ADDITIONAL NOTE ON THE BOUNDARY BEHAVIOUR OF ELLIPTIC MODULAR FUNCTIONS.

By

K. ANANDA-RAU

of MADRAS, India.

1. Let $\vartheta_3(o | \tau) = 1 + 2q + 2q^4 + 2q^9 + \cdots$, where $q = e^{i\pi\tau}$, and $\tau = x + iy$ is a complex variable. Let ξ be a quadratic surd, and let $\frac{p_n}{q_n}$ be the *n*-th convergent of the continued fraction for ξ . In a paper published recently in Vol. 52 of the Acta mathematica (p. 143—168) I gave an account of the asymptotic behaviour of $\vartheta_3(o | \tau)$ as $\tau \to \xi$ along the straight line $x = \xi$. The chief result consisted in proving the existence of an integer H for which the following theorem is true.

Theorem. Suppose σ is a fixed number in the interval $0 \leq \sigma < 1$ and R is a fixed integer in $1 \leq R \leq H$. Let

$$\boldsymbol{\tau} = \boldsymbol{\tau}_n\left(\boldsymbol{\sigma}\right) = \boldsymbol{\xi} + i\,\boldsymbol{y} = \boldsymbol{\xi} + i\,\boldsymbol{y}_n\left(\boldsymbol{\sigma}\right),$$

where

$$y_n(\sigma) = rac{\sigma}{q_n^2} + rac{1-\sigma}{q_{n+1}^2}$$

Let n tend to infinity by taking all values congruent to R (mod. H). Then $\sqrt[v]{y} \mathfrak{I}_3(0|\tau)$ tends to a finite limit.

Methods were also given for calculating the limits for all values concerned of σ and R.

2. The object of the present note is to point out that the above theorem is true (with a suitable H, whose existence can be proved) for some other classes of irrationals besides quadratic surds. The irrationals considered here are inte-

resting as they include some standard transcendental numbers like e, e^2 etc. As this note is essentially a sequel I shall assume (to save lengthy explanations) that this will be read along with the paper in the Acta mathematica cited above. I shall denote the latter shortly by an asterisk (*). The Lemmas 1, 2, 3, ... 8, the equations (7), (13), (15) and the congruences (17) referred to below are the ones that occur in (*).

Let us consider an irrational (not necessarily a quadratic surd) and let its expression as continued fraction be^1

(i)
$$[c_1, c_2, \ldots, c_n, \ldots].$$

Let c_n be the integer satisfying the conditions $1 \leq c_n \leq 8$, $c_n \equiv c_n \pmod{8}$. Let the continued fraction (i) be such that the sequence

$$\mathfrak{c}_1, \mathfrak{c}_2, \ldots \mathfrak{c}_n, \ldots$$

is periodic² with period r. We shall call such a continued fraction and the irrational represented by it, *residually periodic* (mod. 8) with period r. For these irrationals we can put in evidence the periodicity of the c-sequence and write it in the form

(ii)
$$\mathfrak{b}_1, \mathfrak{b}_2, \ldots \mathfrak{b}_m, \mathfrak{a}_1, \mathfrak{a}_2, \ldots \mathfrak{a}_r, \mathfrak{a}_1, \mathfrak{a}_2, \ldots \mathfrak{a}_r, \ldots$$

the b's forming the non-recurring part, and the a's the recurring part. Now with reference to (ii) we can introduce the Γ -notation³; *m* and *r* being respectively the number of b's and the number of a's in (ii) and $\gamma_1, \gamma_2, \ldots, \gamma_n, \ldots$ being any sequence we define

$$\boldsymbol{I}_{s}^{(j)} = \boldsymbol{\gamma}_{m+(j-1)r+s} \qquad \begin{pmatrix} s = \mathrm{I}, 2, \ldots r \\ j = \mathrm{I}, 2, \ldots \end{pmatrix}.$$

To indicate the relation between the γ 's and Γ 's we write as in (*) $\{\gamma_n\} = \{\Gamma_s^{(j)}\}$. With this notation let $\{c_n\} = \{C_s^{(j)}\}$.

3. An examination of the proofs of Lemmas 3 to 8 shows that these lemmas hold for all irrationals which are residually periodic (mod. 8). The numbers c_n , p_n , q_n which occur in the lemmas have now, of course, reference to the con-

¹ The notation is the same as that used in (*), p. 145, third foot-note.

 $^{^{2}}$ For the definition of a periodic sequence, see (*), p. 155.

⁸ See (*), p. 154, 155.

tinued fraction of a residually periodic irrational¹; the numbers m, r wherever they occur, should be taken to denote respectively the number of b's and the number of a's in (ii); and wherever the Γ -notation is used it should be considered to have reference to the sequence (ii). The proofs of Lemmas 3 to 8 will then be seen to hold verbally for residually periodic irrationals, with a few modifications of a minor character. The changes required are as follows.

On page 156 of (*), instead of the equations

$$\begin{cases} P_{3}^{(h)} = a_{3} P_{2}^{(h)} + P_{1}^{(h)} \\ P_{3}^{(k)} = a_{3} P_{2}^{(k)} + P_{1}^{(k)}, \end{cases}$$

we should write

$$\int_{P_3^{(k)}}^{P_3^{(h)}} = C_3^{(h)} P_2^{(h)} + P_1^{(h)}$$

$$P_3^{(k)} = C_3^{(k)} P_2^{(k)} + P_1^{(k)},$$

and in addition to the congruences (17) use the fact that

$$C_{\mathfrak{z}}^{(h)} \equiv C_{\mathfrak{z}}^{(k)} \pmod{8},$$

and so deduce

$$P^{(h)} \equiv P^{(k)}$$

The rest of the proof of Lemma 3 proceeds as before.

The second alteration is that the equation

$$c_{h+1} = c_{k+1}$$

on page 161 of (*) should be replaced by the congruence

$$c_{h+1} \equiv c_{k+1} \pmod{8}.$$

The rest of the proof of Lemma 7 remains unchanged.

Taking into account these alterations, it is easily seen that the arguments used in (*) establish the existence of the numbers H, Ω , \mathfrak{m} (of Lemmas 7 and 8) for a residually periodic irrational.

4. Since Lemmas 3 to 8 hold for all residually periodic irrationals, it follows that the main theorem of (*) will be valid for such of these irrationals as satisfy the requirements of Lemmas 1 and 2 also (with a suitable g). The

¹ When we speak of residually periodic irrationals in this note the modulus concerned is always 8; so that we will drop the phrase >(mod. 8)> for simplicity.

irrationals ξ which we propose to consider in this note are subject to the following conditions:

- 1°. They are residually periodic (mod. 8) with period r.
- 2°. If g is the least common multiple of 2 and r, then for each fixed ϱ in $1 \leq \varrho \leq g$, the sequence

$$c_{\varrho}, c_{\varrho+g}, c_{\varrho+2g}, c_{\varrho+3g}, \ldots$$

behaves in one of two ways¹: namely, either the terms of the sequence, from a certain point onwards, retain a constant value; or the sequence tends to infinity.

We shall describe these two conditions shortly as conditions ϖ .

With the g defined above we will prove presently the truth of Lemma 1 for irrationals satisfying conditions ϖ ; that is to say, if p_n , q_n refer to the continued fraction of such an irrational ξ , and if ϱ is any fixed integer in $1 \leq \varrho \leq g$ and n tends to infinity through integers congruent to $\varrho \pmod{g}$, then $\frac{q_{n-1}}{q_n}$ and $p_n q_n - \xi q_n^2$ tend to finite limits. We shall denote these limits (as in (*)) respectively by² L_{ϱ} , \mathcal{A}_{ϱ} .

5. Now Lemma 2 was substantially a deduction from Lemma 1; but in effecting this deduction in (*) we implicitly made certain assumptions, which were, no doubt, obviously true in the case of quadratic surds. The assumptions were, firstly, that $\mathcal{A}_{\varrho}^{*} + J_{\varrho+1}^{*}$ which occurs as the coefficient of $\mathfrak{X}_{\varrho}(\sigma)$, $\mathfrak{Y}_{\varrho}(\sigma)$ in equations (15) is never zero; and secondly, that L_{ϱ} which occurs as the denominator in the term $\frac{\mathcal{A}_{\varrho-1}\mathcal{A}_{\varrho}}{L_{\varrho}}$ in the first of the equations (15) is never zero. In the case of quadratic surds we had always $L_{\varrho} > 0$, $\mathcal{A}_{\varrho} > 0$, and so also $\mathcal{A}_{\varrho}^{*} + J_{\varrho+1}^{*} > 0$. Therefore the assumptions were then justified. For the irrationals we consider here it will be seen that some of the numbers L_{ϱ} , \mathcal{A}_{ϱ} are zero; and the assumptions mentioned above require consideration. The difficulty caused by the first assumption is easily disposed of by taking σ to lie in the interval $0 \le \sigma < 1$. This change is of no significance (and could indeed have been made in the case of quadratic surds also); the main point being that in the interval for σ one of the end points 0, 1 should be included, and the other

¹ The behaviour need not be the same for two different values of ρ .

² We shall also have by definition (as in (*)), $\Lambda_0 = \Lambda_g$, $L_{g+1} = L_1$.

excluded. When we take σ to be in $0 < \sigma \leq 1$, we will have $J_{\varrho+1} \geq \sigma > 0$, and so $\mathcal{A}_{\varrho}^2 + J_{\varrho+1}^2 > 0$. As regards the second assumption, it will be seen from what follows that, in the case we are considering here, whenever L_{ϱ} vanishes, $\mathcal{A}_{\varrho-1}$ will also simultaneously vanish; so that the term $\frac{\mathcal{A}_{\varrho-1} \mathcal{A}_{\varrho}}{L_{\varrho}}$ takes an indeterminate form. If now we refer to equation (13) from which the first of the equations (15) was derived, we see that the term $\frac{\mathcal{A}_{\varrho-1} \mathcal{A}_{\varrho}}{L_{\varrho}}$ is contributed by

$$\frac{q_n}{q_{n-1}}(p_{n-1}q_{n-1}-\xi q_{n-1}^2)(p_n q_n-\xi q_n^2);$$

so that, if we prove (in addition to Lemma I) the existence of the limit of

$$\frac{q_n}{q_{n-1}}(p_{n-1}\,q_{n-1}-\xi\,q_{n-1}^2),$$

the difficulty caused by the second assumption would also be got over. We are thus led to consider the following lemma which we proceed to prove.

6. Lemma 1-a. Suppose that ξ is an irrational satisfying the conditions ϖ , and that ϱ is a fixed integer in $1 \leq \varrho \leq g$. Let n tend to infinity through integers congruent to ϱ (mod. g). Then

$$\frac{q_{n-1}}{q_n}, \qquad p_n q_n - \xi q_n^2, \qquad \frac{q_n}{q_{n-1}} \left(p_{n-1} q_{n-1} - \xi q_{n-1}^2 \right)$$

tend to finite limits.

If the sequence formed by all the partial quotients c_n is bounded, it is seen from the conditions ϖ that ξ is a quadratic surd. We may therefore leave aside this case (as it has been already considered), and suppose that there is at least one integer s in $1 \leq s \leq g$, for which the sequence

$$c_s, c_{s+g}, c_{s+2g}, \ldots$$

tends to infinity. We shall denote the last written sequence by Σ_s .

Let us first consider the behaviour of $\frac{q_{n-1}}{q_n}$ and f_n , where as in (*)

(iii)
$$f_n = [c_n, c_{n+1}, c_{n+2}, \ldots].$$

11 - 28583. Acta mathematica. 53. Imprimé le 27 mars 1929.

K. Ananda-Rau.

There are two cases to be examined according as $c_n (n \equiv \varrho)$ tends to infinity or ultimately retains a constant value. In the first case, it is easily seen from the identity

$$\frac{q_{n-1}}{q_n} = [0, c_n, c_{n-1}, \ldots c_2]$$

that $\frac{q_{n-1}}{q_n} \to 0$; and also from (iii) it follows that $f_n \to \infty$. In the second case, the sequence of partial quotients in the continued fraction of $\frac{q_{n-1}}{q_n}$ begins (when n is sufficiently large) with a series of constants

$$\mathfrak{o}, \mathfrak{d}_1, \mathfrak{d}_2, \ldots \mathfrak{d}_{\mathfrak{h}},$$

and then follows a term of a sequence Σ_s which tends to infinity. The constants \mathfrak{b} and their number $\mathfrak{h} \geq \mathfrak{l}$ depend only on ϱ and not on n. It therefore follows that

$$\frac{q_{n-1}}{q_n} \to [\mathsf{o}, \,\mathfrak{d}_1, \,\mathfrak{d}_2, \ldots \,\mathfrak{d}_6],$$

the limit on the right being different from zero. Similarly when $c_n (n \equiv \varrho)$ ultimately retains a constant value, the sequence of partial quotients in the continued fraction of f_n begins (when n is sufficiently large) with a series of constants²

$$\mathfrak{e}_1\,,\,\mathfrak{e}_2\,,\ldots\,\mathfrak{e}_i\,,$$

and then follows a term of a sequence ${}^{3}\Sigma_{s}$ which tends to infinity. The constants e and their number $j \ge I$ depend only on ρ and not on n. We therefore conclude as before that

$$f_n \rightarrow [\mathfrak{e}_1, \mathfrak{e}_2, \ldots, \mathfrak{e}_j],$$

the limit on the right being different from zero.

We have thus proved that in any case $\frac{q_{n-1}}{q_n}$ tends to a finite limit which may be zero; and that f_n tends to infinity or to a finite limit different from zero. These results are true for every fixed ϱ in $I \leq \varrho \leq g$.

¹ To avoid constant repetition we shall understand that throughout the proof of the present Lemma the values through which n tends to infinity are all congruent to ρ (mod. g).

² Clearly $\mathfrak{d}_1 = \mathfrak{e}_1$.

⁸ This sequence need not be the same as the sequence Σ_s last mentioned.

Additional note on the boundary behaviour of elliptic modular functions. 83 Now by (7) we have

$$\frac{1}{p_n q_n - \xi q_n^2} = \eta_n f_{n+1} + \eta_n \frac{q_{n-1}}{q_n} = \eta_{\varrho} \left(f_{n+1} + \frac{q_{n-1}}{q_n} \right).$$

From what has been said above, it follows that there are only two alternatives to consider; if ϱ is such that $f_{n+1} \rightarrow \infty$, then $p_n q_n - \xi q_n^2 \rightarrow 0$; while, if ϱ is such that f_{n+1} tends to a finite limit, then $f_{n+1} + \frac{q_{n-1}}{q_n}$ tends to a limit different from zero, and so $p_n q_n - \xi q_n^2$ tends to a finite limit.

It now remains to consider

(iv)
$$\frac{q_n}{q_{n-1}}(p_{n-1}q_{n-1}-\xi q_{n-1}^2).$$

If ϱ is such that $\frac{q_{n-1}}{q_n}$ tends to a limit different from zero, then from the results proved above we see that (iv) tends to a finite limit. We will now suppose that ϱ is such that

$$(\mathbf{v}) \qquad \qquad \frac{q_{n-1}}{q_n} \to \mathbf{o} \,.$$

This happens (as indicated above) only when $c_n \rightarrow \infty$. In this case clearly

$$\frac{q_{n-1}}{q_n} \cdot c_n \to \mathbf{I} ,$$
$$\frac{f_n}{c_n} \to \mathbf{I} ,$$

and so

(vi)
$$f_n \cdot \frac{q_{n-1}}{q_n} \to I$$

Now by (7) (with n-1 in place of n) we have

$$\frac{q_n}{q_{n-1}}(p_{n-1}q_{n-1}-\xi q_{n-1}^2) = \frac{q_n}{q_{n-1}} \cdot \frac{\eta_{\ell-1}q_{n-1}}{f_n q_{n-1}+q_{n-2}} = \frac{\eta_{\ell-1}}{f_n \cdot \frac{q_{n-1}}{q_n} + \frac{q_{n-2}}{q_{n-1}} \cdot \frac{q_{n-1}}{q_n}}$$

Since $\frac{q_{n-2}}{q_{n-1}} < 1$, we obtain on using (v) and (vi) in the last equation,

K. Ananda-Rau.

(vii)
$$\frac{q_n}{q_{n-1}}(p_{n-1}-\xi q_{n-1}^2) \to \eta_{\varrho-1};$$

the lemma is therefore completely proved.

Denoting as in (*) the limits of $\frac{q_{n-1}}{q_n}$, $p_n q_n - \xi q_n^2$ by L_{ϱ} , \mathcal{A}_{ϱ} we see that a consequence of the existence of the limit (vii) is that, when $L_{\varrho} = 0$, we also have $\mathcal{A}_{\varrho-1} = 0$.

7. After having proved Lemma 1-a, there is no difficulty in seeing that the arguments of paragraph 6 of (*), which constitute the proof of Lemma 2, hold substantially for irrationals ξ which satisfy the conditions ϖ . The only modifications are that instead of having $0 \leq \sigma < 1$ we should have $0 < \sigma \leq 1$; and in the special case when $L_{\varrho} = 0$, the first of the equations (15), which defines $\mathfrak{X}_{\varrho}(\sigma)$ should be replaced by

(viii)
$$\mathfrak{X}_{\varrho}(\sigma) \left(\mathscr{A}_{\varrho}^{2} + J_{\varrho+1}^{2} \right) = \mathscr{A}_{\varrho}$$

It is also worth observing that when $L_{\varrho+1} = 0$, $L_{\varrho} \ge 0$, the equations for $\mathfrak{X}_{\varrho}(\sigma)$, $\mathfrak{Y}_{\varrho}(\sigma)$ take the simple form¹

$$egin{aligned} & (\mathfrak{X}_arrho \left(\sigma
ight) = \eta_{arrho + 1} L_arrho \ \mathcal{Y}_arrho \left(\sigma
ight) = rac{\mathrm{I}}{\sigma} \cdot \end{aligned}$$

As all the lemmas of (*) have now been shown to be valid for irrationals satisfying conditions ϖ , it follows that the main theorem of (*) is also true for such irrationals, with the understanding that the interval for σ should be changed in the manner indicated, and that when $L_{\varrho} = 0$, the real part of $\mathfrak{T}_{\varrho}(\sigma) = \mathfrak{X}_{\varrho}(\sigma) + i \mathfrak{Y}_{\varrho}(\sigma)$ should be taken to be defined by (viii).

8. Among irrationals satisfying conditions ϖ , there are some standard transcendental numbers, for example²:

$$e = [2, \overline{1, 2 + 2\nu, 1}]_{\nu=0}^{\infty}$$

= [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, ...]

84

¹ Use is made of the result (mentioned above) that when $L_{\ell+1} = 0$, we also have $\mathcal{A}_{\ell} = 0$.

² See O. PERRON, Die Lehre von den Kettenbrüchen (1913), p. 134, 138. On pages 132– 138 of this book will be found further examples of transcendental numbers related to e and satisfying conditions ϖ .

Additional note on the boundary behaviour of elliptic modular functions. 85

$$e^{2} = [7, 2 + 3\nu, 1, 1, 3 + 3\nu, 18 + 12\nu]_{\nu=0}^{\infty}$$

= [7, 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, 1, 1, 9, 42, ...].

It may be of interest to set down the numerical details when $\xi = e$. In this case r = 12, g = 12, and by calculation it is found that H = 24. The values of λ , ϱ , Ω , m corresponding to $R = 1, 2, 3, \ldots 24$ are given in the first table below; and the values of L_{ϱ} , \mathcal{A}_{ϱ} , $\mathcal{J}_{\varrho+1}(\sigma)$, $\mathfrak{X}_{\varrho}(\sigma)$, $\mathfrak{Y}_{\varrho}(\sigma)$ corresponding to $\varrho = 1, 2, 3, \ldots 12$ are given in the second table. It is found on calculation that if $\varrho' - \varrho = 6$, then $L_{\varrho} = L_{\varrho'}$, $\mathcal{A}_{\varrho} = \mathcal{A}_{\varrho'}$ etc.; and so the pairs of values (1, 7), $(2, 8), \ldots (6, 12)$ of ϱ are entered together in the first column of the second table. When y tends to zero in the manner described in the enunciation of the main theorem of (*) with, of course, the modification in the interval of σ — the limit of $\sqrt[4]{y} \mathcal{P}_3(0|\tau)$ for given values of R, σ can be easily read off from these two tables.¹

R	Q	λ	m	ΩV_2^-	R	ę	2	m	ΩV_2^-
τ	I	- <i>i</i>	3	I + i	13	I	-i	3	-1- <i>i</i>
2	2	I	2	V_2	14	2	I	2	$-\sqrt{2}$
3	3	-i	4	$-\mathbf{I}+i$	15	3	-i	4	I-i
4	4	I	3	i V 2	16	4	I	3	$-i\overline{V_2}$
5	5	-i	2	-1+i	17	5	- <i>i</i>	2	<u>1-i</u>
6	6	I	4	$-i\overline{V_2}$	18	6	I	4	· i V 2
7	7	-i	3	I-i	19	7	-i	3	$-\mathbf{r}+i$
8	8	I	2	$-i\sqrt{\frac{1}{2}}$	20	8	I	2	i V 2
9	9	- <i>i</i>	4	-1- <i>i</i>	21	9	-i	4	I + i
ю	ю	I	3	$-\overline{V_2}$	22	10	I	3	V_2
II	II	-i	2	<u> </u>	23	II	-i	2	I + i
12	12	I	4	$-\overline{V_2}$	24	12	I	4	$\overline{V_2}$

¹ The $\sqrt{2}$ in the first table denotes the positive root.

K. Ananda-Rau.

Q	L_{ϱ}	$arLambda_{arepsilon}$	$J_{\varrho+1}(\sigma)$	$\mathfrak{X}_{\varrho}(\sigma)$	$\mathfrak{Y}_{\varrho}(\sigma)$
I, 7	I	$-\frac{1}{2}$	$\frac{1}{4}(1+3\sigma)$	$\frac{(1+3\sigma)^2-4}{(1+3\sigma)^2+4}$	$\frac{4(1+3\sigma)}{4+(1+3\sigma)^2}$
2, 8	$\frac{1}{2}$	ο	σ	$-\frac{\mathrm{I}}{2}$	I σ
3, 9	0	$-\frac{1}{2}$	I	$-\frac{2}{5}$	<u>4</u> 5
4, 10	I	<u>I</u> 2	$\frac{1}{4}(1+3\sigma)$	$\frac{4 - (1 + 3\sigma)^2}{4 + (1 + 3\sigma)^2}$	$\frac{4(\mathbf{I}+3\boldsymbol{\sigma})}{4+(\mathbf{I}+3\boldsymbol{\sigma})^2}$
5, 11	<u>I</u> 2	0	б	$\frac{1}{2}$	$\frac{1}{\sigma}$
6, 12	o	<u>I</u> 2	I	2 5	<u>4</u> 5
