. 
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I t  may now be possible to represent the given recurrent point group 

in the form 

u = r  v = r  u,  = r  v, = ~ ( t , ) ,  

where el, ~p are continuous functions, where u,  v are ordinary surface coSrdinates 

for S,  and where t ranges over the values specified. We.shall  say that  the 

recurrent point  group is of rank i in this ease. 

Or it may be possible to write 

u=q~(t, w), v=~p(t, w); u,  = ~ ( t , ,  w,),  v, = q J ( t , ,  w,) ,  

where w has properties analogous to t. We then say that  the recurrent point  

group is discontinuous of rank ~. 

This definition obviously extends to any rank and is applicable to partially 

as well as totally discontinuous point groups. 
I t  would be interesting to know whether or not  the rank is finite in al 

cases which actually arise in applications. 

w 59. Unstable recurrent point groups. 

Let us term a recurrent  point group and its minimal set ~ unstable if, for 

e > o sufficiently small, it is impossible to find ~ such that  points P within 

distance ~ of :$ remain within distance e of under indefinite iteration of T and 
T-1. In the contrary case let us call the point group and the set :~ stable. 

This agrees with our earlier definition of stabil i ty in the case of an invariant 

point. 
Let  ~ be an unstable minimal set and P a point group such that  the 

sequence of points P ,  T(P) ,  T~(P), . . .  has :~ as the only minimal set in the set 

of co limit points. Then the point group of P will be said to be positively asymp- 

totic to ~ .  Similarly if the sequence P ,  T - I (P ) ,  T-2(P)  . . . .  has a single minimal 

set ~ in its set of a limit points then the point group of P will be said to be 

negatively asymptotic to ~ .  

I t  is apparent  tha t  we cannot have the phenomenon of asymptot ic  point 

groups save when ~ is unstable. For, if P is any point at  distance more than 

from a stable set ~ ,  its iterates cannot approach to within some distance 

of ~ by  the definition of stability. Moreover our earlier work shows that for 
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hyperbolic periodic point  groups 1 such asymptotic  point groups lie along hyper- 

continuous branches, while for regular elliptic periodic point groups other types 

of asymptot ic  point groups are present. In both of these cases the point P 

tends toward ~ asymptotically,  under T or T- l ,  although such a state of affairs 

is not required by  our definition. 
In the regular case an unstable periodic point group possesses positively and 

negatively asymptotic point groups ]orming connected sets o] the kinds earlier 

speci/ied. 
Moreover even in the irregular case the work of w 5I shows that  we will 

have connected a and eo sets. These furnish asymptot ic  point groups unless 

there are other recurrent point groups in these sets. This follows by  the last 

result of w 56. 
In  the irregular case an unstable periodic point group possesses such asymptotic 

sets unless there are in/initely many recurrent point groups in its in/initesimal 

vicinity. 
It  is this possibility which arises for a hyperbolic invariant point  through 

which passes an invariant point  curve. The nearby invariant points are the 

recurrent point groups in the vicinity. 
Our initial conclusion for recurrent non-periodic point groups is the 

following: 
An  unstable minimal set (not periodic) possesses positively and negatively 

asymptotic point groups /orming a connected set, at least unless there are other 

recurrent point groups in its infinitesimal vicinity. 
In fact, if possible choose e so small tha t  there are no other recurrent point  

groups within distance e of :~. Now choose ~ extremely small and consider the 

iterates of points within distance c~ of ~ under T. Because of the instabil i ty 

of :~ these iterates reach out  in a connected set to distance e in N iterations 

(N large). By  a limiting process like that  employed in w 5I we infer the existence 

of a closed set of points connected with ~,  reaching out  to the boundary  of this 
e vicinity, and remaining within this neighborhood under indefinite iteration of 

T_I. But  each point of this set has only the minima] set :~ in its a point group. 

Hence these points approach ~ uniformly often under iteration, by the last result 

of w 55, and are negatively asymptot ic  to ~ .  The existence of a positively 

asymptotic  set may be similarly established. 
To advance further we introduce the notion of isomorphic recurrent point 

groups: Two recurrent point groups with minimal sets ~ ,  ,~r are isomorphic if it 

A periodic point group of q points P, T(P), ..., Tg--I(P) is called hyperbolic if P is 
hyperbolic under Tg. A similar terminology is employed in general. 
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is possible to establish a correspondence of closed point sets of ~ to closed point 

sets of ~r which is maintained under T. I t  is assumed tha t  there is more than 

a single set unless ~ or ~r consists of a single point. Thus two periodic point 

groups of k and 1 points are isomorphic only if k and l have a common prime 

factor. Similarly two one-dimensional continuous recurrent point groups are 

isomorphic only if their rotat ion numbers are the same or if they fall into k 

and l curves, where k and 1 have a common prime factor. 

I] there are not an in/initude o/ recurrent point groups in the neighborhood o/ 
and isomorphic with it, there will exist such connected asymptotic sets. 

The existence of infinitely many near by recurrent point groups is an 

evident necessary condition for the non-existence of asymptotic sets of this 

description. To show tha t  infinitely many of these are isomorphic with ~ ,  

we note tha t  the earlier argument for existence of such positively asymptotic 

point groups only fails if the connected ~o set obtained contains other minimal 

sets besides ~.  Let ~r be such a set. By operating with T indefinitely often 

upon the set connecting ~ and ~r we infer tha t  there exist point sets connecting 

and ~r, and remaining in the e neighborhood of ~ ,  :~i under indefinite itera- 

tion o f  T and of T-1. Let us establish a correspondence between the sets of 

points of ~ and ~r so connected. 

Now if all the points of ~ and ~r are so connected we have a connected 

invariant set under T, and included by it an invariant  point of course. If 

invariant points exist in every vicinity of ~ ,  there exists an invariant point 

on ~ ,  which must  coincide with :~. Hence in all cases the sets ~ and ~ 

are isomorphic. If there are a finite number of connected sets we are led to 

isomorphic periodic point groups near ~ .  

By letting ~ approach o we arrive at  infinitely many periodic or other 

recurrent point groups having minimal sets isomorphic with ~ and lying in its 

immediate vicinity. This is under the hypothesis tha t  there are no asymptotic 

sets of the type described. 

I t  is to be hoped tha t  a more complete analysis of the notion of isomor- 

phism will be made. 

Let us say tha t  a point is positively (negatively) asymptotic to a set of iso- 

morphic recurrent point groups if these and these alone form the recurrent 

point groups among its ~ (a) limit points. 

The above argument then enables us to state the following: 

For a given recurrent point group in any continuum D there exist connected 
sets positively and negatively asymptotic to a set o/isomorphic recurrent point groups 
containing the given point group unless there is such an isomorphic point group with 
a point on the boundary o/ D.  
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w 6o. Stable recurrent point groups. 

The simplest type  of continuous recurrent point groups is the periodic type. 

If this is stable each of the k points of the group is clearly surrounded by  

infinitely many neighboring curves which are permuted by  T.  These curves are 

invariant under T and their form has been partially determined (w167 44--47)- 

The two-dimensional continuous type  is stable by  definition since its points 

fill S.  

Suppose finally that  we have a stable continuous one-dimensional recurrent 

point group with minimal set ~ .  On either side of the curve ~ it is readily 

inferred (see w 42) that  we have an infinite succession of nearby invariant curves. 

If the rate of rotation of nearby points exceeds tha t  along the curve (as in the 

case of a regular neighborhood of an invariant  point) the nature of these curves 

can be discussed more fully, but  we will not a t tempt  such a discussion. 

Thus a stable one-dimensional continuous recurrent  point group is sur- 

rounded by  infinitely many neighboring invariant curves on either side. 

In the case of a discontinuous recurrent  point  group with minimal set 

we are led similarly to a set of nearby invariant sets of continua containing 

the set ~ as inner points and lying within distance ~ of ~.  Clearly I t Q d u d v  

taken over any of these continua is the same, so their number is finite, and 

they arc carried into themselves by  Tk. Thus there is an invariant point under 

Tk within each of them. Such a point P lying near a point of ~ and in the 

same continuum clearly remains nearby under iteration of T or T_I. By letting 

decrease the number of these continua increases indefinitely. At each stage k 

is unaltered or changes to a multiple of itself. 

A stable Periodic point group o/ k points has in its neighborhood in/initely 
many invariant sets o/ k enclosing curves as speci/ied. 

A stable onedimensional recurrent point grou~v has in its neighborhood in]in- 
itely many invariant rings within which it lies. 

A stable discontinuous recurrent point group has in its neiffhborhood in/initely 
many periodic point groups and invariant sets o/ enclosing curves. A point o] a 
periodic point group approximates uni/ormly to any nearby point P o/ the given 
group under all iterations o/ T and T-1. 
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Chapter VI. The general point group. 

w 6i. Classification of transformations T. 

Before entering upon further discussion of the behavior of points under T, 

we shall effect a classification which is fundamental .  

A transformation T will be called transitive if, for any pair of points P 

and Q on S nearby points pr and Qr respectively can be found such tha t  

Q ' =  T,~(P'). 

A transformation T is intransitive in the contrary case. 

I t  seems highly probable that  the transitive case is to be regarded as the 

general case. 

w 52. The t rans i t ive  ease. 

We commence with the transitive case. 

I n  the transitive case all o/ the recurrent point groups are unstable. 1 

In fact it has been observed earlier that  a stable recurrent point group 

leads to continua forming part  of S, which are invariant  as a set under T and 

lie near the point group. Hence if we take a point P outside of these continua 

and a point Q within one of them, the condition given in the definition of transi- 

t ivi ty cannot be fulfilled. 

We note tha t  invariant sets of continua cannot exist in the transitive ease 

for the same reason. 

I n  the transitive case the asymptotic a or w point groups connected with any 

recurrent point group and its isomorphic recurrent point groups, together with these 

recurrent groups, are everywhere dense throughout the sur/ace S.  

For suppose that  there is no such asymptotic point in some small region a 

for a recurrent point group with minimal set 2~. 

Take then a small vicinity of ~ and consider the regions into which it goes 

by T.  Evidently this set of region must ult imately overlap part  of a or we 

shall be led to invariant continua, such as can not exist in the transitive case. 

Applying then precisely the same considerations tha t  we have used earlier, 

i. e. considering smaller and smaller neighborhoods of ~, we derive the existence 

i The exceptional case in which there is a single recurrent point group whose minimal 
set fills S is left out of consideration. 
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of a connected a set reaching from ~ to the boundary of a at  P .  Either P 

belongs to a point group isomorphic with ,$, or its point group is positively 

asymptot ic  to ~ ,  or to a set of isomorphic recurrent point groups, by the pre- 

ceding paragraph. 

In  the transitive case any positively asymptotic connected set o] points has in- 

]initely many points in common with any negatively asymptotic set, at least i/there 
ezists a single elliptic periodic point group I I  ~ with l ]inite. 

This follows at  once from the immediately preceding propositions and from 

the structure of the network of asymptotic sets A and ~2 about such an in- 

variant  point (w 53)- 

For, consider the transformation Tq which leaves such a point P of an 

elliptic periodic point group unchanged. 

The given connected asymptotic a set reaches into this network indefinitely 

near to the invariant  point P without meeting the A set. The negatively con- 

nected asymptotic co set reaches into this network without meeting the ~2 set. 

Consequently the two sets have infinitely many points in common. 

Thus there exist point groups positively and negatively asymptotic  to as- 

signed periodic point groups. 

Suppose now tha t  we designate any  point whose a or ~ limit points do not 

form all of S as a special point. All of the points belonging to recurrent point 

groups or points asymptotic to such point groups are of this type. 

Points which are not special evidently pass into the neighborhood of all 

points of S J under iteration of T or T-I .  Such points we term general. 

In  the transitive case the general points are everywhere dense in S. 
To see this we divide S into a large number of regions S r of small diameter 

d, and consider the set of points P whose iterates do not enter within all of 

the regions S ~. Such points P evidently form a closed set of points, M say. 

This set M is nowhere dense in S. In the contrary case suppose M to 

fill a small region a r. Now there are only a finite set of regions S r and thus 

only a finite number of combinations of less than all of them. Divide the points 

of a r into the finite number of closed sets according to the regions S t which the 

points enter. Thus a r is divided into a finite number of closed sets, at  least 

one of which therefore fills some neighborhood a" of a r densely. We recall 

tha t  a finite or denumerably infinite set of nowhere dense closed sets cannot 

fill a complete neighborhood. But the existence of such a region a" contradicts 

the condition that  T is transitive. Thus M is nowhere dense. 

Again choose a set of subregions S" of the regions S r of diameter less than 
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d 
- leading to a set M r which includes M by a similar process. The set M r is 
2 

nowhere dense. 

By continuing in this fashion we get an infinite set of closed sets M ,  M r . . . . .  

each containing its predecessor. Every  point P which has not all of S for its 

set of limit points evidently belongs to some one of these sets. 

But  by the theorem quoted above the set of all points belonging to 

some M (k) nowhere fills a complete neighborhood. Hence the stated pro- 

perty holds. 

I t  would appear to be a very important  and difficult question to determine 

the relative measure of the special points and general points. The above argu- 

ment renders it  clear tha t  both of these sets are measurable in the sense of 

Lesbesgue, but sheds no light on their relative measures. One natural ly con- 

jecturea tha t  the special points are of measure o. 

w 53. T h e  i n t r a n s i t i v e  ease .  

In the intransitive case there exists at  least one pair of points P ,  Q such 

that  no point very near to P goes into a point very near to Q under i teration 

of T or T-1. Obviously this state of affairs implies the existence of invariant  

sets of two-sided curves forming the boundaries of open continua on opposite 

sides of which P and Q lie. 

We term a transformation T for which there exist only a finite number 

/c > o of such curves ]initely intransitive; otherwise, infinitely intransitive. 

Within one of the invariant sets of continua bounded by these curves in 

such a finitely transitive case, the condition for t ransi t ivi ty  is satisfied i. e. for 

any pair of points P ,  Q within, nearby points pr, Q, respectively can be found 

such tha t  Qt_~ T,~(pr) for some n. 

I n  the finitely intransitive case the theorems slated /or the transitive case hold 

w i t h i n  each invariant set of continua. 

The infinitely intransitive ease obviously includes the integrable case when 

the points move along analytic curves. More generally, it includes the case 

when there is at  least one stable recurrent point group. Indeed it seems pos- 

sible that  the existence of such a stable reourrent point group is a necessary as 

well as a sufficient condition for infinite intransit ivity.  But  we have not been 

able to establish this conjecture. 

Acta mathernatica. 43. Imprim6 le 24 mars 1920. 15 
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In order to satisfactorily describe the point groups and their interrelations 

in the intransitive case it is essential to know the possible types of invariant  

sets of curves. Lacking such information save for the neighborhood of a peri- 

odic point group of elliptic type IU, l finite, we do not a t tempt  to go further. 

Chapter VII. Dynamical applications. 

w 54. The equations of  motion. 

For definiteness we consider a dynamical system with equations of the 

form 

d OL OL d OL OL 
(32) dtOx' Ox =~~ dtOy' O y - - ~  

when L is a function of the two coSrdinates x, y and their time derivatives 

xr, yr. This differential system is of the fourth order. If then we regard x, y, 

s yr as the eoSrdinates of a point in four-dimensional space the motions of the 

dynamical system are represented by a set of curves, one through each point 

of the space. 

Now we have the well-known integral relation 

(33) x, OL ,OL + y ~ = const. 

Hence these curves lie on ~1 three-dimensional manifolds. We fix at tent ion on 

any  one of these. 

We assume this three-dimensional manifold to lie in the finite par t  of the 

four-dimensional space and to be without singularity. 

w 55. Periodic motions. 

To periodic motions correspond closed curves of the three-dimensional spread 

above obtained. 
Suppose we take a point P of such a stream line and consider a small 

element of an analytic surface containing P and cutting the closed curve at an 

angle not o. If we take any point A on this element near to P ,  and follow 
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along the unique curve through it in the sense of increasing time t, the element 

will be crossed again later at  a point  Q. The transformation of the element 

which takes P into Q is the transformation T which we shall consider. 

The conservative transformation T1 thus defined is clearly essentially in- 

dependent of the particular surface element employed, since any other trans- 

formation so obtained can be derived from T by  a proper change of variables. 

We classify the periodic motions into types I r, I ' ,  II  r, I I ' ,  I I  "r, I I I  r, I I F  

according as T is of such a type  (w 2). We define a periodic motion to be 

elliptic or hyperbolic according as the transformation T is elliptic or hyperbolic; 

and the integer I is similarly defined. The periodic motion is stable if nearby 

motions remain nearby for all t. This means that  T is stable. In the contrary 

case the periodic motion and T are unstable. 
Finally we will term the dynamical problem integrable if T is integrable. 

w 55. The integrable  case. 

In the integrable case T leaves a family of curves F*~--const .  invariant. 

Thus i n  the three-dimensional representing space there is a one-parameter ana- 

lytic family of surfaces in the vicinity of the closed curve representing the 
periodic motion, each surface being made up of curves of motion. If this mo- 

tion is of elliptic type  there is a family of closed annular surfaces of which the 

curve of motion forms a degenerate member. If this motion is of hyperbolic 

type  these surfaces are open and the curve lies on one or more of them. This 
much is obvious. 

The necessary and su//icient condition/or integrability o/the dynamical problem 
is the existence o/ an integral relation G(x, y, s yF)~ o where G is analytic in its 
indicated arguments, and where G----o is not an identity in virtue el the known 
integral relation. 

The condition is evidently sufficient. This relation yields an invariant 

family of surfaces in the three-dimensional representing space and these cut the 

surface elements used to define T in a family of invariant  analytic curves in the 

vicinity of the invariant point  under T.  Consequently T is integrable. 

Conversely, if T is integrable we obtain an analytic family of surfaces 

on which the curves of motion lie. These may be represented in the form 

H(u,  v, ~0)~o,  where u, v are coSrdinates for the surface elements and ~0 is 

an angular coSrdinate. Also H is analytic in its three variables. On account 

of the fact  tha t  the four-dimensional manifold under consideration consists of a 

1 See my paper first cited. 
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one-parameter analytic family of the three-dimensional manifolds which we have 

under consideration, it is apparent tha t  these variables u, v, ef may be expressed 

as analytic functions of x, y, x ~, y~. By this means a relation of the desired type 

is obtained. 

I n  the hyperbolic integrable subcase there exist k > o one-parameter analytic 

/amilies o/ motions asymptotic to the given periodic motions /or lira t ~  • ~ (or 

else periodic) whose analytic representation we will not speci/y. 1 All other nearby 

motions /irst approach and then recede ]rom the periodic orbit. 

This conclusion is an immediate consequence of the form of T near a hyper- 

bolic invariant point. 

I n  the elliptic integrable subcase nearby motions have codrdinates x, y re- 

presentable as analytic /unctions o/ variables e V - ~ ,  e v=ilz~, while t ----- cv § another 

/unction o/ this type. 

The curve of motion lies on a torus and a point on such of curve increases 

its angular co5rdinates by a fixed amount  as a single circuit of the torus is 

made (w 5o). Evidently an analytic distortion takes this torus into an ordinary 

right circular cylinder on which the curves of motion are the spirals making a 

fixed angle with the generators. Now x, y can be expressed as periodic ana- 

lytic functions of the angular coSrdinates p, q on this torus. But  this estab- 

dt 
lishes the stated form of representation for x, y. Also ~v is a similar func- 

tion of p, q, whence the form of the expression for t in terms of v. 

w 57. Formal series in the non-integrable case. 

Evident ly  the results of the first part  of the present paper may be inter- 

preted as results for the formal series representing the motion in the dynamical 

problem. The asymptotic validity of such series can be readily established. 

We will only remark upon the following fact: Inasmuch as there exists a for- 

really invariant series F* in the non-integrable case (w io), there exists always 

a /ormally invariant integral relation o/ the type G ~ o considered above. Thus 

the dynamical problem is 'formally integrable' in the vicinity of an elliptic or 

hyperbolic periodic motion. In the elliptic case this means tha t  periodic power 

series in two periods may be employed to represent nearby motions. 

If I am not mistaken it has never yet  been demonstrated tha t  integrability 

a I n  the  s imp les t  and  genera l  case I r, x ,  y m a y  be e xp re s se d  as  c o n v e r g e n t  power  ser ies  

in  p• while we have  t =  cr  § a n o t h e r  power  ser ies  of the  s a m e  sort. 
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in the above sense cannot always prevail, although such a possibility appears 

remote. POI~CARk has merely shown that  integrability does not  exist uniformly 

throughout  certain domains with variation of a parameter  /~.1 The particular 

example of w 3~ yields a non-integrable conservative transformation, but  it is 

n o t  ye t  established that  such a transformation arises in a dynamical problem. 

w 68. Periodic motions in the non-integrable case. 

The results of Chapter II  when interpreted in the general hyperbolic case 

show at once: 

The results stated above /or the integrable hyperbolic case hold also in the non- 
integrable case, the analytic /amilies o/ asymptotic motions being representable by 
means o/ hypercontinuous /unctions. 

Interpret ing the results of Chapter I I I  for the stable elliptic case II  ~, l fi- 

nite, we conclude: 

In  the non-integrable stable elliptic case I I  r, l finite, there exist an in/inite 

number o/ continuous closed one parameter /amilies o/ nearby motions, representable 

by means o/ continuous biperiodic /unctions o/ limited variation, and which are in- 

variant as a family upon a circuit o/ the periodic motion. 
In  the unstable elliptic case II ' ,  1/inite, there exist connected/amilies o/asymp- 

totic motions /or both lira t ~ - -  o~ and lim t ~ + o~ , each containing the given peri- 
odic motion. The /amily o/ the one type has in/initely many doubly asymptotic 
motions in common with any /amily o/ the other type. The motions not in any 

such /amily are everywhere dense near the periodic motion. 
As before we omit details. 

w 69. Surfaces of section. 

In very many if not in all cases an analytic sur/ace o/section S in the 

three-dimensional spread representing the motions may be found with the pro- 

per ty  that  it is cut by  every curve of motion in one and the same sense and 

has boundaries formed by closed curves representing periodic motion. 

By following along a curve of motion from a point  P of such a surface 

to the next  point Q, in the sense of increasing time a transformation T for 

which Q = T ( P )  is defined. This transformation is one-to-one, analytic and 

conservative. 

We consider the total i ty  of motions by  the aid of such a surface S. 

i I-I, POINC/~RI~, Let mdthodes nouvelles de la mdcanique cdleste, col. x, Paris x89z, Chap. 5. 
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w 7 o. R e c u r r e n t  mot ions .  

A recurrent motion m a y  be defined as one which comes a rb i t r a r i ly  near  all 

its phases dur ing  any suff ic ient ly  large in te rva l  of t ime (from t------co to 

t ----+ + ) .  E v i d e n t l y  such a mot ion  cor responds  to a r e cu r r en t  poin t  group 

on S. Hence  we f ind:  

Every motion has at least one recurrent l imit  motion for lira t ~ + ao (and /or 

lira t ~ -  +o ). I t  recurs uni[ormly o/ten arbitrarily near some one o/ these l imit  

recurrent motions (not necessarily the same one). ~ 

R e c u r r e n t  mot ions  m a y  ei ther  be periodic,  biper iodic  ( representable  on a 

square  or torus)  or t r iper iodie  ( representab le  in a cube), or discont inuous.  ~ We 

will no t  follow out  the classif icat ion suggested by  w167 57, 58 fur ther .  

w 7i. Asymptotic motions. 

A mot ion  will be said to  be positively (negatively) asymptotic to  a r ecu r r en t  

mot ion  if i t  has on ly  this r e cu r r en t  mot ion  as a l imit ing r e c u r r e n t  mot ion  for 

lim t = + ~ (lim t = - -  ~ ) .  F u r t h e r m o r e  we will say  t h a t  two r ecu r r en t  mot ions  

are isomorphic if the  cor responding  poin t  groups  are isomorphic .  The  d i rec t  

appl ica t ion  of the  resul ts  of w 59 gives then :  

Unless there are in/initely many  nearby isomorphic recurrent motions, any 

recurrent motion has connected /amilies o/ motions asymptotic to it /or lira t ~- + 

and ]or lira t = - -  ~ .  

w 72. Transitive and intransitive systems. 

I f  a mot ion  can be found  passing f rom near ly  one prescr ibed  phase  to  an y  

second prescr ibed  phase  the  dynamica l  sys tem is transitive. H ere  T i s  t rans i t ive  

also, and  converse ly  (w 52). Otherwise  the dynamica l  sys tem is intransitive. 

I n  the transitive case the motions asymptotic in either sense to a given recurrent 

motion or set o/ isomorphic recurrent motions, together with these motions, are every- 

where dense. 

In / in i te ly  many  motions exist doubly asymptotic to any two prescribed recurrent 

motions (or isomorphic sets o/ such motions) for lira t ~ ~= ~ ,  at least i[ there exists 

i See my paper last cited. 
The existence of recurrent motions of discontinuous type has been established by H. 

C. M. MoRse, Certain types of geoclesic motion on a surf(see of negative curvature, Harvard Dis- 
sertation, 19~7. 
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a single periodic motion o/ the elliptic type I I  r, 1 /inite. There exist also a dense 
set o/ general motions which approach every possible phase arbitrarily closely/or both 
lim t ~  + o~ and /or lim t ~ - - ~ .  

The intransitive case includes the integrable case. The simplest possibility 
is the /initely intransitive case when the curves of motion fall into k > o types 

filling out regions in the three-dimensional manifold. This corresponds exactly 
to the finitely intransitive type of transformation T. 

In  the /initely intransitive case each type o/ motions has the same properties 
stated above /or the intransitive type. 

We do not consider the infinitely intransitive type of dynamical system 

except as covered in the general results stated above. Here we have infinite]y 
many types of motion, and, in default of a knowledge of the types which may 
exist, the results to be obtained are necessarily vague. 

w 73. Conclusion, 

The varying degree of definiteness of the results above obtained for dynam- 
ical systems is striking. The catalogue of types of motion according to their 
degree of simplicity appears to run as follows: ordinary periodic motions, bi- 
periodic motions representable analytically by convergent trigonometric series 

in two arguments, triperiodic motions representable by three arguments; motions 
asymptotic to periodic motions of hyperbolic type, motions asymptotic to peri- 

odic motions of elliptic type and of the other types just referred to; recurrent 
motions of biperiodie or triperiodic type (not representable by convergent 
trigonometric series); recurrent motions of discontinuous type; motions asymptotic 

to recurrent motions of these new types (or to sets of isomorphic recurrent 
motions); special motions (i. e. not passing near all phases for both lira t---- + 

and lim t = - - ~ )  not of above types; general motions. 
The degree of definiteness attained has varied with the analytic instruments 

at hand, and will probably be found to correspond to the nature of the case, 

at least unless entirely new analytic instruments are discovered. 
The remarkable diversity and complexity of structure possible in dynamical 

systems with two degrees of freedom is likely to stand permanently in the way 
of approach to any definitive form for the theory of such systems. As has 
appeared above, many of the most vital questions are still without an answer. 
Progress with these questions and progress with the theory of the conservative 

transformations T which we have studied will go hand in hand. 


