ADDITIONAL NOTE ON THE BOUNDARY BEHAVIOUR OF ELLIPTIC MODULAR FUNCTIONS.

By
K. ANANDA-RAU
of Madras, India.

I. Let $\exists_{3}(\mathrm{O} \mid \boldsymbol{x})=\mathrm{I}+2 q+2 q^{4}+2 q^{9}+\cdots$, where $q=e^{i \pi \tau}$, and $\tau=x+i y$ is a complex variable. Let ξ be a quadratic surd, and let $\frac{p_{n}}{q_{n}}$ be the n-th convergent of the continued fraction for ξ. In a paper published recently in Vol. 52 of the Acta mathematica (p. 143-168) I gave an account of the asymptotic behaviour of $\vartheta_{3}(0 \mid \tau)$ as $\tau \rightarrow \xi$ along the straight line $x=\xi$. The chief result consisted in proving the existence of an integer H for which the following theorem is true.

Theorem. Suppose σ is a fixed number in the interval $\mathrm{O} \leqq \sigma<\mathrm{I}$ and R is a fixed integer in $\mathrm{I} \leqq R \leqq H$. Let

$$
\tau=\boldsymbol{\tau}_{n}(\boldsymbol{\sigma})=\xi+i y=\xi+i y_{n}(\boldsymbol{\sigma}),
$$

where

$$
y_{n}(\sigma)=\frac{\sigma}{q_{n}^{2}}+\frac{\mathrm{I}-\sigma}{q_{n+1}^{2}}
$$

Let n tend to infinity by taking all values congruent to $R(\bmod . H)$. Then $\stackrel{4}{\sqrt{y}} \vartheta_{3}(\mathrm{o} \mid \tau)$ tends to a finite limit.

Methods were also given for calculating the limits for all values concerned of σ and R.
2. The object of the present note is to point out that the above theorem is true (with a suitable H, whose existence can be proved) for some other classes of irrationals besides quadratic surds. The irrationals considered here are inte-
resting as they include some standard transcendental numbers like e, e^{2} etc. As this note is essentially a sequel I shall assume (to save lengthy explanations) that this will be read along with the paper in the Acta mathematica cited above. I shall denote the latter shortly by an asterisk (*). The Lemmas $1,2,3, \ldots 8$, the equations (7), (13), (15) and the congruences (17) referred to below are the ones that occur in (*).

Let us consider an irrational (not necessarily a quadratic surd) and let its expression as continued fraction be ${ }^{1}$

$$
\begin{equation*}
\left[c_{1}, c_{2}, \ldots c_{n}, \ldots\right] \tag{i}
\end{equation*}
$$

Let \mathfrak{c}_{n} be the integer satisfying the conditions $\mathrm{I} \leqq \mathfrak{c}_{n} \leqq 8, \mathfrak{c}_{n} \equiv \boldsymbol{c}_{n}(\bmod .8)$. Let the continued fraction (i) be such that the sequence

$$
\mathfrak{c}_{1}, \mathfrak{c}_{2}, \ldots \mathfrak{c}_{n}, \ldots
$$

is periodic ${ }^{2}$ with period r. We shall call such a continued fraction and the irrational represented by it, residually periodic (mod. 8) with period r. For these irrationals we can put in evidence the periodicity of the \mathfrak{c}-sequence and write it in the form

$$
\begin{equation*}
\mathfrak{b}_{1}, \mathfrak{b}_{2}, \ldots \mathfrak{b}_{m}, \mathfrak{a}_{1}, \mathfrak{a}_{2}, \ldots \mathfrak{a}_{r}, \mathfrak{a}_{1}, \mathfrak{a}_{2}, \ldots \mathfrak{a}_{r}, \ldots \tag{ii}
\end{equation*}
$$

the \mathfrak{b} 's forming the non-recurring part, and the a's the recurring part. Now with reference to (ii) we can introduce the Γ-notation ${ }^{3} ; m$ and r being respectively the number of \mathfrak{b} 's and the number of \mathfrak{a} 's in (ii) and $\gamma_{1}, \gamma_{2}, \ldots \gamma_{n}, \ldots$ being any sequence we define

$$
\Gamma_{s}^{(j)}=\gamma_{n+(j-1) r+s} \quad\binom{s=\mathrm{I}, 2, \ldots r}{j=\mathrm{I}, 2, \ldots}
$$

To indicate the relation between the γ^{\prime} s and Γ 's we write as in $\left(^{*}\right)\left\{\gamma_{n}\right\}=\left\{\Gamma_{s}^{(j)}\right\}$. With this notation let $\left\{c_{n}\right\}=\left\{C_{s}^{(j)}\right\}$.
3. An examination of the proofs of Lemmas 3 to 8 shows that these lemmas hold for all irrationals which are residually periodic (mod. 8). The numbers c_{n}, p_{n}, q_{n} which occur in the lemmas have now, of course, reference to the con-

[^0]Additional note on the boundary behaviour of elliptic modular functions.
tinued fraction of a residually periodic irrational ${ }^{1}$; the numbers m, r wherever they occur, should be taken to denote respectively the number of \mathfrak{b} 's and the number of \mathfrak{a} 's in (ii); and wherever the Γ-notation is used it should be considered to have reference to the sequence (ii). The proofs of Lemmas 3 to 8 will then be seen to hold verbally for residually periodic irrationals, with a few modifications of a minor character. The changes required are as follows.

On page 156 of (*), instead of the equations

$$
\left\{\begin{array}{l}
P_{3}^{(h)}=a_{3} P_{2}^{(h)}+P_{2}^{(h)} \\
P_{3}^{(k)}=a_{3} P_{2}^{(k)}+P_{1}^{(k)}
\end{array}\right.
$$

we should write

$$
\left\{\begin{array}{l}
P_{8}^{(h)}=C_{3}^{(h)} P_{2}^{(h)}+P_{1}^{(h)} \\
P_{3}^{(k)}=C_{3}^{(k)} P_{2}^{(k)}+P_{1}^{(k)}
\end{array}\right.
$$

and in addition to the congruences (17) use the fact that

$$
C_{3}^{(h)} \equiv C_{3}^{\left(k_{i}\right)} \quad(\bmod .8),
$$

and so deduce

$$
P_{3}^{(h)} \equiv P_{3}^{(k)}
$$

The rest of the proof of Lemma 3 proceeds as before.
The second alteration is that the equation

$$
c_{h+1}=c_{k+1}
$$

on page 161 of (*) should be replaced by the congruence

$$
c_{h+1} \equiv c_{k+1} \quad(\bmod .8)
$$

The rest of the proof of Lemma 7 remains unchanged.
Taking into account these alterations, it is easily seen that the arguments used in (*) establish the existence of the numbers H, Ω, \mathfrak{m} (of Lemmas 7 and 8) for a residually periodic irrational.
4. Since Lemmas 3 to 8 hold for all residually periodic irrationals, it follows that the main theorem of (*) will be valid for such of these irrationals as satisfy the requirements of Lemmas I and 2 also (with a suitable g). The

[^1]irrationals ξ which we propose to consider in this note are subject to the following conditions:
I°. They are residually periodic (mod. 8) with period r.
2°. If g is the least common multiple of 2 and r, then for each fixed ϱ in $1 \leqq \varrho \leqq g$, the sequence
$$
c_{\rho}, c_{\rho+g}, c_{\varrho+2 g}, c_{\varrho+3 g}, \ldots
$$
behaves in one of two ways ${ }^{1}$: namely, either the terms of the sequence, from a certain point onwards, retain a constant value; or the sequence tends to infinity.
We shall describe these two conditions shortly as conditions ϖ.
With the g defined above we will prove presently the truth of Lemma 1 for irrationals satisfying conditions ϖ; that is to say, if p_{n}, q_{n} refer to the continued fraction of such an irrational ξ, and if ϱ is any fixed integer in $\mathrm{I} \leqq \varrho \leqq g$ and n tends to infinity through integers congruent to $\varrho\left(\bmod . g\right.$), then $\frac{q_{n-1}}{q_{n}}$ and $p_{n} q_{n}-\xi q_{n}^{2}$ tend to finite limits. We shall denote these limits (as in $\left(^{*}\right)$) respectively by ${ }^{2} L_{\rho}, \Lambda_{\ell}$.
5. Now Lemma 2 was substantially a deduction from Lemma 1 ; but in effecting this deduction in (${ }^{*}$) we implicitly made certain assumptions, which were, no doubt, obviously true in the case of quadratic surds. The assumptions were, firstly, that $A_{\rho}^{2}+J_{\rho+1}^{2}$ which occurs as the coefficient of $\mathfrak{X}_{\rho}(\sigma), \mathfrak{Y}_{\varrho}(\sigma)$ in equations (15) is never zero; and secondly, that L_{ρ} which occurs as the denominator in the term $\frac{\boldsymbol{\Lambda}_{\varrho-1} \boldsymbol{\Lambda}_{\varrho}}{L_{O}}$ in the first of the equations (15) is never zero. In the case of quadratic surds we had always $L_{\varphi}>0, \Lambda_{\varrho}>0$, and so also $\Lambda_{\varphi}^{2}+J_{\rho+1}^{2}>0$. Therefore the assumptions were then justified. For the irrationals we consider here it will be seen that some of the numbers $L_{\varrho}, \Lambda_{\varrho}$ are zero; and the assumptions mentioned above require consideration. The difficulty cansed by the first assumption is easily disposed of by taking σ to lie in the interval $0<\sigma \leqq \mathrm{I}$ instead of in the interval $0 \leqq \sigma<1$. This change is of no significance (and could indeed have been made in the case of quadratic surds also); the main point being that in the interval for σ one of the end points o, 1 should be included, and the other

[^2]excluded. When we take σ to be in $0<\sigma \leqq \mathrm{I}$, we will have $J_{\varrho+1} \geqq \sigma>0$, and so $\Lambda_{\varrho}^{2}+J_{\varrho+1}^{2}>0$. As regards the second assumption, it will be seen from what follows that, in the case we are considering here, whenever L_{ρ} vanishes, $\Lambda_{\varrho-1}$ will also simultaneously vanish; so that the term $\frac{A_{Q-1} A_{0}}{L_{p}}$ takes an indeterminate form. If now we refer to equation (I3) from which the first of the equations (15) was derived, we see that the term $\frac{\Lambda_{p-1} \Lambda_{\ell}}{L_{Q}}$ is contributed by
$$
\frac{q_{n}}{q_{n-1}}\left(p_{n-1} q_{n-1}-\xi \dot{q_{n-1}^{2}}\right)\left(p_{n} q_{n}-\xi q_{n}^{2}\right) ;
$$
so that, if we prove (in addition to Lemma i) the existence of the limit of
$$
\frac{q_{n}}{q_{n-1}}\left(p_{n-1} q_{n-1}-\xi q_{n-1}^{2}\right),
$$
the difficulty caused by the second assumption would also be got over. We are thus led to consider the following lemma which we proceed to prove.
6. Lemma 1-a. Suppose that ξ is an irrational satisfying the conditions ϖ, and that ϱ is a fixed integer in $\mathrm{I} \leqq \varrho \leqq g$. Let n tend to infinity through integers congruent to $\varrho($ mod. g). Then
$$
\frac{q_{n-1}}{q_{n}}, \quad p_{n} q_{n}-\xi q_{n}^{2}, \quad \frac{q_{n}}{q_{n-1}}\left(p_{n-1} q_{n-1}-\xi q_{n-1}^{2}\right)
$$
tend to finite limits.
If the sequence formed by all the partial quotients c_{n} is bounded, it is seen from the conditions π that ξ is a quadratic surd. We may therefore leave aside this case (as it has been already considered), and suppose that there is at least one integer s in $\mathrm{I} \leqq s \leqq g$, for which the sequence
$$
c_{s}, c_{s+g}, c_{s+2 g}, \ldots
$$
tends to infinity. We shall denote the last written sequence by Σ_{s}.
Let us first consider the behaviour of $\frac{q_{n-1}}{q_{n}}$ and f_{n}, where as in (*)
\[

$$
\begin{equation*}
f_{n}=\left[c_{n}, c_{n+1}, c_{n+2}, \ldots\right] \tag{iii}
\end{equation*}
$$

\]

11-28583. Acta mathematica. 53. Imprimé le 27 mars 1929.

There are two cases to be examined according as ${ }^{1} c_{n}(n \equiv \varrho)$ tends to infinity or ultimately retains a constant value. In the first case, it is easily seen from the identity

$$
\frac{q_{n-1}}{q_{n}}=\left[0, c_{n}, c_{n-1}, \ldots c_{2}\right]
$$

that $\frac{q_{n-1}}{q_{n}} \rightarrow 0$; and also from (iii) it follows that $f_{n} \rightarrow \infty$. In the second case, the sequence of partial quotients in the continued fraction of $\frac{q_{n-1}}{q_{n}}$ begins (when n is sufficiently large) with a series of constants

$$
o, \delta_{1}, \delta_{2}, \ldots \delta_{\mathfrak{g}}
$$

and then follows a term of a sequence Σ_{s} which tends to infinity. The constants \mathfrak{D} and their number $\mathfrak{h} \geqq I$ depend only on ϱ and not on n. It therefore follows that

$$
\frac{q_{n-1}}{q_{n}} \rightarrow\left[\mathrm{o}, \delta_{1}, \delta_{2}, \ldots \delta_{b}\right]
$$

the limit on the right being different from zero. Similarly when $c_{n}(n \equiv \varrho)$ ultimately retains a constant value, the sequence of partial quotients in the continued fraction of f_{n} begins (when n is sufficiently large) with a series of constants ${ }^{2}$

$$
e_{1}, e_{2}, \ldots e_{i}
$$

and then follows a term of a sequence ${ }^{3} \Sigma_{s}$ which tends to infinity. The constants e and their number $\mathrm{i} \geqq \mathrm{I}$ depend only on ϱ and not on n. We therefore conclude as before that

$$
f_{n} \rightarrow\left[\mathfrak{e}_{1}, \mathfrak{e}_{2}, \ldots \mathfrak{e}_{\mathfrak{i}}\right]
$$

the limit on the right being different from zero.
We have thus proved that in any case $\frac{q_{n-1}}{q_{n}}$ tends to a finite limit which may be zero; and that f_{n} tends to infinity or to a finite limit different from zero. These results are true for every fixed ϱ in $\mathrm{I} \leqq \varrho \leqq g$.

[^3]Additional note on the boundary behaviour of elliptic modular functions.
Now by (7) we have

$$
\frac{1}{p_{n} q_{n}-\xi q_{n}^{2}}=\eta_{n} f_{n+1}+\eta_{n} \frac{q_{n-1}}{q_{n}}=\eta_{\rho}\left(f_{n+1}+\frac{q_{n-1}}{q_{n}}\right)
$$

From what has been said above, it follows that there are only two alternatives to consider; if ϱ is such that $f_{n+1} \rightarrow \infty$, then $p_{n} q_{n}-\xi q_{n}^{2} \rightarrow 0$; while, if ϱ is such that f_{n+1} tends to a finite limit, then $f_{n+1}+\frac{q_{n-1}}{q_{n}}$ tends to a limit different from zero, and so $p_{n} q_{n}-\xi q_{n}^{2}$ tends to a finite limit.

It now remains to consider

$$
\begin{equation*}
\frac{q_{n}}{q_{n-1}}\left(p_{n-1} q_{n-1}-\xi q_{n-1}^{2}\right) \tag{iv}
\end{equation*}
$$

If ϱ is such that $\frac{q_{n-1}}{q_{n}}$ tends to a limit different from zero, then from the results proved above we see that (iv) tends to a finite limit. We will now suppose that ϱ is such that

$$
\begin{equation*}
\frac{q_{n-1}}{q_{n}} \rightarrow 0 \tag{v}
\end{equation*}
$$

This happens (as indicated above) only when $c_{n} \rightarrow \infty$. In this case clearly

$$
\begin{gathered}
\frac{q_{n-1}}{q_{n}} \cdot c_{n} \rightarrow \mathrm{I} \\
\frac{f_{n}}{c_{n}} \rightarrow \mathrm{I}
\end{gathered}
$$

and so
(vi)

$$
f_{n} \cdot \frac{q_{n-1}}{q_{n}} \rightarrow \mathrm{I}
$$

Now by (7) (with $n-1$ in place of n) we have

$$
\frac{q_{n}}{q_{n-1}}\left(p_{n-1} q_{n-1}-\xi q_{n-1}^{2}\right)=\frac{q_{n}}{q_{n-1}} \cdot \frac{\eta_{0-1} q_{n-1}}{f_{n} q_{n-1}+q_{n-2}}=\frac{\eta_{\varrho-1}}{f_{n} \cdot \frac{q_{n-1}}{q_{n}}+\frac{q_{n-2}}{q_{n-1}} \cdot \frac{q_{n-1}}{q_{n}}}
$$

Since $\frac{q_{n-2}}{q_{n-1}}<1$, we obtain on using (v) and (vi) in the last equation,

$$
\frac{q_{n}}{q_{n-1}}\left(p_{n-1} q_{n-1}-\xi q_{n-1}^{2}\right) \rightarrow \eta_{\varrho-1}
$$

the lemma is therefore completely proved.
Denoting as in $\left(^{*}\right)$ the limits of $\frac{q_{n-1}}{q_{n}}, p_{n} q_{n}-\xi q_{n}^{2}$ by L_{ρ}, A_{ρ} we see that a consequence of the existence of the limit (vii) is that, when $L_{\rho}=0$, we also have $\Lambda_{\rho-1}=0$.
7. After having proved Lemma $\mathrm{I}-\mathrm{a}$, there is no difficulty in seeing that the arguments of paragraph 6 of $\left({ }^{*}\right)$, which constitute the proof of Lemma 2 , hold substantially for irrationals ξ which satisfy the conditions ϖ. The only modifications are that instead of having $0 \leqq \sigma<1$ we should have $0<\sigma \leqq 1$; and in the special case when $L_{\rho}=0$, the first of the equations (15), which defines $\mathfrak{X}_{\rho}(\sigma)$ should be replaced by

$$
\begin{equation*}
\mathfrak{X}_{\rho}(\sigma)\left(\Lambda_{\varrho}^{2}+J_{\varrho+1}^{2}\right)=\boldsymbol{A}_{\varrho} . \tag{viii}
\end{equation*}
$$

It is also worth observing that when $L_{\rho+1}=0, L_{\rho} \geqq 0$, the equations for $\mathfrak{X}_{\rho}(\sigma), \mathfrak{Y}_{\rho}(\sigma)$ take the simple form ${ }^{1}$

$$
\left\{\begin{array}{l}
\mathfrak{X}_{\varrho}(\sigma)=\eta_{\varrho+1} L_{\rho} \\
\mathfrak{Y}_{\varrho}(\sigma)=\frac{1}{\sigma}
\end{array}\right.
$$

As all the lemmas of $\left({ }^{*}\right)$ have now been shown to be valid for irrationals satisfying conditions $\widetilde{\sigma}$, it follows that the main theorem of (*) is also true for such irrationals, with the understanding that the interval for σ should be changed in the manner indicated, and that when $L_{\ell}=0$, the real part of $\mathfrak{T}_{\rho}(\sigma)=\mathfrak{X}_{\rho}(\sigma)+i \mathfrak{Y}_{\varrho}(\sigma)$ should be taken to be defined by (viii).
8. Among irrationals satisfying conditions ϖ, there are some standard transcendental numbers, for example ${ }^{2}$:

$$
\begin{aligned}
e & =[2, \mathrm{I}, 2+2 v, \mathrm{I}]_{v=0}^{\infty} \\
& =[2, \mathrm{I}, 2, \mathrm{I}, \mathrm{I}, 4, \mathrm{I}, \mathrm{I}, 6, \mathrm{I}, \mathrm{I}, 8, \mathrm{I}, \mathrm{I}, \mathrm{IO}, \mathrm{I}, \ldots]
\end{aligned}
$$

[^4]Additional note on the boundary behaviour of elliptic modular functions. 85

$$
\left.\left.\begin{array}{rl}
e^{2} & =[7,2+3 v, \mathrm{I}, \mathrm{I}, 3+3 v, \mathrm{I} 8+\mathrm{I} 2 v
\end{array}\right]_{v=0}^{\infty}\right)
$$

It may be of interest to set down the numerical details when $\xi=e$. In this case $r=12, g=12$, and by calculation it is found that $H=24$. The values of $\lambda, \varrho, \Omega, \mathrm{m}$ corresponding to $R=\mathrm{I}, 2,3, \ldots 24$ are given in the first table below; and the values of $L_{\rho}, A_{\varrho}, J_{\varrho+1}(\sigma), \mathfrak{X}_{\rho}(\sigma), \mathfrak{Y}_{\varrho}(\sigma)$ corresponding to $\varrho=\mathrm{I}, 2,3, \ldots$ 12 are given in the second table. It is found on calculation that if $\rho^{\prime}-\varrho=6$, then $L_{\varrho}=L_{Q^{\prime}}, \Lambda_{\varrho}=\Lambda_{\varrho^{\prime}}$ etc.; and so the pairs of values $(1,7),(2,8), \ldots(6,12)$ of ϱ are entered together in the first column of the second table. When y tends to zero in the manner described in the enunciation of the main theorem of (*) with, of course, the modification in the interval of σ - the limit of $\sqrt{7}_{y}^{y} \boldsymbol{\vartheta}_{3}(0 \mid \tau)$ for given values of R, σ can be easily read off from these two tables. ${ }^{1}$

R	ϱ	λ	m	$\Omega \sqrt{2}$	R	ϱ	λ	m	$\Omega \sqrt{2}$
I	1	$-i$	3	$\mathrm{I}+i$	13	I	$-i$	3	$-\mathrm{I}-i$
2	2	I	2	$\sqrt{2}$	14	2	1	2	$-\sqrt{2}$
3	3	$-i$	4	$-\mathrm{I}+i$	15	3	$-i$	4	$\mathrm{I}-i$
4	4	I	3	$i \sqrt{2}$	16	4	I	3	$-i \sqrt{2}$
5	5	$-i$	2	$-\mathrm{I}+i$	17	5	$-i$	2	$\mathrm{I}^{-} \boldsymbol{i}$
6	6	I	4	$-i \sqrt{2}$	18	6	1	4	$i \sqrt{2}$
7	7	$-i$	3	$\mathrm{I}-i$	19	7	$-i$	3	$-\mathrm{r}+\mathrm{i}$
8	8	I	2	$-i 1^{1 / 2}$	20	8	I	2	$i \sqrt{2}$
9	9	$-i$	4	- $1-i$	2 I	9	$-i$	4	$\mathrm{I}+i$
IO	10	I	3	$-\sqrt{2}$	22	10	I	3	$\sqrt{2}$
II	I I	$-i$	2	- $\mathrm{I}-\mathrm{i}$	23	II	$-i$	2	$\underline{1}+i$
12	12	I	4	$-\sqrt{2}$	24	12	I	4	$\sqrt{2}$

[^5]| ϱ | L_{ϱ} | A_{0} | $J_{Q+1}(\boldsymbol{\sigma})$ | $X_{\rho}(\boldsymbol{\sigma})$ | $Y_{\rho}(\boldsymbol{\sigma})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I, 7 | I | $-\frac{1}{2}$ | $\frac{1}{4}(\mathrm{I}+3 \sigma)$ | $\frac{(1+3 \sigma)^{2}-4}{(1+3 \sigma)^{2}+4}$ | $\frac{4(1+30)}{4+(1+3 \sigma)^{2}}$ |
| 2, 8 | $\frac{1}{2}$ | O | σ | $-\frac{1}{2}$ | $\frac{\mathrm{I}}{\boldsymbol{\sigma}}$ |
| 3, 9 | o | $-\frac{1}{2}$ | 1 | $-\frac{2}{5}$ | $\frac{4}{5}$ |
| 4, IO | 1 | $\frac{1}{2}$ | $\frac{1}{4}(\mathrm{I}+3 \sigma)$ | $\frac{4-(1+3 \sigma)^{2}}{4+(1+3 \sigma)^{2}}$ | $\frac{4(1+3 \sigma)}{4+(1+3 \sigma)^{2}}$ |
| 5, II | $\frac{1}{2}$ | o | σ | $\frac{1}{2}$ | $\frac{1}{\sigma}$ |
| 6, 12 | O | $\frac{1}{2}$ | I | $\frac{2}{5}$ | $\frac{4}{5}$ |

[^0]: ${ }^{1}$ The notation is the same as that used in (*), p. 145, third foot-note.
 ${ }^{2}$ For the definition of a periodic sequence, see (*), p. 155.
 ${ }^{3}$ See (*), p. 154, 155.

[^1]: ${ }^{1}$ When we speak of residually periodic irrationals in this note the modulus concerned is always 8 ; so that we will drop the phrase $»(\bmod .8) »$ for simplicity.

[^2]: ${ }^{1}$ The behaviour need not be the same for two different values of ρ.
 ${ }^{2}$ We shall also have by definition (as in (*)), $\boldsymbol{\Lambda}_{0}=\Lambda_{g}, L_{g+1}=L_{1}$.

[^3]: ${ }^{1}$ To avoid constant repetition we shall understand that throughout the proof of the present
 Lemma the values through which n tends to infinity are all congruent to ρ (mod. g).
 ${ }^{2}$ Clearly $D_{1}=e_{1}$.
 ${ }^{3}$ This sequence need not be the same as the sequence Σ_{s} last mentioned.

[^4]: ${ }^{1}$ Use is made of the result (mentioned above) that when $L_{\varrho+1}=0$, we also have $\Lambda_{\varrho}=0$.
 ${ }^{2}$ See O. Perron, Die Lehre von den Kettenbrüchen (1913), p. I34, 138. On pages 132138 of this book will be found further examples of transcendental numbers related to e and satisfying conditions $\boldsymbol{\pi}$.

[^5]: ${ }^{1}$ The $\sqrt{2}$ in the first table denotes the positive root.

