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I. I n  this note we give an alternative and more instructive proof of the 

fundamenta l  theorem on which our earlier researches in this field ~ were based. 

The theorem may be stated as follows. 

Theorem A. Suppose that 

( I .  I) 

and 

(~ :) 

Then 

(i. 3) 

O ~ X ~ I ,  0 ~ _ ~  I , ( O ~ I  

s(~)=s(~, x, 0)=E e-n~-'~ cos : ~ e  

1 

( 8(ID X, 0 ) - -  e ~ :x I I 
' V x  e s x ~ c o , - - ' x  = 0  

u~,ijbrmly in w and 0. 2 

i G. H. HARDY and J. E. LITTLEWOOD, 'Some problems of Diophantine Approximation' ,  
Acta mathematica, 37 (I9~4), I93--238, and Proc. Cambridge Phil. Soc., 2I (I923), I - -5 .  

1 

2 That  is to say, the absolute value of the  left  hand side is less than  A x  2, where A is 
au absolute constant. 
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Our earlier proof, which followed the classical lines of the calculus of 

residues, as exposed in LindelSf's book ~, was fairly straightforward, but very long. 

Two other proofs have been given recently by vx~ DE~ CORPUTfl The proof 

which we give here proceeds on lines different from any of these, and seems to 

us in some ways the most natural. I t  has also the advantage of being appli- 

cable, in principle at any rate, to the sums associated with any power of a 

a theta-function, such as the sum 

0=<n~m 

where r(n) is the number of representations of n as a sum of two squares. 

The proof which we give here owes very much of its comparative simplic- 

ity to the criticism of Mr. A. E. I~GHA~r, tO whom we submitted our original 

version. In particular Mr. Ingham pointed out to us the usefulness of the 

elementary identity (5.2), and we have rewritten the whole of w167 5--7 in accor- 

dance with his suggestions. 

z. We begin by showing that  we may assume certain supplementary 

hypotheses without prejudice to the generality of the theorem. 

In the firs~ place, since we are aiming at a result which holds uniformly 

in 0, we may suppose that  o < 8 < I .  The result for ~ - o  or 0 : I  will then 

follow by continuity. 

Next, we may suppose that  

(2. I) ) , =  V~0 

is excluded from each of the sets of intervals 

(2. zI) (i,,) ,t--6~ ~ < ) . ~  m--O + 

(=. ==) (j=) m+(~ cl ~ ) ~ m §  ci 

1 E. LINDEL•F, Le calcul des rdsidus, I9o 5. 
J. G. VAN DER CORPUT, '~ber  Summen, die mit den elliptischen ~-Funktionen zusammen- 

h~ngen', Math. Annalen, 87 (I922), 66--77, and 9 ~ (I923), I - - I8 .  van der Corput proves a good 
deal more than is asserted by the theorem, and his proofs appear for this reason to be more 
elaborate than they are. The first proof is based on the theory of Fourier series, while the second 
follows lines more like those of our original proof, on which it is (when reduced to its simplest 
terms) It considerable improvement. 
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where d is an appropriate positive constant. Here r e = o ,  I, 2 , . . . ,  and any 

negative part of any interval is to be discarded as irrelevant. 

To prove this, consider the interval [ defined by 

o < 21'I<,;I, < M + [i/;~x] =21/+ #. 

I.f d is small enough, this i~terval will necessarily i,~clude a ), exter~al to the i ' s  
2d 

m~d j ' s .  For each i is of length ~ and is followed by a complementary in- 

terval t~ of length 

i 2d I - - 2 d  

x V-k V x  

There may be no complete )} inside I .  In this case there is at most one (com- 

plete or incomplete ) i, and at most 

2d 
_ •  | / x  < 4dff 

of I is inside i's. Otherwise I contains at least one complete ~, and the number 

of complete or incomplete i 's  does not exceed twice the number of complete k's. 

The ratio of the total length of the i 's to that  of the k's is accordingly less than 

4d 
I--2C~ 

the i 's and j 's .  

)/ subject to 

I t  is plain that, 

of (I. 3) is 

which is less than 8d if d'<~; and then the length of the i 's  is not greater 
4 

than 8dff. A similar argument applies to the j 's ,  and the part of I ,  inside one 

interval or another of the two Systems, can in no case exceed i66# .  Our 

conclusion follows if d < ! . 1  
I6 

Suppose now that  Theorem A has been established for Z's excluded from 

Any given value of ~ lies in an I ,  and there is therefore 

our restrictive conditions and differing from Z by less than /z. 

if we change ). into Z', the alteration of the left hand side 

1 It would naturally be easy to improve on this number if it were necessary. 
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o(5), 
so that the theorem, if true for ~', is true for ~. 

3- We write 
~o 

(3. I) f ( s ) = f ( s ,  0) = I  + 2 Z e-~"z* 
1 

COS 2 ~ 7c0, 

where s=a+it ,  a > o .  It is well-known 1 that 

( 3 . 2 )  f ( s )  = ~ _  e ~" ~( .... ~ 

We write also 

8 n = I  ('?,=0), 8n--2  ('~' > 0). 

Then, if c is positive, we have ~ 

~ ~(~o- ,  ~) ~-,,'~,.~ cos ~ , ~ o =  
ONn~). 

c + i a o  

_ i f e~ ~ ~(,,.-o), 
2zi ( s - i x )  ~V s  c ~ ds ,  

c+i~ 
f eco~s I ~ . f ( s  + ix)d., ' 

2 ~ i  . ,. 

on writing s--ix for s and using (3.2). 

We may invert the order of integration and summation; for, when t is large, 

I = 0  I t l  - E  , 

= o ( V ~ + t ~ )  - -  o ( ] t D ,  

and 

See for example E. LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, 277. 
See G. H. HARDY and M. Rmsz,  The general theory of Dirichlet's series, 50 (Theorem 39). 

We require the result of the theorem for absolutely convergent series only. 
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5 

J t-:i. t .dt  

is convergent. We have thus 

(3.3)  

where 

(3-4) 

tie 

c+ioo 

i f ,. 
( s - i x )  ~ I s 

(3-4I) @(8)=r u:(s--ix)-- '~(n--~)~ �9 
3 

If  we suppose now that ~ | / ~  is non-integral, as plainly we may do without 

loss of generality, and differentiate (3.3) formally with respect to a~, we obtain 

(3.5)  

where 

(3  5~) & - -  

- ~  +~(o~)= y z,,, 

d~ 

c + i ~  

I f ds 2 z~ i e4 (8) 
(.~-ix) V;~ 

g ~ i o r  

This process is certainly legitimate if ~J,~ is uniformly convergent in a neigh- 

bourhood of the particular vulue of ~o considered. That this is so will a,ppear 

incidentally in the sequel. 

4. Our main idea is to approximate to J , ,  in (3.5), by the saddle-point 

method or 'method of steepest descents'. 

The saddle-points of e r are given by 

o r  

~'  (8) - o 

8=+i ln - -O[- -+iN ,  

1 See G. N. WATSOZg, Theory of Bessel Functions, 235 , for a general account of the method. 

25--25280. Acta mathemat~ca. 47. Imprim6 le S d6cembre 1925. 
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say. The curve of 'zero level', given by ~R @(s)=o, has the equation 

6 (d + t~--B~)--o,  

and consists of the imaginary axis and the circle described on the line joining the 

saddle-points as diameter. I t  divides the plane into four regions, the 'low' regions, 

for which ~ q)(s)< o, being the right hand inside and the left hand outside 

regions. 

We define the path C = C I + C ~  by ~he lines C~ and C~ from the point 

I 
s ~ -  N to infinity through the upper and lower saddle-points respectively. The 

2 

whole path lies in low ground, except at the saddle-points, and it cannot pass 

through s~ix, since (owing to the restrictions of w 2) 

Z 

for any value of ~. We can deform the path of integration in (3.5I) into C, 

if we introduce the appropriate correction when this deformation involves crossing 

a pole. This is so if and only if x>N, i .e.  if In--Ol<Zx, and the correction 

required is accordingly 

L- E e x , 

which differs from 

u,. 

1 

We thus obtain 

1 

( 8 ( O ) , X , O )  e . . . . . .  I I 
l/ x e "~' 8 x h o , -  = Z~  + 0 , 

where ~,  differs from J~, in being taken along C; and the proof of Theorem A 

is reduced to a proof that 

(4. V x  " 



Some problems of Diophantine Approximation. 195 

5- It  is convenient t~o write 

~= I,,-Ol=XZ>o, 

x ).x 
X - -  N -  ~ > o ,  Y = Z g = ~ o N > o ,  

and to transform J,~ by writing N s  for s. We thus obtain 

~]~= e_CO zi~ ] ff)~ I ~ / ~  f = r ( .  -1 ] ds (5.1) 
2 ~ j (, - i x )  V ~ '  

where the path of integration F=I'~ + I'2 is C =  C 1 + 6~ reduced in the ratio I :N,  

I 
so that  it passes through the  points - - i ,  2 '  i. 

Since 

(5" 2) I _ _  i(.~--i) 
s - - i X  2,~(I+X) 

i(8-~-i)  i(8~ + I ) X  
2 s ( i - - X )  + s ( s - i X ) ( l - X ' ~ )  ' 

we may write (5. x) in the form 

(5.3) 

where 

(5-3 1 ) Ii, 
~ t" , ~ b - q  s - i  

ds, 

(5.32) K ,  2 =  , -  _ .  | e x st a d s ,  
' 4rr(I - . x j j  s2 

(5.33) L,~= 27g(I =x~ij , + , / , , . .  
( s -  i X) s ~ 

6. The integrals Ks, 1 and K,, 2 are linear combinations of Bessel functions 

I 
of ~ a n d - - 2 '  and may accordingly be evaluated as elementary functions. 1 

We have in fact 

1 See WATSON, loc. cit., I75 et seq. 
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I4~n 1 . . . . . . . . . . . . . . .  e _ 2 z i y  ~ i / e -2z i~2  
' 27r(I + X)|/Y 2 ~  Z x + ~ '  

K'~'e=2z(I__X) I/ y 2 z  ).x--~" 

Thus the contr ibut ion to ZJn of these integrals is 

i . (~e -2'~i)'ln-~' ~e2z~i)'ln--o'~ 
- -  e -r + 
~ Zx,  l~-01 _ Z x - I , ~ - o l ]  

i e_tozi ~ 
- ~ ~x ~ n - ~  + _~ Z x - ~  + ~ I ' 

when we combine 

the other.  

~ o w  t 

the  positive half  of each series with the negative half  of 

~ e-2~izO,-o) e2~ia (Zx--e) 
9Te2rti).e 

Xx + n - - 0  sin (Xx--0)z '  

where 

and this is 

~--z- [z]  - ~, 

in vir tue of the restr ict ions of w 2. The second series may be t rea ted  in the 

same way, so tha t  the to ta l  contr ibut ion of K~,,1 and K,~. is 0(~-~=-/. 
\ F  9~'! 

7. I t  remains only to discuss the contr ibut ion of L~,. I t  appears at  once 

f rom a figure that ,  on ei ther  F 1 or F~, 

(7. ,) 18. xl > A I , - x l ,  18 [ >A, <Al l 
I 

if  - -  I 2 ~ a _ _ < 2 ,  and 

1 See, for example, T. J. I 'A. BRo~wICI L Infinite series. 
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(7.2) 
[3[ 3 

I~,-,:XI>AI~-xI,  ,~ >AIGIT, I s " + I I < A d  -, 

I 
if a <  2' the A's being absolute constants. Also 

i ) 
I - -  ff2-[- ( i - -  2 

is negative except when a = o ,  and 

(7-3) 

I t  follows from (7. i) - -  (7.3) that 

1 

2 

Ax i; (~-x)~(~ + x  I"I~-AY~176 
1 

+ 

1 

A X  f vi<,l~,.:d. (,-x)~(~ +xj 

<~ ( i _ X ) 9 ( i . . { _ X ) - ~ -  I3 <... (I--X) 2 Y 
Y 

A X  

i i _ x l  ~ y2 

~ ~ x  ~ ~  
< A  (Zx--~) 2 +'4  . I ; .x - -~P'  

Thus the contribution of L,~ is 

i ) I ) 
o ;7_o1 .~ ;7 )~  + o x I ! ~ , - O [ - Z x l : '  " 

In these series there are at most four terms in which the denominator is less 

than unity, and the  contribution of these terms is 

o V x  + o  x = o  

in virtue of the restrictions on ~. The contribution of tile remaining terms is 

obviously 0(I). Thus the total contribution of L,~ is 0 1 . ~ - ] .  
\ r  xl 
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This completes the proof of the theorem. I t  is only necessary to add one 

word in justification of the assumption made provisionally in w 3, that the series 

~J~, is uniformly convergent in a neighbourhood of any particular value of ~o 

under consideration. The series has in fact been decomposed into a number of 

parts, all of which have been proved uniformly convergent by direct estimation 

of their terms, except those which were summed in w 5. The uniform conver- 

gence of these last series is classical. 

T 


