
A PROOF THAT EVERY AGGREGATE CAN BE 
WELL-0RDERED. 

BY 

PHILIP E. B. JOURDAIN. 1 

I n t r o d u c t i o n .  

If we are given any aggregate whatever, M,  which contains at  least one 
member, this M has a perfectly definite class of ,chains, .  A ~chaim> is any 

definite par t  of M which is well-ordered. Thus, if we know that  M contains the 

three members a,  b and c, we know that  to M belong six chains. The class of 

M-chains falls into sub-classes, of which one, Kr, contains all those chains, and 

only those chains, that  are of ordinal type y. 

Our object is to re-arrange all the chains in the K's in other classes, which 

we will call ,,K-classes,>, and these can be defined as follows. .4 ,)K-classy) is a 

class of chains such that  (I) it contains chains respectively of all types  less lhan 

some ordinal number 7, and (II) if x and y are members of the K-class, and the 

type  of x is greater than that  of y, then y is a segment of x. :It is evident 

tha t  a K-class determines uniquely a single chain, such that  the K-class is 

composed of the segments of this chain and that ,  if y has no immediate prede- 

cessor, the chain determined by the K-class whose members are respectively of 

all types less than 7, is of type 7. 
:If there is a chain which is a member of one of the K's which exhausts M,  

the theorem is obviously proved. If  there is not such a chain, we will fill up 

The undersigned does not accept the principal wiew on which is based the above paper 
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I would do the mathematical Public a service by publishing it. At the same time, however, 
I wish to point out that this journal will not to any further extent  be at the disposal for 
papers of the same kind. G. M~ttag-Leffler. 
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f6r analytiska funktioner2, Det Kgl. Danske Vid. Selsk., M~th.-fys. Meddelelser, II ,  5. x92o). 



240 Philip E. B. J0urdain. 

from the perfectly definite set of I~:'s a set of K-classes, which can afterwards be 

proved to consist of all possible K-classes which contain one chain of each type 

of all possible M-chains. Each of these K-classes define a chain which is of 

higher type than any M-chain; so tha t  it is impossible tha t  there should not be 

a member of some K which exhaust M. 

Before we can assume tha t  there is an ordinal number so great that  every 

M-chain is of type less than this ordinaI number, we have to prove tha t  it is 

impossible that  the series of K's is of the same type as the series of all ordinal 

numbers. This can be proved quite simply. 

The rule for re-arrangement of the K's in K-classes is defined by an induction 

which in general is transfinite, and which does not depend on Zermelo's principle 

of arbi t rary selection. 

If we take K~, we can evidently arrange without arbitrariness all the mem- 

bers of KL in unit K-classes. If now all the K's whose suffixes are less than 7 

are arranged in K-classes, we can give a rule for arranging all the members K r 

among the K-classes just mentioned. Consider the cases: -- (I) 7 has an imme- 

diate predecessor Z - - I ;  (IO 7 has no immediate predecessor. 

(I) In this case, if there is a class K r, put  for the moment with each member, 

z, of Kr_l all the members of K r which continue x. Then replace this complex 

by a set of which each member is a member of K r associated with x. By this 

means we finally get the whole set of K's of which the suffixes are equal to or less 

than 7 into a set of K-classes of which each consists of chains of all types equal 

to or less than 7- 
([I) In this case, each of the K-classes consists of chains respectively of all 

types less th~n 7 . . .  :By what has been said before, the chain defined by any  

one of these K-classes is of type 7. 

We have thus obtained a chain of type greater than any M-chain. The 

only alternative is tha t  some M-chain exhausts M.  

I. 

In a famous memoir published in I883, GEORG CA~TOR 1 states tha t  any 

well-defined aggregate whatever can be brought into the form of a well-ordered 

aggregate, and promised to return in a future publication to this , law of thought  

which seems to be both fundamental,  rich in consequences, and particularly remark- 

a Z~Iath. Ann., Vol. XX[, p. ~io; or G~undla.qen ether allgemeinen Mannigfaltigheitslehre, 
Leipzi~ 1883, p. 6. Cf. Cantor's Contributions to the Founding of the Theory of Transfinite 
numbers, Chicago and London, x915, pp. 6z, 62, 66. 
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able for its generality~>. This promise was never fully carried out, and it is not 

difficult to guess why it was not carried out. In fact, it seems t that ,  to well- 

order a given aggregate M he imagined an arbi trary selection of a member m~ 

of M and laid down tha t  m~ sehould be the first in a well-ordered aggregate; 

then he imagined a selection of any other member mz from the remaining part  

of M, and laid clown that  m~ should be the second in the above well-ordered 

aggregate, and, in general, he imagined that,  after any finite or transfinite num- 

ber of members have been selected from M, any member of the remaining part  

of M is chosen as the member of the above well-ordered aggregate to follow 

immediately all the m's already chosen. This processsuggests  itself a t  once~; 

but  the fact is that  it is not sharply defined and cannot, then, be regarded as 

a method of strict proof. 3 If, indeed, we have to select a finite number (n) of 

members from an aggregate M, we can do so arbitrarily - -  provided, of course, 

tha t  M has as many as n members. But  if we are merely given tha t  M is 

infinite, and we are required to select an infinity of members from M, we cannot, 

since specification one by one of an infinity of members is natural ly impossible, 

decide which members are selected and which are not unless we imagine a rule 

to decide the question unambiguously. Since such a rule must be expressed by 

a finite number of symbols none of which, like ,>...  ,>, sometimes indicates vaguely, 

we get a demand for ,>definability in a finite number of words~>. Thus, KRO~CXER 

held that  a definition is permissible only if in every case it can be tested by a 

finite number of inferences. ~ 

When Cantor gave a proof tha t  every transfinite aggregate T has par t s  

with the cardinal number ~0, he said explicitly 5 that,  if, ~>by any rule~>, we have 

Cf. a r e m a r k  due to E. Z~aMELO in Math. Ann., Vol. LXV,  I9o8 , p. I25. 
For  example ,  HxROY expl ic i t ly  used i t  in  t he  pape r  to be m e n t i o n e d  below. I n  rny p a p e r  

of I9o4 also m e n t i o n e d  below I first re l ied  on  Hardy ' s  resul t ,  bu t  a f t e rwards  (Math. Ann., Vol. 
LX,  i9o5, p. 68) made  use expl ic i t ly  of the  no t ion  of an  in f in i ty  of a rb i t r a ry  se lect ions  (cf. 
~ev. de ll~ath., Vol. V I I I ,  I9O6 , p. 9, note  I). 

BO~EL (Math. Ann., Vol. LX,  I9o5, p. I95 , and  Legons sur la thdorie des fonctions, Second 
ed., Paris ,  I914, pp. I35--I8I) .  Any  reasons  Borel  may  h a v e  had  for  h i s  r e jec t ion  of a ser ies  of 
a r b i t r a r y  choices  are  no t  given,  and  i t  seems  t h a t  he  passed over  an  i m p o r t a n t  logical p o i n t  
involved,  since he  a d m i t t e d  any  e n u m e r a b l e  in f in i ty  of choices  and  re jec ted  a n o n - e n u m e r a b l e  
in f in i ty  of choices  (cf. HOBSO~, The Theory o f  Functions of a Real Variable and the Theory of 
Fourier's Se~ies, Cambridge ,  t9o7, p. 2io, no te ;  cf. pp. I96--I97 ). Bere t  made  use of an  enumer -  
able  inf in i ty  of choices in the  above Legons, for example ,  pp. I2 - - I  3. 

* H. WEBER, Jahresber. der D. M. V., Vol. II ,  I89r--2,  pp. 2o; Math. Ann., Vol. X L I I I ,  I893 , 
p. I5. See also HoBso~, op. cir., pp. I96--I97. Cf. SC~OENFLIES, Encyel. der math. Wiss., Vol. I, 
P a r t  i,  p. 188, Die Entwiekhmg der Lehre yon den -Punktmannigfaltigkelten, Leipzig,  I9oo, p. 5, 
a n d  Entwieklung der Mengenlehre und ihrer Anwendungen, Leipzig  and  Ber l in ,  I913, pp. 6 - -  7. 

6 Math. Ann., Vol. IKLVI, I895, p. 493 ; Contributions, p. Io5. On p. 2o5 of t he  Contributions, 
I wrong ly  assumed t h a t  Cantor ,  l ike RUSSELL (The l~rinciples o f  Mathematics, Cambr idge ,  I9o3, 
pp. I22--I23) se lec ted  each t a rb i t ra r i ly .  

Aata mathematlea. 43. Imprim6 le 29 mars 1921. 31 
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taken away a finite number (t~,t 2 . . . . .  t~-1) of T,  the always remains the 
possibility of taking away a further member t~. From this the question arises 
as to whether we can give such a rule, whatever our T may be; but, if we accept 
as an axiom that we can always do so, Cantor's proof is perfectly valid. It 

must  be noticed that in many other cases the process of arbitrary selection of 
an infinity of members was carefully avoided by Cantor. Thus, hedefi ned the 
multiplication of two cardinal numbers 1, and, although the extension of this 
definition to a transfinite number of cardinal numbers immediately suggests itself 
and leads, if the possibility of an infinity of arbitrary selections is admitted, to 
a definition of the exponentiation of a cardinal number by a transfinite cardinal 
number, yet, he preferred to give ~ an independent definition of the latter process 
which is not at first sight connected with the definition of multiplication appar- 
ently because the independent definition could be formulated without any use 
being made of an infinity of arbitrary selections. Where Cantor did  use the 
principle of arbitrary selection was in a case in which that use was so little 
apparent that it was only discovered long afterwards, s Still the principle of 
selection was used both explicitly and implieity by many other mathematicians, 

and sometimes in work of which Cantor expressed approval. ~ 
But Cantor explicitly accepted as an axiom this principle of selection in the 

problem of well-ordering any given aggregate M. The proof of this well-ordering 

seems to have been completed about 1895, and, though not printed, was commu- 

i Math. Ann., Vol. XLVI ,  1895 , p. 485; Contributions, p. 92. 
Math. Ann., Vol. XLVI ,  1895 , p. 487; Conb'ibutions, p. 95. SC~OE~FI, IES drew at tent ion  to 

the  fact, which  must  have been the one that  led CA~TOR to his definit ion,  that  mul t ip l icat ion 
could be defined for an infini ty of cardinal numbers.  The  idea was  worked out in the symbols  
of ~mathematical  logic~ by A. iN. WaITz~z,~ (Amer. Journ. of Math., Vol. X X I V ,  19o2, pp. 
383--385), who did not  however  ment ion  that  the essent ia l  idea is due to SCHOE,\'FLIES; al though 
e l s e w h e r e  (ibid. p. 367) he ment ioned  Schoenfiies 's book. The fact of an ax iom being  required 
here  and in many other  cases was  cer ta inly not  noticed by e i ther  W h i t e h e a d  or Russell  before  
I9o3 (cf. ibid., pp. 368, 380; RUSSELL, 019. elf., pp. 122--123; and my paper  in Quart. Journ. Math., 
I9O7, p. 364), and was  not  pointed out by them in pr int  unti l  af ter  Zermelo 's  discovery  was  
genera l ly  known. In  many cases  it  was Zermelo or others  who also were not  *mathemat ica l  
logicians), who first pointed out tha t  the principle of arbitrary selection is tac i t ly  used in much 
mathemat ica l  reasoning (cf. Math. Ann., Vol. L I X ,  19o4, p. f i6 ;  u  LXV,  I9O8, pp. I13--xI5 ). 
F rom th i s  and from the historical  remark in my above-cited paper (pp. 36o--366), i t  must,  I 
think,  be concluded that  ~mathematical  logic~ has not  been of help  in perce iv ing  the logical diffi- 
culties that  bese t  an infinite series of arbi t rary choices. I t  has not  been of any help in solving 
these  difficulties. 

* Cf. Contributions, p, 2o5. The first to publish a remark that  the principle  of se lect ion 
was  used in this  place seems to have  been Zerme]o (Math. Ann., Vol. LXV,  I9o8, p. II4, f if th 
paragraph). 

4 Thus, in let ters to me he expressed approval of the method  of Hardy (19o3) re fer red  to 
below, and the discovery  (I9O4) of JuLius KOsm on the infinite products  of certain cardinal numbers  
- -  w h i c h  depends  on the  l eg i t imacy  of making an infini ty of arbitrary se lect ions .  
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nicated to HILBERT (1896) and DEDEKIND (I899). 1 If W is the system of all 

ordinal numbers, Cantor S considered it as evident  tha t  any given aggregate M 

either is equivalent to a part  of W or else tha t  M contains a par t  P equivalent 

to W. In the lat ter  case Cantor discovered the following contradiction: If fl is 

the ordinal type  of W arranged in order of magnitude, /~ is an ordinal number, 

and hence, since the type  of an aggregate with no last term is of higher rank 

than any term of the aggregate, ~ >/?. This last contradiction is closely allied 

to the well-known contradiction published by  BURALI-FORTI in 1897. 

In 19o3 HARDY published a construction, in the continuum of real numbers,  

of an aggregate of cardinal number El. In the introduction to his paper he 

advanced the argument that,  given any aggregate M whose cardinal number is 

greater than ~0, we can choose from it successively individuals corresponding to 

all the numbers of Cantor's first and second number-classes; if this process were 

to come to an end, the cardinal number  of M would be 80, so that  we must  

conclude that  its cardinal number, by  the ,equivalence theorem>> first proved by  

SCHR6DER and BERNSTEIN,  is equal to or greater than r162 Further ,  if it is 

greater than ~t, it is equal to or greater than S2, end so on; and if it is greater 

than ~ for all finite values of v, it must  be equal to or greater than No, for we 

can choose individuals from M corresponing to all the numbers of the first, se- 

cond, third . . . .  , v th . . . .  number-classes. And, by  a repetition of these two 

arguments,  we can shew that ,  if there is no Aleph equal to the cardinal number of 

M, the lat ter  cardinal number must  be at least equal to the cardinal number of the 

aggregate of all ordinal numbers - -  or of all Alephs, and so must be greater than 

any Aleph. This principle of selection was used in the construction given by  

:Hardy of a set of points of cardinal number ~t, but  it was not  very evident that  

it did so, since a method of proceeding for some way past  r was actually given. * 

I t  was the general argument of H a r d y  just  described, together with a dis- 

proof of RUSSELL'S statement,  in his book of 19o3, that  the series of all ordinal 

numbers  is not  well-ordered, that  prompted me, in i9o3 ~, to use Burali-Forti 's 

contradiction to prove that,  if an aggregate cannot be well-ordered, it must be 

1 Cantor  communicated  this  proof to me  on No~ember  4, 19o3 because I had previously  
communicated  to him (October  29, 19o3) an almost  ident ical  proof which  I had independen t ly  
discovered.  

In  his  le t ter  just  ment ioned,  Cantor wro te :  
*Nimmt man nun i rgend eino unendl iche  Vie lhe i t  V u n d  setzt  voraus, dass ihr  kein Aleph 

als Cardinalzahl  zukommt,  so betrachte  ich es mi t  I hnen  als e inluchtend,  dass in dieses V das 
System W hineinproj ic i r t  gedacht  werden  k a n n ; . . . 9  

a References  to this and some other  papers to be dealt  wi th  below are g iven in my 
above-cited paper of 19o7, pp. 363--36S. 

Cf. HoBso~. op. cir., pp. I9I--J94 , 207--208 , 21o--211. 
_Phil. Mag., January,  19o4, Series 6, Vol. VII, pp. 6 ~ 7 5 .  
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suscept ib le  of hav i ng  a con t rad ic t ion  p r o v e d  of it  if we a s sume  t h a t  i t  has  a 

card ina l  n u m b e r  or  ordinal  t ype .  I t  will be obse rved  t h a t  the  va l id i ty  of the  

process  of m ak i ng  an  inf ini te  series of a r b i t r a r y  select ions was  s imp ly  a s sumed  

b y  me in consequence  of H a r d y ' s  work ;  bu t ,  in c o m m o n  wi th  m o s t  o the r  m a t h e -  

mat ic ians ,  I was qu i te  unconsc ious  a t  t h a t  t ime  of the  f ac t  t h a t  a n y  u n p r o v e d  

a s s u m p t i o n  was  m a d e  b y  the  admiss ion  of the  pr inciple  of selection.  

The  c red i t  of be ing  the  f i rs t  to publ i sh  def in i te ly  the  wiew t h a t  a pos tu -  

l a t e  is i n v o l v e d  in the  t h e o r e m  t h a t  a n y  aggrega te  can be wel l -ordered  is due  

to  Z~R~ELO (r9o4) some m o n t h s  a f t e r  m y  own p a p e r  jus t  men t ioned .  Ze rme lo ' s  

ob jec t  was  t he  fo rmula t ion  of the  a x i o m  used  when  an  infini te  series of select ions 

is m a d e :  mine  was to  solve a d i f f icul ty  which arises when  Zermelo ' s  d i f f icu l ty  

is ove rcome .  1 Zc rmelo  r e t u r n e d  to the  sub jec t  four  yea r s  a f t e rwards ,  gave  his 

p o s t u l a t e  the  fo rm of a >>principle of  selection>), and  emphas ized  his v iew t h a t  

th is  pr inc ip le  is the  on ly  one requ i red  in wel l-ordering an  aggrega te  a n d  was not  

t o u c h e d  on in m y  own a t t e m p t .  The  l a t t e r  con ten t ion  is qu i te  t rue ,  and ,  in 

the  p a p e r  t h a t  follows, I will g ive  a def in i te  rule  which  fulfils the  pu rpose  of 

the  a x i o m a t i c  pr inciple  of Zermelo,  b u t  f rom which it  a p p e a r s  t h a t  the  ear l ier  

a r g u m e n t  b r o u g h t  f o r w a r d  b y  Can to r  and  myse l f  does real ly,  in spi te  of decep t ive  

a p p e a r a n c e s ,  en t e r  essent ia l ly  in to  the  p roof  t h a t  the  rule  is necessa ry  and  

suf f icent  for  the  pu rpos e  of weU-ordering.  

I I .  

I n  LEBESGUE'S u p roof  of the  t heo rem in which BOREL general ized a p rocess  

used  b y  HEINE, the  pr inciple  of a r b i t r a r y  select ion is not  used, whereas  it  was 

used  in some proofs  given b y  Bore l  and  severa l  o the r  m a t h e m a t i c i a n s .  In  fac t ,  

1 Various aspects of this difference have been recognised by Hobson (Prec. Zond. Math. 
Soc. (2), Vet. III ,  I9o5, pp. :7:, :84--:8% and op. cir., pp. I9i, 2o8--2io) and Russell (Prec. Lend. 
Math. Soc. (2), Vol. IV, :9o6, p. 29). However it appears from w X that the two difficulties cannot 
be separated so much as Russell thought, while Russell (loc. cit., pp. 34--35, 43--44) failed to grasp 
that then my theory was that there is a class of ordinal numbers, but the series of all ordinal 
numbers has no type and no associated cardinal number (cf. my remark in ibid., p. 282). In 
consequence of w IX below, it is necessary to admit that there is no such thing as a class of 
all ordinal numbers; and another point which my theory has led to be modified is due to the 
fact that there is a mistake in ibid., pp: 27:--272. I t  seems impossible to avoid the theory that 
there are ordinal numbers beyond those indicated by Cantor, and from which . This theory 
has the avantage over the theory (held since 19oi) of Russell, that it includes much more of 
the theory of the transfinite; while Russell's very limited theory does not exlude false appear- 
ances of classes at all more effectively than my present theory. 

Lemons sur l'intdgration et la recherche dea fonctions primitives, Paris, 19o4, pp. :o4--Io5; 
el. HxaDY, Cource o f  ~Pure Mathematics, Second ed., Cambridge, 1914 , pp. i86--:38; and SCHOOl" 
fLIES, op. cir. :900, pp. i:--~-, Part II,  Leipzig, I9o8 , pp. 76--80, and oar. c/t., :913, pp. :34--252. 
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the theorem, for the linear continuum of real numbers, is tha t  an infinity of 

given intervals for which every point of the continuum is in the interior of at  

least one of these given intervals may be replaced by  a finite set of such inter- 

vals, without the property ceasing to hold that  every point  of the  continuum 

is in the interior of at  least one of these intervals; and, if we wish actually to 

select the sought finite set of intervals in the case where each one of the infin- 

i ty  of intervals given in the theorem has no first or last or other particul- 

arized member, there seems to be no alternative bu t  to use the principle of arbi- 

t ra ry  selection. In the theorem on uniform continuity proved by Heine after 

Cantor, in which a case of the theorem was first used, the principle was not  

required, since the intervals had ends; but,  in the first proof of Bore], an ar- 

b i t rary  selection was made at  each of an infinity of steps. 

Lebesgue proved that,  if the right-hand end (b) of the continuum of (a . . .b)  

of real numbers which is to be covered by some finite set chosen out  of the 

infinity of intervals given in the theorem is not  reached by  some finite selection 

made out  of the lat ter  set of intervals, there must be a point x to the left of 

b which is either the last point that  we can ever reach from a or the first point  

tha t  we cannot  reach when all possible finite selections are considered. Then 

at  once results the inconsistency of the existence of such a point x with the 

conditions that  the set of intervals in the theorem is required to fulfil. Hence 

b must  be reached by some finite set selected out of these intervals. 

The use of an argument like this, when we replace the continuous series 
(a . . .b)  by  a series (S) of ordinal numbers in order of magnitude and deduce 

conclusions about  the least ordinal number which is not reached by  the various 

segments of S such that  each of them images, in a one-one correspondence, some 

par t  of a given aggregate M, must have suggested itself to many as possibly 

leading to a means of well-ordering M;  but  such an analogous argument resting 

on all the possible well-orderable parts of M were first published by  HARTOOS. 1 

However, Hartogs did not  refer in any way to Lebesgue. Hartogs 's  chief re- 

sult is the proof, which does not depend on Zcrmelo's principle, that,  for any 

aggregate M, there is a well-ordered aggregate whose cardinal number is neither 

less than nor equal to tha t  of M. Thus, from Hartogs's  theorem results that,  

if all aggregates are comparable, any aggregate can be well-ordered. This co- 

rollary, however, has long been known *, and was proved, though not in these 

words and not in a forcible way, by  Cantor as early as I883. I t  is the result 

' >,•ber das Problem der Wohlordnung), Math. Ann., Vol. LXXVI,  I915, pp. 438--443. 
Cf. my paper of I9o 7 cited above, p. 366. 
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spoken of just before tha t  is the truly interesting part  of Hartogs's  paper. ~ 

To obtain this result, Hartogs's process can be greatly simplified by introducing 

the consideration of ordinal types and the concept of a ~)chaim> which we will 

now proceed to explain. 

III .  

Consider all those parts of a non-null aggregate M which can be well- 

ordered, and suppose these parts to be well-ordered in all possible ways. We will 

call a part  of M which is well-ordered in ordinal type 7 an *M chain of type 7~, 

provided tha t  the same part  in different orders - -  even though the part  in all 

these orders may be of the same ordinal type - -  forms different ,>ehains~). ~ 

Of course we do not a s s u m e  tha t  one of the M-chains exhausts M, or, for 

example, M lacking some one member: this is what we have to prove: all tha t  

is necessary for the validity of what follows is that :  'x is an M-chain' is not 

false for all x's; and this is evidently so if M has any members at all, for we 

can then select arbitrari ly M-chains of, say, one member. 

A chain P is said to be a ~>segment, of a chain Q if P is identical with 

the chain whose members precede some member of Q. In this case, we will 

also say tha t  Q ~>continues*> or ~>is a continuation of,> P. 

The concept of ,chain~ allows us to state more shortly than usual an ap- 

parent  difference that  we meet when we consider various aggregates with a view 

to well-ordering. In the first place, it seems, at  first sight, evident that ,  if 

chains respectively of all types less than to can be found among the M-chains 

there is an M-chain of type to. This has been admitted,  for example, by DrDv.- 

I t  must  be men t ioned  that ,  as is shown below in w X, th is  result  depends  on an axiom 
formula ted  by Zermelo in I9o8 , which  is o the r  than  the  pr inciple  of select ion and which can 
be proved  by using - -  &, it seems,  only by using - -  the  pr inc ip le  of selection or my rule 
g iven below. 

2 We may define a ~chain, ,  in a way wh ich  is, perhaps ,  p referab le  from a logical point  
of view, as follows. An ,M-chain,~ is a class of couples (m, a), whe re  m is a memb er  of M a n d  
a is an ordinal  number ,  and the  couples are such tha t  in each chain no m or a occurs more  
than  once, and, if a occurs, all ordinals  less than  a occur also. We will suppose tha t  th is  chain  
is wel l -ordered by ar ranging the couples in the  order  of magni tude  of the  r igh t -hand m e m b e r s  
(a). We say tha t  a chain ,exhausts~ M if the  class of lef t -hand memb er s  (m) of the  couples of 
the  chain consists  of all the  m e m b e r s  of M. This  new defini t ion of the  word , e x h a u s t s ,  ob- 
viously conforms closely to the  usual sense  if an ~M-chain~ is, as in the  text,  a par t  of M. 
I t  may also be men t ioned  tha t ,  in the  sense of th is  note, an ,3[-chain~ is a one-valued func- 
tion where  the  a rgument  consists  of ordinal  numbers .  Such funct ions  are considered by OSWALD 
VEBLZ~ ( ,Cont inuous  Increas ing  Func t ions  of F in i te  and Transf ini te  Ordinals , ,  Trans. Amcr. 
Math. Soc., u IX,  I9o8, pp. 28o~292 ). 
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KIND, CA~TOR, WHITEHEAD (I902), and RUSSELL (I903). ~ However, it is now re- 

cognized tha t  an exact proof of this conclusion cannot be carried through except 

by using a form of Zermelo's principle of selection, or of what Russell and 

Whitehead called, from about i9o 4, , the multiplicative axiom,.  Indeed, White- 

head and Russell (i912)-" carefully distinguished ~)induetivea from ~)non-reflexive~) 

numbers, and contemplated the existence of numbers which are both non-induc- 

tive and non-reflexive. But  there seems to be no instance tha t  we can construct 

tha t  shows the falsity of the above conclusion. On the other hand 3 it is pos- 

sible to show that  chains respectively of all types less than col, may be found 

among the chains of an aggregate of cardinal number ~0, although there is cer- 

tainly no single chain of type ~o, which can be extracted from that  aggregate. 

Thus, it would appear tha t  it is sometimes true and sometimes false tha t  ~ if there 

are M-chains respectively of all types less than 7, there is an M-chain of type 7. 

We have assumed tha t  M is not null, that  is to say, that  it  has at  least 

one member. Thus the class of M-chains has at  least one member. If, then, 

we split this class into sub-classes such as K ~ , -  which class consists of all 

those and only those chains which are of type ~, - -  we may conclude, tha t  K,  

is not null, but we do not assume, in general, tha t  any other of these K's 

has members. But  it is to be noticed that,  if Kr has members, every K2, where 

i<__~<7, has members. ]f, for example, M is of cardinal number ~0, there are 

such subclasses I~  for all values of ~ such tha t  I<~<~o~,  and we know on 

other grounds tha t  this is so only for such K's.  
For a given M a particular Kr either has or has not members; we may not 

be able to find out which of these two propositions is true, but, for the purpo- 

ses of our theorem, this is immaterial: the question is logically determinate and 

we merely have to prove tha t  the class of members of all the K's can be rear- 

ranged as indicated below. I t  is essential to realize tha t  we neither assume 

tha t  the suffix of one of the K's is transfinite, nor tha t  it is not the case that ,  

however great the transfinite ordinal number ~ may be, there is an M-chain of 

type ~. Both these propositions will be deduced from the construction given 

of chains which exhaust M. 
A given M determines uniquely a series of classes K2 belonging to it. If 

this series is arranged in the order of magnitude of the suffixes ~, either 

8e w I above. 
larincilaia Mathematica, Vol. II, Cambridge I912, pp. 3, I87--I9~ 2~176 278--288" Cf. 

w VI below. 
8 In this paper, is the first number of the (2 + ) theory of ~number-classes* of Cantor. 

The problem indicated here is completely solved in w XIV below. 
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there is a last term of the series or there is not. If there is, let it be Kx; 

then any member (say k~.) of Kx exhausts M. For if not, there would be 

a member (m) of M which is not a member of K~., and K~. followed by m would 

be an M-chain of type it § I, whereas we have supposed tha t  there are no M- 

chains of type ~ + I. Further,  if there are M-chains of type it but none of type 

it § I, it is evident that  it is finite. Thus, if there is a last term K~, M is finite. 

In this case, a well-ordering of M is brought about by any member of K;. 

Thus, the only case which presents difficulties is that  in which there is no 

last term in the above series of K's. We shall, then, always assume in future 

tha t  this is so. 

IV. 

Now Hartogs's chief result may be stated, with the help of the concepts 

defined in w  as follows: Assuming that  M is not null and tha t  all the K's 

together form an aggregate which is of the kind that  does not give rise to diffi- 

culties 1, not only is there at least one K but also there is an upper limit to the 

suffixes of the K's; let ~ be this limit, then the cardinal number of M is not 

greater than tha t  of a well-ordered aggregate of type ~. Hartogs's other results 

follow obviously from this main result, and the conclusions of this main result 

follow obviously from --  above all - -  the second of the assumptions given above. 

I t  only remains to show tha t  this assumption is merely an equivalent form of 

some of the axioms formulated by Zermelo in i908 to avoid difficulties in the 

theory of aggregates and adopted by I-Iartogs ~ In fact, Hartogs's 3 aggregate 

L, which is the same thing as the well-ordered aggregate of all the K's, is to 

~exist~>, as Hartogs and others called a certain property ~ which holds in virtue 

of the axioms just mentioned, and this property would not  subsist if the second 

of the above assumptions did not hold and would subsist if the assumption were 

to hold. The interesting and important  part  of Hartogs's  paper thus seems to 

b8 the conclusion, which can easily be made by means of Zermelo's principle 

or the rule described below, but which is made by t tar togs without the use of 

any ,principle of selectiom), that  no M can be such that,  if ~ is all ordinal num- 

bers in turn, there arc M-chains of type ~. 

This  is mere ly  the  way of s t a t ing  the  ax ioms  re fe r red  to in  the  tes t  below, wh ich  exc lude  
such  aggregates  as W. 

Math. Ann., Vol. L X X V I ,  ~915, pp. 438--44o. 
8 Ibid., p. 42L 
4 I t  m i g h t  be  as well  to d i s t i ngu i sh  th i s  p roper ty  as , h a v i n g  being~ f rom ~existing* in 

t he  sense  of h a v i n g  a t  least  one member .  Thus,  t he  null-class will no t  ,exis t~  bu t  will ~have 
be ing , .  
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V. 

But  examination of the classes K soon showed me that  we can without  
difficulty go far beyond what  Hartogs proved. 

Hartogs 's  process enables us to obtain certain information about  the class 

of all M-chains, but  not as to whether or no any of these chains exhausts M. 

In at tempting to satisfy the need thus indicated, the difficulty before us is tha t  

any  given M-chain of type  7 is continued by  many others of type  7 + i, so that  

apparent ly  we must select one of these at each stage of an a t tempted  construc- 

tion of a chain to exhaust  M. But  the method at once suggested itself to me, 

that,  where there are many continuations of type  ~:+I  to a chain of type ~,, we 

should assign a repetition of this chain of type  r to each of the chains men- 

tioned of type  7 + I .  

We would start  from K~, and, where x takes the values respectively of all 

the members of Kt, would assign repetitions of x to each of those members of 

K2 which continues x, and would, in general, where z takes the values respect- 

ively of all the members of Kr, assign (I) repetitions of z to each of those mem- 

bers of Kr+l which continues z, and also (II) all those M-chains which have 

been, by  this rule, from 7 =  2 onwards, previously assigned to K r. Obviously, 

all the members of K~, where ~ < 7 + I ,  are thus transferred so as to form, with 

their repetitions, classes such that  each one contains chains of all types  from x 

to 7 where each member continues all those members of the same class which 

are less in type. The series of K's to which this rule applies is of type  co at  

least, for tha t  series where the suffixes are all the finite ordinal numbers in 

turn is of this type. Further ,  we easily see that,  if ~ has no immediate prede- 

cessor and we have a class of chains such that  each chain continues all those 

of lower types and the chains are respectively of all types  less than 7, we can 

extract  without  a ,principle of selection>> from the members of these chains a 

chain of type  7. The series made up in turn of the lowest member of each 

continuation which is not a member of the chains continued is such a chain. 

In this way we can find chains of greater and greater ordinal types:  some one 

of these must  exhaust M, for otherwise, as we shall see in detail below, M would 

contain an aggregate equivalent to the aggregate of all ordinal numbers.  

These chains are, then, determined mediately, through certain classes of 

chains, and not immediately, as they are by Zermelo's  principle of selection. 

Suppose, for example, that  7 is any finite ordinal number, the a b o v e  rule 

of assigning a repetition of a chain of type  ), to each of its continuations of 

type  ~ ,+ i  constitutes in combination with the further specification (II} above, 

a general rule for constructing without  any arbitrariness several classes of M- 
~4r mathematica. 43. Imprimd le 29 m~trs 1921. ~ 
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chains such tha t  the members of each class are respectively of all types less 

than ~, and it is particularly to be noted tha t  each such class defines an M- 

chain of type ~ as the unique chain of which all the segments together make 

up all the members of the class. Notice that ,  if we are merely given that  M 

contains chains which are respectively of all types less than oJ, but, if x and y 

are M-chains and the type of x is greater than tha t  of y, then y is not neces- 

sarily a segment of x, then apparently we need Zermelo's principle of selection 

to conclude, from the fact tha t  there are M-chains respectively of all types less 

than ~, tha t  there is at  least one M-chain of type w. In general, where M is 

any aggregate, we will call a class of M-chains a ,class of direct continuations,  

or, more shortly, a ,K-class, ,  when the class of M-chains is such that ,  if 

z and y are any members of the class and the type of x is greater than tha t  

of y, then y is a segment of x. 

We can prove, then, that  there is an M-chain of type co provided tha t  we 

are given tha t  there are M-chains of all finite types. Of course this determina- 

tion of a chain of type oJ is a theoretical determination exclusively; we are not 

concerned here with the actual construction, but only with the proof tha t  this 

construction is logically determinate. 

In what follows, the class - -  which can be proved, in all the cases which 

interest us, to contain members - -  of all M-chains will be rearranged by the 

above rule, which will be stated below with the utmost  precision, so as to form 

several K-classes. Of K-classes, as we must remember, we have the theorem 

that ,  if 7 is an ordinal number with no immediate predecessor and if the chains 

which are members of a K-class are respectively of all the types less than 7, 

it  follows, without the aid of any ,principle of selection,, that  there is an M- 

chain of type 7. Each K-class mentioned above is proved to contain at  least 

one member, and the rule arranges that ,  if all the chains of types less than 7 

are distributed amongst these K-classes, the chains of type 7, and there are 

always such chains (w167 III,  V-VII) unless M is f i n i t e -  are also distributed 

amongst these K's  in a completely non-arbitrary way. 

If M is of cardinal number 80, it  is not exhausted by chains whose types 

do not belong to Cantor's second number-class, and, for any  number of the 

second class, there is a chain which exhausts M; secondly, the least ordinal 

number tha t  is greater than the types of all these chains is ~,; thirdly, every 

chain of type belonging to the first number-class, and some chains of higher 

types, are segments of some of the chains of types belonging to the second 

number-class; fourthly, each chain which exhausts M is not a segment of a chain 

of any other type. We shall find tha t  there are analogies with all M's. 
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VI. 

We will now collect together some facts which seem to need continual 

emphasis, modify slightly our definition of ,K-classes~>, and give an explana- 

tion of the notations which wilI be found convenient to use. 

If the class of M-chains contains chains respectively of all types less than 7, 

we cannot, in general, conclude that  it contains M-chains of type 7. For example, 

the principle of the validity of an infinity of acts of arbi trary choice formulated 

by  Zermelo has hitherto seemed to be necessary to conclude 1, from the premiss 

tha t  an aggregate has chains respectively of all types definable by ~mathematical 

induction, ,  that  the aggregate has a chain of type  co; and even the admission 

of this principle does not  allow us to conclude, from the fact tha t  an aggregate 

of cardinal number  ~0 has chains respectively of all types  less than eel, the 

demonstrably false result tha t  this aggregate has a chain of type  w2. But~ if a 

class of M-chains is such that,  if x and y are any members of this class and 

the type  of x is greater than that  of y, then y is a segment of x; then, provided 

that  7 is an ordinal number with no immediate predecessor, we can obviously 

conclude, from the premiss that  the chains which are members of the class are 

respectively of all the types less than 7, that  there is an M-chain of type  7. 

For, in this case, all the chains of types less than 7 build up, when they are 

put  together in such a way  that  the identical parts  of any two chains coincide, 

a single chain of type  7. We will express the fact that  a class of M-chains is 

of the nature just  considered, bu t  where 7 need not  necessarily lack an immediate 

predecessor, by  saying that  it is a ,K-class,  of M-chains. If  a K-class (b) 

contains a chain (K) of maximum type,  this K, we will say, ~defines and is 

defined by ,  b; for the members of k are the segments of K and vice versa. If, 

on the other hand, k has not  a member of maximum type,  the chain K such 

that  all the members of ~ are segments of it and all the segments of K are 

members of b will be a ~ chain ~defining and defined by~ b. Thus, if, and only 

if, k contains no chain of maximum type, no individual member of k is identical 

with K. As an example, let 

(al; aL, a~; al ,  a2, a~; . . . )  

denote a K-class, the chains constructed with members a of M being of all types 

1 Zermelo has concluded in this way in his paper ~Sur les ensembles finis et le principe 
de l 'induction compl~te~, Acta Math., Vol. XXXII ,  I9o 9, pp. ~85--I93. 

This K, it must be noted, also defines the K-class of which it is the member with the 
greatest type. Thus, if the type (ordinal number) of K has no immediate predecessor, we must 
be careful to specify which one is meant of the two K-classes which correspond to K. 
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less than ~; the class then defines (if we take the nth member of the nth chain 

in the above order) ~ the chain 

al, a2, at,  ..., 

and this last chain defines the former class as the class of its segments. 

We will always reserve the letter , k ,  to denote a K-class, and ~K, to 

denote the chain defined by or ,corresponding to,  k. Also ~k', and , K ' ,  will 

be used to denote respectively another K-class and its corresponding chain. 

VII. 

The rule indicated in w V is defined formally by induction, and this defini- 

tion is here, for ease of apprehension divided into four parts, the last of which 

is subdivided into two parts. But  it is to be remembered tha t  the rule is to be 

regarded as one whole; so tha t  the results obtained at  some stage of the rule are 

not necessarily the final results. 

I. The class K~ defines uniquely a set of K-classes such that  each of these 

K-classes contains one and only one member of K~, and all of these members 

taken together make up K~. In the other parts of this rule, other K-classes 

will be substituted for the K-classes just defined, yet  other K-classes substituted, 

and so on. This will be done by processes which may be called ,assignment* 

and ,replacement, .  If we have a K-class (k') containing one or more members 

and an M-chain (K") which continues all the members of k r, the result of assig- 

ning K rr to k r is the K-class whose members are the members of k r together 

with K ' .  The new K-class, in which are preserved all the members of k r, then 

replaces k ~. The rule will give a method of making, in a perfectly determinate 

manner, a transfinite sequence of such assignments and replacements such tha t  

the whole class of M-chains is rearranged in a set of K-classes. Each M-chain 

will be, by the rule, repeated so as to form a definite set of copies, and each 

o n e  of these copies is contained in one of these last K-classes. 

2. Since the class K~ has members, distribute them all in the following 

manner. Where k, is in turn all the K-classes constructed in (I), with/r which 

contains only one member (K~), put, for the moment, the cIass Kr2 of all those 

chains of type 2 which continue K1. This process is of course logically deter- 

minate and therefore involves no arbi trary selection. Then replace the complex 

(k 1, Kr2) by complexes such as (kl, x), where x is in turn all the members of 

Kr2, and in each of those latter complexes ,assign, x to k.,; so tha t  we thus 

i Of course the members o~ a K-class have no intrinsic order of their own. 
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obtain, instead of the k~'s, several K-classes of which each contains a repetition 

of K~ and one of the members of K'~: these last K-classes are to contain between 

them all the members of K'~, and each of them is to contain a chain identical 

with K, .  Note  that  our reasoning does not depend on any particular selection 

of x: for x is merely what  PsA~o called an ,>apparent variable,  in the definition 

of K-classes with two members. All the members of K1 and K2 are arranged 

as members of the k~'s; indeed, each member of b~ is repeated in order to construct  

k2's, and, since we have replaced all the K-classes constructed in (I), - -  which 

have bu t  one member each, - -  by  K-classes which contain repetitions of these 

members of type I and also members of type  2, we have left over no K-classes 

with only one member. 

3. The class Ks has members. Where kz is, in turn, all the K-classes con- 

s t ructed in (2), with k~ put,  for the moment,  the class Kf~ of ~ll those M-chains 

of type  3 which continue the chains in b~. Then replace the complex (k2, K's) 

after  ,assignment,  of the same nature as that  described in (2), by  several K-clas- 

ses of which each contains the members of k2 and one of the members of K'~: 

these classes are to contain between them all the members of K'~, and each of 

them is to contain chains identical with those in k2. Thus, all the members of 

K~, K2, and K~ are arranged as members of K-classes of these members, and 

there now remains no K-classes containing one or only two members. 

4. We will now describe in general how, if all the K's of respectively all 

the suffixes less than 7 have been arranged by  a definite process in K-classes, 

such that  each K-class contains one member out  of each K~ where ~ <  7, the 

class K r, which we will prove always to have members under this hypothesis, 

- -  which is fulfilled except in some cases where an M-chain of type  less than 7 

exhausts M, - -  can be rearranged by  a definite process which is such that  the 

arrangement for those K~'s where ~ < 7 is unaltered ~, so as to assign one member 

to each of the K-classes formed by  repeating the above ones in a definite set. 

We have given a definite process for the cases 7 ~ I ,  7 ~ 2, and 7 ~ 3; a process 

will be defined successively for 7 ~ 4, 5 . . . . .  and indeed for all ordinal numbers 

7 in which either (a) 7 has an immediate predecessor, or (b) 7 has not an imme- 

diate predecessor. 
Let  us consider these cases (a) and (b) separately. 
(a) Suppose tha t  those K's whose suffixes are respectively all the ordinal 

numbers less than 7, where 7 has an immediate predecessor 7 - - I ,  have been 

rearranged in one definite way so as to form K-classes ~nd that  each one con- 

' Note  that  th i s  condit ion is not  fu l f i l l ed  for a ser ies  of  type  of  cha ins  of an enumerable  
aggregate,  
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rains chains of respectively all types less than 7- Obviously, since M is not  

finite, K~ has members. Where kr-1 is, in turn, all of the K-classes just men- 
tioned, put, for the moment, with k:.-1 the class Kry of all those M-chains of 

type 7 which continue all the chains in k~.-1. This process involves no arbi t rary  
selection of members. Then, by ,assignment,  and ~replaeement,,  replace the 
complex (k:,-1, Krr) by several K-classes of which each one contains repetitions 

of all the members of kr-1 and one of the members of KPr, these K-classes are 

to contain between them all the members of K~r. There is, as before, no arbitrary 
selection used to define these K-classes. We thus obtain from the kr_l's and 
Kr, by a process definite throughout  a set of K-classes each of which (kr)defines 

and is defined by a chain of type 7. All the members of all the K's of suffixes 

up to and including 7 are arranged as members of these kr's, so that  we have 
no K-classes containing only a finite number of chains ~ less than y; and we can 
dispel any doubt as to whether in the replacement of the complexes just referred 

to, some M-chains may have been passed over. In fact, all M-chains of type y 
are contained in Kr and all the members of K:,, and consequently of Kr where 

( 7 ,  are evidently arranged in one or other of the kT's just coustrueted. 
(b) There only remains the case of 7 having no immediate predecessor. 

In  this case, since the K's of respectively all suffixes less than ~ are rearranged, 
by hypothesis, in K-classes such that  each K-class contains one member from 
each Kr where ~ < y, then each of these classes defines, in a manner,  which does 

not  depend on any ,principle of seleetion~, a chain of type y. For example ~, 

a K-class in which the members are respectively of all types less than w, and 

which may consequently be represented by 

(a~; a~, a~; a~, a2, a3 ; . . . ;  ax, %, a~ . . . . .  ; . . . ) ,  

where it must  be remembered tha t  the continuations a~; a~, a;; aj, a2, a~ ; . . ,  do 
not appear in any special order in the class, determines uniquely the chain 

a l ,  a~,  a3 ,  . . . ,  a 7 . . .  

of type  ~, which is such tha t  the above K-class consists of all segments of this 

chain of type ca and of no other  members. 
We conclude, then, that,  if 7 has not  an immediate predecessor, and each 

of the above K-classes contains one member from each K~ where ~ ( y ,  there is 

x I f  r is tra~finite and  has  an  i m m e d i a t e  predecessor ,  i t  may  be t h a t  t he re  a re  c h a i n s  
of type  r - - I  t h a t  e x h a u s t  M, and  t hus  c a n n o t  be  c o n t i n u e d  by any  M-chain.  See t h e  end  of 
n e x t  sect ion.  

Cf. 3w V and  V I  above.  
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a Kz. If  there is a K-class (k) which remains without  some chain of t ype  less 

than 7 when all the K~'s, where ~<  7, are rearranged, it can without  difficulty 

be seen tha t  the K corresponding to this k exhausts M. 

VIII .  

As we see in the case of the cardinal number of M being ~0 if a is any 

number  of Center 's second number-class, there is a chain of type a which 

exhausts M. Hence, when the above rtJle is applied to M, we must  arrive at  

a k whose K is this chain of type a. This/c cannot be added to, except possibly 

b y  K, at  any subsequent  stage of the rule ~, and so, although the rule is not  

completed at  the stage a, b is one of those K-classes that  are constructed by  

the complete rule. 

The complete process just  defined by  an induction which is transfinite if 

whether we are supposed to know it or not  - -  the series of K's is transfinite 

and of type greater than w, thus defines a set of K-classes of which each one 

contains a single member from each K unless some one of these k's defines a 

K which exhausts M, though some suffixes of the K's may exceed the type  of 

K. Every chain is accounted for among these K-classes; in the words, if K is 

the chain defined by  any one (it) of these K-classes, all these chains K are such 

tha t  any M-chain is either one of these K 's  or a segment of one of them. 

Let  us say that  the K's to which the rule of w VII  is applicable are ~capable 

of a ~-arrangement,  to show now that  every M-chain is arranged by the above 

rule in at  least one of these b's. Consider what  would happen if there were 

M-chains which were not thus arranged. Let  K~ be the K of least suffix which 

has members not  so arranged; then K~ combined with those K~'s for which ~ < 7 

would not be capable of our ~-arrangement, - -  and this is impossible by  the rule. 

If  we were to suppose that  an aggregate M could have chains whose types  

are respectively all the ordinal numbers, we can conclude by the above rule s , 

tha t  all the complete /o's define K's whose types  fulfil its impossible condition. 

This we shall do in the next section. 

IX. 

I t  might be argued that,  given any ordinal number  ~, however great, there 

might always be _~/-chains whose types  are ~, because this does not imply that  

M has a chain of ~the type  of all ordinal numbers in order of magnitude, ,  

In  fact, if M.chains other than 1~ could continue as segment all the members of k, /~ 
would not exhaust M. 

And also, rather more simply, by the argument of w 



256 Philip E. B. Jourdain. 

which would give rise to the contradiction discussed below, - -  any more than 

the supposition that  M has chains whose types are greater than any given num- 

ber (a) of Cantor's second number-class implies that  ~1 has a chain of the type  

(w~} of this number-class arranged so that  the numbers are in the order of their 

magnitude. But,  in the case of the ~'s, if we choose a number we for ~, we know 

that,  since the eardina! number ~o belongs to ~o, there must be a series of type  

We in every one of the chains defined by a K-class determined by  the complete 

rule. For, if not, at  least one of the chains last spoken of, does not contain a 

series of type  We and is therefore of cardinal number less than ~0, and yet  would 

exhaust  M. For if it did not  exhaust  M, there would be a t  least one member 

(m) of M which would not be a member of the chain mentioned, whose type, 

we will suppose, is r But  then we could construct, from this chain and m, a 

chain of type  Q + I ,  and this latter chain of type Q + I  would be assigned 

by  the above rule to the class determining this chain of type  ~. Hence each 

chain determined by the K-classes found by  the complete rule has segment where 

types  are respectively all the ordinal numbers ~. We will now show that it is 

impossible that,  however great the ordinal number ~ may be, the chain defined 

by  a complete K-class is always such that  it has a segment of type  ~. Indeed, 

a chain such that,  however great ~ may be, it always has a segment of type ~, 

must  be of the type  (~) of , the  series of all ordinal numbers , .  Now, we can 

prove that  this series is well-ordered, for any par t  (P) of it which has any terms 

at all - -  say p - -  has a first term - -  namely the first term of the well-ordered series 

formed by  p and those terms of P which precede p. Hence p~ is an ordinal 

number, and hence fl is both the ordinal number of a series and a term of the 

series, so that  /~ :>/~. This implies, of course, that  the series of all ordinal num- 

bers is ordinally similar to a segment of itself, and thus that  the series is not  

well-ordered; and therefore that  there is no such thing as what  we meant  to de- 

note by  the phrase , the series of all ordinal numbers, ,  which would thus be both 

well-ordered and not well-ordered. But  at  present we only need the proof tha t  

it is impossible that  a complete chain should have segments of all types. 

I t  must be noted that  the proof given in the last paragraph holds, not  for 

any  class, but  only for a K-class. 

I t  is only for a K-class tha t  we can thus immediately conclude that,  if, 

whatever  ~ is a chain of the class is of type  ~, then there would be a member 

of the type  of , the  series of all ordinal numbers , ;  just as, without  using the 

theorem on well-ordering or an application of Zermelo's principle, we cannot  

conclude, from the fact that  a class has chains of all finite types, that  it has a 

chain of type  ~,  unless it is a K-class. However,  we have shown, in the first 
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paragraph of this section, that  the apparently wider proposition is implied by 
the apparently less general proposition just proved. 

X~ 

The theorem with which this paper is concerned seems to me unavoidably 
to depend on this proposition about ~the type of the series of all ordinal num- 
bers,, given b y  me 1, and which was stated by Russell s - -  apparently on no 

grounds save the occasionally delusive ones of mere a p p e a r a n c e -  to have a 

purpose quite different from that  of Zermelo's principle. Indeed, Cantor, in 
his unpublished proof of about I895 tha t  any aggregate can be well-ordered, - -  
which I rediscovered independently in i9o33, - -  depens essentially on the propo- 

sition referred to. The merit  of the proceeding seems to be that  we can, by  
proving that,  for a given M, there is an upper limit for the suffixes of the K's, 

find the relation between the suffix of the Aleph belonging to M and that  of the 
ordinal number expressing ,Hartogs 's  limit~ (el. w167 II, IV, VI, XII),  and also 

avoid yet  another  axiom introduced by ZER~ELO ~ aud adopted by practically 
all German mathematicians 5 and some others. 

XI. 

We have then shown that  there is, for any M,  a smaller ordinal number ~, 
which is of course a function of M, such that  there is no K of suffix equal to 
or greater  than ~, but  that  there are K's whose suffixes are respectively any  
ordinal numbers less than ~. We assume (cf. w VIII) tha t  none of these latter 

K's contain members which exhaust M; then the complete "rule given above en- 

ables us to construct several K-classes each of which contains one chain from 
each K. Since then, ~ has no immediate predecessor, each of these K-classes 
defines a chain of type ~. I t  is quite essential to realize that ,  as is shown in 

w167 V and VI, we can conclude in this way for K-classes only, and that  the rule 
reduces the class of M-chains to a set of K-classes. Since, however, there are 
no M-chains of type ~, o u r  hypothesis that  none of the K's has a member that  

exhausts M must  be false. Hence, if ~ is the upper limit of the sufixes of the 
K's, there is a chain of type less than ~ which exhausts M. 

1 -Phil. Meg., January, 19o4. See w I. 
-Prec. Lend. l'~lath. See. (2), Vol. IV, I9o6 , p. 29. 
It  is important that Cantor seems to have been conscious that he assumed as axiomatic 

the principle of selection. I did not recognise that I had made any assumption until long 
afterwards (cf. Math. Ann., Vol. LX, I9o L p. 68). 

4 Math. Ann., Vol. LXV, t9o8, p. 26i. 
Cf. ffourn, f f ir  Math., Vol. CXXXV, I9o % pp. 86--9o; Math. Ann., Vol. LXXVI,  IpxJ, 

pp. 438--4~9. 

Ac~a ma~hema~ica. 43. Imprkm6 le 6 mars 1922. 33 
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XII .  

We have, then, proved that ,  for any M which is not null, there is a class 

of non-null and complete K-classes such tha t  each of the latter classes defines 

and is defined by a chain that  both exhausts M and is of type less than some 

type ~, say. Of the ordinal, numbers greater than the type of this chain, there 

is one tha t  is the least; let it be denoted by ~r. This ordinal number ~ must 

have an immediate predecessor; for if it had not, the chain itself would be of 

type ~r, and so ~' would not be the least ordinal number that  is greater than the 

type of the chain. Hence ~' is of the form ~ ' +  i .  Now, ~" is the first number 

of one of Cantor's number-classes; for if there were numbers of the same num- 

ber-class which were less than the ordinal number just mentioned, this ordinal 

number would not be the least to which would belong chains which were no$ 

continued by other chains of M. We may thus denote ~" by oJz, so tha t  sz is 

the cardinal number of M. Consequently, the least ordinal number tha t  is greater 

than all the types of chains of M is ~z+~. ~ 

Since any aggregate M can thus be well-ordered, any part  of M, in the de- 

finite order chosen (say of type coD, has a lowest number which can be cor- 

related to the part  as the >~specialized, member; and thus Zermelo's principle 

can be proved. 

XIII .  

We may now sum up what has been proved. Let  M be my aggregate which 

we will assume to be neither null nor finite. Let  ~ be any ordinal number what- 

ever; the set of those classes of M-chains for which I < ~ < ~ ,  where it must  be 

noted tha t  we do not assume that  there is a K~, is said to be ~>eapable of a 

~-arrangement~> if there is a class of K-classes such that, if k is any member of 

t, either K exhausts M,  or k has one member from each of the above K~'s, or 

both. If then, K does not exhaust M,  it must be of type 7 - - z  or 7according 

as 7 has or has not an immediate predecessor. In the above rule, one definite 

process was given for putt ing all the K's belonging to M in a ~-arrangement, 

a n d  so the question as to whether one and the same set of K's has more than 

one possible ep-arrangement was not touched upon in the above proof. However, 

it may be seen without  difficulty that  a set of K~'s (~ < ~) can be ~0-arranged in 

i This is the type of that chain (Z) which may be said to ~limit* M (cf. w VII), and was 
founded by H~RTOGS (Math. Ar, n., Vol. LXXVI, p. 4--40) unnecessarily on a non-logical axiom. 
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one and only one way. The M-chains, then, can be so arranged, and w167 IX and X 

show that  there is an M-chain which exhaust  M .  

Our w XI I  then gives us the types of all the M-chains that  exhaust  M.  

XIV.  

In this section we return to the question as to the circumstances under 

which we may infer from the premiss that  there are M-chains respectively of all 

t y p e s  less than 7, that  there are M-chains of type  7. Some examples are given 

of various 7's for which the above inference holds or does not hold; and, finally, 

an exact determination, resting on the rule of w VII  or the principle of Zermelo 

which it establishes, of all the 7's without exception for which the inference holds. 

We can conclude generally from chains of types less than 7 if 7 is the upper 

limit of ordinal numbers such that  to each of them belongs a different cardinal 

number. Thus, if 7 is to, to each of the ordinal numbers less than to belongs a 

different cardinal number;  if 7 is to1, the cardinal numbers belonging to the ordinal 

numbers less than 7 form, in order of magnitude, a series of type to + I ,  of which 

7 cannot be the upper limit; if 7 is to~, where ~ is a finite ordinal number;  if 7 

is toz, besides being the upper limit of a series of type  to~, 7 is the upper limit 
of, for example, the series of type  to: 

t o ~  t o l ,  t o 2 , " ' - ,  t o ~ , . - " ,  

to which the series of type  to of different cardinal numbers: 

belongs. 1 

type to~. 

~o, ~l, ~ , - . ' ,  ~ , ' , - ' "  

If, then, M has chains of all the types  less than to~, it has one of 

If  7 is to~, 7 is the upper limit of series such as 

o r  

t o ,  ~ 1 ,  W 2 ,  �9 ~ " , t o v ~  �9 �9 - ~ t oCO,  �9 �9 �9 , t o R I + ' V ,  �9 �9 �9 , 

r  g t ~ ,  t o m + l ,  �9 �9 �9 , ~ m + ~ ,  �9 - �9 , 

I RUSSELL and  W H I T E H E A D ,  bas ing  t h e i r  a t t i t udes  on t h e i r  t heo ry  of ~logical types~, ho ld  
t h a t  t he re  is no reason  to t h i n k  t h a t  t h e r e  is a ser ies  of type  wee. But,  on  t he  one hand ,  t he  
e x t e n t  to w h i c h  Cantor ' s  o rd ina l  n u m b e r s  are p r e s e r v e d  in t h i s  t h e o r y  has  b e e n  s ta ted  differ-  
en t ly  at  d i f f e r en t  t imes  and  is no t  ye t  fixed (el. RUSSELL, -Proc. Lend. Math. Soc. (2), Vol. IV,  
I9o6, p. 46; Rev. de, Meta~hys., Vol. XIV ,  I9o6, p. 639; Amer. Journ.. ~/[ath., Vol. X X X ,  I9o8 , pp. 
258, 26i; WHITEHEAD and  RUSSELL, _Principla Mathematica., Vol. I I ,  Cambr idge ,  x912, pp. I89-- I9o;  
Vol. I I I ,  Cambr idge ,  I913, pp. I7o , I73 , and,  end  t he  o t h e r  hand ,  i t  is no t  qui te  ev iden t  t h a t  
t he re  is no t  a w t h  logical type  in some sense  analogous to t h a t  in  w h i c h  the  n u m b e r  w h i c h  
CANTOR deno ted  by  ~o~oJ~ i m m ed ia t e ly  follows those  ordinal  n u m b e r s  ob ta ined  by  exponen t i a -  
r ing w wi th  v, bu t  is no t  oJ e x p o n e n t i a t e d  by  t~. 
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which are of types m2 and co respectively, where to each member of these series 

belongs a cardinal number which differs from tha t  belonging to any other ordinal 

number in the same series. Again, if 7 is ~o~1, 7 is the upper limit of the series 

of type ~,: 

[ 0 ,  [ 0 1 ,  . �9 . , 0 ) o ) ~  O ) o ) T 1 9  �9 �9 �9 , C O a ,  �9 �9 . , 

where a is any number of the second number-class, to which belongs a series of 

type w, of the Alephs less than s~l in their order of magnitude. Here if M has 

chains of all types less than 7, then it has one of type 7- Lastly, if M has 

chains of all types less than w~ + I ,  it must  have a chain of type co~ + i .  

Lot us now consider, quite generally and in succession, all the kinds of 7 

for which we can or cannot conclude, from the premiss tha t  M has chains of all 

types less than 7, tha t  M has chains of type 7- 

(i). If M is finite, it has a chain of maximum type. Suppose tha t  this type 

is 7 - - I ;  then M has chains of all types less than 7. Evidently we cannot con- 

clude tha t  M has a chain of type 7- The case of M having only chains of all 

types less than some ordinal number which is less than co is thus disposed of, 

and consequently in future we will exclude the case of M being finite. 

(2). If there is an M-chain of type 7', less than 7 and such that  the cardinal 

number of any chain of type 7' is equal to the cardinal number of any chain of 

type 7, we can, since then 7 belongs to the second number-class at  least and is 

not the first of any number-class, conclude tha t  M has a chain of type 7 from 

the premiss tha t  it has chains of all types less than 7. 

(3). There only remains the case of 7 being the first number of a number- 

class which is not the class of finite ordinal numbers. Let, then, 7 be represented 

by w~. If ~ has an immediate predecessor, it may be tha t  the cardinal number 

of M is ~ ,  where )~ is such a number as is referred to under tha t  notation in 

w XII ,  so tha t  ~ is ~ + i .  In this case, the type 7 is not reached by any  M-chain, 

although there are M-chains of respectively all the types less than it. Conse- 

quently, if ~ has an immediate predecessor, it is established tha t  it cannot be 

inferred generally that ,  if M has chains of respectively all types less than 7, it 

has chains of type 7. 

(4). Thus, there now only remains the case tha t  ~ is a limit-number. By 

w XII  we know tha t  in this case 7 is always reached by some M-chains; for any  

type tha t  is not reached by a chain of some M or other is of the form $ + i ,  

and we cannot have ~ = ~ +  i if ~ is a limit-number. We may also argue aa 

follows. Since w~ is upper limit of numbers wi to which different cardinal num- 

bers correspond, if we are given any definite M having chains of all types less 
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than (o~, all the chains tha t  exhaust M must contain as segments chains of all 

those types co~; for, if not, M would be exhausted by a chain whose cardinal 

number was less than tha t  of M. Thus, any eomlSlete K-class has members of 

all the types w~, so tha t  the type of the chain determining and determined by 

this class is at  least co~. 

XV. 

The above method is somewhat analogous to tha t  by which all possible permu- 

tations of a finite set of things can be constructed systematically and without any 

arbi t rary selections whatever. 1 If, indeed, we are given a finite set S of n things, 

we may construct all possible permutations n at  a time by (~) putt ing each member 

(x) of S in correlation with all those of S, splitting up this correlation by imagining 

several members identical with x and correlating each one of them with each of 

the members of 8, and, in the couples thus obtained, striking out those in which 

the same member occurs more than once; (2) doing much the same with the 

couples, - -  correlating each (z) with all of S, then z with each of S, regarding 

the couple thus formed out of a couple and an individual as a triplet of indi- 

viduals, and striking out each triplet in which a member occurs more than once; 

(3) proceeding thus so as finally to get n-plets. I t  is easy to modify this rule 

so as to apply to an infinite S by making each process depend, not on ,its 

predecessora but, on all its predecessors; and this seems the simplest method 

of well-ordering an aggregate. But  in this paper, the chains tha t  exhaust M are 

not directly built up out of members of M,  but are very simply defined by 

classes of certain chains which do not necessarily exhaust  M. The reason for 

this is tha t  this method grew out of an a t tempt  to extend the considerations 

of IIartogs, which started from the - -  obviously non-null - -  class of M-chains. 

In what precedes the chains tha t  exhaust M are defined by certain classes of 

chains (,>K-classes,), because such classes are evidently non-null, so tha t  no doubt 

can arise of the existence of a chain defined by such an entire class determined 

by a wholly definite rule - -  though the class is infinite in extension. 

i I have brought forward this point of view in Science _Progress, Vol. XIII, I918. 


